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Abstract

Validated continuation was introduced in [4] as means of checking that
the classical continuation method applied to a Galerkin projection of a
PDE provides a locally unique equilibrium to the PDE of interest. In this
paper we extend the numerical technique to include a parameter that leads
to better bounds on the errors associated with the Galerkin truncation.
We test this method on the Swift-Hohenberg and Cahn-Hilliard equations
on one dimensional domains. For the first equation, we find no numerical
obstructions to the validated continuation technique. This is not the case
for the Cahn-Hilliard equation.

1 Introduction

The question of finding zeros of a nonlinear function arises in many mathemat-
ical domains. In the setting of a one parameter family of nonlinear differential
equations

ut = f(u, ν), u ∈ H, ν ∈ R (1)

defined on a Hilbert space H , the zeros correspond to equilibria. If f is a suf-
ficiently smooth function, then the set of equilibria E := {(u, ν) | f(u, ν) = 0}
is, at least locally, typically a smooth curve in H × R. In this case, continua-
tion provides a particularly efficient manner of approximating E . Recall, that
this method involves a predictor and corrector step: given, within a prescribed
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tolerance, an equilibrium u0 at parameter value ν0, the predictor step produces
an approximate equilibrium ũ1 at nearby parameter value ν1, and the corrector
step, often based on a Newton-like operator, takes ũ1 as its input and produces,
once again within the prescribed tolerance, an equilibrium u1 at ν1.

Our interest is in the case where (1) is a partial differential equation, and
hence, H is an infinite dimensional space. Thus, to perform the continuation
described above requires a priori reducing the infinite dimensional problem to
a finite dimensional system, this often involves a Galerkin projection. A funda-
mental implication of this is that while the continuation method may succeed,
it is not clear that the solution closely approximates elements of E . To address
this problem, the concept of validated continuation was introduced in [4].

To review the essential elements of validated continuation assume that (1)
takes the form

ut = L(u, ν) +
d
∑

p=0

cp(ν)up (2)

where L(·, ν) is a linear operator at parameter value ν and d is the degree of
the polynomial nonlinearity. Typically, c1(ν) = 0 since linear terms are grouped
under L(·, ν). Using an appropriate Fourier series expansion of (2) results in
a countable system of differential equations on the coefficients of the expanded
solution, which for the sake of simplicity we assume takes the form

u̇k = fk(u, ν) := µkuk +

d
∑

p=0

∑

P

ni=k

(cp)n0un1 · · ·unp k = 0, 1, 2, . . . (3)

where µk = µk(ν) are the parameter dependent eigenvalues of L(·, ν) and {un}
and {(cp)n} are the coefficients of the corresponding expansions of the functions
u and cp(ν) respectively with un = u−n and (cp)n = (cp)−n for all n.

The continuation method is applied to the m-dimensional system of ordinary
differential equations

u̇k = µkuk +

d
∑

p=0

∑

P

ni=k

|ni|<m

(cp)n0un1 · · ·unp k = 0, 1, . . . , m − 1 (4)

obtained from (3) via a Galerkin projection. The validation technique provides
justification that the numerical approximations of equilibria of (4) are satisfac-
tory approximations of the equilibria of (2).

The theoretical basis for the validation technique is provided by the Ba-
nach fixed point theorem: A contraction mapping T : X → X on a complete
metric space has a unique fixed point in X. Observe that in a neighborhood
of a hyperbolic fixed point the Newton operator is a contraction mapping that
provides super linear convergence. Furthermore, the not insignificant compu-
tational cost of deriving a numerical Newton-like operator is performed in the
continuation step. Thus, for the sake of efficiency the validation technique fo-
cuses on efficiently determining the set X on which a controlled perturbation of
the numerical operator is a contraction mapping.
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We apply the validated continuation technique to parabolic PDEs for which
the equilibria are smooth. We exploit this smoothness and assume that we can
express the set X in the form Wū(r) where ū is a numerical zero obtained from
the continuation method applied to (4) and

Wū(r) = ū +

m−1
∏

k=0

[−r, r] ×

∞
∏

k=m

[

−
As

ks
,
As

ks

]

. (5)

As the notation suggests, we think of s and As as constants and r, the validation
radius, as a variable to be solved for. In particular, as is described in Section 2,
r is taken to be a solution to a set of polynomial inequalities which encode the
truncation errors associated with performing the continuation technique on the
projection of Wū(r) to

∏m−1
k=0 [−r, r].

Two important points of [4] are the following: (1) if the validation radius
r exists, then the Banach fixed point theorem applies and hence there exists a
unique equilibrium in the set Wū(r), and (2) the cost of validated continuation
is comparable with that of the standard continuation applied to (4). In order to
focus on the essential elements of the validated continuation technique, several
obvious numerical improvements and questions were explicitly left undeveloped
in [4, Section 7]. We turn to two of these issues in this paper.

1. Observe that if (2) has a polynomial nonlinearity of order d, then straight-
forward evaluation of the nonlinear term in (4) involves on the order of
md operations. This computational cost can be reduced by making use of
Fast Fourier Transform (FFT) techniques.

2. As is mentioned above, the truncation of Wū(r) to
∏m−1

k=0 [−r, r] introduces
errors that must be overcome in order to solve for a validation radius. The
simple assumption that |uk| ≤

As

ks for all k ≥ m provides a computation-
ally cheap, but large, bound on the error. Though computationally more
expensive, it is shown in [4] that the bounds can be improved by using ex-
plicit constraints on |uk| for k = m, . . . , M for some M ≥ m. For the sake
of clarity the computations performed in [4] were restricted to M = m.
In this paper we exploit the computational parameter M to carry out
continuation for large ranges of parameter values.

This paper is organized as follows. Establishing that an operator T is a
contraction mapping on a space X is a question of estimates. This is addressed
in Section 2. In particular, after introducing some notation the results of [4] are
recalled in Section 2.1. As is mentioned above, given m, M is a computational
parameter that is used to control the size of truncation errors. In Section 2.2
we provide a lower bound on the choice of M . In Section 2.3, we indicate how
the FFT can be used to compute the nonlinear sums. In Section 3, we apply
our techniques to two model problems: the Swift-Hohenberg equation and the
Cahn-Hilliard equation. Finally, in Section 4 we use the results of our numerical
experiments to suggest future directions of research.
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2 Essential Estimates

Throughout the paper, we will use the subscript (·)F to denote the components
k ∈ {0, · · · , m − 1}. Recall that following the expansion of the system in the
appropriate basis, we have

u̇ = f(u, ν) (6)

whose component-wise expansion is given by (3). Let m be a fixed projection
dimension and consider the following truncation of (6).

For uF := (u0, . . . , um−1) ∈ R
m, define f (m) : R

m → R
m by f (m)(uF ) =

(f
(m)
0 (uF ), . . . , f

(m)
m−1(uF )) where for k = 0, . . . , m − 1,

f
(m)
k (uF ) = µkuk +

d
∑

p=0

∑

P

ni=k

|ni|<m

(cp)n0un1 · · ·unp .

The Galerkin projection of (6) is given by

u̇F = f (m)(uF , ν) (7)

(compare with (4)). The numerical equilibrium of (7) that we want to validate
is denoted by ūF ∈ R

m. To simplify some of the expressions in the next section,
we let Jm×m represent the numerical inverse of Df (m)(ūF ). Finally, let ū =
(ūF , 0) ∈ R

∞.

2.1 The Radii Polynomials

The philosophy of the validated continuation is to construct, at every step of
the predictor-corrector algorithm, a set of the form (5) centered at ū = (ūF , 0)
that will contain a unique equilibrium solution of the original problem (6). The
idea is to construct an operator T whose fixed points correspond to equilibrium
solutions of (6) and show that T contracts a set of the form (5). In order to
verify that T is a contraction on Wū, we will have to verify a finite number of
polynomial inequalities given by the radii polynomials defined below. In prin-
ciple, the computational parameter M will provide a way to compute with the
components k ∈ {0, · · · , M − 1} of the set Wū and to compute with the M first
components f0, · · · , fM−1 of (3). Hence if we take M big enough, the a priori
upper bound on the truncation error term involved in doing the continuation
on a Galerkin projection of dimension m will significantly decrease. However,
the tradeoff will be an increase in the computational cost.

Recalling the results of [4], we introduce constants depending on the projec-
tion dimension m, the numerical equilibrium ūF , the decay rate s ≥ 2 and the
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tail constant As > 0 that are necessary to define the radii polynomials. Let

α :=
2

s − 1
+ 2 + 3.5 · 2s

Ā := max
1≤k<m

{|ū0|, |ūk||k|
s}

Cp := max
k

{|(cp)0|, |(cp)k||k|
s}

A := As.

Turning to the definition of the radii polynomials, for the components k ∈
{0, · · · , m − 1}, set

CY
F :=

∣

∣

∣
Jm×mf (m)(ūF )

∣

∣

∣
, (8)

where | · | represents component-wise absolute values. We now introduce the
computational parameter M ≥ m. For k ∈ {0, · · · , M − 1}, let

Ck(p, j, l, M) :=
∑

k0+···+kp=k

m≤|kp−j+1|...,|kp|<M

|k0|,|k1|,...,|kp−j |<m

∣

∣(cp)k0 ūk1 · · · ūkp−l

∣

∣

As

|kp−j+1|s
· · ·

As

|kp|s

and

ǫk(p, l, M) :=

min

{

pαp−1CpĀ
p−lAl

(M − 1)s−1(s − 1)

[

1

(M − k)s
+

1

(M + k)s

]

,
αpCpĀ

p−lAl

ks

}

Setting
1F := (1, · · · , 1)T ∈ R

m

CK
F (0) := |Jm×m|





d
∑

l=1

d
∑

p=l

l

(

p

l

)

CF (p, l, l, M)



+ |Jm×m|

d
∑

l=2

d
∑

p=l

l

(

p

l

)

ǫF (p, l, M) (9)

CK
F (1) := |Jm×m|





d
∑

l=1

d
∑

p=l

l

(

p

l

)

l · CF (p, l − 1, l, M)



+
∣

∣

∣IF×F − Jm×mDf (m)(ūF )
∣

∣

∣ 1F

CK
F (i) := |Jm×m|





d
∑

l=i

d
∑

p=l

l

(

p

l

)(

l

i

)

CF (p, l − i, l, M)



 , i = 2, · · · , d

allows us to define the m finite radii polynomials P0, · · · , Pm−1 by

Pk(r) :=

d
∑

i=2

CK
k (i)ri +

[

CK
k (1) − 1

]

r +
[

CK
k (0) + CY

k

]

. (10)
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Set

CY
k :=

{

|fk(ūF )|
|µk|

if m ≤ k ≤ d(m − 1)

0 if k > d(m − 1).

Similarly, for k ∈ {m, · · · , M − 1}, let

CK
k (0) :=

1

|µk|





d
∑

l=1

d
∑

p=l

l

(

p

l

)

Ck(p, l, l, M)



+
1

|µk|

d
∑

l=1

d
∑

p=l

l

(

p

l

)

ǫk(p, l, M)

CK
k (1) :=

1

|µk|





d
∑

l=1

d
∑

p=l

l

(

p

l

)

l · Ck(p, l − 1, l, M)





CK
k (i) :=

1

|µk|





d
∑

l=i

d
∑

p=l

l

(

p

l

)(

l

i

)

Ck(p, l − i, l, M)



 , i = 2, · · · , d

and define the M − m tail radii polynomials, Pm, · · · , PM−1 by

Pk(r) :=

d
∑

i=1

CK
k (i)ri +

[

CK
k (0) + CY

k −
As

ks

]

. (11)

Finally, let

C(Ā, A) :=

d
∑

l=1

d
∑

p=l

l

(

p

l

)

αpCpĀ
p−lAl

and define the tail term by

P̃M :=
C(Ā, A)

|µM |
− As . (12)

The following proposition provides a concise representation of [4, Section 6]
that is sufficient for the purpose of this paper.

Proposition 2.1 Let m ∈ N, s ≥ 2, As > 0 and M > d(m − 1) be fixed and
suppose that |µk| ≤ |µk+1| for k ≥ M . Assume that there exists an r > 0 such
that the following conditions are simultaneously satisfied:

1. Pk(r) < 0 for all k ∈ {0, . . . , m − 1},

2. r(m − 1)s < As,

3. Pk(r) < 0 for all k ∈ {m, · · · , M − 1},

4. P̃M < 0.

Then, there exists a unique equilibrium solution of (6) in the set

Wū(r) = ū +

(

m−1
∏

k=0

[−r, r] ×

∞
∏

k=m

[

−
As

ks
,
As

ks

]

)

.
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If the conditions of Proposition 2.1 are satisfied, then we say that the set
Wū validates the numerical equilibrium ūF ∈ R

m with validation radius r > 0.
Hence, we see that to validate the numerical equilibrium ūF , we need to

compute the coefficients defined in (10), (11) and (12). Clearly, the computa-
tional cost arises from the terms Ck(p, j, l, M), for k ∈ {0, · · · , M − 1} which
we handle as follows. For sake of simplicity, assume that the coefficients (cp)k

in Ck(p, j, l, M) are always 0 for k 6= 0. Define

ã := (|ū0|, · · · , |ūm−1|, 0, · · · , 0)T , Ã :=

(

0, · · · , 0,
As

ms
, · · · ,

As

(M − 1)s

)T

∈ R
M .

Then,

Ck(p, j, l, M) :=
∑

k0+···+kp=k

m≤|kp−j+1|...,|kp|<M

|k0|,|k1|,...,|kp−j |<m

∣

∣(cp)k0 ūk1 · · · ūkp−l

∣

∣

As

|kp−j+1|s
· · ·

As

|kp|s

= |(cp)0|
∑

k1+···+kp=k

|k1|,...,|kp|<M

ãk1 · · · ãkp−l
Ãkp−j+1 · · · Ãkp .

As is discussed in section 2.3, FTT can be used to quickly compute CF (p, j, l, M) ∈
R

M given the indices p, j, l, M .

2.2 Lower Bounds for M

The reason why we can get an a priori lower bound for M comes from the fact
that the tail term P̃M is independent of the validation radius r > 0. Indeed,
supposing that M ≥ d(m − 1) the tail term inequality is given by

C(Ā, A)

|µM |
− As < 0 . (13)

Rather than obscuring the point in an abstract computation, observe that in
the context of the Swift-Hohenberg equation (22), we have

C(Ā, A) = 3α(s)3A(Ā + A)2

and
µM = ν −

(

1 − M2L2
)2

.

Since A = As, (13) becomes

3α(s)3As(Ā + As)
2 < As

∣

∣ν − (1 − M2L2)2
∣

∣ .

Supposing that (1 − M2L2)2 > ν and dividing on both sides by As > 0, we get
that

(M2L2 − 1)2 > 3α(s)3(Ā + As)
2 + ν .
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Finally, supposing M2L2 > 1, we get

M > γ(L, ν, s, ūF , As) :=
1

L

√

1 +

√

ν + 3α(s)
3
(Ā(ūF ) + As)2 (14)

Note that this lower bound only depends on the a priori information. Indeed,
before starting the validation, we get all the quantities : L0, ν and ūF from the
continuation and s and As a priori given. Hence, before starting the validation
process, we fix M to be at least γ.

2.3 Computing Sums Using the Fast Fourier Transform

In this section, we address the use of the FFT algorithm to compute sums of
the form

∑

l1+···+lp=l

|l1|,··· ,|lp|<M

a1
l1
· · · ap

lp
, (15)

where a1 := (a1
−M+1, · · · , a1

M−1), · · · , ap := (ap
−M+1, · · · , ap

M−1) ∈ R
2M−1.

Note that we are not the first to use the FFT to compute sums of the form
(15). In [6], the authors gave an explicit way to compute (15) for the cases
p = 3 and p = 5. Here, we present the theory for a general p ∈ N.

Definition 2.2 Let b = (b0, · · · , b2M−2) ∈ R
2M−1. Its Discrete Fourier Trans-

form F(b) is given by

a
l
= F(b)|l :=

2M−2
∑

j=0

bje
−2πi( jl

2M−1 ) , for l ∈ {−M + 1, · · · , M − 1}

Definition 2.3 Let a = (a−M+1, · · · , aM−1) ∈ R
2M−1. Its Inverse Discrete

Fourier Transform F−1(a) is given by

bj = F−1(a)|j :=

M−1
∑

l=−M+1

ale
2πi( jl

2M−1 ), for j ∈ {0, · · · , 2M − 2}

Let δ := p+1
2 , if p is odd and δ := p+2

2 if p is even. Given ai = (ai
−M+1, · · · , ai

M−1) ∈

R
2M−1, define ãi ∈ R

2δM−1 by

ãi
j =

{

ai
j for − M < j < M

0 for − δM + 1 ≤ j ≤ −M and M ≤ j ≤ δM − 1
(16)

For j ∈ {0, · · · , 2δM − 2}, set

b̃i
j := F−1(ãi)|j =

δM−1
∑

l=−δM+1

ãi
le

2πi( jl
2δM−1 ) . (17)
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For l = −δM + 1, · · · , δM − 1,

F(b̃1 ∗ · · · ∗ b̃p)|l =

2δM−2
∑

j=0

b̃1
j · · · b̃

p
je

−2πi( jl
2δM−1 )

=

2δM−2
∑

j=0

[

δM−1
∑

l1=−δM+1

ã1
l1

e2πi( jl1
2δM−1 )

]

· · ·





δM−1
∑

lp=−δM+1

ãp
lp

e
2πi

“

jlp
2δM−1

”



 e−2πi( jl
2δM−1 )

where
(b̃1 ∗ · · · ∗ b̃p)j := b̃1

j · · · b̃
p
j . (18)

Defining

S(j) :=

p
∏

i=1

[

δM−1
∑

li=−δM+1

ãi
li
e
2πi

“

jli
2δM−1

”

]

e−2πi( jl
2δM−1 )

=
∑

l1+···+lp=l

|l1|,··· ,|lp|<M

a1
l1
· · · ap

lp
+

p
∑

k=1







∑

l1+···+lp=l±k(2δM−1)

|l1|,··· ,|lp|<M

a1
l1
· · ·ap

lp







+
∑

l1+···+lp /∈{l±k(2δM−1)|k=0,··· ,p}

|l1|,···|lp|<M

a1
l1
· · · ap

lp
e
2πi

“

l1+···+lp−l

2δM−1

”

j
,

we obtain

F(b̃1 ∗ · · · ∗ b̃p)|l =

2δM−2
∑

j=0

S(j)

= (2δM − 1)
∑

l1+···+lp=l

|l1|,··· ,|lp|<M

a1
l1
· · · ap

lp

+(2δM − 1)

p
∑

k=1







∑

l1+···+lp=l±k(2δM−1)

|l1|,··· ,|lp|<M

a1
l1
· · · ap

lp






(19)

+
∑

l1+···+lp /∈ {l±k(2δM−1)|k=0,··· ,p}

|l1|,··· ,|lp|<M

a1
l1
· · ·ap

lp





2δM−2
∑

j=0

e
2πi

“

l1+···+lp−l

2δM−1

”

j



 .

Euler’s formula gives that for l1 + · · · + lp − l 6≡ 0 mod (2δM − 1),

2δM−1
∑

j=0

e
2πi

“

l1+···+lp−l

2δM−1

”

j
= 0 .
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Hence, the third sum in (19) is zero. Turning to the second sum in (19), observe
that |l1|, · · · , |lp| < M and l ∈ {0, · · · , M − 1} implies that

l1 + · · · + lp − l ∈ {−(p + 1)(M − 1), · · · , p(M − 1)} .

Hence, given the above mentioned choice of δ, the second sum of (19) is zero.
Therefore, we can conclude that

∑

l1+···+lp=l

|l1|,··· ,|lp|<M

a1
l1
· · · ap

lp
=

1

2δM − 1
· F(b̃1 ∗ · · · ∗ b̃p)|l . (20)

The discrete Fourier transforms required in the computations of (17) and
(20) are computed using the FFT algorithm (e.g. see [1]).

3 Results

In this section we present some computations for the one-dimensional Swift-
Hohenberg and the one-dimensional Cahn-Hilliard equations. This is meant
both to show the practicality of the method of validated continuation and to
highlight its current limitations.

The starting point for our computations is the trivial solution, u0 ≡ 0,
at a particular value of the continuation parameter, and an arbitrarily chosen
Galerkin projection dimension.

The iteration of validated continuation proceeds as follows. As is indicated
in the Introduction, we use a standard predictor-corrector numerical method to
find a numerical solution at the next parameter value. That is, given a numerical
zero of the Galerkin projection at ν0, we find a new numerical zero ūF at the
parameter value ν1 = ν0 + ∆ν. We then proceed with the validation step. We
choose M to be the smallest integer satisfying

M ≥ max {d(m − 1), 2γ} , (21)

where γ is given by (14), and check the inequalities of Proposition 2.1. If the
inequalities are satisfied, then Proposition 2.1 applies, we have validated the
solution ūF at ν1, and we proceed to the next step; that is, we increment ν
and repeat the process. If validation fails we increase m by 2, recompute the
numerical zero ūF at ν1 and try to validate it. This procedure is repeated
until the numerical zero ūF at ν1 is validated or a maximum number of trials is
reached. We remark for future reference that for Swift-Hohenberg our procedure
always resulted in validation of the numerical zero.

At each step we monitor the determinant of the Jacobian to detect bifurca-
tions. So starting with the trivial branch (u ≡ 0) we find branches that bifurcate
from it, and then find branches that bifurcate from the newly found branches,
and so on. In the case of Swift-Hohenberg we followed multiple branches. In
each case we started with a low dimensional Galerkin projection, m = 7, and
allowed the validation procedure to determine an appropriate value for m.
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It is important to mention that we do not compute continuous branches of
equilibria. The dots on Figures 1, 2, and 6, represent the points were we com-
puted and validated equilibrium solutions. Notice also that the step size from
one step to the next is not constant, but changes along each branch according
to the formula ∆ν := 2(4−k)/3∆ν, where k is the number of iterations needed
for the Newton method during the continuation step.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

ν

‖
u
‖

Figure 1: Bifurcation diagram for the Swift-Hohenberg equation (22) for 0 ≤
ν ≤ 5. The dots indicate the points at which a numerical zero was validated.

3.1 Swift-Hohenberg

Consider the Swift-Hohenberg equation [8]

ut =

(

ν −

(

1 +
∂2

∂x2

)2
)

u − u3, x ∈ [0, 2π/L] (22)

with u(x, t) = u(x+2π/L, t) and u(−x, t) = u(x, t). Expanding u in the Fourier
basis {cos(kLx) | k = 0, 1, 2, . . .} gives

u(x, t) = u0(t) + 2

∞
∑

k=1

uk(t) cos(kLx).

Then (22) takes the form

u̇k = µkuk −
∑

k1+k2+k3=k

uk1uk2uk3 ,

11



where
µk = ν −

(

1 − k2L2
)2

, (23)

is the eigenvalue of the linear part of (22). We fix L = 0.65, and use ν as the
continuation parameter.

0 2 4 6 8 10 12

x 10
5

0

200

400

600

800

1000

1200

ν

‖
u
‖

Figure 2: Some of the branches of equilibria of (22) for 0 ≤ ν ≤ 106. The dots
indicate the points at which a numerical zero was validated. For the values
0 ≤ ν ≤ 104 the validation was done using interval arithmetic and hence at
these points we have a mathematical proof of the existence and uniqueness of
these solutions in the sets Wū(r). The color coding of the branches in this figure
matches that of Figure 1.

As is indicated in the Introduction, we view the set Wū(r) (5) as a function
of r. This implies that s and As are considered to be constants. For (22) we set
s = 4 and As = 1. We discuss the choice of these values in Section 4.

We computed what we believe are all the branches of equilibria for 0 ≤ ν ≤ 5
and followed some of the branches up to ν ≈ 106. The diagrams are shown on
Figure 1 and Figure 2. We validated all the branches up to ν ≈ 104 in Figure 2
using interval arithmetic to control floating point errors and thus rigorously
verified that the inequalities of Proposition 2.1 are satisfied. This implies that
we have mathematically proven the existence and uniqueness within the sets
Wū(r) of the equilibria for Swift-Hohenberg at those values of ν ≤ 104 indicated
by the dots in Figure 2.

To describe some of the details and implications of these computations we
focus on a particular branch of solutions. Given the title of this paper it is

12



natural to consider a branch from Figure 2. We choose the blue one and note
that the results for the other branches are similar. Plots of some of the solutions
along the blue branch are presented in Figure 3. The computational cost of
validating these branches are determined by m and M . Observe that m plays
a significant role in the cost of the continuation step - the Newton step requires
an approximation of the inverse of the Jacobian. The use of the FFT implies
that the size of M determines the cost of the computation of the coefficients
of the radii polynomials. Figure 4 indicates how m and M varies as a function
of ν, though the reader should recall that in this setting given m, M is chosen
according to (21).
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0.51

0.52

0.53

0.54

x

u

ν = 1.2627

0 2 4 6 8 10
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20

40

60
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u

ν = 4345.2728

0 2 4 6 8 10
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−100

0

100

200

300

400

x

u

ν = 108301.2842

0 2 4 6 8 10
−600

−400

−200

0

200

400

600

800

1000

1200

x

u

ν = 1017394.3278

Figure 3: Some solutions along the blue branch of the diagram on Figure 2.

At the risk of being redundant, what Figure 2 indicates are the points in
parameter space at which we have found a set of the form

Wū(r) = ū +
m−1
∏

k=0

[−r, r] ×
∞
∏

k=m

[

−
1

k4
,

1

k4

]

in which there exists a unique equilibrium of (22). ū is determined by the
continuation method. m as a function of ν is given in Figure 4 and r as a function
of ν is given in Figure 5. Observe that the knowledge that the equilibrium lies
inside of Wū(r) gives very tight bounds. In particular, the true equilibrium of
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Figure 4: Plots of m and M along the blue branch of the diagram on Figure 2.

(22) at ν = 1017394.3278 differs from that shown in Figure 3 by less than 10−10

in the L2 norm. Thus, the peaks in the solution are not numerical artifacts.

0 2 4 6 8 10

x 10
5

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

ν

r

Figure 5: Plot of r along the blue branch of the diagram on Figure 2.

The computation time for the blue branch for ν up to ν ≈ 104 was 6.5
minutes without interval arithmetic and 9.19 hours with interval arithmetic.
The computation for the whole branch (up to ν ≈ 106) was 11.67 hours without
interval arithmetic. The computation times for the other branches were similar.
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3.2 Cahn-Hilliard

We now turn our attention to the Cahn-Hilliard equation [2]

ut = −(ǫ2uxx + u − u3)xx, x ∈ Ω = [0, 1]
ux = uxxx = 0, on ∂Ω = {0, 1}

(24)

We consider the case of mass equal zero, that is,

∫ 1

0

u(x, ·)dx = 0.

In this case, to compute the equilibria of (24), is it sufficient to work with the
Cahn-Allen equation

ut = ǫ2uxx + u − u3, x ∈ Ω = [0, 1]
ux = 0, on ∂Ω = {0, 1}

(25)

For this equation we use λ = 1/ǫ2 as the continuation parameter. For (25)
we use the Fourier basis {cos(kπx) | k = 0, 1, 2, . . .}, then

u(x, t) = u0(t) + 2
∞
∑

k=1

uk(t) cos(kπx).

So (25) takes the form

u̇k = µkuk −
∑

k1+k2+k3=k

uk1uk2uk3 ,

where

µk = 1 −
k2

λ
, (26)

is the eigenvalue of the linear operator in (25).
We computed using the procedure described at the beginning of Section 3.

Choosing s = 3 and As = 0.01 led to the branches indicated in Figure 6. In
particular, equilibria associated with the black branch are indicated in Figure 7.

The branches in Figure 6 terminate because the above mentioned procedure
failed. To be more precise, we declare that our method fails when validation
fails for 40 consecutive times at the same value of λ (recall that each time
validation fails we increase m by 2, recompute the equilibrium and try to validate
it again). Figure 8 indicates the rapid increase in m as a function of λ for
the black branch in Figure 6. Observe that trying to validate a solution for
40 consecutive times is equivalent to increasing the dimension of the Galerkin
projection by 80, recomputing the equilibrium and trying to validate it. In all
the cases the reason for failure was that we were unable to find an r satisfying
condition (1) of Proposition 2.1. In fact, it appears that the failure is due to
the fact that at least one of the finite radii polynomials (10) fails to have any
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Figure 6: Bifurcation diagram for (24).
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Figure 7: Solutions along the lower branch of the diagram on Figure 6.

positive roots. Since Pk(0) > 0, this implies that there is no positive solution
to Pk(r) < 0.

As is indicated at the beginning of Section 2.1, there are only a few free
constants involved in the definition of the radii polynomials: m, the dimensional
of the Galerkin projection; M , a computational parameter; s, the decay rate;
and As an a priori bound on the size of the Fourier coefficients. As is described
above, failure of the procedure implies that m has been increased by 80. As one
may expect and as the results in Figure 8 corroborates, this implies values of
uk for k close to m are essentially zero. Thus, further increase of the Galerkin
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projection at this point has little effect on the validation procedure.
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|

Figure 8: (Left) The dimension of the Galerkin projection m as a function of λ
along the lower branch of the diagram on Figure 6. (Right) The value of |um−2|
as a function of λ along the same branch.

We tried to increase the value of M , since this results in better control on the
tail errors. In particular, all the results indicated in Figure 6 were obtained using
M equals twice the lower bound given by (14). We tried the same computations,
from the beginning, using M equals four, six and ten times the lower bound in
(14). In each case we were able to continue the branches in Figure 6 a bit
further. However, in each case the procedure failed in the same way as before;
there was no positive solution to the finite radii polynomial inequalities. This
suggests that just increasing M does not provide an adequate solution to the
problem.

We have no good heuristics for the choice of s and As. Random choices did
not produce any significantly better results than s = 3 and As = 0.01.

4 Conclusion

The dramatic contrast between the Swift-Hohenberg equation, where validation
computations even at extreme parameter values succeeded, and Cahn-Hilliard
equation, where all computations eventually failed at fairly small parameter
values calls for an explanation and suggests future directions of research for
improvements in the technique of validated continuation.

The starting point for this discussion are the finite radii polynomials because,
as is indicated in Section 3.2, it is the first condition of Proposition 2.1 that fails.
Since both equations have cubic nonlinearities, the condition on the finite radii
polynomials take the form

Pk(r) := CK
k (3)r3 + CK

k (2)r2 +
[

CK
k (1) − 1

]

r +
[

CK
k (0) + CY

k

]

< 0.
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Figure 9: Plot of r as a function of λ along the lower branch of the diagram on
Figure 6 .

Finding a positive solution requires that CK
k (0) and CY

k be sufficiently small.
As is indicated in Figure 9, even though near the parameter value of failure m
and M are large, the validation radius r is large as compared to the values for
Swift-Hohenberg (Figure 5). This is further evidence that CK

k (0) + CY
k is not

small.
To simplify the argument assume that Df (m)(ūF ) is diagonal. Then the di-

agonal terms of Jm×m, the inverse of Df (m)(ūF ), become smaller as the eigen-
values µk become larger. By (9), CK

k (0) is proportional to |Jm×m| and by (8)
CY

k is proportional to the tolerance of the numerical Newton method and is in-
versely proportional to µk. Comparing the eigenvalues of Swift-Hohenberg (23)
against those of Cahn-Allen (26) we have

µk = ν − (1 − L2k2)2 vs. µk = 1 −
k2

λ
= 1 − ǫ2k2.

Clearly, the magnitudes of the eigenvalues of Swift-Hohenberg are getting large
at a much faster rate than those of Cahn-Hilliard.

This analysis provides some justification for the success in Swift-Hohenberg
as opposed to Cahn-Hilliard. It also suggests necessary directions to improve
the validated continuation methods.

The term CY
k essentially depends on the chosen tolerance of the numerical

scheme. Thus, the failure of the first condition of Proposition 2.1 in Cahn-
Hilliard is likely due to CK

k (0) which as presented in (9) is the sum of two
terms. In the first term, the roles of s and As are clear. However, as is re-
marked in [4, Section 7] being able to optimize our choice of these constants
remains an open question. The second term involves ǫk(p, l, M) which arises
from the estimates of [4, Lemma 6.1]. The advantage of these estimates is that

18



they can be straightforwardly applied directly to any polynomial nonlinearity.
This simplicity comes at a price. For Swift-Hohenberg, with eigenvalues whose
magnitudes grow at a fourth order rate, these estimate suffice. For Cahn-Hilliard
we need better estimates. Work on this is in progress [5, 7].
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