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Abstract

We introduce a rigorous computer-assisted method to obtain constructive proofs of
existence of solutions to nonlinear differential equations. We introduce all main ideas
through examples, accessible to undergraduate students, where we consider radially sym-
metric solutions of partial differential equations. The proofs are obtained by solving for the
coefficients of the Taylor series of the solutions in a Banach space of geometrically decaying
sequences. The tool that allows us to advance from numerical simulation to mathematical
proof is the Banach contraction theorem.
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1 Introduction

In the education of mathematics students, we perceive a gap between scientific computing
methods for partial differential equations (PDEs) on the one hand, and the mathematically
analysis of PDEs on the other. In the last decade powerful techniques to bridge the divide,
i.e., to turn numerical calculations into mathematically rigorous statements, have developed
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rapidly (see e.g. [7, 11, 22, 25, 27, 29]). As computer-assisted mathematical proofs are becoming
mainstream, and the link between computational science and mathematics is tightening, it is
fitting to introduce these techniques in undergraduate courses.

There are many examples of teaching using the computer for experimentation at all levels
and as a rigorous mathematical tool in such areas as number theory and discrete mathematics.
But teaching students to use a computer to do functional analysis is rare, if not unheard of. With
a clever hybrid approach we can off-load the verification of intricate computationally intensive
estimates to the computer to prove existence to infinite dimensional continuum problems near
numerical approximations. This permits using classical ideas (such as fixed point methods) to
generate results not accessible by any other means. Thus, going beyond simulations, students
can get their hands on solutions of nonlinear PDE problems using the computer and still as
mathematicians argue about them with all the rigour of a classical pencil and paper proof.

In this paper we present examples of this technique which are accessible to undergraduate
students. We believe it is valuable for students to learn about these techniques. First, because
it shows them that many simulations can be turned into rigorous proofs. Second, because it
teaches them to combine techniques from computational science with areas of mathematics over-
frequently thought to be completely separate: pencil and paper proofs and scientific computing.

The examples in this paper are chosen such that the technicalities are minimal (and the asso-
ciated coding is easily manageable), while solving nontrivial nonlinear PDE problems. Further-
more, these problems require (functional) analysis in infinite dimensions, hence they illustrate
the main ideas involved in more advanced involved problems, which require more “technical”
machinery, such as approximation theory, Fourier/Chebyshev series, finite elements, etc.

This paper, and in particular the examples discussed, resulted from a summer school for
undergraduate students at Simon Fraser University in the summer of 2015. Our experience
is that this topic of rigorous analysis using a computer grabs the attention of students. As
we will indicate in the examples, there is something there for a wide spectrum of students.
With a combination of analysis and coding, it invites them to take a hands-on approach.
Moreover, it presents open research problems in applied analysis that are approachable for
very junior students. Analysis (of for example PDEs) is about continuous problems, while the
computer calculations are inherently discrete. This invites the students to start thinking about
problems differently. What can I prove starting from what I can compute? How do I set up
a computer program so that it is a proof? What limitations of computers must be overcome
to generate an air-tight proof? What happens when I try to implement Newton’s method in
infinite dimensions? It shows them the messy difference between textbook examples and real
research problems.

We note that one ingredient that is needed in the analysis, is computation using interval
arithmetic. We refer to [15, 18, 23] for an introduction to interval arithmetic. We have excel-
lent experiences with the package Intlab [17] for Matlab, but of course many alternatives are
available. The matlab scripts for the examples in this paper are available at [3].

2 The central tool

When trying to solve numerically a finite dimensional nonlinear zero-finding for F' : R™ — R"”,
the classical approach is to apply Newton’s algorithm, where one iterates the map

T(z) =x — DF(x) ' F(z),

num

until the residue gets small. Often this numerical outcome z is either assumed “good
enough” (roughly, in applied mathematics) or “not rigorous” (roughly, in pure mathematics).
Our goal is to merge these perspectives by providing a rigorous quantitative statement on how



good this numerical outcome is, i.e., how close it is to a solution of F(z) = 0. The crucial
observation is that Newton’s method works so well because the map T is a contraction with
a very small contraction constant on a neighborhood of a zero z%°' of F, provided that the
Jabobian DF (z%°!) is invertible, i.e., %! is a non-degenerate zero of F' (the generic situation).
This allows us to prove that the numerical approximation z™™ is close to the true solution 25°!.

Rather than going into detail about how to obtain such a computer-assisted proof, we first
move to the infinite dimensional setting. After detailing in Theorem 2.1 below the setup in gen-
eral Banach spaces, we return in Remark 2.2 and Example 2.3 to the (relatively straightforward)
application to finite dimensional problems.

Consider now F' : X — X’ a smooth map between two Banach spaces. One of the main
strategies of mathematical analysis is to turn the zero finding problem F(x) = 0 into a fixed
point problem. The Newton operator itself is usually impractical because the inverse of the
derivative of an infinite dimensional map is hard to work with. Instead, one may choose an
injective linear map A € L(X’, X) and study the fixed point problem

r=T(z) = z— AF(z).

The main problem is how to choose A such that T is a contraction on some neighborhood of the
(unknown) fixed point that we are looking for. In the context of a computer-assisted proof, the
approach is the following. First, by your favorite method from scientific computing, choose a
finite dimensional ‘projection’ F™™ of F'| solve it numerically to find ™™, and reinterpret "™
as an element of the infinite dimensional space, which we denoted by Z (hence F™ ™ (™) ~ 0
and F(Z) = 0). We expect the solution to be close to Z, hence we would like to choose A an
approximate inverse of DF(T).

How to determine when A is an appropriately accurate approximate inverse? And on which
neighborhood of Z do we get that T is a contraction? The following theorem is one way to make
this precise. It uses, as an intermediate tool, and approximation AT € L(X, X’) of DF(%).

Theorem 2.1. [Radii polynomial approach in Banach spaces| Let X and X' be Banach
spaces. Denote the norm on X by || - ||x. Consider bounded linear operators AT € L(X,X’)
and A € L(X', X). Assume F: X — X' is C1, that A is injective and that

AF: X = X. (1)

Consider an approximate solution T of F(x) = 0 (usually obtained using Newton’s method on
a finite dimensional projection). Let Yy, Zo, Z1, and Zy be positive constants satisfying

|AF(Z)|x < Yo 2)
1T — AAT || p(x) < Zo 3)
JA[DF(z) — A"||p(x) < Z1, )
)

|A[DF(c) = DF(2)]||p(x) < Zar,  for all |lc—Z|[x <,

4
)

o~ o~ o~ o~

where || - || p(x) is the induced operator morm for bounded linear operators from X to itself.
Define the radii polynomial

def

p(r) = Zor® — (1 — Zy — Zy)r + Yy, (6)

If there exists ro > 0 such that
p(?“o) < Oa
— dif

then there exists a unique T € By, (Z) = {z € X | ||z — Z||x < ro} satisfying F(Z) = 0.



Proof. Using the mean value theorem, it is not hard to show that T' maps B,,(Z) into itself,
and that T is a contraction on that ball with contraction constant k < Zy + Z7 + Zarg < 1.
The result then follows directly from the Banach contraction theorem. Although the steps of
the proof can be easily filled in by students, we refer to [10] for additional details. O

This theorem fits in a long tradition of quantitative Newton-Kantorovich type theorems.
The bounds are parametrized in terms of r, so that an appropriate r does not need to be guessed
in advance but rather can be determined as the final step of the proof process. Moreover, it
allows us to obtain balls for an interval of values for the radius. Small values of ry give us the
tightest control on the distance between the solution and the numerical approximation, while
large values of ry provide us with the best information about the isolation of the solution.

Before we show, in Sections 3 and 4 how to apply Theorem 2.1 in practice in infinite
dimensional settings, we first come back to finite dimensional problems, which may also serve
as a good initiation for students to start implementing the computer code.

Remark 2.2. In finite dimensions Theorem 2.1 can be implemented very easily and generally,
if one has an interval arithmetic package, and if one has explicit formulas for D;F; and D?kFZ
for 1 < i,k <n. We use the co-norm |z| = maxi<i<n |2;|. Let ™™ be the numerical ap-
prozimation of a solution (e.g. found using Newton iterations). Let A be a numerical computed
(hence approzimate) inverse of the numerically computed DF(z™™). Now compute with inter-
val arithmetic A" = DF(2™™), which implies we may set Z, = 0. Then evaluate, again with
interval arithmetic, the following three computable expressions:

1. the residue
J— num .
Yy = sup(lréliagJAF(x )\1),

where absolute values are taken component-wise, and sup denotes the supremum of the
interval obtained.

2. the matrix norm

Zy = sup( max Z |(I, — AAT)Z-J-|>.

1<i<n -
1<j<n

By checking that Zy < 1, one verifies that the hypothesis in Theorem 2.1 that A is injective.

3. the second derivative estimate (which provides a bound (5) via the mean value theorem)

Zgzsup(lrgiakxn Z ‘ Z AijD,%ij(mnurrl+[_r*’T*DD7

1<k,m<n 1<j<n

where ™™ + [—r,,7.] is the vector of intervals with components [zh™™ — 1y, xp™™ + 74].

Here we choose a loose apriori upper bound . on the value of r, and we bound the second
derivative uniformly on this ball of radius 7.

Since Yy and Zy are usually near machine precision, the quadratic formula then gives a very
small ro for which p(ro) < 0. After checking that ro < r. we can then invoke Theorem 2.1 to
prove that a (unique) zero x°°' of F lies within distance ro of x™™.

Example 2.3. We consider the circular restricted four body problem (CR4BP), where three
bodies (with masses (my, ma,m3), normalized so that my + mg +mg = 1 and m; > mg, ms3)
move in circular periodic orbits around their center of mass in a triangular configuration that



is fized in the co-rotating frame. A fourth massless satellite moves in the effective potential (in
this co-rotating frame)

3
ot 1
Q(x, y; ma, ma, ma) £ 5(332 +9%) + Z

i=1

m;

(= x:)2 + (y — ya)?]/?

Here (x,y) is the position of the satellite in the plane of the triangle, and the fized positions
(z4,y:) of the three bodies can be expressed in terms of their masses:

(xlvyl) = (7%70% (x2792) = (K]\éj’377\/§]\2n$)7 (IS;ZJB) = (KI\:i[.Qa \/ﬁgw)a

where K; ; = (my —mj)m; + (2my +mj)m; and M = 2(m3 +moms +m3)/2, see e.g. [4, 6].
The equilibria of the system are given by the critical points of the effective potential €):

3
F(z,y) = <m—z[(x_%)1( o 2 EEERAS Z CEE Zy ) ”3/2>0. (7)

i=1 + Y-y

It is known that the number of equilibrium points varies from 8 to 10 when the masses are
varied (e.g. see [12] and [20]).

Using the general bounds introduced in Remark 2.2 for the finite dimensional case, we applied
the radii polynomial approach to prove the existence of several solutions of (7), hence yielding
rigorous bounds for relative equilibria of (CR4BP) Let us present a sample result. In case
of equal masses m; = mg = mgz = 1/3, the routine script_equilibria.m, available at [3],
computes (using Newton’s method) z™™ = (—0.467592983336122, 0.809894804400869), and
yields the bounds Yy = 1.775 x 1071, Zy = 1.23 x 107 and Z, = 12.6987 with the choice of
r. = 0.02. In this case, we obtain p(ro) < 0 for any ro € [1.78 x 10715,0.02], with p the radii
polynomial defined in (6). In Figure 1 one can find several sample results, where each point
has been rigorously validated using the computer program.

1.5
1

0.5
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Figure 1: (Left) Ten relative equilibria of (CR4BP) with equal masses. (Right) Eight rel-
ative equilibria of (CR4BP) with masses m; = 0.9987451087, my = 0.0010170039 and
ms = 0.0002378873. In both plots, some level sets of the effective potential {2 are depicted.

We next present in two relatively simple examples how to apply Theorem 2.1 to infinite
dimensional problems.



3 Radially symmetric solutions of a nonlinear Laplace-
Beltrami operator on the sphere

We consider the partial differential equation
Au+4du+u?=0 (8)

posed on the sphere S? C R3, where A is the Laplace-Beltrami operator on the manifold (this
is the natural geometric generalization of the Laplace operator). Here A > 0 is a parameter.
The PDE (8) describes a classical nonlinear elliptic problem [13], often studied on the unit
ball in arbitrary dimension and with a variety of nonlinearities. Here we restrict attention to a
quadratic nonlinearity, and we pose the problem on a sphere, cf. [8].

Letting © = rcos¢sinf, y = rsin¢gsinf and z = rcos @, letting u(z,y, 2) = u(r, ¢, 0),

A *71 E si 0@ Jril @
Y= 2sne o \MM o0 r2sin? 0 8¢

We look for solutions of (8) that are radially symmetric (with respect to rotations around the
z-axis) and symmetric in the equator. This reduces the PDE to an ODE and leads to the
following boundary value problem (BVP) for u = u(6):

u”(0) + cot(0)u'(0) + Au() + u(9)? = 0, for 6 € (0, 7],
u'(0) = 0, (9)
u'(5) =0

The goal is to prove existence of solutions of (9) via the radii polynomial approach (see
Theorem 2.1). The first step in doing so is to introduce a zero finding problem of the form
F(z) = 0 on a Banach space.

3.1 The zero finding problem for the Laplace-Beltrami problem

Our approach will be based on Taylor series, and it turns out that it has advantages (see
Remark 3.1 below) to work on a domain [0,1]. Hence we rescale the independent variable
0 = 5v. The algebra is nicer if we also scale the dependent variable, as well as the parameter A:

v(ﬁ):ﬁu(%) and X:%QA.

The BVP (9) in the new variables becomes

V" (9) + 79 cot (gﬁ) v/l(f) + (@) + o) =0 for ¢ € (0,1],
(10)

For the sake of presentation, here we have anticipated that it will be convenient to split off
a factor ¥ in the second term of the differential equation, as it will allow us to deal with
smooth functions that are even in ¥ only. We search for v as a power series of 9 around zero:
v(9) =Yo7, an¥™. Let us assume for the moment that the radius of convergence of our power



series is larger than 1, then the coefficients are in a Banach space of geometrically decaying
coefficients. More precisely, for v > 1, denote

6 {a= (@)nzo t lallw =Y lanl™ < oo}

n>0
Given a,c € £}, denote by a * ¢ the Cauchy product given component-wise by

n
(Cl * C)n = § Any Cpy = § Gpy Cp—ny -

ny+ng=n n1=0
0<ni,nz<n

An important property of the space £} is that it is a Banach algebra under the Cauchy product:

I < - (11)
It is instructive for students to check this property.
The expansion for the cotangent is
9271 1 got e
cot (6 - =2 Z where ((2n) = Z is the Riemann zeta function.

Hence we get

oot (3 )_1—2ZC2% 92 = wa

where the b; are the Taylor coefficients defined by

<)

bo =1, b = 233

if 7 > 11is even, b; =0 ifis odd.

The decay rate of these coefficients shows that we should restrict attention to 1 < v < 2. After
expanding all terms in (10) as Taylor series, using the Cauchy product, and equating powers,
we arrive at the operator F(a) = (F,(a))n,>0 defined as

ay for n =0,
F,(a) = Z;iljaj 3 forn =1, (12)
n(n—1)an, + (Ja*b), + Aan—2 + (a % a)pn_2 for n > 2.

Here the multiplication operator J on sequence spaces is defined by

def

(Ja); = ja, for j > 0.

Remark 3.1. Without the rescaling of the independent variable, the formula for Fy correspond-
ing to the boundary condition at 0 = 5 would have become Zj>1jaj(g)j. FEvaluating this sum
(say up to some finite N ) is numerically unstable because of the high powers of 5. Hence the

rescaling.
The following result expresses that to solving F'(a) = 0 leads to a solution of (10).

Lemma 3.2. Let v € (1,2) and let a = (an)n>0 € £ be such that F,(a) = 0 for all n > 0.
Then v(d) = 32,50 and" is a solution of (10).



Proof. Let v € (1,2) and a € ¢},. Then the power series v(J) = Y., -, a,9" converges uni-
formly for ¥ € [0, 1], and similarly for the derivatives of v. The first two equations Fy(a) = 0
and Fj(a) = 0 imply that v satisfies the boundary conditions in (10), whereas the remaining
equations F,(a) = 0, n > 2 imply that v satisfies the differential equation in (10). O

Now that we have identified the zero finding problem F'(a) = 0 to be solved in the Banach
space X = (L with v € (1,2) to be chosen later, we are ready to apply the radii polynomial
approach as introduced in Theorem 2.1. The first ingredient is a numerical approximation a
of F(a) = 0. Given N € N and a = (an)n>0 € X = £, denote by a™) = (a,)N_, € RVNF!
the finite dimensional projection of a, and by F(V) : RN+1 5 RN+1 the finite dimensional
projection of F' defined by

FN) (V) = (F”(G(N)’O’O’O""))OgnSN'

Assume that a numerical approximation @™ € RN*! has been computed. We abuse
slightly the notation by identifying ™) € RN*+! with a = (ag, a1, -- ,an,0,0,0,---) € X = 1.
Denote by DF(V )(d) the Jacobian of F(V) at @. The radii polynomial approach as introduced
in Theorem 2.1 requires defining the operators A" and A. Let

AT (DF™M(@)p™)) ~ for 0 <n < N,
( h)ﬂ = 2
nhy for n > N,

where the diagonal tail is chosen in view of the dominant term in (12) for large n. Consider an
(N +1) x (N + 1) matrix AN) computed so that AN) ~ DF(N)(d)_l. Define A as

(N) p(N) <n<
(Ah)n def {(A h )n fOI‘O_n_N, (13)

n"2h, for n > N.

One way to visualize the operator A is as

AW 0 0
0 1 0
N+1)2
A= ¢ <J6> .

The following lemma states that condition (1) of Theorem 2.1 holds.
Lemma 3.3. Let X = (. with v € (1,2), A as in (13) and F as in (12). Then AF : X — X.

We leave the proof to the students. We now introduce the formulas for the bounds Yy, Zy, 21
and Z, satisfying respectively (2), (3), (4) and (5). These bounds are derived in Sections 3.2-3.5.
In our experience, students can fill in the details with some effort, as well as grasp the logical
structure of the arguments, and sometimes even sharpen the bounds. We first introduce an
auxiliary result, used for the Zy and Z5 bounds. We again leave the proof to the students.

Lemma 3.4. Consider a linear operator Q: {1 — (% of the form
QW) 0

gN+1
Q= qN+2



where QW) = ( $52L)O§m,n§N and q, € R. Assume that |q|oc = sup,~ y |gn| < 0o. Then

_ - (N)
L Z Q" k)

3.2 The Y, bound

We look for a bound Yj satisfying ||AF(a)||1,, < Yp. We note that since @, = 0 for n > N, we
have (@ * a), = 0 for all n > 2N. Hence, recalling the definition of A in (13),

N 2N+2 1
HAF(a)HLVsZ\(AW)F(N)(&»n]uu > S lJaxh), +(@xa) v
n=0 n=N+1

+ Z |(Jaxb),|v"

n= 2N+3

When calculating the finite sums in this expression, computing any b; involves evaluating the
zeta function, which is itself an infinite series. It is a useful exercise for students to bound the
tail of this series via an (integral) estimate. Concerning the final term in the expression above,
since ((s) =Y o kT <> k2= %2 for all s > 2, we have |b| < 327" for all | > 1. Hence

[eS] [eS) N
1 _ 1 _
> gl = 3 (Sl
k=2N+3 k=2N j=
1 N X A
= MZ(U&H’/J > |bk—j|'/kj)
3=0 k=2N+3
1 N @
< @ rap 2 Ul 2 Il
=0 I=N+3
dJall, = v\ A4|Jall, v\t T
C Wl S (o) Mt ()0 1w,
3(2N + 3) Myt 2 3(2N +3)2 \2 1-35
We thus set
Yd—CfZ‘ N M) (@), V"+2§2i|(<]d*b) +(ax*a),|v" + Yiai (14)
0 — n2 n n tail-
n=N+41

3.3 The Z; bound
Let BY T — AAT. We remark that the tails of A and AT are exact inverses, hence B, ,, = 0
when m > N or n > N. Letting

o 1
Zo= max — > [Bpa|v™, (15)
0<n<N p" ’
- 0<m<N

we get from Lemma 3.4 that || — AAT| gy < Zo.



3.4 The Z, bound
We look for a bound ||A [DF(a) —AT]HB(Q) < Zj. Given h € £} with ||h|l1, < 1, we set
< [DF(a) — At]h. For the finite part (0 < n < N) we see that
20 =0, 21 = isn1dh and 2, =0 forn=2,...N.
For the tail, i.e. n > N, we find
zn =n(n—1)hy, + (Jh xb),, + Mip_o + 2(@a*h)p—o — n2h,.

Using the “chain rule” identity J(h * b) = (Jh *b) + (h x Jb) we obtain

zn =n(b* h)p — (Jbxh)p + MNupy_o +2(@ % h)p_oa,
where b is the sequence defined by bo = 0 and b, = b, for n > 1. Next we estimate

N N
1Az = 713 AP 2 "

k=0'j=0

1
ey ﬁ\zﬂuk. (16)

k>N+1

For any ||All1,, <1, it is a small exercise to show that |z;| < 2+ provided N +1 > (Inv)~!

Hence the first term in (16) is bounded by Zt: Zk:o ‘Ak,l |. For the infinite tail we first

estimate
- 4 & 42 def
e = S < 537 (%) = gm0

1>2 n=1
2\" 1602
Jb v b, < - = ———— = (5.
1701 = 2t Z (5) -sasr =

Then, using the Banach algebra property (11), we find, for any ||hlj1, <1,

1 Cl CQ ]/2 - ~
Al +2 ).
k§+1 k2|2k|y T N+1 (N+ 1)2 + (N+ 1)2(| |+ HCLHL )

Hence, with the requirement that N 4+ 1 > (Inv)~!, we set

2

def N+1 & 4 Y _
= Al Al +2 v)- 17
N+1 Z‘ kl N+1+(N+1)2+(N+1)2(| |+ HaHl, ) ( )

3.5 The Z5 bound
Let ¢ € B,(a), that is ||c — @l]1,, < r. Given h € B1(0), note that

{0 for n=0,1,

([DF(c) — DF(a))h),, = 2((c—a)*h) for n > 2

n

so that

|A[DF(c) = DF(@)]|lp(y) = sup [[A[DF(c) — DF(@)]hll1,, <2v* sup [[A[(c—a) Al
heB;(0) heB1(0)

< 20%|| Al peryr

<2® sup Al
heB;(0)
Using Lemma 3.4, we get that
. 1 1
21/2||A||B(£},) < 7y & 22 max( max — Z ‘Agﬁ) vk, ) (18)

¥4 2
0sesN vt Ay (N+1)

10



3.6 Computer-assisted proofs

Combining the bounds (14), (15), (17) and (18), we define the radii polynomial p(r) as in (6).
We prove the existence of three different types of solutions by verifying the hypothesis of
Theorem 2.1 with the routine script_three proofs_LB.m available at [3]. The data of each
proof can be found in the following table. We find that p(r) < 0 for 7 € [Fmin, "max]-

solution #1 #2 #3
A= 4)\/7? 5.67 20 19.961
v 1.06 1.04 1.058
N 250 410 360
Y, 5.2768 - 109 | 3.1552-10"7 | 4.4322-10~"
Zo 5.6260 - 10~ 10 | 3.6934-10~1° | 2.1306 - 10~®
A 418131071 | 255231072 | 1.085-107T
Zy 7.6773-10° 4.8967 - 10° | 3.90306 - 106
Tmin 9.07-1079 | 3.2432-1077 | 7.3132-10°"
T max 7.578-107° | 1.9868-10~% | 1.5527-10©

The three solutions can be seen in Figures 2, 3 and 4. One can observe the different qualitative
behaviour of these three solutions.

It is not entirely straightforward to find initial guesses for solutions, i.e., starting points for
applying Newton’s method to the finite truncation FV). To find such approximate solutions,
note that the trivial solution v = 0 undergoes transcritical bifurcations at A = m2n(n + %) for
n € N. The solution branches that bifurcate at these parameter values can then be followed
numerically (using branch following techniques) to other parameter values. The three steps
of doing the bifurcation analysis, then finding small nontrivial solutions near the bifurcation
point, and finally continuing these using a predictor-corrector algorithm, are all interesting
educational avenues for students to pursue.

The main restriction on the Taylor series based approach presented here, is that not all
solutions have an analytic extension to the complex ball of radius 1. These solutions, although
real analytic on [0, 1], cannot be described by a single Taylor series around the origin. Again, this
instructive for students to understand. One way to overcome this is via domain decomposition
(i.e. matching together several power series), but we will not pursue that here, and it is also by
no means the only option.

4 Radially symmetric equilibria of the Swift-Hohenberg
equation on the 3D unit ball

We consider the Swift-Hohenberg equation [21] with Dirichlet boundary conditions:

on Dl,

19
on 0D;. (19)

up = —(A —1)%u + \u — u?,
u=Au=0

Here D; C R? is the unit ball, and A € R is a parameter. The parabolic PDE (19) is a

popular deterministic model for pattern formation, see e.g. [14]. It has been well studied,

analytically in one spatial dimension and predominantly numerically in two spatial dimensions.

Here we consider time-independent solutions in three spatial dimensions. Indeed, we will focus

on radially symmetric equilibrium solutions of (19). Letting v = (A — 1)u, these solutions also
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Figure 2: (Left) The first solution of (8) on the unit sphere S C R3. (Right) The corresponding

(numerical) solution of the BVP (10). Since ryi, < 1078, the true solution lies with the line-

width by Theorem 2.1.

Solution #1

Solution #2

1,
0
0.5
N -5
1

Solution #2

0
-0.54

-10
11 -15
0
0 - I L L L L
y gl z 0 0.2 0.4 06 08 1

%)
Figure 3: (Left) The second solution of (8) on the unit sphere S? C R3. (Right) The corre-
sponding (numerical) solution of the BVP (10).

correspond to radially symmetric equilibria of the reaction-diffusion system

20
v =Av—v—Adu+ud (20)

{ut =Au—u—v
on the unit ball with Dirichlet boundary conditions. The method works very generally for
radially symmetric equilibrium solutions in reaction-diffusion systems (cf. [19]), which are ubig-
uitous in models in the life sciences. This motivates us to work with the system (20) rather
than with the equivalent (at the level of equilibria) scalar equation (19). As an additional
benefit, the analysis below illustrates how the method of radii polynomials extends naturally
to systems of equations (a fresh challenge for the students, with some new coding hurdles).
Looking for radially symmetric equilibria of (20), i.e., time independent solutions of the form
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Solution #3

Solution #3
0.2 : : :
14 - 0.15 '
054 0.1 all
N
04 005 = 02
v 1 L

-0.54

0
11 0.05
0
0 z -0.1 : : : :
A - 0 02 04 0.6 0.8 1
Y 2

Figure 4: (Left) The third solution of (8) on the unit sphere S? C R3. (Right) The correspond-
ing (numerical) solution of the BVP (10).

u(z,y, z) = u(s) = u(y/x? + y? + 22), leads to a coupled systems of ODEs:

u(s) + 2u'(s) —u(s) —v(s) =0 for s € (0,1],

v (s) + 20/ (s) —v(s) — Au(s) + u(s)®> =0  for s € (0,1],

u'(0) =/(0) =0, 1)
u(l)=v(1)=0

oo pans™ and v(s) = >0 b, s™.

We expand the functions u and v as power series u(s) =
(bn)n>0. Consider the Banach space

(s)
Define the coefficient sequences as a = (a)n>0 and b =
X =10, xt,={z=(a,b):a,be ()},

endowed with the norm ||z||x = max {||a||1,., ||b|l1,,}. The equations for the Taylor coefficients
are Fi(2) = ((F1(2))n),>o = 0 and Fz(z) = ((F2(2))n),>0 = 0, given component-wise by

ax for n =0,
(Fl(x))n = ZkZO ag forn=1,

nn+ 1)a, — an—o — by—2 for n > 2,

by for n =0,
(FQ(x))n = Ekzo bk for n = 1,

n(n+ )b, —by_o — Aayn_2 + (a®)n_2 for n > 2,

where

n n—mi
(@®)p = (a*xaxa), = Z Uy Ay Gy = Z an, ( Z an2ann1n2> .

nij+natng=n n1=0 n2=0
ni,ng,n3>0

It is not difficult to derive that all odd coefficients will vanish, but we do not exploit that here.
Denoting F = (Fy, Fy), the problem is to find z = (a,b) € X = ¢ x £} for some v > 1
such that F(x) = 0. To achieve this, we use the radii polynomial approach as introduced in

13



Theorem 2.1. Given N € N, denote ™) = ((an)o<n<n, (bn)o<n<n) € R2VNT2. Consider the
finite dimensional projection F(V) = (FI(N), FQ(N)) i R2N+2  R2V+2 defined by

FZ(N) (Z‘(N)) def ((Fi(x(N)))k)ngSN'

Given # € R?N*2 a numerical approximation of F(™)(z) = 0, denote by DF()(z) the Jacobian
of FIN) at Z, and let us write it as

DFWM)(z) = D FN(z) DyFN(z) c REN+2)x(2N+2)
D FM(z) Dy (3)

The radii polynomial approach requires defining the operators AT and A. Let

Al Al
AT — 1,1 1,2 29
(ﬁlA;>’ #2)

whose action on an element h = (h1, hy) € X is defined by (ATh); = AZT,1h1 —|—AZT»’2h2, fori=1,2.

Here the action of AZT, j is defined as

N) =\, (N
(ATlhl)n = (DaFi( (7)hy ))n for 0 <n <N,
; dian(n +1)(h1)y for n > N,

(D EN (@)nY) for0<n< N,

(A12h2)n =
7 di2n(n +1)(ha)y for n > N,

where §; ; is the Kronecker d. Consider now a matrix A) € REN+2)x(2N+2) computed so that
AW DF(N)(E)_l. We decompose it into four (N 4 1) x (N + 1) blocks:

N N
am = (48 48)
Az Ags
Thus we define A as n "
A= 1,1 1,2 23
<A2,1 Aso )’ (23)
whose action on an element h = (hy, he) € X is defined by (Ah); = A; 1h1 + A 2he, fori=1,2.

The action of A, ; is defined as
(Az(-f;[)h;N))n for0<n <N,
éi,jﬁ(hj)n for n > N.

(Ai,jhj)n = {

Finally, we set T'(z) = x — AF(z), which indeed maps X into itself. As in Section 3, the
next step is to derive explicit, computable expressions for the bounds (2), (3), (4) and (5).

4.1 The Yy bound

Observe first that the nonlinear term of Fy(Z) is the Cauchy product (a * @ * @),—2, which
vanishes for n > 3N + 3. This implies that (F1(Z)), = (F2(Z)), = 0 for all n > 3N + 3. For
1 =1,2, we set

(i) S (¢ ) (V) CaN 1
) def N N) /- n (& n
Y = ;; (AP @) v +n§+1 iy B

14



which is a collection of finite sums that can be evaluated with interval arithmetic. We get

T (z) — z]; (AP @il = || > A Fi(@)|| <Yy,
j=1 1,v
and we set
Yo & max (vi, (). (24)

4.2 The Zy bound
We look for a bound of the form ||[I — AAT||px) < Zy. Recalling the definitions of A and AT

& T — AAT the bounded linear operator represented as

given in (23) and (22), let B =
Bi1 Big
B= (7 12,
<B2,1 32,2)

We remark that (B; j)n,n, = 0 for any ¢,j = 1,2 whenever ny > N or np > N. Hence we
can compute the norms ||B; ;|| p(e1) using Lemma 3.4. Given h = (hy,hy) C X = £}, x £}, with
1Pllx = max([lh1llrv, [[h2ll1) <1, we get

2 2
I(BR)illvw = {|>_ Bijhi|| <> IBijls)-
j=1 Lv =1
Hence we define
Zo = max (| Brallpe) + 1Br2llse) | B2alle) + B2zl b)) - (25)

4.3 The Z; bound

Recall that we look for the bound ||A[DF(Z) — A1]||gx) < Z1. Given h = (h1,hy) € X with
|hllx <1, set
2z < [DF(z) — Af]h.

Note that fOI"j = 1,2, (Zj)o = 0, (Zj)1 = Zk2N+1(hj)k’ (Zj)n =0 forn= 2, N 7]\/v, and
(z1)n = —(h1)n—2 — (h2)n—2, and (22)n = —(h2)n—2 — AM(h1)n—2 + 3(@*a* hi),—_2,

for n > N + 1. Tt is not hard to show that |(2;)1] < v~N*Y for all ||h]|x <1, j = 1,2, hence

2
1(A2) 1w <D IAsg2il,

j*l
1

- R 1 1L

;%‘ R D sy

<N> n 1
,/N+1 ZZ| (A1) v +m(“hl|h,u+|\h2||l,u>

j=1n=0
(N) n # def (1)
< JN+1 ;;KAU )nvl‘y + (N+1)(N+2) 2
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and similarly, now also using the Banach algebra property (11),

1 2 N
I(A2)alli < s 20 D1(455)

j=1n=0

1
(N+1)(N+2)

def

e (1+A+3al?,) = 2.
We thus define

Z1 * max (Z{”, Z{”) . (26)

4.4 The Z5 bound

Let ¢ = (c1,¢2) € B, (%), that is |[c— Z||x = max(||c1 —al|1,,,[|ca—b
note that ([DFi(c) — DFy(z)]h), =0 and that

1,0) <r. Given ||kl x <1,

(IDFy(c) — DFy(2)]h),, = {g (1 cr—axa)«hy), g Z ; (2) i
so that
IA[DF(c) = DF(2)]l|lpx) = S IA[DF(c) — DF(z)]h] x
< [Allax) sup [|[DF(c) — DF(2)]h] x

IRl x <1

= 3V2||AHB(X) sup ||(cx —a)*(c1+a)*hi|1,.
llhllx <1

<3| Allpx) sup ler —allioller + @l a1y
[[h]lx <1

<32 Allsxyr(leilly + llall)
< 3V%||Allpx)r(r + 2[|al|1,).

Then, assuming a loose a priori bound r < 1 on the radius, we set

def

Zy = 30| Al pxy (1 + 2]jal1,0),

where [|A| p(x) is computed using Lemma 3.4, see also (25).

4.5 Computer-assisted proofs

With a numerical continuation algorithm, we continued a branch of solutions of (21) that
bifurcates from the zero solution at A = (72 + 1)2. Combining the bounds Y, Zy, Z; and Z
given in (24), (25), (26) and (27), respectively, we define the radii polynomial p(r) as in (6).
We prove the existence of six solutions of (21) by verifying the hypotheses of Theorem 2.1 with
the routine script_proofs SH.m available at [3]. The following table contains values of the
bounds, as well as intervals [Fmin, "max] on which p(r) < 0, for sample values of A ranging from
118.2 to 500.

A v

N

YO Zl ZQ Tmin T'max
118.2 | 1.15 | 39 [ 8.4414-10~11 | 0.44499 | 1.9642-10° | 1.5218-10~19]2.8242.10"
120 | 1.1 | 54 | 1.3132-107Y | 0.15775 2.002 - 10° 1.5598 - 10~? | 4.2056 - 10~
250 | 1.04 | 114 | 4.3386-10"% | 0.27014 | 4.89752-10° | 6.2026-10"8 | 1.4282-10"6
350 | 1.03 | 136 | 4.8408-10~2 | 0.15617 | 1.536768-10° | 6.508-10~8 | 4.8401 10"
450 | 1.02 | 164 | 4.7337-10~8 | 0.033858 | 3.274572-10% | 6.2042-10"8 | 2.33-10""
500 | 1.009 | 169 | 5.6167-10=8 | 0.06321 | 3.73724-10% | 9.9273-10=% | 1.5139 - 10"
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We observe from these data that as we increase the parameter A, the dimension of the
projection N needs to increase while the decay parameter v needs to decrease. This is due
to the fact that the Taylor coefficients of the solutions decay slower as A increases. Moreover,
notice that the values of ryi, and rpa.x are approaching each other, meaning that the proofs
are getting harder and harder to obtain. This suggests that for larger parameter values a single
Taylor expansion is not enough. The corresponding solutions can be seen in Figure 5. We plot
in Figure 6 the solution (u,v) of (19) at A = 500.

25

~—~ 15 ?-100
10 -150

-200

0 02 04 06 08 1 0 02 04 06 o8 1
S S

Figure 5: Six solutions of (21) for A € {118.2,120, 250, 350, 450, 500}.

25
20 o5
15 20¢
@157
10 S
10
1
5 5l
0 0

Figure 6: (Left) A stationary solution of the Swift-Hohenberg equation (19) on the unit ball
in R at A = 500. (Right) The corresponding graph of u(s) = u(y/x2 + y2 + 22).

S

5 Conclusion

We have seen that some nontrivial boundary value problems originating from nonlinear PDEs
can be solved in a Taylor series setting, one that requires relatively little technical machinery
and is very accessible to students. Cutting of the Taylor series at some finite order and solving
the associated finite dimensional algebraic system numerically, leads to an approximate solu-
tion, and we have proven that the true solution lies nearby. Indeed, based on Theorem 2.1 and
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computable bounds (using interval arithmetic), we can estimate the distance between approxi-
mate and true solution rigorously and explicitly. This turns the numerical computation into a
mathematical statement about the PDE.

There are limitations to the particular choice of Taylor series as our means of describing a
solution, i.e., using monomials as our basis functions. In particular, we have seen that this put
limits on the parameter range where we can apply this approach. More generally, there is a
large variety of functional analytic setups and numerical algorithms, adapted to the particular
problem under study, which fit into the general framework of Theorem 2.1. Successful examples
include domain decomposition, Fourier series, Chebyshev series, splines, finite elements, as well
as combinations of these. With these tools one is able, using the paradigm illustrated by the two
examples in Sections 3 and 4, to solve eigenvalue problems, find periodic and connecting orbits,
continue solutions in parameters, and analyze bifurcations. Using this rigorous computer-
assisted framework one is able to obtain solutions to systems of ODEs, (time dependent) PDEs,
delay differential equations, etc. Due to the nonlinear nature of these problems, you usually
simply cannot get your hands on such solutions without the help of a computer. For further
reading we refer to [1, 2, 5, 9, 16, 24, 26, 28] and the references therein.
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