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Abstract

In this paper, a method to compute periodic orbits of the Kuramoto-Sivashinsky PDE via rigorous
numerics is presented. This is an application and an implementation of the theoretical method
introduced in [1]. Using a Newton-Kantorovich type argument (the radii polynomial approach),
existence of solutions is obtained in a weighted ¢°° Banach space of Fourier coefficients. Once a
proof of a periodic orbit is done, an associated eigenvalue problem is solved and Floquet exponents
are rigorously computed, yielding proofs that some periodic orbits are unstable. Finally, a predictor-
corrector continuation method is introduced to rigorously compute global smooth branches of periodic
orbits. An alternative approach and independent implementation of |1] appears in [2].
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1 Introduction

In this paper we present an implementation of the theoretical framework introduced in |1] for computer-
assisted proofs of existence of invariant objects (fixed points, travelling waves, periodic orbits, attached
invariant manifolds) in semilinear parabolic equations of the form

uy = Lu+ N(u),
where L is an elliptic operator and N is a semilinear operator (of lower order than L). The invariant
objects that we consider are periodic orbits of the Kuramoto-Sivashinsky partial differential equation

(1)

{ut = —Vlyyyy — Uyy + 2Uly

u(t7 y) = u(t> Y+ 27T)> u(t> _y) = _u(t7 y)

where ¢ > 0 is time, y € [0,2n] is the space variable and v > 0 is a fourth-order wviscosity damping
parameter. The PDE model is popular to analyze weak turbulence or spatiotemporal chaos [3H6|.
The present work accompanies papers [1] and [2]: it is an application of [1] while providing an
independent implementation from the one introduced in [2]. More precisely, the choices of spaces and
algorithms chosen here are different from the ones in 2], and the present paper shows how to perform
continuation with respect to parameters while 2] establishes lower bounds of analyticity of solutions.
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As already mentioned in [1], the core of our study is writing down the problem of finding a periodic
orbit of as a zero of a functional equation of the form F(z,v) = 0 (see Section [2), where v > 0
is the viscosity parameter. The operator F is obtained by plugging the space-time Fourier expansion
of the orbit in the PDE model. The unknown x € X*® is an infinite dimensional vector of space-time
Fourier coefficients of the periodic orbit living in (X*,] - ||s) a weighted ¢ Banach space of Fourier
coefficients with decay rates s = (s1, s2) (see Section [3). The operator F is not bounded (continuous)
because of the presence of the differential operator 9, + 1/8;" + 85. To address this problem, we introduce
a pre-conditioning linear operator A, to smooth F, that is such that A, F is bounded. The operator A,
is chosen to be an approximate inverse of DF(Z,v), where Z is a numerical approximation of a periodic
orbit of (1)) at the parameter value v. By approximate inverse, we mean that ||[I — A, DF(Z,v)| xs < 1.
The contraction mapping theorem is then applied to prove existence of a fixed point Z of

Tu(x) d:ef' T — Au}-(xa V)v

where the fixed point Z is the desired periodic orbit. As a by product of the method, explicit and rigorous
error bounds for ||Z — Z||s are obtained and we have results about local uniqueness.

This strategy requires an a priori setup that allows analysis and numerics to go hand in hand: the
choice of function spaces, the choice of the basis functions and Galerkin projections, the analytic estimates,
and the computational parameters must all work together to bound the errors due to approximation,
rounding and truncation sufficiently tightly for the verification proof to go through. The goal is to
provide a mathematically rigorous statement about the validity of a concrete numerical simulation as
interpreted as an approximate solution of the original problem.

In order to prove existence of zeros of F, we use the radii polynomial approach which was first
introduced in |7], and later on used to study dynamics of PDEs [8-11]. Since we aim at solving a parameter
dependent problem F(z, ) = 0 our approach natural lends itself to parameter continuation methods (e.g.
see [12,[13]). Inspired by [14] we introduce an algorithm to compute global smooth branches of periodic
orbits (see Algorithm . Once a periodic orbit is rigorously computed, an eigenvalue-eigenvector
problem is solved and Floquet exponents associated the orbit are obtained.

Before proceeding any further, it is worth mentioning that we are not the first to obtain rigorous proofs
of existence of solutions of . In the early pioneer work [15] the method of self-consistent bounds is
developed and applied to obtain computer-assisted proofs of equilibria. More recently, a global bifurcation
diagram of equilibria has been rigorously computed [16], where different types of bifurcations are proven.
Computer-assisted proofs for periodic orbits of have also been obtained. Methods based on a rigorous
integration of the flow are introduced in [17H19], where the orbits are obtained by proving existence of
fixed points of a Poincaré map constructed using a rigorous integrator. In [17/18] the proofs are based on
the Brouwer Theorem in case of attracting orbits and on the Miranda Theorem in case of unstable ones.
The symmetry of the periodic orbits is exploited when possible in order to simplify the set-up. Since the
proofs are purely topological, no results about stability of the orbits are obtained. The method presented
in [19] uses analyticity of the solutions, it derives estimates not only for the time-t map but also for its
derivative which allows obtaining results about stability of the periodic orbits.

Our approach for computer-assisted proofs of periodic orbits of has a different flavour from the
above mentioned more geometric state-space approaches. We present a functional analytic approach which
builds on the theory developed in [7914]. The set-up does not require integration of the flow, does not use
information about the symmetry and the stability of the orbits, and does not explicitly require aligning
windows or finding good coordinates. In fact, the choice of the approximate inverse 4, mentioned above
automatically takes care of that. This automatic feature of our proposed approach comes however with a
price as it sometimes requires computing (even though non rigorously) the inverse of a large matrix. The
fact that we solve rigorously the eigenvalue problem to compute the Floquet exponents implies that we
can only prove that some solutions are unstable. Extending our approach to prove that some solutions are
stable is the subject of current research. The predictor-corrector continuation method that we introduce
is based on the uniform contraction principle, and allows us proving existence of segments of periodic
orbits of length of the order |A, |~ 1075 (e.g. see Theorem [8.1] and Table . In comparison, in [18], the
proofs were obtained with |A,| ~ 1077.



The paper is organized as follows. In Section [2] we define the functional equation F(z,v) = 0 whose
solutions are the periodic orbits of at the parameter value v. In Section (3| we introduced the Banach
space X* in which we look for solutions of F. In Section[d] we introduce the pre-conditioner A and design
a parameter dependent fixed point operator equation T, (z) = = whose fixed points x = z(v) correspond
to solutions of F(xz,v) = 0. We construct the operator with the hope that it is a uniform contraction on
a segment of parameter values [y — |A, |, 10 + |A,|], and therefore get existence of branches of periodic
orbits. In Section [5) we review the basics of the radii polynomial approach and present the theory to
compute global smooth branches of periodic orbits of . In Section@, we present an explicit construction
of the radii polynomials as well as an algorithm to compute global smooth branches of periodic orbits.
In Section [7, we introduce the radii polynomial approach to prove existence of Floquet exponents. We
conclude in Section [§] by presenting the results and the details about the computer-assisted proofs.

Before proceeding with the presentation of the method, let us introduce some notation.

1.1 Notation

Given z € C, denote by conj(z) its complex conjugate. We use boldface type to denote multi-indices
as in k = (ki, ko) € Z?. Given k,n € Z? we also use component-wise inequalities. k < n means that
k; < n; for j = 1,2. Similarly for k < n, k > n, and k > n. Throughout this paper m = (m, ms)
and M = (Mj, M) denote computational parameters such that M = m. Also s = (s1, s2) denote the
“decay rate”, where each s; is the decay rate on the jth-coordinate, and is such that s; > 1 for j =1, 2.

2 The operator F

def 97

Suppose that we are looking for time periodic solutions u of period 7 of . Letting L = =&,
the 7-periodic solutions of can be expanded using the Fourier expansion

u(t,y) = Z cpeFiteikay (2)
keZ?

we get that

Since u € R, then for any k = (ki, k2) € Z?, we have that c_g = conj(cg), where c_g = c_, —k,. Since
u(t, —y) = —u(t,y), we get that cg, g, = —Cp,y ks, for all (k1, ko) € Z*. Hence, for every k = (k1, k2) = 0,
we have the following relations

Cokyy—ky = CONJ(Ck)  Chy,—ky = —Ck  C—kyky = —cOnj(ck). (3)

The relations in imply that to describe entirely the expansion , one only needs to consider the cg
with non negative indices. From , we get that

Re(ckl,o) = 0, k‘1 Z 0, Im(ckho) = 0, ]fl Z O, RG(C()’kz) = O, kJQ Z 0. (4)

Let
ar = Re(cx) and by = Im(cg).

Also, since ¢_g = conj(cg), then we get that for all k& = (0,0),
A_p = Qg and b_k, = *bk- (5)

Using , we get that ax, 0 = b, 0 = 0 for all k; > 0 and ag,x, = 0 for all k3 > 0. Hence, in practice, we
need to consider a = {ag }ry»(1,1) and b = {bg }xy-(0,1) as variables. Since we keep the time frequency L
variable, let us define the vector of unknowns x by

L, k=1(0,0)

b k= (0.k2) = (0,1)

(“’“), k= (ky, ko) = (1,1).

T =

b



Defining
TE{(0,00}U{k = (ki k) | (ki k2) = (0,1)}, v

we define © = {zg ez as the infinite dimensional vector of variable uniquely determining a periodic
solution of . Note that for each k € Z, x3, € R where d(k) = 1 if k = (0,ks) for ky > 0, and
d(k) = 2 otherwise.

Given two bi-infinite sequences a = {ag }rezz and b = {bg}rez2, we denote by a *b = {(a * b)g }reze
the discrete convolution product, where a * b is given component-wise by

(axble= > apbe. (8)
kl4k2=k
Plugging into results in solving, for all k = (k1, ko) € Z2
- PECr — 2 Z ik%ckl Cp2 = Mrck — koi(c* )k = 0,
kl4k2=k

where
def .
Pk = [y ky = ik L+ vk — k3.

Using the relations and considering k = (k1, k2) > 0, one can show that
hoky,—ky = conj(he)  hiy,—ky = —hie h_gy g, = —conj(hg). (9)
From @D, we get that
Re(hg, 0) = 0,k1 >0, Im(hg, o) = 0,k1 >0, Re(hok,) = 0,k > 0. (10)
Let
fre = Re(hg) = (vk3 — k3) ar — (k1L)by + 2ka(a + b)
gk = Im(hg) = (k1L)ak + (vk3 — k3) b — k2[(a * a)x — (b* b)x).

Using (10)), we get that fi, 0 = gk,,0 = 0 for all ky > 0 and fo 4, = 0 for all ko > 0. Also, h_j, = conj(hy),
we get that for all k = (0,0),

f-k=[k and g = —gk.
This implies that in practice, we only need to solve f = {fx}r=(1,1) = 0 and g = {gk }r>(0,1) = 0.

In order to eliminate arbitrary time shift, we introduce the notion of phase condition. Assume that
we numerically found an approximate periodic orbit u. It could be at a different parameter value v than
the one we are using for the actual rigorous computation. We want to solve for u(t,y) such that «(0,t)
lies in the hyperplane perpendicular to the direction vector @;(0,y) and containing the point @(0, y), i.e.

[U(O, y) - ﬂ(oa y)] : at(ov y) =0, (11)

where the dot product is taken in the space L2([0, 2£] x [0, 27]). Equation means that we are solving
on a Poincaré section containing %(0,y) and perpendicular to @;(0,y). Condition may be relaxed
by considering only finitely many Fourier coefficients in the expansions of u(0,y), @(0,y) and @.(0,y) in
(TT). For m = (m1, my), define

@(m)(t,y) def Z Z Ekeiiklteika and u(m)(t,y) def Z Z Ckeiquteikﬂ/,

|k2\<m2 |k1\<m1 \k2|<m2 \k1|<m1

and we introduce the Poincaré phase condition

[w(™ (0, y) — @™ (0,)] - ™ (0,) = 0. (12)



Now, using , we have that

mg—l m1—1
u(m)(ovy): Z i Z bk1,k2 Zka: Z -2 b07k2+2 Z bk1,k2] Sin(ka)
\k2|<m2 \k1|<m1 ko=1 k1=1
1 ) mgfl B ’I’I’Llfl_
al™0,y) = > i D> beke| €V =D —2|bok, +2 Y bkl,;m] sin(kzy)
\k:2|<m2 \k:1|<m1 ko=1 k1=1
777,271 mlfl
WOy = Y iDL D ks | e =Y —2(20 ) kldm] sin(k2y)
\k:2|<m2 L \k1|<m1 ka=1 k1=1

Therefore, in Fourier space, the Poincaré phase condition is equivalent to

n(r) = i l((bo,kz —bok,) +2 i (bky kr — bkl,k2)> ( i k’1ak1,k2>] =0. (13)

ka=1 k=1 k=1
Now that the phase condition is chosen, we define F = {Fg}xcz component-wise by
n,  k=1(0,0)
o] o k=) =00
(fk) k= (k1,k2) = (1,1).

gk

(14)

In Section |3 l we show that ——tlme periodic solutions wu(t,y) of (|1 . such that n = 0 is equivalent to solve
F(xz,v) =0, (15)

in a Banach space X* of algebraically decaying time-space Fourier coefficients. More precisely, X® is a
weighed £°° space (see Section . For sake of simplicity of the presentation, for k = (ki, k2) = (0, 1), let

vks — k3, k=(0,k) > (0,1)
Rig(v, L) (uké ¥ kil 2) k= (kL k) = (L) (16)
k1L vks — k3
—(a*a)+ (b*b)g, k=(0,k2) = (0,1)
der
Mo = (—(a *QCL(;Ik*f)(’Z*b)k) k= k)2 (LD "
so that for every k = (k1,k2) = (0,1),
Fr(z,v) = Re(v, L)xg + ko N (). (18)
We now introduce a Banach space X* in which we look for the solutions of .
3 The Banach space X°*
Define the one-dimensional weights w;j, by
I )



Given k = (ki,k2) € Z? and s = (s1,s2), we use the one-dimensional weights to define the two-
dimensional weights,
wi = Wy Wy (20)
They are used to define the norm
[£]ls = sup wi|k oo,
keZ

where |2k oo is the sup norm of the vector xp € R?*)  which is one- or two-dimensional, depending on
k. Define the Banach space

X® = {ac = {2g}rer : 21 € R and |z, < oo}, (21)

consisting of sequences with algebraically decaying tails according to the rate s. In other words, X? is
an ¢*° space with a weighed supremum norm.

As already mentioned in Section |2 finding 2T”—time periodic solutions u(t,y) of 1) such that n =0
is equivalent to solve F(x,v) = 0 in X°. We now make this statement precise. First given n = (n1,n2),
denote F,, ={k€Z |k < n}.

Proposition 3.1. Fiz a parameter value v > 0. Consider a fized decay rate s > (1,1) and assume the
existence of m > (0,0) such that R(v, L) is invertible for all k ¢ F,,. Then x € X* given by (6) satisfies
F(xz,v) =0 if and only if u given by

u(t,y) =Y (ak + ibg)eFrteih2y (22)
keZ?

is a strong, real 2f”—pem'odz'c solution of , where the infinite dimensional vectors a = {ak}kt(l,l);
b= {br}r(0,1) satisfy the symmetry conditions and where n = 0.

Proof. (=) Assume z = (L, a,b) € X* given by (6) satisfies F(z,v) = 0. We first show that z € X,
for all sg > (1,1). By definition of the Banach space, we have that x € X*® C X% for all sg satisfying
(1,1) < sp = s. Let us show that x € X*° for all so > s. Note that the space

= {a = {an}rezz : ar €R and sup wilak| < oo} (23)
ke

with s > (1,1), is an algebra under the discrete convolution product , that is, given any a,b € £3°,
axb={(a*b)g}rezz € (5°. We refer to [9,20] for more details. Therefore, we have that each component
of Ng(z) is in €. Since Fr(x,v) = Rg(v, L)xg + koNg(z) = 0 for all k = (0,1), then

rg = —koRi(v, L) ' Ni(z), for all k ¢ F,.

Since each component of N(x) is in £3°, there exists C' > 0 such that [Ng(z)| < <1> £ forall k€T
k

Applying Young’s inequality with p =4 and ¢ = %7 one gets the existence of D > 0 such that

< (24)

! 3
1 k§k2 k4 _ k2 kEkQL C D
kQRk(l/,L)_lNk(x)w,(j’l)’ < ( { k3|vks — k3| k3 )

(k3 — k32 + (kL)? " (vk3 — kD)2 + (k1L)? ) wf — wi’

Hence,

xTr = ({zk}kana {xk}kﬁFn) = ({Ik}kepn, {—kng(l/, L)ilNk(I)}ngn> S Xs+(%’1).

Repeating this argument inductively implies that x € X®° for all so > s. In particular, that shows
that the coefficients cp = ax + by decay to zero faster than any algebraic decay. Therefore, the series
is uniformly convergent, and the series of us, uyy, Uyyyy and uu, are also uniformly convergent. By
construction, u(t,y) given by (22) is a real, strong 2T’T—periodic solution of .

(«<=) Assume that u given by (22)) is a strong, real 2T’“—periodic solution of . Then by construction,
the corresponding = € X* given by @ satisfies F(z,v) = 0. O

The next step is to design a fixed point operator whose fixed points correspond to solutions of .



4 The fixed point operator T,

For any fixed v > 0 and decay rate s > (1, 1), Proposition implies that computing periodic solutions
of is equivalent to compute solutions x of F(z,r) = 0 in the Banach space X*. Therefore, we propose
a strategy to compute branches of periodic orbits of by doing a rigorous continuation on F(x,v) =0
in the spirit of the methods introduced in [9]. More precisely, the idea of the method is to show the
existence of a branch of periodic orbits near numerical approximations in the Banach space X?° via a
rigorous continuation method. This process begins by assuming that we found an approximate solution
Z of F =0 at the parameter value vy where F = {Fg }rez is given component-wise by . For a given
m = (my,m2), let n = n(m)  o9mims — 2my — ms + 2. Given m = (mq1,m2), we define the finite set
of indices of “sizes” m by
Fpo={kecT|k=<m}.

Given x = {g freze we denote its finite part of size m and its corresponding infinite part respectively
by 2r, = {Tklker, € R™™) and 21, < {2}rer,,. Now consider a Galerkin projection of of
dimension n(m) given by F(m) = {f,(cm)}kepm, where F(™): R™™) x R — R™™) is given component-
wise by

F ) (ery,,v) © Ful(zp,,01,),v), k€ Fm, (25)
where Fi((zF,,,01,),v) is evaluated using ([4). Now suppose that at the parameter value vy, we
numerically found Z,, such that 7™ (Zp, o) ~ 0. We define & = (Zp,,,0r,,) € X*. Denote

L, k=(0,0)
_ b, k=(0,ky) > (0,1)

T = N
(“’“), k= (ki ko) = (1,1),
b

where ay, = by, = 0 for k ¢ F,,. Suppose that at the parameter value vy, we numerically found & F,, such

that DF™ (zg,  vo)iF,, + 8Fa(ym) (ZF,, ) ~ 0. Defining & = (i, ,0r,) we should then have that

F(Z,v9) =#0 and DF(Z,vp)x + %7:(96, 1) = 0, (26)
v

assuming that the Galerkin projection dimension m is taken large enough. Consider v close to vy and
define A, = v — 1. Denote _
L, k=(0,0)
be, k=(0,ks) = (0,1)
k—

(i)

where @y, = by, = 0 for k ¢ F,,. We define the set of predictors by

T =
(klv k2) = (L 1)7

T, =T+ A,T. (27)

The next step is to construct a parameter dependent fixed point equation whose fixed points correspond
to the zeros of F. Let N & N(M) < OM My — 2M; — My + 2 and consider (ZF,,,0) € RN(M) 4
vector consisting of padding the vector Zr,, € R™™) by zeros. Consider the N(M) x N(M) Jacobian
matrix DFM)((zp,,,0),v0) € My(ary(R) and assume it is non-singular and let Aps € My(ar)(R) be a
numerical approximation for its inverse. To define the tail of the operator, we need the following result.

Lemma 4.1. Let M = (M3, Ms) = (m1,ms), let vg >0 and A, € R. If
1
v Vo — \Au|,

then Rg(v,L) given by is invertible for all k & Far and for all v € [vg — |A,|,v0 + |AL]].

My > (28)



Proof. Fix vy > 0, A, € R. Let M = (M, Ms) = (m1,mse) such that My > \/% + 1 and consider
k = (ki,k2) & Far. Consider v € [1y—|A, |, 10+|A, |] and define d = det (Ry (v, L)) = kI L?+ (vk3 —k3)2.
We conclude that Rg (v, L) is invertible by showing that d > 0. If k; > 0, then d > 0. If k; = 0, then
ko > My since k = (k1, ko) € Fpg. In this case, we use to conclude that vk3 > (vo — |A,|) M3 > 1,
and therefore vkj — k2 > 0. This implies that d > 0. O

Assuming that holds, define the parameter dependent linear operator A, on sequence spaces as

dof |:AM$FM:|k, if ke Fyp

) (29)
k Rk(yaL)ilka lfngMv

[Au(@)]

where Ry (v, L) is given by . It is important to notice that the finite part (k € Fpy) of the operator
A, depends on vy only. The operator A, in acts as an approximation for the inverse of DF(Z,v),
for v close to 1.

Define the Newton-like operator by

T,(z) €z — A, F(z,v). (30)

Lemma 4.2. Consider M = (M, Ms) = (m1,ma), let vy > 0, A, € R and s = (s1,82) > (1,1) a
decay rate. Assume that Apg is invertible and that holds. Let v € [vg — |Au],vo + |AL]]. Then, the
solutions of are in one to one correspondence with the fixed points of T,. Also, we have that

T,: X — X*. (31)

Proof. First of all, since Aps is invertible and since holds, then the linear operator A, is invertible.
It follows that given z € X*®, F(x,v) =0 if and only if T, (z) = . Assume that z € X*®. By invertibility
of Apg, for k € Fyy,

sup  wil (1 (2)]klloc = sup wilor — [AneFM (2, 0)]k] 00 < 0.

keFn keFn
To show that suprgp,, wil[Tv(2)]kllec < 0o, we use again Young’s inequality as in (24). We conclude
that supger wi|[Ty(2)]k]|oo < 00, and therefore T, (z) € X°. O

5 The radii polynomial approach and rigorous continuation

The rigorous continuation method uses the radii polynomial approach, which provides a numerically
efficient way to verify that the operator T}, is a contraction on a small closed ball centered at the numerical
approximation the predictors z, = Z + A,4 in X*. The closed ball of radius r in X*, centered at the
origin, is given by
roor 140
def
EO] -5z (32)
keZ k "k

where d(k) = 1 if k = (0, k2) and d(k) = 2 otherwise. The closed ball of radius r centered at the predictor
xz, defined in is then
B,(z,) = z, + B,(0). (33)

Consider now bounds Yy and Z, for all k € Z, such that
‘[Tu(‘ru) _xu]k‘ SYk(|AV|)7 (34)
and

sup ‘[DT,,(xV + xl)xg]k‘ < Zi(r | A)). (35)
z1,z2€ B, (0)



Note that the bounds Yy and Zjp satisfying and can be constructed monotone increasing
in |A,| > 0. We refer the reader to Section for an explicit construction of the bounds Yx(|A,|) and
Zy(r,|Ay]). The proof of the following result can be found in [9].

def

Lemma 5.1. Consider v =vy+ A, . If there exists anr > 0 such that |Y +Z||s <r, withY = {Yi}kez
and Z = {Zp}ner, satisfying and , respectively, then T, is a contraction mapping on B,.(x,)
with contraction constant at most ||Y + Z||s/r < 1. Furthermore, there is a unique &, € By(x,) such
that F(Z,,v) =0, and &, lies in the interior of By(x,).

Since our proof is computer-assisted, we need to compute only finitely many of the bounds appearing
in and in . Hence, we compute asymptotic bounds for all k ¢ Fpy.
To obtain uniform asymptotic bounds for the Y, we compute Yas(]A,|) > 0 such that

Yi(JAL) = Yar(|A, )wy, SR, for k ¢ Fay, (36)

where 19%) = 1 if d(k) = 1, 1F) = (1, 1)T if d(k) = 2.

To compute asymptotic bounds for the Zg, we decompose the set Z \ Fps in two subsets. The
decomposition is based on the fact that the inverse of the tail of the operator A4, in , namely Ry (v, L)™!
decreases faster when ko grows than when k; grows. Given M € N, denote

def

Iy & {keN|k> M}

Hence, recalling (7)),

T\ Far =N x I, U U I x {k2}. (37)
kf):l,...,Mz—l

_ Let k& Fpp. Then k € Iy, x {k2} for some ky € {1,...,M3—1} or k € N x I;,. Assume there exist
Za A (AL, o Zy =1 (75 | AV]) >0, and Zog ar, (7, |Ay]) > 0 such that if k = (k1, k2) € Ing, x {k2},
for some ko € {1,..., My — 1}, then
Zi (1)) = Dy oo (1, 1A ]) = Zvgy o (1 | A ooy, 5T, (38)
and if k € N x Ipy,, then
Za(r, |00 1) = Ziy iy (1, 180]) = Zoo vty (1, | A Yo 10, (39)
Definition 5.2. We define the finite radii polynomials {pg(r)}kery, by
pi(r [A]) E Zi(r, [Ay]) = 100 T + Vi (|A]), (40)
and the tail radii polynomials by
Pty ea (73 |AL) = Zgy ey (1, 1AL]) = 7+ Yar (JAL)]), for ko =1,...,Ms—1, (41)

and
Poo,ns (75 |Av]) = Zooz (1, [ Ay ]) = 7+ Y (|Au)). (42)
The proof of the following result can be found in [14].

Lemma 5.3. Suppose that T, € C* (X*,X®), £ € {1,2,...,00}, and suppose that the dependency in v
is also Ct. If there exist v > 0 and A, such that pi(r,|A,|) < 0 for all k € Far, par, k, (1, |AL]) <0, for
all kg =1,..., My — 1 and Poo. a1, (r, |Ay|) <0, then there exists a C* function

Z:[vo—|Avl,vo+ A = X2 v E(v)

such that F(Z(v),v) =0 for all v € vy — |Au],vo + |Ay|]. Furthermore, these are the only solutions of
F(z,v) =0 in the tube {(z,v) | x — z, € B.(0),|v — v < |A,|}.



Note that the explicit derivation of the formulas for the radii polynomials as defined in Definition [5.2
are postpone to Section |§| and are given in , and . For the remainder of this section we
assume that A, > 0. The case A, < 0 can be handled similarly.

Assume that at (x,v) = (Zg, o) with predictor o + A,Z and step size A, > 0, we successfully
applied Lemma i.e. we constructed the radii polynomials based at (x,v) = (Zo,vp) and verified
that they are all simultaneously negative, say at a radius rg > 0. After this successful step, we find the
corrector 1 at v = vy, = vy + A, using a Newton iteration, and we rebuild the radii polynomials, now
based at (z,v) = (Z1,v1). Suppose now that we have performed two succesfull continuation steps, i.e.,
in both steps we have found radii 7y and r1, respectively, where the radii polynomials are negative. We
thus have two smooth solution graphs over intervals [y, v1] and [v1, 5] Lemmal5.3]implies the existence
of two functions #°(v) and #!(v) of class C* such that

Co ™ (1, 72°W)) | v € [vo, 1]} and = (v, 3' (V) | v € [, 1]}

are smooth branches of solutions of F(z,v) = 0. The question is to determine whether or not Cyp and C;
connect at the parameter value 1 to form a smooth continuum of zeros Co U Cy. In other words, can we
prove that #°(v1) = #!(v1) and that the connection is smooth? At the parameter value v, we have two
sets enclosing a unique zero namely

By ¥ To+ (1 —v9)io + Bry(0)  and By = Z; + B, (0).
We want to prove that the solutions in By and B; are the same. We return now to the radii polynomials
constructed at basepoint (x,v) = (Z1,v1), and evaluate them at A, = 0. Since pg(r1,0) < 0 for all
k € Fa, puy ks (r1,0) <0, for all ko = 1,..., My — 1 and poo,a, (r1,0) < 0, we can find a non empty
interval Z, < [r1, 7] strictly containing r; such that, for all r € Zy, we have that pg(r,0) < 0 for all
k € Fag, Dy iy (1,0) <0, for all ky =1,..., My — 1 and Poo ar,(7,0) < 0. We now have two additional
sets enclosing a unique zero at parameter value v1, namely

def _

B+ =71 + Br;:lt (0).

Proposition 5.4. If By C B+ or Bi—- C By, then CoUCy consists of a continuous branch of solutions of
F(z,v) =0, and CoNCy = {(v1, (1))} = {(v1,2' (1))} € {11} x BN By. Moreover, if T(z,v) = T, (z)
is of class C*, then Co UCy is a C* smooth curve.

Proof. See Proposition 8 in [14]. O

140 1541 P

Figure 1: By N B; contains a unique solution of and Cy U Cq consists of a continuum of zeros. This
picture illustrates the proof of Proposition [5.4]
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Remark 5.5. In practice, the hypothesis of Proposition are verified as follows. The center points
To+ (11 — )i of By and Z; of By and B+ are computed using the finite dimensional approximations
Fm®) and Fm) of F, respectively, where F(™) is given by . Form® = (m?,mJ) and m* = (mi, mi),
we define m = (M1, M2) component-wise by m; = max{m?,m}}, for 7 = 1,2. Let us define the finite
dimensional projections

d(k)

BS™ (20 + (11 — vp)d) p. H {7’0]
keF, - Yk
r(k)

def 1
Ban) (1) F, t H [ 713 o
kEF,, “i

Verifying that By C By+ (resp. Bi— C Byp) is done by checking numerically that the finite dimensional
box inclusion B{™ BiT) (resp. BE'_n) C BS™) is satisfied and that ro < ri+ (resp. ri— < 7).

6 Explicit construction of the radii polynomials

In this section, we construct the bounds required to define the radii polynomials of Definition

6.1 The bound Y.(|A,|)

The computation of the Y (|]A,]) in is done as follows. We have that T'(z,) — z, = —A, F(x,,v).
Let us expand F(z,,v) as a polynomial in A,. Since Fy ¢ is linear in z and does not depend on v,

0Fo0,0 (2 Vo)]

fo_]o(.’ﬂy, I/) = \7:.070(557 I/o) + A, |:D./_'.070(f, l/o)i' + o

For k # (0,0), Fp(Z + Ayi, v + A,) = y,(co) + Ayyk + A2yk , where

y) & F(z, ) (43)

y [Df(x w)i + 8J‘E(ac,uo)} (44)
ov k

(2) def k Nk( ) (45)

and

o 2(a * b)y,
Ni(2) = (—(d* a)g + (bx 5)1:) .

For j =1,2,3, let
YO S Apyd) | ke Fu, (46)

which can be computed using interval arithmetic and the fast Fourier transform (e.g. see Section 2.3
in [21]). By , the bounds Yk(o) and Yk(l) should be small. Hence, for k € Fpg, set

2

Yi(lA) ST YIA, 7. (47)

Jj=0

To compute the uniform asymptotic bounds Yas satisfying (3 , notice first that since x, is such that
(,)k =0 for k & F,,, then we get that y(o) (1) ( ) =0 for every k & Fyy, with

M = (2m; —1,2mg — 1). (48)

In order to define the asymptotic bound, we use the following result.
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Lemma 6.1. Recall that

= vki — k32 —k L
Ri(v.L) = ( ML vki— 13

) and Ry, (v, L) = vky — k3.

Let vo,|A,| > 0 and consider Ay satisfying the component-wise bound,

1 Wkt — k2 kL )
sup _ . < A,
velvo— |, lwot+|a, ) (VRy — k3)? + (k1 L) ( kil vky — k3|

where the sup is taken component-wise. Then, for every v € vy — |AL|, vo + |AL]],

(49)

|Rie(v,L) 7| < Ay

We compute Ag in with interval arithmetic, for j = 1,2, 3 let }715/]1) = MaAXge Fro\ Fag HAk:y](cj) H Wk

and let
2

(A ) E 3 VALl (50)

7=0

Note that if M = (My, M) = M = (2mq —1,2my — 1), then the set Fy; \ Faz is empty. In this case,
we let Yar(]A,|) = 0. Hence, holds for k ¢ Fpy since

2
17 G) = 2Ll e = | R D)~ Fi ) < [ 0| Ai? || Il | e < Var (1 ®
=0

6.2 The bound Zi(r,|A,|)

To simplify the computation of Z, we introduce the operator Al whose action on a vector z is

w [ [PFOD (@R, 0), 000, ] L ik € Fag

4} ()] ] (51)
k Ri(v, L)y, if k ¢ Fur,
which acts as an approximate inverse for the operator A,. We consider the splitting
DT, (x, + x1)xe = (I — AVAI)I'Q - A, (Df(a:l, +x1,v) — Al)zg, (52)
where the first term is small for k € Fy, and is zero for k & Fps. For k € Fjy, we have that
t M)~ -

(1= A, aD)ws], | < [|T = AMDF M (@ry,,0).00)| i | v (53)
where wp® = Wy *19R) Yy ey, and | - | s the component-wise absolute values. Let u, v € By (0) so that
x1 = ru and xo = rv. We then expand [(D}'(xl, +x1,V) — Al)l’g]k in terms of r and A,. Denote

LW, k=(0,0) L®,  k=(0,0)
( ) _ (v) _
U = by k=1(0,k2) = (0,1) and v, = by, k=1(0,ke) = (0,1) (54)

(“) (v)
(Z@) B = (k) = (1) (35): &=t =10,
k k

Since the phase condition is linear in x and only depends on the finite modes with index k € F,,
[((DF(zy + ru,v) — Al)rv}o o = 0. For k€ Z\ {(0,0)}, consider the expansion

2
[(DF(zy +ru,v) — A}) 1] :iiC,ij’l)rjAfj,

j=11=0

12



where the coefficients C,(cj D) are obtained through a straightforward calculation and are given by

o ( (af,;)[ *E)k—l-(d*b(lj/)l)k
2 7 v
co e ) \=(agy <@+ Gxbi
=

ok (a(”) *B)k+(&*b(”))k
2\ =(@® % @) + (b# ™)y

i { i) fal ) 4 @)
T S (R I A I )’“ , if ke Fy
(1,1) def ak kil ks by, —(@ x @)k + (b b))y,
c e

), if ke Fy

>a lfngMa

k - .
(0 (@™ 5 b) + (@ % b))y,
kL k 2k . , if kg F
) S Bt i k¢ Fag
wnd (w) (v)
_plu _pl (©) 4 p(w) @)
(2,0) gef 4 r(w) [~ (w [ b (al?) % b)) + (al™) 5 b))y
Ck: = leU <a§cu) ) +k1Lu (agu) > +2k2 ( (CL(U *a(u)) ( “)*b(v)) .

For any ks, the first components of Célko), C’élkl) and C’O k equal 0. We now compute Zg(r,|A,|)
satisfying (in Section [6.2.1] for k € Fiz, and in Section 2 for k & Fpp).

6.2.1 The bound Z(r,|A,|), for k € F)

In order to compute the bounds Zy(r,|A,|) for k € Fpg, we introduce intermediate upper bounds
(1 0, ,(c ),z,(f’o) such that |C,(cj’l)| < z,(cj’l) for any k € Fpy and for any (4,1) € {(1,0),(1,1),(2,0)}.
Deﬁmng w(=%9) and w(=* component-wise by

0, k=(0,0) 0, k=(0,0)
w0 k= (0,ke) = (0,1) and WiV L k= (0,k) = (0,1)
w;s, k:(kl,kQ) i (1,1) w;s, k:(kl,kg) i (1,1),

the upper bounds z,(ej’l)

7 b
(10 g (@ Bk (Jal * )
BT IR« Jaln + <|b|w,”>>k

M

(1,1) gef . b kzwr(c ) k1|L|wk =) ok (W9 % b)) + (@] % w50,
T (i + w4 k(o) TR ey bl 5 o~ 5:0)
o) T ™ 4 e (w2 )+ (B] 5 0D

(—s,b) 201 ,(0,0)
(2,0) def wk k1,81 " ko,s9
z, =2k (w,i_s’a)> + dks (a(o 0) (00 | (1) (0.0)

k1,81 k232+ k1,81 k2,82

are given by

Letting
Zl(cl) def [

[ — Ay DFM) (25, ,0), uo)) w;;} ot [|AM| (z;M> + 20 1)|Ay|)] )
Z(z) def <|A |z(2 ,0) )
k

e set, for k € Fyy,
v M def (2) 2 (1)
Zi(r |A)) = 2, r* + 23, (55)

Recalling and using the above computations yield that for k € Fj,

sup ‘ [DTV(xV + Jfl)mg]k‘ < Zg(ry|Ay).
z1,z2€ B,.(0)
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6.2.2 The bound Z(r,|A,|) for k & Fi

We now introduce uniform bounds for Zg(r,|A,|) for the case k ¢ Fps. We begin by considering
asymptotic upper bounds for C’,(cl’o), C’,(cl’l) and C’,(CQ’O) for the cases k & Fy.

Recalling the decomposition of the set Z\ F in (37), we compute the uniform bounds for Z(r, |A,|)
by distinguishing the cases k € N x I, or k € Iy, x {ko}, for some ko =1,..., My — 1.

Lemma 6.2. Let k & Fagr with k € N x Ip,. Then

_ T (0,1) (0,0)
|Cl(c1,o)| < %, ( (llalls + ||b||3)aM1,sla]\/12,32 > _s

w
_ 0,0 0,0 7 1,1 0,0 k
lallsadi s, aliun, + [Blsalit), ol
. alls + || %D (0:0)
O] < bl Ll *T'®) + 2k ( , ((|o| o|)|s (oHO)HS) ERRUTETT L
lallscanr, s, sy, + 10lshr, sy O, s,
(0,1)  (0,0)
2 le’
(2,0) —sd(k) My 51" Mz, s2 —s
|Ck | < 2k1w,,°T + 4k ( (0,0) (0,0) (1,1) (0,0 )wk
My,51 " Ma,s2 + OéMl,SlOéJWz,&
Proof. The proof is a direct use of Lemma [A74] O
In order to present the estimates for C’,(j’j) when k € Iy, X {ko}, for some ko = 1,..., My — 1, we

need one preliminary result.

Lemma 6.3. Let d € {a(f’),b(”)}, where a), ") are components of v = (L™ o) b)) € B;(0) c X*
as above. Let ¢ € {a,b,a,b}. Let k & Fng with k € I, x {ka} for some ko =1,..., My — 1. Let

mo—1 ]ﬂsz mi—1 1
_\ def _ _
Uty ks (¢) = Z 522 |007j2| + Z I+ 1 71 51‘| |Cj17j2 | (56)
Ja=—ma+1 “ha—j2 Jji=1 ( a Th)
Then
[(d* )| < Wry 1y (C)ey,” (57)

Proof. Since ¢ € {a,b,a, b}, then ¢, = 0 for k ¢ F,,,. Without loss of generality, let d = a(*). Hence

’HL271 mlfl

@ 4oy | = @ . (coa)
‘(a *C)k| = @7, 5y Cirga | S wkzlfjl,k27j2|cjl7]2|
(i1+71,92+72)=(k1,k2) Je=—ma+lji=—mi+1
[ mgfl mlfl S1 52
ky k3

= X X o 2 [E | Wi
Jje=—ma+1j1=—m1+1 (kl - ‘71)81 wki—jz

mgfl So mlfl
kS 1

- > S _ . o
ks TG | we T S Uk, (C)wy,
ja=—ma+1 “ha=iz ji=—mi 41 (1=

The proof of the following result follows from Lemma [6.3| and Lemma
Lemma 6.4. For k & Fpp with k € Iy, x {ka}, for some ko =1,..., My — 1.
(O] < 2k (Vo o (@) + War, s (B) P ®
OV < k| Loy *I2 + 2k (‘IfMl,kz (@) + Wy (5)) P

(2,0) 20‘5\(/)1’1) 0‘5\9[’0)

> —s72 1,51 2,82 —s

(G ] = 2k "l +4k2< (0,0) _(0,0) L) (0,0) )wk '
OMy 51 E Mo s + Oy 51 O M2 50
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It is important to realize that the estimates for |C,(cw )|w,§ obtained in Lemma and in Lemma
are still unbounded in (k1, ko) for (4,7) = {(1,0),(1,1),(2,0)} because of the presence of the terms |k1]
and |kz|. However, the action of the tail Ry (v, L)' of the operator A, given in takes care of that.
More precisely, we obtain explicit constant vectors V(»7) such that |Ry(v, E)*lc,(j’j )\ < V@w, # for

(Zaj) = {(170)3 (17 1)7 (230)} Letting

(1)(V) d:ef |Vk% - k§|k’2 _ (2)(1/) déf kleL _
k (kg = KG)2 + (D)2 7 (vk§ — k3)? + (ki L)?’
() () 2t lvks — k3|k: (4) ) k2L
FT M kP kD2 T vk = k) (L)
we see that
Ri(v. L)'k = B (k- kD ) _ (870 87w
KL = T mnE \ kE k81 T 590 s00)
and
R D e f o ki (A0 A
k(Y 27 (ki — k2?2 + (kiL)? k1L lvkd — k2| 5;(92)(1/) ﬁ,(:)(y) ,

We now compute bounds for 5,(:)(1/), ,(62)(1/), ,(:’)(1/) and 5124)(’/)7 for all k & Fy.

Lemma 6.5. Consider L > 0 and v > 0. Given M = (My, My), consider

k;; d:ef k2€{1{1.1.%3\(/[2,1} {kjg ‘ |V]<,‘421 — k‘§| S lez, for all v € [VO — |AV|,Z/Q + IAU”} . (58)
Assume that )
vo — [Ay] > (R (59)
2
FOT}{,‘Q = 1,...,M2—1, let
~ . ks — k3 |ko
Bl e sup —. (60)
Mk 1A lvotia, ] (VES — k3)? + (M L)>?
ket koM I
2 My
. ko=1,... K
FIONEE: ((vo — [Ay)k3 — k3)2? + (M, L)? 2 (61)
M ks 1
3 T30 ko=k5i+1,...,My—1
2500 — 18,1~ &)
and ] 1
5&?% = and ﬂéi),Mg = . (62)

M3 (o — 1Bl — 1ip) 23 (o — 18]~ 1)

Let k & Fnr and consider any v € [vg — |Au|,v0 + |Ay|]. Then ,6,23)(1/) < % and ﬁ,(f)(y) < % If
k € I, x{ka} for some ko =1,...,My—1, then 6,(:)(1/) < Bj(\/lfikz and 5,22)(1/) < B](\}i,kz' If k € Nx Iy,
then 5 (v) < B, and B W) < B2,

Proof. Consider k ¢ Fnr and v € [vg — |A,],v0 + |A,]]. Recall Young’s inequality with p = ¢ =2

ab

1
m S 5’ fOr all a, b c R. (63)
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Let a = |vkj — k2|, b = k1L and using (63)), we get
2 2

3) _ l ‘Vk% — k2|k1E < i
A ) L (vk —k3)2+ (k1 L)2 — 2L

— < -— = =,
+ (k1L)? — (k1L)? L

Let us compute upper bounds for A\ (v). Recall and assume first that k € N x Ip;,. This implies
that ko > M, and then

k2L k2L 1
and 5(4)( ) = )1 1 -

(vk3 —

(1) |Vk“21 — k’%|/€2 1 1
V) = < < BOO (64
) S R g+ D S W ] = T N — 1A, - 1) )
which is a positive upper bound. Assume now that k € Ip;, x {ko} for some ko = 1,..., My — 1. Then
ki > M. In this case,
1 1 Z/k4 - k‘2|k'2
BOW) = B0 0) <AL = swp ks — ks (65)

velvo—|a,lwota, ) (VRS — k3)2 + (ML L)?

Combining and , we have that for any k € Fiy, B,(el)(u) < ﬁl(él). We now bound ,6’,(3)(V). Recall
and assume first that k € N x Ip,, and so kg > My. Let a = |vks — k2|, b= ki L. From

(2)(V) o kleE - kz ab 1

k (ki — k32 + (kD)2 a a? —l—b2 - 2a - /B‘X’ My = 2M3(vo — |Ay| —

(66)

MQ)

Assume now that k € Ip; x {ko} for some ko = 1,...,My — 1. Then k; > M;. One can write
1(3)( ) = kof(k1 L), with f(z) = gz, Wherey = (vk3—k3)%. We have that £(0) = lim, . f(z) = 0 and

that f(z) > 0 for x > 0. Also, x = /¥ is the only x > 0 such that f’(z) = 0. That implies that for every

x > /7, [ is decreasing. Therefore, for any 1 < ko < M satisfying x = k1L > ML > /5 = lvks — k3],

koM, L
(vk3 — k3)? + (M L)?

B () = kaf (kL) < ko f (Mi L) =

Recalling k3 in (53], if k2 € {1,...,k3}, then

koML
—. 67
( ) Bkl kg( ) 61”1 kg ((V0—|AVD]€§—]€%)2+(M1L)2 ( )
For the final cases ko € {k5 +1,..., My — 1}, we have that
1
68
( ) /Bkl k:g( ) 2k3( |Ay|*é) ( )
which is a positive bound, thanks to . O
The proof of the following result is a direct application of Lemma and Lemma
Lemma 6.6. Given M = (M, Ms) = (m1,ms), let
(1 (2 _ 7 0,1 0,0
oy ao | (B B, (lalls + 18]1s)ads, o,
Voorrs, = ||2 %(2) 5(1) (0.0) (0.0) (1,1) (0,0 (69)
ﬁoo,Mg /Boo Mo ||a||3a]\/11,91 M2732 + ||b||3 Ml,sl M, s2 0o
2 0,1) (0,0
yan w[3E (ﬂoo . ﬂio?%) ( (Il + 10ll)ad 3, 00, s, ) (70)
oo,Mz 1 0,0 0,0 1,1) 0,0
2L B, Bhn) \lallsai’y, o, + 1Bls0fy ), air, )
1 2 0,1 0,0
V(Q,O) def §H2+4 ﬁio?Mz ﬂéO?Mz 20&5\41 )510‘5\427)52 (71)
oo,Mz | T 3(2) 5(1) (0,0) _(0,0) (1,1) (0,0
/BOO7M2 /BOO7M2 aMl SlaM2752 + aMl,SlaMQ,SQ fe'e)
Consider k & Fpg with k € N x Iyg,. Then, for (i,7) = {(1,0),(1,1),(2,0)},
|Ri(r, L)~ O e < Vi (72)
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Defining the bound
Zoo.aa (1, |8 ]) & VI + Vb | Aulr + VL, (73)

we get that for any k &€ Fis with k € N x Iy,

2 2

) . B

sup  |[[DT,(z, + x1)w2], ]l < sup -1 Z Z C’,(cj )rjAf, < Zoo, M (15| Ap )y, ®
z1,22€ B, (0) z1,22€ B, (0) J=11=0

o0

Lemma 6.7. Let k & Fpg with k € In, X {ko}, for some ko =1,..., My — 1. Let

1 O e ~(2 _ —
VAR, =2 (B 4 + B85 ) (Waras (@) + Wt 1 () (74)
11y aer 3L , )
Vi, = 7 42 (B i + B0 ) (900 0a(@) + W0 8) (75)
0,1) (0,0
p(2:0) der §]I2 ) Boo M2 Boo M2 20‘5% )slang )52 (76)
Miks T || T 32 30 Q00 0 a1 (0.0
0o, Mo oo, Mo M1 S1 M2 S2 M1751 Ms,s2 oo
Then, for (i,5) = {(1,0),(1,1),(2,0)},
|Ra(r, D7ef?| < v e (77)
Proof. The proof follows from Lemma [6.4] and Lemma O
For each ko = 1,..., My — 1, defining the bound
- of 1 (1,0 1,1 2,0
Zaty (A E VAL 4 Var 1A+ VaE S, (78)
we get that for any k & Fyy with k € Ipy, x {ko}, for some ky =1,..., My — 1
2 2—3 ) _ _
sup (DT, (@, +@1)aslyll,, < sup DT Y NGNS Zag pa (1A ey,
z1,22€ B, (0) z1,22€ B, (0) J=11=0
6.3 Definition of the radii polynomials
The radii polynomials of Definition [5.2] can now be defined. Combining and (55)), we set
(|8 2 272 4 (2w 1@ ) r 4 Vi(AL)), k€ Far. (79)
Using , let -
p~oo,1V12( |A |) OOMQ( 7|AV|)_T+YM(|AV|)’ (80)
and using , for ko =1,..., My — 1, let
Pty s (75 [ A0 ) = Zaty oy (3 [AU]) = 7+ Yar (A ]). (81)

6.4 Algorithm for the rigorous computation of global smooth branches of
periodic orbits for the Kuramoto-Sivashinsky equation

Before presenting the general algorithm, we introduce a short algorithm that automatically generates the
value of M = (M, M>) before attempting to prove a piece of branch.

17



Algorithm 6.8 (A priori choice for M = (M, My)). At the parameter value vy, let Tg,, = (L,a,b) €

R™(™) with n = n(m) E Omyme — 2my —ma + 2 an approzimate solution satisfying F(™) (zF,,, 10
Fizx a decay rate s = (81, 82).

(0,0) (0,1) (1,1)

i

~ 0.

1. (Determining My) Compute the analytic estimates asosy, (oosy, Ooc,s, and aﬁgﬁl using (136]).

Recalling , compute

lalls = sup |ax|lwi and ||b]|s = sup |br|wp.
keT kel

Recalling condition , initiate the process by fixing My = max(ma, \/%70) Compute BS?Mz and

Bg?Mz defined by by letting A, = 0. Compute VO(;’](\)/I)Z defined in by using aé%:%{, aé?,;?l,

(1,1) (0,0) . (0,0) (0,1) (1,1) (0,0)
asos, and ass s, instead of QAL sy s OM sy OO0 s and N, o If

v <0.95, (82)

then the choice of My is done. If does not hold, then increase the dimension of My by one,
recompute BS))MQ, Bg)Mz and V;j’](\)/[)Q and check if holds. Continue this process until condition

1s satisfied. This process necessarily terminates.

. (Determining M) Consider My the value obtained from Step . Initiate the process of choosing
M by setting My = my. Compute k3 satisfying , that is
k& max ko | |voks — k2| < MLLY.
2 k26{1,...,M2—1}{ 2 ‘ | 0%2 2| = }
Forks=1,...,Ms—1, compute B](Vllz K, and 31(2 k, given respectively by and with A, =0,
that is

[voks — k3 |k

BY . = _
ke (voki — k3)2 + (ML L)?
ko My L
—— ko=1,... k%
g _ ) ok = k)T + (AR :
My ko 1

L ko = ki+1,... My —1.
ng(V() — kig) 2
Forks=1,...,My—1, compute ¥y, 1,(a) and Wy, 1, (b) using the formula . Compute VJ\(411”,32
given by . If
(1,0)
max Vi), <095, (83)

ka=1,..., Mo —

then the choice of My is done. If condition does not hold, then we increase My by one until
condition is satisfied. This process necessarily terminates.

We now present a general algorithm for the rigorous computation of global smooth branches of periodic

orbits for the Kuramoto-Sivashinsky equation .

Algorithm 6.9 (Computing global branches of periodic orbits). To compute rigorously global
smooth branches of periodic orbits of the Kuramoto-Sivashinsky equation on the parameter range

[Vmin, Vimaz], we proceed as follows.

1. Choose a minimum step-size Amin > 0 and set the mazimum step-size Apmax = %(umam — Umin)-

Initiate a decay rate s = (s1,82) and a projection dimension m = (my, ma). Choose the initial
parameter value vy = Vpin with an initial step size A, > 0, or choose the initial parameter value
Vo = Vpmae With an initial step size A, < 0. The initial step size A, is chosen such that |A,| €
[Amin, Amax]. Initiate a temporary step size A% = 0, an initial predictor &g, of Flm) (zF,,,0) and
an initial radius ro = 0.
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2. Initiate By = By, (&), where & < (&p,.,0r.).

3. With a Newton-like iterative scheme, find near @ r,, an approzimate solution Zr,, of F™ (zp,, ,10) =
0. Using Algom'thm determine automatically the value M = (My, Ms) »= (mq1,ms2) (this choice
of M ensures that the tail radii polynomials succeed for small |A,|). Calculate an approrimate

solution i g, of DF™) (Zp, ,vo)ir,, + a}(;ym (ZF,,, ) =0.

4. Compute the coefficients of the radii polynomials in , and .
5. Let

To = {r > 0| pr(r,0) <0, ¥ k € Far,Poo,ar, (1,0) < 0 and par, g, (r,0) <0, ¥V ko =1,..., My —1}.

If Iy = 0 increase my,mg or change the value of the decay rate s = (s1,82) and go back to
def

Step |3 If Ty # 0, compute 0 < r; < r{ such that {ri,r} C Zo. Consider B;- = B, () and
B+ = Br;r (), where & = (zF,,,0r,). Using Remark verify that By C B+ or B1- C By.

6. Let

T :[I—al-‘r]
{2 0/ p(r, 1A,]) < 0, W € Fag, foo,ata (1 [A4]) < 0, 5ag, oy (ry AL ]) < 0, Vhz = 1, Mz — 1},

o IfT =10 then go to Step[8
o If T # () then let r = I‘;b“. If, computing with interval arithmetic, one can verify that
pr(r, |Au]) < 0 for all k € Fag, that pag ke, (1, |[A]) < 0 for all ke = 1,..., My — 1, and

Doo, M, (T, |AL]) <0, then go to Step m else go to Step @

7. Update AY « A, and ro < r. If %\AA < Anax then update A, + %OA,, and go to Step @ else
go to Step [

8. If AY # 0 then go to Step @ else if %\AV| > Amin then update A, < %AV and go to Step @ else
go to Step[10

9. The continuation step has succeeded. Store, for future reference, T, , iF,, , To, Vo and AS. Let
v1 = v + AY. Make the updates vg < vi, A, < A%, &g« Zr + AVig  and AY < 0. Update
By < By, (%) and go to Step[d for the next continuation step.

10. The continuation step has failed. Either decrease Awin and return to Step [§; or increase some of
the components of m and return to Step[3, or terminate the algorithm unsuccessfully at v = vy

7 Computing Floquet exponents: an eigenvalue problem

Define the right-hand side of the Kuramoto-Sivashinsky equation as
E(u) = —vuyyyy — uyy + 2uuy,. (84)

Assume that at a given parameter value v > 0, we have proven the existence of @ a periodic orbit of
(1) using the theory of the previous sections. Assume that @(t + p,y) = @(t,y) for all t € R and for all
y € [0,27]. At this point we do not require p to be the minimal period of the periodic orbit.

Linearize about @ and consider the linear system with periodic coefficients

® = DE(1)®. (85)

More explicitly, one has that DE(@)¢ = —v@yyyy — Gyy + 2(0dy + Uy ). Let us parametrize the invariant
normal bundle of the periodic orbit associated to the eigenvalue A by v. Then v satisfies the equation

dv(0,y) = eMo(t,y). (86)
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Differentiating equation and using , we obtain the invariance equation
U + A0 = DE(0)v = —VUyyyy — Vyy + 2(Vyl + Uyv). (87)
A solution (A, v(¢,y)) of the invariance equation is called an eigenvalue-eigenvector pair.

Remark 7.1. As mentioned above, p is not necessarily the minimal period of the periodic orbit. This
is important because sometimes, we want to compute the eigenvector v as a 27-periodic function in time
with 7 the minimal period of the orbit. This is useful when computing eigenvectors parameterizing non
orientable normal (un)stable bundles.

Definition 7.2. If p is the minimal period of the periodic orbit, the number A is called a Flogquet exponent.

Remark 7.3. Consider an eigenvalue-eigenvector pair (A, v(¢,y)) of the invariance equation such
that v(t + p,y) = v(t,y) for all t and = € [0, 27] for some p > 0. If [e’?| > 1, then the periodic orbit is
unstable.

Let v a p-periodic function in time and 27-periodic in space. Hence, one can expand v as follows

v(t,y) = Z et LRt gikay (88)
k=(k1 ko) €22

Denote the coefficients of the solution @ by (f/, a, l~)) with p = 27T/E, and consider the space-time Fourier
expansion of @ given by

a(t,y) = Z ﬂkeii’klteikzy, g = dp + ibg. (89)
k=(k1 ko) €22

Plugging the Fourier expansions of v and of @ in the invariance equation (90), one obtains that

def

hk()\,’l}) = (k]_il + A + Vk% - kg) Ve — 21 Z k%(vkl’ak2 + ’&/klvkz)
k' +k2=k
= (kliz' A vkS kg) v~ 2kai > Ui (90)
kl'+k’=k

Since v € R, then for any k = (k1, k2) € Z?, one has that v_g = conj(vk), where v_g, = v_g, _j,. Since
v(t, —y) = —v(t,y), we get that v, g, = —Uk, k,, for all (ki, ko) € Z2. Hence, for every k = (k1,k2) > 0,
we have the following relations

V_fy —ky = conj(vg) Vky —ky = —Uk V_ky ky = —conj(vg). (91)

The relations imply that to describe entirely the expansion of the eigenvector v, one only needs to
consider the vj, with non negative indices. From (91)), we get that

Re(’t}kho) = O, ]{31 Z 0, Im(vkho) = O, kl Z 0, Re(vo k2) = 07 kg Z O (92)

More explicitly, let
ek = Re(vg) and di = Im(vg),
Using , we get that cx, .0 = dg,,0 =0 for all ky > 0 and ¢y, = 0 for all k; > 0. Hence, in practice,
we need to consider ¢ = {cg }r-(1,1) and d = {dg }1(0,1) as variables. Since the eigenvalue ) is a variable,
let us define the vector of unknowns x by

(0,0)

k:
oo =) Ak B=(0k) = (0.1)
k —

(k1,k2) = (1,1).



Recalling the definition of the set of indices Z in , one set * = {x }rer. Hence, finding the eigenvector
v(t,y) of corresponds to finding infinite dimensional vectors of the form z = {zg }gez given by .

Eigenpairs (A, v) of come in family as (A, av) is also a solution of for any o € R. We
therefore impose a phase condition in order to apply a contraction mapping argument. We fix the length
of the eigenvector at time ¢t = 0 to be approximately equal to 1 by imposing the condition

n(x)d:eva,%flzZ(cieri)—l:O. (94)
|k|<3 [k|<3
We solve for solutions of satisfying n(z) = 0. Let
fe = Re(he(A\,v)) = (A + vk3 — k3) cx — by Ldp + 2y (akldkz + ck15k2)
klt+k2=k

gk = Im(hi(\,v)) = krLek + (A + vk3 — k3) di — 2k Y (g1 g2 — by dy2).
k'+k2=k

Define F = {Fg }rez component-wise by
n,  k=1(0,0)
]:k: — 9k, k= (kaQ) = (Oa 1)
(). b= ) = 10

gk

(95)

Finding an eigenvalue-eigenvector pair (\,v) satisfying and 7 = 0 is therefore equivalent to solve

F(x)=0. (96)
For sake of simplicity of the presentation, for k = (k1, k) = (0,1), let
A+ vk} — k2, k= (0,ks) > (0,1)
Ri(v,\) < <A+yk‘2‘~k§ —k L ) k= (b k) = (L) (97)
kL A+ vkd — k3
—2(a%c)p+20b*d)r, k=(0k) > (0,1)
Nie(w) = ( 20« d)x +2(b ) ) k= (k) = (L1) (98)
—2(a*c)k +2(b*d)g
so that for every k = (k1,k2) = (0,1),
Fr(2) = R (v, \)xg + koNg(z). (99)

7.1 The fixed point operator T for the eigenvalue problem

Assume an approximate solution Z = (), &,d) of F = 0 has been found at the parameter value v where
F = {Fk}rez is given component-wise by . Consider a Galerkin projection of of dimension n(m)
given by F(m) & {f,im)}kepm, where F(™): R™™) x R — R"(™)  is given component-wise by
A wr,) © Ful(@r,,,0r,)), k€ Fo,
where Fi((zF,,,01,)) is evaluated using (95). Now suppose that we numerically found Zp,, such that
Fm)(zp ) ~ 0. We define Z = (Zp,,, 0z, ) € X°. Denote
A, k=1(0,0)

_ di, k=1(0ks)>=(0,1)
k



where ¢, = d, = 0 for k ¢ F,,,. Assume the Jacobian matrix D}'(M)(:EFWO) is non-singular and let
Apns be a numerical approximation for its inverse. To define the tail of the linear operator, we need the
following result.

Lemma 7.4. Let M = (M, M) = (my,ms), vy >0 and X € R. If
(voM3 —1) M3 + X >0, (100)
then Ry (vo,\) given by is invertible for all k & Fag.
Proof. The proof is similar to the proof of Lemma O
We define the linear operator A on sequence spaces, which acts as an approximation for the inverse
of DF(Z) as
A TR ] R if k€ Fpg
A@)] = | e (101)
k Ri(vo,\) oy, if k¢ Far.
Let _
T(z) =z — AF(z). (102)

Lemma 7.5. Consider M = (M, Ms) = (mq1,msa) and let s = (s1,82) = (1,1) a decay rate. Assume
that Apg is invertible and that (100) holds. Then T : X® — X* and the solutions of are in one to
one correspondence with the fixed points of T.

Remark 7.6. Note that since we look for solutions of F(z) = 0 given in in the Banach space X?®

given

7.2 Rigorous computation of an eigenvalue-eigenvector pair
Consider bounds Yz and Zy, for all k € Z, such that

|[7(@) - 7], | < Vi, (103)

and
sup ‘ (DT (z + J:l)xg]k’ < Zg(r). (104)
z1,22€ B, (0)
Lemma 7.7. If there exists an v > 0 such that |Y + Z||s < 7, with Y = {Yi ner and Z = {Zi}ner,
satisfying and , respectively, then T is a contraction mapping on B.(T) with contraction
constant at most ||Y + Z||s/r < 1. Furthermore, there is a unique & € B,.(T) such that F(Z) =0, and &
lies in the interior of B, (T).

To obtain uniform asymptotic bounds for the Y, we compute Yas such that
1 -
Vi = —YuI'® . for k ¢ Fuy. (105)
Wi

Assume there exist Zas, 1(7), -+, Zary o —1(r), and Zog ar, (7) such that for k ¢ Fpp with k =
(k1,k2) € Ing, x {ko}, for some ko € {1,..., My — 1}, then

e 1 7
Zk'(r) = Zk'l;k?2 (’I“) = EZM17k2 (T)H27 (106)
k
and for k ¢ Fpg with k € N x Iy, then
ot 1 5
Z(r) = Ziy 1y (r) = 5 Zoo.Ms (1™, (107)
k

where 14F) = 1 if d(k) = 1, 1) = (1, )T if d(k) = 2.
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Definition 7.8. We define the finite radii polynomials {pg () }kery, by

pr(r) = Zu(r) — — 10 1 v, (108)
W
and the tail radii polynomials by
ﬁMle(T) Lef ZM17I€2(T)_T+}~/M7 for ko = 1,...,]\42—17 (109)
and
~ ef 5 g
Doo, M, () = Zoom, (1) =1+ Y. (110)

Lemma 7.9. If there exists r > 0 such that pe(r) < 0 for all k € Fnag, DPay ko (1) < 0, for all ke =
1,...,My —1 and poo am, () < 0, then there exists a unique & € B,(Z) such that F(z) = 0.

7.3 Radii polynomials for the eigenvalue problem

Recall that (L, a,b) is the approximate periodic orbit and that (L, a, l~>) is the fixed point of 1} (corre-
sponding to a periodic solution of (1)) via the relation ) obtained from applying Lemma Let ry
the radius of the ball that contains the periodic orbit. Let L L (L L),a= L (d a) and b = 1 (b b)

sothat L =1L +r,L,a=a+ra andb:bJrr,Yb. Then |L| = r7|L LI <1,

X 1. 1 . R 1 - - 1
lalls = —lla—alls = —sup wi|(@—a)| <1 and |[blls = —||b—blls = — sup wi|(b— D)l < 1.
Ty Ty keT Ty Ty keT

Moreover,

fk.(.f) = Rk(llo, ;\).fk, + kg/\/k(i‘)

. 5\+V0k§ —k% —kl.i ch Tk 2(&* )k—‘r2(g~* E)k
B kL X+ vokd — k2) \di N\ 2@+ &)k +2(b * d)
. A + Vokg — k% —le E}, Tk 2(& * Ci)k + 2(67* EJ‘,
- k1L N+ ks — k2 ) \dy 2\ 2@ &) + 2+ d)g

O DI AR Erae 3o

For all k = (1,1), denote

= def A + Voké - k‘% B —kll_/ ék 2(& * 7)k + 2(77* E)JC
Fr(@) = ( ki L Mookt —12) \d) TR 2@w ) + 200 d (111)
Hence,
_ i |die| + 4ka(Jle]]s + [ld]ls) g )
| Fr (@ | < ’.7:]@ ’+Pk7”'y = ‘]:k(j)‘ + ( (0,0) _(0,0) Fos kzlsf) (0,0) v
k1|ck| + 2k2HC||3ak1 Slakz 52 + 2k2Hd||s k?l Slakz S2

Since T(z) — z = —AF(z), let

def

Y =

[AMF ™M (@g,,.0)] |+ lAnprylilrs. k€ Far. (112)

To compute the uniform asymptotic bounds Yas satisfying (105), notice that F(Z) = 0 for every

k & Fyy;, with Fy; given by @ Hence, set
Y = Ri( LF(7)| wi 113
M kel{};;iiiF ’ k(vo, ) k( )|Wk (113)

(1 ~(2 01 0,0
(5;?M2 6;?M2>< 2(|lells + [ldlls)aly) ol )
(2 (1 OO ()O 1,1 0,0
B, Ban) \lelaods), o, + a0y o)

00, Ma QM s Mz,82

+2 Ty

OO,M2 M1,81 ]V[2752 fe's)
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Remark 7.10. If M = (My, M) = M = (2my — 1,2mg — 1), then the set Fy; \ Faz is empty. In this
case, we let Yas = 0.

In order to compute the bound Zg satisfying (104]), for all k, it is convenient to introduce the operator
AT whose action on a vector € X* is given component-wise by

w [ [DFOD @R, Oy | o it € Far

At
[ (x)} k Ri(v0, Nk, if k& Fag,

(114)

which acts as an approximate inverse for the operator A defined in . We consider the splitting
DT (% + 1)z = (I - AAT):CQ - A(D]-"(a’: ) — AT>3:2, (115)
where the first term is small for k € F, and is zero for k & Fps. For k € Fp, we have that
(1= Ao, | < [|1 = A DFOD (3, 0) | i, | 7 (116)

where wp> = {wy, 1) Yy o, and || represents component-wise absolute values. Consider u,v € By (0)
defined by x1 = ru and z2 = rv so that we can expand the expression [(D]—‘(a? +x1) — AT)mg] , i terms
of 7. Denote u = (A, ™ d®) and v = (A®), ™), d*)) component-wise as in . We have that
[((DF(z+ru) — AT)T”U]O’O =0.

For k € 7\ {(0,0)}, consider the expansion

[(D}'(f +ru) — AT) rv] k= C,(f)rz + C’,(cl)r,

where the coefficients are given by

= d(v) (v) B d( (v) b
o [( o <v>) (C*IM *(v>)k o <v>) "l *<v>) it k€ Fy
det (a*cI )k (b*dIM)k (a*c_, )k + (b*d )k

o =
(@*d™)g + (™) %)y (a = d(”))k—l—( ®) 5 b))y .
% - ; f ke Fy,
2 [(_(a*c(y))k 4 (b*d(v))k + ( )k, + (b* d(v))k Tyl 1 g M

(2) dof A(U)Ci:u) + )\(U)ng)
Gk’ = (v) 7(u) (w) g() | °
A 4 A gy

For any ko, the first components of Célko and C’OQkO) equal 0. We are ready to compute the bounds

Zy,(r) satisfying (104). In Section [7.3.1] we compute the bounds for k € Faz, and in Section we
compute the bounds for k & Fjy.

7.3.1 The bound Zi(r), for k € Fpy

In order to compute the bounds Zj(r) for k € Fay, we introduce intermediate upper bounds z,(cl’o), 2,22’0)

such that |C,(cl’0)| < z,il’o) and |C,(62’0)| < z,(f’o). These are given by

b —s,a T 0,0
00wy [l i @« ) 201070 0, e
k (|a|* (- sa) (|b| sb)) (0,0) a(oo) (1,1) a(oo) Tk

Wrns >|<("')IM akl s1 -~ ka,s2 +ao k1 s1 ka,s2
(—s,b)
(270) d_ef 2 wk:
2 = (=s,a) | -
Wi
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Letting
1) de M)/ — _
Z,(c ) d——f Hl — AMD]:( )(:zr)‘wps ]k + |:|A |Z(1 0):|k
2) de
Z,i ) d_—f (|A ‘Z 20))k

we set, for k € Fyy,
Zn(r) = ZPr + Z{Vr. (117)

7.3.2 The bound Zy(r,|A,|) for k & Fng
Consider fixed A > 0 and vy > 0. For any k & Fay, let

ﬁ(l) def |5\ + l/o/i‘él — k%“ﬂg
L =

(2) det kleE
(A 4 vokd — k2)2 + (k1 L)2

and = —.
T N+ okt — k2)2 4 (kyL)?

Lemma 7.11. Consider L >0 and v > 0. Given M = (My, My), consider

& def _ 4 9 .
= — < .
B mex {k:2 | A+ voki — k3| < MlL} (118)

Assume that

1
Vo (119)
(k3 +1)
Forko=1,...,My—1, let
= of A+ voks — k3|k
B, Aok —Ralke (120)
(A +voky — k3)? + (M1 L)
koM L by = 1 L
o | Nkt —k2)2 + (ML)’ T
B = ( "7 27+ (L) (121)
. S ka=k3+1,...,My—1
2(voks — _E)
and let 1 )
BS)M = 7 and Bg)M =
: V()MS—].—% 2 (V()MS—]_—M)

Letk ¢ Far. Ifk € Tng, x {ka} for some ky = 1., My —1, then 57 (v) < Byp) 1, and 57 (v) < By .
Itk €N x Ing,, then B (v) < B0,y and 87 (v) < B2,

Proof. The proof is similar to the proof of Lemma O

Lemma 7.12. Let

_ - 0,1 0,0
sl ﬁwhb ﬁwﬂh (lalls + 115 + 2o, 04, .
oo, Mz _ (0,0) (0,0) b (1,1)  (0,0) (122)
ﬁoo Mo ﬁoo \M> (llalls + Tv)O‘Ml,slaM2, s2 + ([[olls + Tw)aMl,élaMz,sz .
2 ef
Vi 22 (B0, +B2s) - (123)
Consider k & Fpr with k € N x Ip,. Then, fori=1,2,
1R (0, )7 O oo < VA0 (124)
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Defining the bound
Zoonts(r) E VI 2+ VD (125)

we get that for any k € Fny with k € N x Iy,

sup  [|[DT(Z + z1)z2], [l < sup HRk Vo, A)” (CS>T+C(2) 2)” < ZOO,MQ(T)Q}I;S.
z1,22€B,.(0) z1,22€ B, (0) oo

Lemma 7.13. Let k & Fng with k € Ipy, x {ko}, for some ko =1,..., My — 1 and let

~1 _ = 0,1) (0,0
(1) def 9 (/81(\/[3,14:2 BM1,]€2> ( \I/M17k2 (a) + \IIMI k2 (b) + 20[5\@ )510‘5\423927‘7 )
\I]th?Q( )T’Y

Myky — (1,1) (0,0

_ T 0,0
a‘) + \IIM1J€2 (b> + (ag\/ll llag\h,) + aM1 s1aM2,52

ﬂMle ﬁMle oo

126)

(
&t (127)

(2)
VMl,’Q = 2.

Then, fori=1,2,
1R (0, )7 O [loo < Va7 w5

For each ko = 1,..., M5 — 1, defining the bound
5 2 1
Zoty e (1) E VD 2+ V) (128)
we get that for any k & Fyy with k € Ipy, x {ko}, for some ko =1,..., My — 1

sup  [|[[DT(Z + w1)aa]y |0 < Znay o (1) ®.
z1,22€B,(0)

The radii polynomials of Definition [7.§ can now be defined.

Combining (112) and ., we set

pk(r) def 215,2)72 + (Zlil) _ wlzsld(k)) r+ Y, ke Fy. (129)
Using - ) and (| - let 3 )
ﬁOQMz (T) = Z007M2 (’I“) —r+Yn, (130)

and using (128)), for ko = 1,..., My — 1, let

ﬁMle(T) = Zthz(r) _r"i'i/M- (131)

8 Results

In this final section, we present several sample theorems about existence of periodic orbits. Given a
numerical solution Z = (L, a,b) € R™™) with n(m) = 2mymsy — 2m; — mg + 2 and a parameter value v,
denote the associated approximate periodic solution by

(t,y) = Y (ar +ibg)eFteiey, (132)
keF,,

Also, given an exact solution Z = (L,a,b) € B,.(&) of F(&,v) = 0, denote the associated exact periodic
solution by

alty) =Y (an + ibg)ertetka, (133)
keZ?
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8.1 Global branch of periodic orbits
The proof of the following result is obtained by applying Algorithm

Theorem 8.1. For each segment of curve in the diagram of Figure[d there exists a smooth branch of
periodic orbits of . The branch is parameterized by v € [Vinin, Vmaz] = [0.12175,0.1310], and the period
of the orbits ranges in the interval T € [Tmin, Tmas] = [1.92610, 3.03565].

In Table[I} we provide data for the periodic orbit of Theorem [8.1] at the parameter value v = 0.127.
This orbit was also proven with A,, = 2x10~°. Note that in [18], the proof of the same orbit was performed
with A, =~ 10~7. The branch of periodic orbits of Theorem parameterized over v € [Vmin, Vmax| 18
portrayed in Figure

[ m = (mi,mg) | M = (M, M) [ Time (in seconds) | A, | C° and L? errors ||

m = (9,14) M = (63,40) 51.64631 0 ~ 1072
m = (30,15) | M = (64,40) 54.8595 2% 107° ~ 1073
m = (40,80) | M = (64,80) 460.50071 2x107° ~ 10~

Table 1: Proofs data of the periodic of Theorem [8.1| at v = 0.127 with period 7 ~ 2.2443335614892281.

2,67

-
2.4;

2.2

2,

0.122 0.124 0.126 0.128 0.13 0.132
1%

Figure 2: Theorem [8.I] demonstrates the existence of a smooth branch of periodic orbits of the Kuramoto-
Sivashinsky PDE (|1)). For each v € [Vmin, Vmax] = [0.12175,0.1310], each true solution Z, is proved to
lie in a ball, given by , of radius r = 7.98829 x 10~° around the numerical approximation Z,. More
explicitly, the true solution &, is such that ||, — Z,[|s <r, with the decay rate s = (s1,s2) = (1.4,1.2).

8.2 Sample theorems at fixed parameter values

Finally, we present several sample theorems at fixed parameter values. Each existence proof is obtained
by fixing A, = 0, ny constructing the radii polynomials defined in , and , and then by
applying Lemma [5.3] successfully. Each result concerning Floquet exponents is obtained by constructing

the radii polynomials (129), (130)) and (131]), and by applying Lemma
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Theorem 8.2. Let v = 0.032, m = (my,mz2) = (40,80), M = (M1, M) = (200,82) and s = (s1,52) =
(1.4,1.2). Consider = = (L,a,b) € R*™™) = R%2 gjyen in the file xOpt032.txt, and let u(t,y) the
associate approximation given by . Then there exists a function @(t,y), a classical solution of
such that @ 1is periodic with respect to t with period T € 0.818577285749405 + 6[—1,1], with 6 =
1.061985 x 10~ '3, and such that

(0, -) — @(0,-)||co < 1.74978 x 10719, and  ||a(0,-) —a(0,-)||> < 2.78737 x 1071

Note that the periodic orbit of Theorem is apparently stable, but we do not have a proof of this

statement. Note also that in , the proof of the same orbit was performed with ms = 23 space Fourier
modes, the C° error norm was 9.46 x 104, the L? error norm was 9.59 x 10~4 and the error norm for
the period was 4 x 10~* (compare with 1.07 x 107! with our approach).
Theorem 8.3. Let v = 0.029909, m = (my,mz2) = (50,80), M = (M, M) = (240,85) and s =
(s1,82) = (1.4,1.2). Consider # = (L,a,b) € R™22 given in the file x0pt02991.txt and consider the
associate approzimation u(t,y) given in . Then there exists a function u(t,y), a classical solution
of such that @ is periodic with respect to t with period 7 € 0.898089445890309 + §[—1, 1], with
§ =1.77012 x 10713, and such that

1%(0,-) — @(0,-)||co < 2.42296 x 10710, and  ||a(0,-) — @(0,-)||z> < 3.85972 x 10~

Moreover, there exists a positive real Floquet exponent A > 0 (in fact it is a positive Lyapunov exponent)
with A ~ 1.337449912731968 associated to the periodic orbit. Since || > 1, then the periodic orbit is
unstable. The periodic orbit is portrayed in Figure[3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

y By (t)

Figure 3: (Left) The periodic orbit of Theorem at v = 0.02991. (Right) The Fourier modes
(By(t), B10(t)), where the Sy, (t) are given by (139).

Theorem 8.4. Let v = 4/150, m = (my, ma) = (60,90), M = (M, M) = (180,90) and s = (s1,82) =
(1.4,1.2). Consider © = (L,a,b) € R'%92 given in the file x_4overd50.txt and consider the associate
approzimation u(t,y) given in (L32)). Then there exists a function u(t,y), a classical solution of such
that @ is periodic with respect to t with period T € 0.534173514309819+6[—1,1], with § = 9.925582x 10714,
and such that

[a(0, ) = a(0,-)co < 3.84039 x 10717, and  [|a(0,-) — a(0,-)]| > < 6.11767 x 107 .

Let p = 27. Then there exists an eigenvalue-eigenvector pair (A, v) of with v(t + p,y) = v(t,y) for
allt € R and for all y € [0,27] such that X\ > 0 with A\ ~ 1.018412816297953. Since |e*"| > 1, then the
periodic orbit is unstable. The periodic orbit is portrayed in Figure [
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a(t, y)

By(1)

Figure 4: (Left) The profile of a periodic orbit of at v = 4/150, as proven in Theorem [8.4] The
period is 7 & 0.534173514309816 and it has been proven that this orbit is unstable. (Right) In black,
the three Fourier coefficients (87(t), 8s(t), Bo(t)) of the T-periodic orbit. In cyan, the rigorously computed
two-dimensional unstable normal bundle of the periodic orbit. The apparent rapid change in the bundle
is only an artifact of the projection. Indeed, the bundle is smooth over the period of the periodic orbit.

Theorem 8.5. Let v = 0.0266, m = (mq, m2) = (45,80), M = (M, M) = (95,80) and s = (s1,s2) =
(1.4,1.2). Consider & = (L,a,b) € R™2 gjven in the file xOpt0266.txt and consider the approzimation
a(t,y) given in (I32). Then there exists a function u(t,y), a classical solution of such that @ is
periodic with respect to t with period T € 0.321226891718833 + §[—1, 1] with § = 8.152573 x 10715 and

130, -) — (0, -)||co < 8.72278 x 10711 and  ||a(0,-) —a(0,-)||> < 1.38953 x 10711

Let p = 27. Then there exists an eigenvalue-eigenvector pair (A, v) of with v(t + p,y) = v(t,y) for
all t € R and for all y € [0,27] such that A > 0 with A\ ~ 5.031359038130527. Since |e*?| > 1, then the
periodic orbit is unstable. The periodic orbit as well as a visualization of the unstable bundle associated
to the eigenvector v are depicted in Figure [

Figure 5: (Left) The unstable periodic orbit of at v = 0.0266 as proved in Theorem (Right)
The three Fourier coefficients (81(t), 83(t), B4(t)) of the 7-periodic orbit of at v = 0.0266 with
T &~ 0.321226891718828. In cyan, the unstable normal bundle of the periodic orbit as computed in
Theorem [8.5, Each “side” of the bundle has a different colour (i.e. blue and red). One can see from this
finite dimensional projection that the eigenvector is 27-periodic and not 7-periodic.
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Theorem 8.6. Let v = 0.024, m = (my,m2) = (80,85), M = (M1, Ms) = (190,92) and s = (s1,52) =
(1.4,1.2). Consider & = (L,a,b) € R'337 given in the file x0pt024.txt and consider the approzimation
a(t,y) given in (I32)). Then there exists a function u(t,y), a classical solution of such that @ is
periodic with respect to t with period T € 0.590231732991113 + §[—1, 1] with § = 9.542892 x 10~ and

130, -) — (0, -)||co < 3.02426 x 10719 and  ||a(0,-) —a(0,-)||> < 4.81759 x 10711,

Moreover, there exists a positive real Floquet exponent (in fact a Lyapunov exponent) A with \ =
1.429704455017047 associated to the periodic orbit. Since |e)| > 1, then the periodic orbit is unsta-
ble. A visualization of the unstable bundle is depicted in Figure [0

0.8
0.6
0.4

0.2

Bs(t)

0.2

0.4

-0.6

0.8

0.8
0 o5 o6 07
0.4 -
o5 o7 "oz 03
Bu(t) 1T =o1 O

Figure 6: In black, the three Fourier coefficients (51(t), 82(t), B3(t)) of the 7-periodic orbit of at
v = 0.024 with 7 ~ 0.578517950173901. In cyan, the unstable normal bundle of the periodic orbit as
computed in Theorem Each “side” of the bundle has a different colour (i.e. blue and red), and one
can see that the eigenvector is 7-periodic as the orbit.

Theorem 8.7. Let v = 0.0225, m = (mq,ma) = (70,85), M = (M, M) = (155,88) and s = (s1,82) =
(1.4,1.2). Consider & = (L,a,b) € R™M™) = RM77 giyen in the file x0pt0225.txt, and let @(t,y)
the associate approximation given by . Then there exists a function u(t,y), a classical solution
of such that @ is periodic with respect to t with period T € 0.541896528414205 + §[—1,1], with
§ = 1.54559 x 1074, and such that

1@(0,-) — (0, -)||co < 5.81092 x 10, and  ||a(0,-) — a@(0,-)| > < 9.25668 x 102
The periodic orbit is portrayed in Figure [T}

The periodic orbit of Theorem is apparently stable, but we do not have a proof of this statement.

Theorem 8.8. Let v = 0.111485, m = (mq,mz2) = (135,33), M = (M, M) = (610,34) and s =
(s1,82) = (1.4,1.2). Considerz = (L,a,b) € R*™) = R gjven in the file x_Opt111485_gamma_hopf . txt,
and let u(t,y) the associate approximation given by . Then there exists a function u(t,y), a classical
solution of such that @ is periodic with respect to t with period T € 20.063697521371836 + §[—1, 1],
with 6 = 2.51984 x 10~%, and such that

130, -) — @(0,-)||co < 9.21181 x 10~°, and  ||@(0,-) — @(0,-)||> < 1.46743 x 107°.

The periodic orbit is portrayed in Figure[8
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Y Bu(t)

Figure 7: (Left) The periodic orbit of at v = 0.0225 as proven in Theorem (Right) The Fourier
modes (51(t), B2(t)), where the B, (t) are given by ([139)).

Ba(t)

Figure 8: (Left) A periodic orbit at v = 0.111485 of Theorem [8.8] The time period 7 is greater than
20. (Top right) The two Fourier coefficients (82(t), 85(t)) of the 7-periodic orbit, where the Sy, (t) are
given by (139). (Bottom right) A zoom-in of the same orbit.

A Estimates

A.1 1d estimates
Recall that for a vector a = (ax)kez, [|alls = supgez |ax|wy, where the 1d weights w; are given by (L9).

Lemma A.1 (1d estimates). Let M > 10 and K > 1 computational parameters, and let s € (1,1.45].
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Define

2 .

ok e
={2+2 — T if1<k<M
s * Z k+y (k+K+1)5(s—1)K5*1+j;js(k:—j)s’ Flsk<M  (134)

1 4
244y —f— ifk>M
- .st—’—(s—l)KS*l’ ik =

and
(i) et 1=61,015, ifk=0
g 261,615 ifk>1

Define
ol = a0 (135)

Then, for all k € Z

IN

Y stk
S S S
ki tha=k Y%k Yk
Yo
O ws
kythg=k K1 k2 k
k170

2 : 1 aké
wp wi 7wy
k1+ko=k k1% ko k
k1,k27#0

IN

A

The proof is a slight modification of the estimates in Proposition 1 in [20]. The hypothesis that
M > 40 is taken large enough so that the estimates in |20] hold. See Remark 1 in |20] for more details.

Since for the cases k¥ > M > 10, the bound (135) does not depend on k, denote, given a large
computational parameter K > 1,

4

+ TR (136)

(”J) d_d51z+51,J +4Z

Jj= 1

A.2 2d estimates

Lemma A.2 (2d estimates). Let a = (ag)gezz such that ag,0 = aok, = 0 for all k1,ke € Z, and
b= (br)kez2 such that by, o =0 for all k1 € Z. Recall , and assume that a,b € €, that is

llalls = sup wglak| < oo and ||b]|ls = sup wilbk| < oco.
kez? kez?

(0,0) (0,0) (0,1) (0,0 (1,1) (0,0)
k1,51 k2,52 2 k1,51 k2,82 akl slakg So 2
[(axa),| < —=2==alls, [(axb)| < —=Z=lalls[[blls, [(bxb),| < —=Z==[b]l5. (137)
w wk wk

Proof. Define

Sa:{k:(kl,kg) : kl#Oande;ﬁO} and Sb:{k:(khkg) . kQ#O}
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the set of indices on which a and b have respectively non zero entries. Then

1 1 1
_ E E 2 _ § : 2
‘(a * a’)k| - Qg1 Qg2 < WS w?, ||a||s - wsiwsé ! ws%ws§ Ha”s
klik2=r klik2=k k'K klik2=k ki kY k3 k3
k' k272 k'eS,,k%€S, kleS,,k%eS,
1 1 (0,0) (0,0
_ § : 2 2 k1,51 k2,52 2
- wslwsl wSQwSQ ||Cl|| S ws ||G‘Hs7
1.2 k1 k2 1,2 kL k2 k
ki+kZ=kq 1 R kd+kZ=ko 2R3
kL K30 kb k370

where the last inequality follows from Lemma Similarly,

1 1 1
[(a*b)g| = Z aprbp2| < Z oS lallsllblls = Z s, 51 WHallsllblls

S1
w? wyiw
ki

klik2=k klik2=k k' k2 klik2=k k% k% k%
k' k2c72 k'eS, k%S, k'eS, k%S,
(0,1) (0,0)
- - | Nl < s g g
- 51, ,51 S2, .52 alls s = s alls 8
5 Wp1Wpo 5 WIW s wr,
ki4kZ=ky 1 1 kd+kZ=ko 2 2
ki#0 k3 k370

and

1 1 1
[(bxb)y| = Z bribgz| < Z — bl = Z = b3
wklwkz

51
wk}w

W, 1w
klik2=k klik2=k klik2=k k% k% k%
kl,k2€Zz kIGSb,kZGSb k1€857k2€$b
(1,1) (0,0)
S D DR b I S e e T =
1.2 k1 Wk2 Wi1Wg2 Wi
ki+ki=k1 1 M k3 +k3=kg 2 "2
kL k270

Remark A.3. For s € (1,1.45), ay, s as defined in Lemmasatisfy ks < agyrs for all k > 0.

As a consequence of the previous remark, we have the following asymptotic estimate.

Lemma A.4 (Asymptotic Estimates). Assume that all hypotheses of Lemma hold. Denote
M = (M, Ms) = (40,40). Given k & Fpr, we have that
(0,0) (0,0) (0,1) (0,0) (1,1) _(0,0)

My ,s1 O, Mi,s1 %M, Opry s Y M,
(v )y < Do os o2 (g ), < S O o ()| < T2
k k k
(138)

B Visualizing the orbit with the time Fourier coefficients

It is common to visualize the solutions in a state space of Fourier coefficients. To do this, rewrite the
Fourier expansion as

def
=, ()

u(t,y) — E CkeiLklteikgy — E ( E Ck;l,kzeiLklt> eik‘gy'

keZ? ko€Z \k1€Z
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Recalling the third relation of , ie. c_gy .k = —conj(cg) and the third relation of ie. agk, =
Re(cok,) = 0 for all ko > 0,

Ok, (t) _ Z Ck17k2eiLk1t

k1€Z

%S oo
: —iLkqt iLkit
= C0,ky — E COHJ(Ck17k2)e v E Cky,k2 € !
ki1=1 ki1=1

=1 |bok, +2 Z (@ky iy sin(k1 Lt) + b,y ki, cos(k1Lt))
k1=1

Letting

ﬁ]qz (t) Lot b07k2 +2 Z (CL}CI’]€2 sin(k’lLt) + bkl,kg COS(let)) (139)
hi=1

we get using that B_k, = —fk, and therefore that

ult,y) = =2 Br, () sin(kay).

ko=1
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