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Abstract

In this paper, a method to compute periodic orbits of the Kuramoto-Sivashinsky PDE via rigorous
numerics is presented. This is an application and an implementation of the theoretical method
introduced in [1]. Using a Newton-Kantorovich type argument (the radii polynomial approach),
existence of solutions is obtained in a weighted `∞ Banach space of Fourier coefficients. Once a
proof of a periodic orbit is done, an associated eigenvalue problem is solved and Floquet exponents
are rigorously computed, yielding proofs that some periodic orbits are unstable. Finally, a predictor-
corrector continuation method is introduced to rigorously compute global smooth branches of periodic
orbits. An alternative approach and independent implementation of [1] appears in [2].
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1 Introduction

In this paper we present an implementation of the theoretical framework introduced in [1] for computer-
assisted proofs of existence of invariant objects (fixed points, travelling waves, periodic orbits, attached
invariant manifolds) in semilinear parabolic equations of the form

ut = Lu+N(u),

where L is an elliptic operator and N is a semilinear operator (of lower order than L). The invariant
objects that we consider are periodic orbits of the Kuramoto-Sivashinsky partial differential equation{

ut = −νuyyyy − uyy + 2uuy

u(t, y) = u(t, y + 2π), u(t,−y) = −u(t, y)
(1)

where t ≥ 0 is time, y ∈ [0, 2π] is the space variable and ν > 0 is a fourth-order viscosity damping
parameter. The PDE model (1) is popular to analyze weak turbulence or spatiotemporal chaos [3–6].

The present work accompanies papers [1] and [2]: it is an application of [1] while providing an
independent implementation from the one introduced in [2]. More precisely, the choices of spaces and
algorithms chosen here are different from the ones in [2], and the present paper shows how to perform
continuation with respect to parameters while [2] establishes lower bounds of analyticity of solutions.

∗Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São
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As already mentioned in [1], the core of our study is writing down the problem of finding a periodic
orbit of (1) as a zero of a functional equation of the form F(x, ν) = 0 (see Section 2), where ν > 0
is the viscosity parameter. The operator F is obtained by plugging the space-time Fourier expansion
of the orbit in the PDE model. The unknown x ∈ Xs is an infinite dimensional vector of space-time
Fourier coefficients of the periodic orbit living in (Xs, ‖ · ‖s) a weighted `∞ Banach space of Fourier
coefficients with decay rates s = (s1, s2) (see Section 3). The operator F is not bounded (continuous)
because of the presence of the differential operator ∂t + ν∂4

y + ∂2
y . To address this problem, we introduce

a pre-conditioning linear operator Aν to smooth F , that is such that AνF is bounded. The operator Aν
is chosen to be an approximate inverse of DF(x̄, ν), where x̄ is a numerical approximation of a periodic
orbit of (1) at the parameter value ν. By approximate inverse, we mean that ‖I − AνDF(x̄, ν)‖Xs < 1.
The contraction mapping theorem is then applied to prove existence of a fixed point x̃ of

Tν(x)
def
= x−AνF(x, ν),

where the fixed point x̃ is the desired periodic orbit. As a by product of the method, explicit and rigorous
error bounds for ‖x̃− x̄‖s are obtained and we have results about local uniqueness.

This strategy requires an a priori setup that allows analysis and numerics to go hand in hand: the
choice of function spaces, the choice of the basis functions and Galerkin projections, the analytic estimates,
and the computational parameters must all work together to bound the errors due to approximation,
rounding and truncation sufficiently tightly for the verification proof to go through. The goal is to
provide a mathematically rigorous statement about the validity of a concrete numerical simulation as
interpreted as an approximate solution of the original problem.

In order to prove existence of zeros of F , we use the radii polynomial approach which was first
introduced in [7], and later on used to study dynamics of PDEs [8–11]. Since we aim at solving a parameter
dependent problem F(x, ν) = 0 our approach natural lends itself to parameter continuation methods (e.g.
see [12, 13]). Inspired by [14] we introduce an algorithm to compute global smooth branches of periodic
orbits (see Algorithm 6.9). Once a periodic orbit is rigorously computed, an eigenvalue-eigenvector
problem is solved and Floquet exponents associated the orbit are obtained.

Before proceeding any further, it is worth mentioning that we are not the first to obtain rigorous proofs
of existence of solutions of (1). In the early pioneer work [15] the method of self-consistent bounds is
developed and applied to obtain computer-assisted proofs of equilibria. More recently, a global bifurcation
diagram of equilibria has been rigorously computed [16], where different types of bifurcations are proven.
Computer-assisted proofs for periodic orbits of (1) have also been obtained. Methods based on a rigorous
integration of the flow are introduced in [17–19], where the orbits are obtained by proving existence of
fixed points of a Poincaré map constructed using a rigorous integrator. In [17,18] the proofs are based on
the Brouwer Theorem in case of attracting orbits and on the Miranda Theorem in case of unstable ones.
The symmetry of the periodic orbits is exploited when possible in order to simplify the set-up. Since the
proofs are purely topological, no results about stability of the orbits are obtained. The method presented
in [19] uses analyticity of the solutions, it derives estimates not only for the time-t map but also for its
derivative which allows obtaining results about stability of the periodic orbits.

Our approach for computer-assisted proofs of periodic orbits of (1) has a different flavour from the
above mentioned more geometric state-space approaches. We present a functional analytic approach which
builds on the theory developed in [7,9,14]. The set-up does not require integration of the flow, does not use
information about the symmetry and the stability of the orbits, and does not explicitly require aligning
windows or finding good coordinates. In fact, the choice of the approximate inverse Aν mentioned above
automatically takes care of that. This automatic feature of our proposed approach comes however with a
price as it sometimes requires computing (even though non rigorously) the inverse of a large matrix. The
fact that we solve rigorously the eigenvalue problem to compute the Floquet exponents implies that we
can only prove that some solutions are unstable. Extending our approach to prove that some solutions are
stable is the subject of current research. The predictor-corrector continuation method that we introduce
is based on the uniform contraction principle, and allows us proving existence of segments of periodic
orbits of length of the order |∆ν | ≈ 10−5 (e.g. see Theorem 8.1 and Table 1). In comparison, in [18], the
proofs were obtained with |∆ν | ≈ 10−7.
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The paper is organized as follows. In Section 2, we define the functional equation F(x, ν) = 0 whose
solutions are the periodic orbits of (1) at the parameter value ν. In Section 3, we introduced the Banach
space Xs in which we look for solutions of F . In Section 4, we introduce the pre-conditioner A and design
a parameter dependent fixed point operator equation Tν(x) = x whose fixed points x = x(ν) correspond
to solutions of F(x, ν) = 0. We construct the operator with the hope that it is a uniform contraction on
a segment of parameter values [ν0 − |∆ν |, ν0 + |∆ν |], and therefore get existence of branches of periodic
orbits. In Section 5, we review the basics of the radii polynomial approach and present the theory to
compute global smooth branches of periodic orbits of (1). In Section 6, we present an explicit construction
of the radii polynomials as well as an algorithm to compute global smooth branches of periodic orbits.
In Section 7, we introduce the radii polynomial approach to prove existence of Floquet exponents. We
conclude in Section 8 by presenting the results and the details about the computer-assisted proofs.

Before proceeding with the presentation of the method, let us introduce some notation.

1.1 Notation

Given z ∈ C, denote by conj(z) its complex conjugate. We use boldface type to denote multi-indices
as in k = (k1, k2) ∈ Z2. Given k,n ∈ Z2 we also use component-wise inequalities. k ≺ n means that
kj < nj for j = 1, 2. Similarly for k � n, k � n, and k � n. Throughout this paper m = (m1,m2)
and M = (M1,M2) denote computational parameters such that M � m. Also s = (s1, s2) denote the
“decay rate”, where each sj is the decay rate on the jth-coordinate, and is such that sj > 1 for j = 1, 2.

2 The operator F
Suppose that we are looking for time periodic solutions u of period τ of (1). Letting L

def
= 2π

τ , we get that
the τ -periodic solutions of (1) can be expanded using the Fourier expansion

u(t, y) =
∑
k∈Z2

cke
iLk1teik2y. (2)

Since u ∈ R, then for any k = (k1, k2) ∈ Z2, we have that c−k = conj(ck), where c−k = c−k1,−k2 . Since
u(t,−y) = −u(t, y), we get that ck1,−k2 = −ck1,k2 , for all (k1, k2) ∈ Z2. Hence, for every k = (k1, k2) � 0,
we have the following relations

c−k1,−k2 = conj(ck) ck1,−k2 = −ck c−k1,k2 = −conj(ck). (3)

The relations in (3) imply that to describe entirely the expansion (2), one only needs to consider the ck
with non negative indices. From (3), we get that

Re(ck1,0) = 0, k1 ≥ 0, Im(ck1,0) = 0, k1 ≥ 0, Re(c0,k2) = 0, k2 ≥ 0. (4)

Let
ak

def
= Re(ck) and bk

def
= Im(ck).

Also, since c−k = conj(ck), then we get that for all k � (0, 0),

a−k = ak and b−k = −bk. (5)

Using (4), we get that ak1,0 = bk1,0 = 0 for all k1 ≥ 0 and a0,k2 = 0 for all k2 ≥ 0. Hence, in practice, we
need to consider a = {ak}k�(1,1) and b = {bk}k�(0,1) as variables. Since we keep the time frequency L
variable, let us define the vector of unknowns x by

xk =


L, k = (0, 0)

bk, k = (0, k2) � (0, 1)(
ak

bk

)
, k = (k1, k2) � (1, 1).

(6)
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Defining
I def

= {(0, 0)} ∪ {k = (k1, k2) | (k1, k2) � (0, 1)}, (7)

we define x = {xk}k∈I as the infinite dimensional vector of variable uniquely determining a periodic
solution of (1). Note that for each k ∈ I, xk ∈ Rd(k), where d(k) = 1 if k = (0, k2) for k2 ≥ 0, and
d(k) = 2 otherwise.

Given two bi-infinite sequences a = {ak}k∈Z2 and b = {bk}k∈Z2 , we denote by a ∗ b = {(a ∗ b)k}k∈Z2

the discrete convolution product, where a ∗ b is given component-wise by

(a ∗ b)k =
∑

k1+k2=k

ak1bk2 . (8)

Plugging (2) into (1) results in solving, for all k = (k1, k2) ∈ Z2

hk
def
= µkck − 2

∑
k1+k2=k

ik1
2ck1ck2 = µkck − k2i(c ∗ c)k = 0,

where
µk = µk1,k2

def
= ik1L+ νk4

2 − k2
2.

Using the relations (3) and considering k = (k1, k2) � 0, one can show that

h−k1,−k2 = conj(hk) hk1,−k2 = −hk h−k1,k2 = −conj(hk). (9)

From (9), we get that

Re(hk1,0) = 0, k1 ≥ 0, Im(hk1,0) = 0, k1 ≥ 0, Re(h0,k2) = 0, k2 ≥ 0. (10)

Let

fk
def
= Re(hk) =

(
νk4

2 − k2
2

)
ak − (k1L)bk + 2k2(a ∗ b)k

gk
def
= Im(hk) = (k1L)ak +

(
νk4

2 − k2
2

)
bk − k2[(a ∗ a)k − (b ∗ b)k].

Using (10), we get that fk1,0 = gk1,0 = 0 for all k1 ≥ 0 and f0,k2 = 0 for all k2 ≥ 0. Also, h−k = conj(hk),
we get that for all k � (0, 0),

f−k = fk and g−k = −gk.
This implies that in practice, we only need to solve f = {fk}k�(1,1) = 0 and g = {gk}k�(0,1) = 0.

In order to eliminate arbitrary time shift, we introduce the notion of phase condition. Assume that
we numerically found an approximate periodic orbit ū. It could be at a different parameter value ν than
the one we are using for the actual rigorous computation. We want to solve for u(t, y) such that u(0, t)
lies in the hyperplane perpendicular to the direction vector ūt(0, y) and containing the point ū(0, y), i.e.

[u(0, y)− ū(0, y)] · ūt(0, y) = 0, (11)

where the dot product is taken in the space L2([0, 2π
L ]× [0, 2π]). Equation (11) means that we are solving

on a Poincaré section containing ū(0, y) and perpendicular to ūt(0, y). Condition (11) may be relaxed
by considering only finitely many Fourier coefficients in the expansions of u(0, y), ū(0, y) and ūt(0, y) in
(11). For m = (m1,m2), define

ū(m)(t, y)
def
=

∑
|k2|<m2

∑
|k1|<m1

c̄ke
iL̄k1teik2y and u(m)(t, y)

def
=

∑
|k2|<m2

∑
|k1|<m1

cke
iLk1teik2y,

and we introduce the Poincaré phase condition

[u(m)(0, y)− ū(m)(0, y)] · ū(m)
t (0, y) = 0. (12)
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Now, using (3), we have that

u(m)(0, y) =
∑
|k2|<m2

i

 ∑
|k1|<m1

bk1,k2

 eik2y =

m2−1∑
k2=1

−2

[
b0,k2 + 2

m1−1∑
k1=1

bk1,k2

]
sin(k2y)

ū(m)(0, y) =
∑
|k2|<m2

i

 ∑
|k1|<m1

b̄k1,k2

 eik2y =

m2−1∑
k2=1

−2

[
b̄0,k2 + 2

m1−1∑
k1=1

b̄k1,k2

]
sin(k2y)

ū
(m)
t (0, y) =

∑
|k2|<m2

i

L̄ ∑
|k1|<m1

k1āk1,k2

 eik2y =

m2−1∑
k2=1

−2

[
2L̄

m1−1∑
k1=1

k1āk1,k2

]
sin(k2y)

Therefore, in Fourier space, the Poincaré phase condition (12) is equivalent to

η(x)
def
=

m2−1∑
k2=1

[(
(b0,k2 − b̄0,k2) + 2

m1−1∑
k1=1

(bk1,k2 − b̄k1,k2)

)(
m1−1∑
k1=1

k1āk1,k2

)]
= 0. (13)

Now that the phase condition (13) is chosen, we define F = {Fk}k∈I component-wise by

Fk =


η, k = (0, 0)

gk, k = (0, k2) � (0, 1)(
fk

gk

)
, k = (k1, k2) � (1, 1).

(14)

In Section 3, we show that 2π
L -time periodic solutions u(t, y) of (1) such that η = 0 is equivalent to solve

F(x, ν) = 0, (15)

in a Banach space Xs of algebraically decaying time-space Fourier coefficients. More precisely, Xs is a
weighed `∞ space (see Section 3). For sake of simplicity of the presentation, for k = (k1, k2) � (0, 1), let

Rk(ν, L)
def
=


νk4

2 − k2
2, k = (0, k2) � (0, 1)(

νk4
2 − k2

2 −k1L

k1L νk4
2 − k2

2

)
, k = (k1, k2) � (1, 1)

(16)

Nk(x)
def
=


−(a ∗ a)k + (b ∗ b)k, k = (0, k2) � (0, 1)(

2(a ∗ b)k
−(a ∗ a)k + (b ∗ b)k

)
, k = (k1, k2) � (1, 1)

(17)

so that for every k = (k1, k2) � (0, 1),

Fk(x, ν) = Rk(ν, L)xk + k2Nk(x). (18)

We now introduce a Banach space Xs in which we look for the solutions of (15).

3 The Banach space Xs

Define the one-dimensional weights ωsk by

ωsk
def
=

{
1, if k = 0

|k|s, if k 6= 0.
(19)
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Given k = (k1, k2) ∈ Z2 and s = (s1, s2), we use the one-dimensional weights to define the two-
dimensional weights,

ωsk
def
= ωs1k1ω

s2
k2
. (20)

They are used to define the norm
‖x‖s = sup

k∈I
ωsk|xk|∞,

where |xk|∞ is the sup norm of the vector xk ∈ Rd(k), which is one- or two-dimensional, depending on
k. Define the Banach space

Xs =
{
x = {xk}k∈I : xk ∈ Rd(k) and ‖x‖s <∞

}
, (21)

consisting of sequences with algebraically decaying tails according to the rate s. In other words, Xs is
an `∞ space with a weighed supremum norm.

As already mentioned in Section 2, finding 2π
L -time periodic solutions u(t, y) of (1) such that η = 0

is equivalent to solve F(x, ν) = 0 in Xs. We now make this statement precise. First given n = (n1, n2),
denote Fn = {k ∈ I | k ≺ n}.
Proposition 3.1. Fix a parameter value ν > 0. Consider a fixed decay rate s � (1, 1) and assume the
existence of n � (0, 0) such that Rk(ν, L) is invertible for all k /∈ Fn. Then x ∈ Xs given by (6) satisfies
F(x, ν) = 0 if and only if u given by

u(t, y) =
∑
k∈Z2

(ak + ibk)eiLk1teik2y (22)

is a strong, real 2π
L -periodic solution of (1), where the infinite dimensional vectors a = {ak}k�(1,1),

b = {bk}k�(0,1) satisfy the symmetry conditions (5) and where η = 0.

Proof. (=⇒) Assume x = (L, a, b) ∈ Xs given by (6) satisfies F(x, ν) = 0. We first show that x ∈ Xs0 ,
for all s0 � (1, 1). By definition of the Banach space, we have that x ∈ Xs ⊂ Xs0 , for all s0 satisfying
(1, 1) ≺ s0 � s. Let us show that x ∈ Xs0 for all s0 � s. Note that the space

`∞s
def
=

{
a = {ak}k∈Z2 : ak ∈ R and sup

k∈Z2

ωsk|ak| <∞
}

(23)

with s � (1, 1), is an algebra under the discrete convolution product (8), that is, given any a, b ∈ `∞s ,
a ∗ b = {(a ∗ b)k}k∈Z2 ∈ `∞s . We refer to [9,20] for more details. Therefore, we have that each component
of Nk(x) is in `∞s . Since Fk(x, ν) = Rk(ν, L)xk + k2Nk(x) = 0 for all k � (0, 1), then

xk = −k2Rk(ν, L)−1Nk(x), for all k /∈ Fn.

Since each component of N (x) is in `∞s , there exists C > 0 such that |Nk(x)| �
(

1
1

)
C
ωs

k
, for all k ∈ I.

Applying Young’s inequality with p = 4 and q = 4
3 , one gets the existence of D > 0 such that∣∣∣k2Rk(ν, L)−1Nk(x)ω

( 1
2 ,1)

k

∣∣∣
∞
≤
(

k
1
2
1 k

2
2|νk4

2 − k2
2|

(νk4
2 − k2

2)2 + (k1L)2
+

k
3
2
1 k

2
2L

(νk4
2 − k2

2)2 + (k1L)2

)
C

ωsk
≤ D

ωsk
. (24)

Hence,

x = ({xk}k∈Fn , {xk}k/∈Fn
) =

(
{xk}k∈Fn ,

{
−k2Rk(ν, L)−1Nk(x)

}
k/∈Fn

)
∈ Xs+( 1

2 ,1).

Repeating this argument inductively implies that x ∈ Xs0 for all s0 � s. In particular, that shows
that the coefficients ck = ak + ibk decay to zero faster than any algebraic decay. Therefore, the series
(22) is uniformly convergent, and the series of ut, uyy, uyyyy and uuy are also uniformly convergent. By
construction, u(t, y) given by (22) is a real, strong 2π

L -periodic solution of (1).
(⇐=) Assume that u given by (22) is a strong, real 2π

L -periodic solution of (1). Then by construction,
the corresponding x ∈ Xs given by (6) satisfies F(x, ν) = 0.

The next step is to design a fixed point operator whose fixed points correspond to solutions of (15).
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4 The fixed point operator Tν

For any fixed ν > 0 and decay rate s � (1, 1), Proposition 3.1 implies that computing periodic solutions
of (1) is equivalent to compute solutions x of F(x, ν) = 0 in the Banach space Xs. Therefore, we propose
a strategy to compute branches of periodic orbits of (1) by doing a rigorous continuation on F(x, ν) = 0
in the spirit of the methods introduced in [9]. More precisely, the idea of the method is to show the
existence of a branch of periodic orbits near numerical approximations in the Banach space Xs via a
rigorous continuation method. This process begins by assuming that we found an approximate solution
x̄ of F = 0 at the parameter value ν0 where F = {Fk}k∈I is given component-wise by (14). For a given
m = (m1,m2), let n = n(m)

def
= 2m1m2 − 2m1 −m2 + 2. Given m = (m1,m2), we define the finite set

of indices of “sizes” m by
Fm

def
= {k ∈ I | k ≺m}.

Given x = {xk}k∈Zd we denote its finite part of size m and its corresponding infinite part respectively
by xFm

def
= {xk}k∈Fm ∈ Rn(m) and xIm

def
= {xk}k 6∈Fm . Now consider a Galerkin projection of (15) of

dimension n(m) given by F (m) def
= {F (m)

k }k∈Fm , where F (m) : Rn(m) ×R→ Rn(m), is given component-
wise by

F (m)
k (xFm , ν)

def
= Fk((xFm , 0Im), ν), k ∈ Fm, (25)

where Fk((xFm , 0Im), ν) is evaluated using (14). Now suppose that at the parameter value ν0, we
numerically found x̄Fm such that F (m)(x̄Fm , ν0) ≈ 0. We define x̄

def
= (x̄Fm , 0Im) ∈ Xs. Denote

x̄k =


L̄, k = (0, 0)

b̄k, k = (0, k2) � (0, 1)(
āk

b̄k

)
, k = (k1, k2) � (1, 1),

where āk = b̄k = 0 for k 6∈ Fm. Suppose that at the parameter value ν0, we numerically found ẋFm such

that DF (m)(x̄Fm , ν0)ẋFm + ∂F(m)

∂ν (x̄Fm , ν0) ≈ 0. Defining ẋ
def
= (ẋFm , 0Im) we should then have that

F(x̄, ν0) ≈ 0 and DF(x̄, ν0)ẋ+
∂F
∂ν

(x̄, ν0) ≈ 0, (26)

assuming that the Galerkin projection dimension m is taken large enough. Consider ν close to ν0 and
define ∆ν

def
= ν − ν0. Denote

ẋk =


L̇, k = (0, 0)

ḃk, k = (0, k2) � (0, 1)(
ȧk

ḃk

)
, k = (k1, k2) � (1, 1),

where ȧk = ḃk = 0 for k 6∈ Fm. We define the set of predictors by

xν = x̄+ ∆ν ẋ. (27)

The next step is to construct a parameter dependent fixed point equation whose fixed points correspond
to the zeros of F . Let N

def
= N(M)

def
= 2M1M2 − 2M1 − M2 + 2 and consider (x̄Fm , 0) ∈ RN(M) a

vector consisting of padding the vector x̄Fm ∈ Rn(m) by zeros. Consider the N(M) × N(M) Jacobian
matrix DF (M)((x̄Fm , 0), ν0) ∈ MN(M)(R) and assume it is non-singular and let AM ∈ MN(M)(R) be a
numerical approximation for its inverse. To define the tail of the operator, we need the following result.

Lemma 4.1. Let M = (M1,M2) � (m1,m2), let ν0 > 0 and ∆ν ∈ R. If

M2 >
1√

ν0 − |∆ν |
, (28)

then Rk(ν, L̄) given by (16) is invertible for all k 6∈ FM and for all ν ∈ [ν0 − |∆ν |, ν0 + |∆ν |].
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Proof. Fix ν0 > 0, ∆ν ∈ R. Let M = (M1,M2) � (m1,m2) such that M2 ≥ 1√
ν− + 1 and consider

k = (k1, k2) 6∈ FM . Consider ν ∈ [ν0−|∆ν |, ν0 +|∆ν |] and define d = det
(
Rk(ν, L̄)

)
= k2

1L̄
2 +(νk4

2−k2
2)2.

We conclude that Rk(ν, L̄) is invertible by showing that d > 0. If k1 > 0, then d > 0. If k1 = 0, then
k2 ≥ M2 since k = (k1, k2) 6∈ FM . In this case, we use (28) to conclude that νk2

2 ≥ (ν0 − |∆ν |)M2
2 > 1,

and therefore νk4
2 − k2

2 > 0. This implies that d > 0.

Assuming that (28) holds, define the parameter dependent linear operator Aν on sequence spaces as

[
Aν(x)

]
k

def
=


[
AMxFM

]
k
, if k ∈ FM

Rk(ν, L̄)−1xk, if k 6∈ FM ,
(29)

where Rk(ν, L̄) is given by (16). It is important to notice that the finite part (k ∈ FM ) of the operator
Aν depends on ν0 only. The operator Aν in (29) acts as an approximation for the inverse of DF(x̄, ν),
for ν close to ν0.

Define the Newton-like operator by

Tν(x)
def
= x−AνF(x, ν). (30)

Lemma 4.2. Consider M = (M1,M2) � (m1,m2), let ν0 > 0, ∆ν ∈ R and s = (s1, s2) � (1, 1) a
decay rate. Assume that AM is invertible and that (28) holds. Let ν ∈ [ν0 − |∆ν |, ν0 + |∆ν |]. Then, the
solutions of (15) are in one to one correspondence with the fixed points of Tν . Also, we have that

Tν : Xs → Xs. (31)

Proof. First of all, since AM is invertible and since (28) holds, then the linear operator Aν is invertible.
It follows that given x ∈ Xs, F(x, ν) = 0 if and only if Tν(x) = x. Assume that x ∈ Xs. By invertibility
of AM , for k ∈ FM ,

sup
k∈FM

ωsk|[Tν(x)]k]|∞ = sup
k∈FM

ωsk|xk − [AMF (M)(x, ν)]k|∞ <∞.

To show that supk/∈FM
ωsk|[Tν(x)]k]|∞ < ∞, we use again Young’s inequality as in (24). We conclude

that supk∈I ω
s
k|[Tν(x)]k]|∞ <∞, and therefore Tν(x) ∈ Xs.

5 The radii polynomial approach and rigorous continuation

The rigorous continuation method uses the radii polynomial approach, which provides a numerically
efficient way to verify that the operator Tν is a contraction on a small closed ball centered at the numerical
approximation the predictors xν = x̄ + ∆ν ẋ in Xs. The closed ball of radius r in Xs, centered at the
origin, is given by

Br(0)
def
=
∏
k∈I

[
− r

ωsk
,
r

ωsk

]d(k)

, (32)

where d(k) = 1 if k = (0, k2) and d(k) = 2 otherwise. The closed ball of radius r centered at the predictor
xν defined in (27) is then

Br(xν)
def
= xν +Br(0). (33)

Consider now bounds Yk and Zk for all k ∈ I, such that∣∣∣[Tν(xν)− xν
]
k

∣∣∣ ≤ Yk(|∆ν |), (34)

and
sup

x1,x2∈Br(0)

∣∣∣[DTν(xν + x1)x2

]
k

∣∣∣ ≤ Zk(r, |∆ν |). (35)
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Note that the bounds Yk and Zk satisfying (34) and (35) can be constructed monotone increasing
in |∆ν | ≥ 0. We refer the reader to Section 6.1 for an explicit construction of the bounds Yk(|∆ν |) and
Zk(r, |∆ν |). The proof of the following result can be found in [9].

Lemma 5.1. Consider ν = ν0 + ∆ν . If there exists an r > 0 such that ‖Y +Z‖s < r, with Y
def
= {Yk}k∈I

and Z
def
= {Zk}k∈I , satisfying (34) and (35), respectively, then Tν is a contraction mapping on Br(xν)

with contraction constant at most ‖Y + Z‖s/r < 1. Furthermore, there is a unique x̃ν ∈ Br(xν) such
that F(x̃ν , ν) = 0, and x̃ν lies in the interior of Br(xν).

Since our proof is computer-assisted, we need to compute only finitely many of the bounds appearing
in (34) and in (35). Hence, we compute asymptotic bounds for all k 6∈ FM .

To obtain uniform asymptotic bounds for the Yk, we compute ỸM (|∆ν |) ≥ 0 such that

Yk(|∆ν |) = ỸM (|∆ν |)ω−sk Id(k), for k /∈ FM , (36)

where Id(k) = 1 if d(k) = 1, Id(k) = (1, 1)T if d(k) = 2.
To compute asymptotic bounds for the Zk, we decompose the set I \ FM in two subsets. The

decomposition is based on the fact that the inverse of the tail of the operatorAν in (29), namelyRk(ν, L̄)−1

decreases faster when k2 grows than when k1 grows. Given M ∈ N, denote

IM
def
= {k ∈ N | k ≥M}.

Hence, recalling (7),

I \ FM = N× IM2
∪

⋃
k2=1,...,M2−1

IM1
× {k2}. (37)

Let k 6∈ FM . Then k ∈ IM1
×{k2} for some k2 ∈ {1, . . . ,M2−1} or k ∈ N× IM1

. Assume there exist
Z̃M1,1(r, |∆ν |), . . . , Z̃M1,M2−1(r, |∆ν |) ≥ 0, and Z̃∞,M2

(r, |∆ν |) ≥ 0 such that if k = (k1, k2) ∈ IM1
×{k2},

for some k2 ∈ {1, . . . ,M2 − 1}, then

Zk(r, |∆ν |) = Zk1,k2(r, |∆ν |) def
= Z̃M1,k2(r, |∆ν |)ω−sk Id(k), (38)

and if k ∈ N× IM2 , then

Zk(r, |∆ν |) = Zk1,k2(r, |∆ν |) def
= Z̃∞,M2(r, |∆ν |)ω−sk Id(k). (39)

Definition 5.2. We define the finite radii polynomials {pk(r)}k∈FM
by

pk(r, |∆ν |) def
= Zk(r, |∆ν |)− rω−sk Id(k) + Yk(|∆ν |), (40)

and the tail radii polynomials by

p̃M1,k2(r, |∆ν |) def
= Z̃M1,k2(r, |∆ν |)− r + ỸM (|∆ν |), for k2 = 1, . . . ,M2 − 1, (41)

and
p̃∞,M2

(r, |∆ν |) def
= Z̃∞,M2

(r, |∆ν |)− r + ỸM (|∆ν |). (42)

The proof of the following result can be found in [14].

Lemma 5.3. Suppose that Tν ∈ C` (Xs, Xs), ` ∈ {1, 2, . . . ,∞}, and suppose that the dependency in ν
is also C`. If there exist r > 0 and ∆ν such that pk(r, |∆ν |) < 0 for all k ∈ FM , p̃M1,k2(r, |∆ν |) < 0, for
all k2 = 1, . . . ,M2 − 1 and p̃∞,M2(r, |∆ν |) < 0, then there exists a C` function

x̃ : [ν0 − |∆ν |, ν0 + |∆ν |]→ Xs : ν 7→ x̃(ν)

such that F(x̃(ν), ν) = 0 for all ν ∈ [ν0 − |∆ν |, ν0 + |∆ν |]. Furthermore, these are the only solutions of
F(x, ν) = 0 in the tube {(x, ν) | x− xν ∈ Br(0), |ν − ν0| ≤ |∆ν |}.
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Note that the explicit derivation of the formulas for the radii polynomials as defined in Definition 5.2
are postpone to Section 6 and are given in (79), (80) and (81). For the remainder of this section we
assume that ∆ν ≥ 0. The case ∆ν ≤ 0 can be handled similarly.

Assume that at (x, ν) = (x̄0, ν0) with predictor x̄0 + ∆ν ẋ0 and step size ∆ν ≥ 0, we successfully
applied Lemma 5.3, i.e. we constructed the radii polynomials based at (x, ν) = (x̄0, ν0) and verified
that they are all simultaneously negative, say at a radius r0 > 0. After this successful step, we find the
corrector x̄1 at ν = ν1 = ν0 + ∆ν using a Newton iteration, and we rebuild the radii polynomials, now
based at (x, ν) = (x̄1, ν1). Suppose now that we have performed two succesfull continuation steps, i.e.,
in both steps we have found radii r0 and r1, respectively, where the radii polynomials are negative. We
thus have two smooth solution graphs over intervals [ν0, ν1] and [ν1, ν2]: Lemma 5.3 implies the existence
of two functions x̃0(ν) and x̃1(ν) of class C` such that

C0 def
=
{(
ν, x̃0(ν)

)
| ν ∈ [ν0, ν1]

}
and C1 def

=
{(
ν, x̃1(ν)

)
| ν ∈ [ν1, ν2]

}
are smooth branches of solutions of F(x, ν) = 0. The question is to determine whether or not C0 and C1
connect at the parameter value ν1 to form a smooth continuum of zeros C0 ∪ C1. In other words, can we
prove that x̃0(ν1) = x̃1(ν1) and that the connection is smooth? At the parameter value ν1, we have two
sets enclosing a unique zero namely

B0
def
= x̄0 + (ν1 − ν0)ẋ0 +Br0(0) and B1

def
= x̄1 +Br1(0).

We want to prove that the solutions in B0 and B1 are the same. We return now to the radii polynomials
constructed at basepoint (x, ν) = (x̄1, ν1), and evaluate them at ∆ν = 0. Since pk(r1, 0) < 0 for all
k ∈ FM , p̃M1,k2(r1, 0) < 0, for all k2 = 1, . . . ,M2 − 1 and p̃∞,M2

(r1, 0) < 0, we can find a non empty
interval I0

def
= [r−1 , r

+
1 ] strictly containing r1 such that, for all r ∈ I0, we have that pk(r, 0) < 0 for all

k ∈ FM , p̃M1,k2(r, 0) < 0, for all k2 = 1, . . . ,M2 − 1 and p̃∞,M2
(r, 0) < 0. We now have two additional

sets enclosing a unique zero at parameter value ν1, namely

B1±
def
= x̄1 +Br±1

(0).

Proposition 5.4. If B0 ⊂ B1+ or B1− ⊂ B0, then C0∪C1 consists of a continuous branch of solutions of
F(x, ν) = 0, and C0∩C1 = {(ν1, x̃

0(ν1))} = {(ν1, x̃
1(ν1))} ∈ {ν1}×B0∩B1. Moreover, if T (x, ν)

def
= Tν(x)

is of class C`, then C0 ∪ C1 is a C` smooth curve.

Proof. See Proposition 8 in [14].

x̄0

x̄1

•
•

B1

B0

B+
1

B−
1

ν0 ν1 ν2

Figure 1: B0 ∩ B1 contains a unique solution of (15) and C0 ∪ C1 consists of a continuum of zeros. This
picture illustrates the proof of Proposition 5.4
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Remark 5.5. In practice, the hypothesis of Proposition 5.4 are verified as follows. The center points
x̄0 + (ν1 − ν0)ẋ0 of B0 and x̄1 of B1 and B1± are computed using the finite dimensional approximations

F (m0) and F (m1) of F , respectively, where F (m) is given by (25). Form0 = (m0
1,m

0
2) andm1 = (m1

1,m
1
2),

we define m̄ = (m̄1, m̄2) component-wise by m̄j = max{m0
j ,m

1
j}, for j = 1, 2. Let us define the finite

dimensional projections

B
(m)
0

def
= (x̄0 + (ν1 − ν0)ẋ0)Fm

+
∏
k∈Fm

[
− r0

ωsk
,
r0

ωsk

]d(k)

B
(m)
1−

def
= (x̄1)Fm

+
∏
k∈Fm

[
−r
−
1

ωsk
,
r−1
ωsk

]d(k)

and B
(m)
1+

def
= (x̄1)Fm

+
∏
k∈Fm

[
−r

+
1

ωsk
,
r+
1

ωsk

]d(k)

.

Verifying that B0 ⊂ B1+ (resp. B1− ⊂ B0) is done by checking numerically that the finite dimensional

box inclusion B
(m)
0 ⊂ B(m)

1+ (resp. B
(m)
1− ⊂ B(m)

0 ) is satisfied and that r0 ≤ r1+ (resp. r1− ≤ r0).

6 Explicit construction of the radii polynomials

In this section, we construct the bounds required to define the radii polynomials of Definition 5.2.

6.1 The bound Yk(|∆ν|)
The computation of the Yk(|∆ν |) in (34) is done as follows. We have that T (xν) − xν = −AνF(xν , ν).
Let us expand F(xν , ν) as a polynomial in ∆ν . Since F0,0 is linear in x and does not depend on ν,

F0,0(xν , ν) = F0,0(x̄, ν0) + ∆ν

[
DF0,0(x̄, ν0)ẋ+

∂F0,0

∂ν
(x̄, ν0)

]
.

For k 6= (0, 0), Fk(x̄+ ∆ν ẋ, ν0 + ∆ν) = y
(0)
k + ∆νy

(1)
k + ∆2

νy
(2)
k , where

y
(0)
k

def
= Fk(x̄, ν0) (43)

y
(1)
k

def
=

[
DF(x̄, ν0)ẋ+

∂F
∂ν

(x̄, ν0)

]
k

(44)

y
(2)
k

def
= k2Nk(ẋ), (45)

and

Nk(ẋ)
def
=

(
2(ȧ ∗ ḃ)k

−(ȧ ∗ ȧ)k + (ḃ ∗ ḃ)k

)
.

For j = 1, 2, 3, let

Y
(j)
k

def
= |AMy

(j)
FM
|, k ∈ FM , (46)

which can be computed using interval arithmetic and the fast Fourier transform (e.g. see Section 2.3

in [21]). By (26), the bounds Y
(0)
k and Y

(1)
k should be small. Hence, for k ∈ FM , set

Yk(|∆ν |) def
=

2∑
j=0

Y
(j)
k |∆ν |j . (47)

To compute the uniform asymptotic bounds ỸM satisfying (36), notice first that since xν is such that

(xν)k = 0 for k 6∈ Fm, then we get that y
(0)
k = y

(1)
k = y

(2)
k = 0 for every k 6∈ FM̄ , with

M̄ = (2m1 − 1, 2m2 − 1). (48)

In order to define the asymptotic bound, we use the following result.
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Lemma 6.1. Recall that

Rk(ν, L̄) =

(
νk4

2 − k2
2 −k1L̄

k1L̄ νk4
2 − k2

2

)
and R0,k2(ν, L̄) = νk4

2 − k2
2.

Let ν0, |∆ν | > 0 and consider Λk satisfying the component-wise bound,

sup
ν∈[ν0−|∆ν |,ν0+|∆ν |]

1

(νk4
2 − k2

2)2 + (k1L̄)2

(
|νk4

2 − k2
2| k1L̄

k1L̄ |νk4
2 − k2

2|

)
≤ Λk, (49)

where the sup is taken component-wise. Then, for every ν ∈ [ν0 − |∆ν |, ν0 + |∆ν |],∣∣Rk(ν, L̄)−1
∣∣ ≤ Λk.

We compute Λk in (49) with interval arithmetic, for j = 1, 2, 3 let Ỹ
(j)
M

def
= maxk∈FM̄\FM

∥∥∥Λky
(j)
k

∥∥∥
∞
ωsk,

and let

ỸM (|∆ν |) def
=

2∑
j=0

Ỹ
(j)
M |∆ν |j . (50)

Note that if M = (M1,M2) � M̄ = (2m1−1, 2m2−1), then the set FM̄ \FM is empty. In this case,
we let ỸM (|∆ν |) = 0. Hence, (36) holds for k 6∈ FM since

‖[T (xν)− xν ]k‖∞ =
∥∥Rk(ν, L̄)−1Fk(xν , ν)

∥∥
∞ ≤

 2∑
j=0

∥∥∥Λky
(j)
k

∥∥∥
∞
ωsk|∆ν |j

ω−sk ≤ ỸM (|∆ν |)ω−sk .

6.2 The bound Zk(r, |∆ν|)
To simplify the computation of Zk we introduce the operator A†ν whose action on a vector x is

[
A†ν(x)

]
k

def
=


[
DF (M)((x̄Fm , 0), ν0)xFM

]
k
, if k ∈ FM

Rk(ν, L̄)xk, if k 6∈ FM ,
(51)

which acts as an approximate inverse for the operator Aν . We consider the splitting

DTν(xν + x1)x2 =
(
I −AνA†ν

)
x2 −Aν

(
DF(xν + x1, ν)−A†ν

)
x2, (52)

where the first term is small for k ∈ FM , and is zero for k 6∈ FM . For k ∈ FM , we have that∣∣[(I −AνA†ν)x2

]
k

∣∣ ≤ [∣∣∣I −AMDF (M)(x̄FM
, 0), ν0)

∣∣∣ω−sFM

]
k
r (53)

where ω−sFM

def
= {ω−sk Id(k)}k∈FM

, and | · | is the component-wise absolute values. Let u, v ∈ B1(0) so that

x1 = ru and x2 = rv. We then expand
[(
DF(xν + x1, ν)−A†ν

)
x2

]
k

in terms of r and ∆ν . Denote

uk =


L(u), k = (0, 0)

b
(u)
k , k = (0, k2) � (0, 1)(
a
(u)
k

b
(u)
k

)
, k = (k1, k2) � (1, 1)

and vk =


L(v), k = (0, 0)

b
(v)
k , k = (0, k2) � (0, 1)(
a
(v)
k

b
(v)
k

)
, k = (k1, k2) � (1, 1).

(54)

Since the phase condition (13) is linear in x and only depends on the finite modes with index k ∈ Fm,[(
DF(xν + ru, ν)−A†ν

)
rv
]
0,0

= 0. For k ∈ I \ {(0, 0)}, consider the expansion

[(
DF(xν + ru, ν)−A†ν

)
rv
]
k

=

2∑
j=1

2−j∑
l=0

C
(j,l)
k rj∆l

ν ,
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where the coefficients C
(j,l)
k are obtained through a straightforward calculation and are given by

C
(1,0)
k

def
=


2k2

(
(a

(v)
IM
∗ b̄)k + (ā ∗ b(v)

IM
)k

−(a
(v)
IM
∗ ā)k + (b̄ ∗ b(v)

IM
)k

)
, if k ∈ FM

2k2

(
(a(v) ∗ b̄)k + (ā ∗ b(v))k

−(a(v) ∗ ā)k + (b̄ ∗ b(v))k

)
, if k 6∈ FM ,

C
(1,1)
k

def
=


k1L

(v)

(
−ḃk
ȧk

)
+

(
k4

2 −k1L̇

k1L̇ k4
2

)(
a

(v)
k

b
(v)
k

)
+ 2k2

(
(a(v) ∗ ḃ)k + (ȧ ∗ b(v))k

−(a(v) ∗ ȧ)k + (ḃ ∗ b(v))k

)
, if k ∈ FM

k1L̇

(
−b(v)
k

a
(v)
k

)
+ 2k2

(
(a(v) ∗ ḃ)k + (ȧ ∗ b(v))k

−(a(v) ∗ ȧ)k + (ḃ ∗ b(v))k

)
, if k 6∈ FM

and

C
(2,0)
k

def
= k1L

(v)

(
−b(u)
k

a
(u)
k

)
+ k1L

(u)

(
−b(v)
k

a
(v)
k

)
+ 2k2

(
(a(v) ∗ b(u))k + (a(u) ∗ b(v))k
−(a(v) ∗ a(u))k + (b(u) ∗ b(v))k

)
.

For any k2, the first components of C
(1,0)
0,k2

, C
(1,1)
0,k2

and C
(2,0)
0,k2

equal 0. We now compute Zk(r, |∆ν |)
satisfying (35) (in Section 6.2.1 for k ∈ FM , and in Section 6.2.2 for k 6∈ FM ).

6.2.1 The bound Zk(r, |∆ν |), for k ∈ FM

In order to compute the bounds Zk(r, |∆ν |) for k ∈ FM , we introduce intermediate upper bounds

z
(1,0)
k , z

(1,1)
k , z

(2,0)
k such that |C(j,l)

k | ≤ z
(j,l)
k for any k ∈ FM and for any (j, l) ∈ {(1, 0), (1, 1), (2, 0)}.

Defining ω(−s,a) and ω(−s,b) component-wise by

ω
(−s,a)
k

def
=


0, k = (0, 0)

0, k = (0, k2) � (0, 1)

ω−sk , k = (k1, k2) � (1, 1).

and ω
(−s,b)
k

def
=


0, k = (0, 0)

ω−sk , k = (0, k2) � (0, 1)

ω−sk , k = (k1, k2) � (1, 1),

the upper bounds z
(j,l)
k are given by

z
(1,0)
k

def
= 2k2

(
(ω

(−s,a)
IM

∗ |b̄|)k + (|ā| ∗ ω(−s,b)
IM

)k

(ω
(−s,a)
IM

∗ |ā|)k + (|b̄| ∗ ω(−s,b)
IM

)k

)

z
(1,1)
k

def
= k1

(
|ḃk|
|ȧk|

)
+

(
k4

2ω
(−s,a)
k + k1|L̇|ω(−s,b)

k

k1|L̇|ω(−s,a)
k + k4

2ω
(−s,b)
k

)
+ 2k2

(
(ω(−s,a) ∗ |ḃ|)k + (|ȧ| ∗ ω(−s,b))k

(ω(−s,a) ∗ |ȧ|)k + (|ḃ| ∗ ω(−s,b))k

)

z
(2,0)
k

def
= 2k1

(
ω

(−s,b)
k

ω
(−s,a)
k

)
+ 4k2

(
2α

(0,1)
k1,s1

α
(0,0)
k2,s2

α
(0,0)
k1,s1

α
(0,0)
k2,s2

+ α
(1,1)
k1,s1

α
(0,0)
k2,s2

)
ω−sk .

Letting

Z
(1)
k

def
=
[∣∣∣I −AMDF (M)((x̄Fm , 0), ν0)

∣∣∣ω−sFM

]
k

+
[
|AM |

(
z

(1,0)
FM

+ z
(1,1)
FM
|∆ν |

)]
k

Z
(2)
k

def
=
(
|AM | z(2,0)

FM

)
k

we set, for k ∈ FM ,

Zk(r, |∆ν |) def
= Z

(2)
k r2 + Z

(1)
k r. (55)

Recalling (53) and using the above computations yield that for k ∈ FM

sup
x1,x2∈Br(0)

∣∣∣[DTν(xν + x1)x2

]
k

∣∣∣ ≤ Zk(r, |∆ν |).

13



6.2.2 The bound Zk(r, |∆ν |) for k 6∈ FM

We now introduce uniform bounds for Zk(r, |∆ν |) for the case k 6∈ FM . We begin by considering

asymptotic upper bounds for C
(1,0)
k , C

(1,1)
k and C

(2,0)
k for the cases k 6∈ FM .

Recalling the decomposition of the set I \FM in (37), we compute the uniform bounds for Zk(r, |∆ν |)
by distinguishing the cases k ∈ N× IM2

or k ∈ IM1
× {k2}, for some k2 = 1, . . . ,M2 − 1.

Lemma 6.2. Let k 6∈ FM with k ∈ N× IM2
. Then

|C(1,0)
k | ≤ 2k2

(
(‖ā‖s + ‖b̄‖s)α(0,1)

M1,s1
α

(0,0)
M2,s2

‖ā‖sα(0,0)
M1,s1

α
(0,0)
M2,s2

+ ‖b̄‖sα(1,1)
M1,s1

α
(0,0)
M2,s2

)
ω−sk

|C(1,1)
k | ≤ k1|L̇|ω−sk Id(k) + 2k2

(
(‖ȧ‖s + ‖ḃ‖s)α(0,1)

M1,s1
α

(0,0)
M2,s2

‖ȧ‖sα(0,0)
M1,s1

α
(0,0)
M2,s2

+ ‖ḃ‖sα(1,1)
M1,s1

α
(0,0)
M2,s2

)
ω−sk

|C(2,0)
k | ≤ 2k1ω

−s
k Id(k) + 4k2

(
2α

(0,1)
M1,s1

α
(0,0)
M2,s2

α
(0,0)
M1,s1

α
(0,0)
M2,s2

+ α
(1,1)
M1,s1

α
(0,0)
M2,s2

)
ω−sk .

Proof. The proof is a direct use of Lemma A.4.

In order to present the estimates for C
(i,j)
k when k ∈ IM1 × {k2}, for some k2 = 1, . . . ,M2 − 1, we

need one preliminary result.

Lemma 6.3. Let d ∈ {a(v), b(v)}, where a(v), b(v) are components of v = (L(u), a(v), b(v)) ∈ B1(0) ⊂ Xs

as above. Let c̄ ∈ {ā, b̄, ȧ, ḃ}. Let k 6∈ FM with k ∈ IM1
× {k2} for some k2 = 1, . . . ,M2 − 1. Let

ΨM1,k2(c̄)
def
=

m2−1∑
j2=−m2+1

ks22

ωs2k2−j2

|c̄0,j2 |+ m1−1∑
j1=1

[
1 +

1

(1− j1
M1

)s1

]
|c̄j1,j2 |.

 (56)

Then
|(d ∗ c̄)k| ≤ ΨM1,k2(c̄)ω−sk . (57)

Proof. Since c̄ ∈ {ā, b̄, ȧ, ḃ}, then c̄k = 0 for k /∈ Fm. Without loss of generality, let d = a(v). Hence

∣∣∣(a(v) ∗ c̄)k
∣∣∣ =

∣∣∣∣∣∣
∑

(i1+j1,i2+j2)=(k1,k2)

a
(v)
i1,i2

c̄j1,j2

∣∣∣∣∣∣ ≤
m2−1∑

j2=−m2+1

m1−1∑
j1=−m1+1

ω
(−s,a)
k1−j1,k2−j2 |c̄j1,j2 |

=

 m2−1∑
j2=−m2+1

m1−1∑
j1=−m1+1

ks11

(k1 − j1)s1
ks22

ωs2k2−j2
|c̄j1,j2 |

ω−sk
=

 m2−1∑
j2=−m2+1

ks22

ωs2k2−j2

m1−1∑
j1=−m1+1

1

(1− j1
k1

)s1
|c̄j1,j2 |

ω−sk ≤ ΨM1,k2(c̄)ω−sk .

The proof of the following result follows from Lemma 6.3 and Lemma A.4.

Lemma 6.4. For k 6∈ FM with k ∈ IM1
× {k2}, for some k2 = 1, . . . ,M2 − 1.

|C(1,0)
k | ≤ 2k2

(
ΨM1,k2(ā) + ΨM1,k2(b̄)

)
I2ω−sk

|C(1,1)
k | ≤ k1|L̇|ω−sk I2 + 2k2

(
ΨM1,k2(ȧ) + ΨM1,k2(ḃ)

)
I2ω−sk

|C(2,0)
k | ≤ 2k1ω

−s
k I2 + 4k2

(
2α

(0,1)
M1,s1

α
(0,0)
M2,s2

α
(0,0)
M1,s1

α
(0,0)
M2,s2

+ α
(1,1)
M1,s1

α
(0,0)
M2,s2

)
ω−sk .
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It is important to realize that the estimates for |C(i,j)
k |ωsk obtained in Lemma 6.2 and in Lemma 6.4

are still unbounded in (k1, k2) for (i, j) = {(1, 0), (1, 1), (2, 0)} because of the presence of the terms |k1|
and |k2|. However, the action of the tail Rk(ν, L̄)−1 of the operator Aν given in (29) takes care of that.

More precisely, we obtain explicit constant vectors V (i,j) such that |Rk(ν, L̄)−1C
(i,j)
k | ≤ V (i,j)ω−sk , for

(i, j) = {(1, 0), (1, 1), (2, 0)}. Letting

β
(1)
k (ν)

def
=

|νk4
2 − k2

2|k2

(νk4
2 − k2

2)2 + (k1L̄)2
, β

(2)
k (ν)

def
=

k1k2L̄

(νk4
2 − k2

2)2 + (k1L̄)2
,

β
(3)
k (ν)

def
=

|νk4
2 − k2

2|k1

(νk4
2 − k2

2)2 + (k1L̄)2
, β

(4)
k (ν)

def
=

k2
1L̄

(νk4
2 − k2

2)2 + (k1L̄)2
,

we see that

Rk(ν, L̄)−1k1 =
k1

(νk4
2 − k2

2)2 + (k1L̄)2

(
|νk4

2 − k2
2| k1L̄

k1L̄ |νk4
2 − k2

2|

)
=

(
β

(3)
k (ν) β

(4)
k (ν)

β
(4)
k (ν) β

(3)
k (ν)

)

and

Rk(ν, L̄)−1k2 =
k2

(νk4
2 − k2

2)2 + (k1L̄)2

(
|νk4

2 − k2
2| k1L̄

k1L̄ |νk4
2 − k2

2|

)
=

(
β

(1)
k (ν) β

(2)
k (ν)

β
(2)
k (ν) β

(1)
k (ν)

)
.

We now compute bounds for β
(1)
k (ν), β

(2)
k (ν), β

(3)
k (ν) and β

(4)
k (ν), for all k 6∈ FM .

Lemma 6.5. Consider L̄ > 0 and ν > 0. Given M = (M1,M2), consider

k∗2
def
= max

k2∈{1,...,M2−1}

{
k2

∣∣ |νk4
2 − k2

2| ≤M1L̄, for all ν ∈ [ν0 − |∆ν |, ν0 + |∆ν |]
}
. (58)

Assume that

ν0 − |∆ν | >
1

(k∗2 + 1)2
. (59)

For k2 = 1, . . . ,M2 − 1, let

β̃
(1)
M1,k2

def
= sup

ν∈[ν0−|∆ν |,ν0+|∆ν |]

|νk4
2 − k2

2|k2

(νk4
2 − k2

2)2 + (M1L̄)2
. (60)

Let

β̃
(2)
M1,k2

def
=


k2M1L̄

((ν0 − |∆ν |)k4
2 − k2

2)2 + (M1L̄)2
, k2 = 1, . . . , k∗2

1

2k3
2(ν0 − |∆ν | − 1

k22
)
, k2 = k∗2 + 1, . . . ,M2 − 1

(61)

and

β̃
(1)
∞,M2

def
=

1

M3
2 (ν0 − |∆ν | − 1

M2
2

)
and β̃

(2)
∞,M2

def
=

1

2M3
2 (ν0 − |∆ν | − 1

M2
2

)
. (62)

Let k 6∈ FM and consider any ν ∈ [ν0 − |∆ν |, ν0 + |∆ν |]. Then β
(3)
k (ν) ≤ 1

2L̄
and β

(4)
k (ν) ≤ 1

L̄
. If

k ∈ IM1
×{k2} for some k2 = 1, . . . ,M2−1, then β

(1)
k (ν) ≤ β̃(1)

M1,k2
and β

(2)
k (ν) ≤ β̃(1)

M1,k2
. If k ∈ N×IM2

,

then β
(1)
k (ν) ≤ β̃(1)

∞,M2
and β

(2)
k (ν) ≤ β̃(2)

∞,M2
.

Proof. Consider k 6∈ FM and ν ∈ [ν0 − |∆ν |, ν0 + |∆ν |]. Recall Young’s inequality with p = q = 2

ab

a2 + b2
≤ 1

2
, for all a, b ∈ R. (63)
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Let a = |νk4
2 − k2

2|, b = k1L̄ and using (63), we get

β
(3)
k (ν) =

1

L̄

|νk4
2 − k2

2|k1L̄

(νk4
2 − k2

2)2 + (k1L̄)2
≤ 1

2L̄
and β

(4)
k (ν) =

k2
1L̄

(νk4
2 − k2

2)2 + (k1L̄)2
≤ k2

1L̄

(k1L̄)2
=

1

L̄
.

Let us compute upper bounds for β
(1)
k (ν). Recall (37) and assume first that k ∈ N × IM2

. This implies
that k2 ≥M2 and then

β
(1)
k (ν) =

|νk4
2 − k2

2|k2

(νk4
2 − k2

2)2 + (k1L̄)2
≤ 1

k3
2|ν − 1

k22
| ≤ β

(1)
∞,M2

=
1

M3
2 (ν0 − |∆ν | − 1

M2
2

)
, (64)

which is a positive upper bound. Assume now that k ∈ IM1 × {k2} for some k2 = 1, . . . ,M2 − 1. Then
k1 ≥M1. In this case,

β
(1)
k (ν) = β

(1)
k1,k2

(ν) ≤ β(1)
M1,k2

= sup
ν∈[ν0−|∆ν |,ν0+|∆ν |]

|νk4
2 − k2

2|k2

(νk4
2 − k2

2)2 + (M1L̄)2
. (65)

Combining (64) and (65), we have that for any k 6∈ FM , β
(1)
k (ν) ≤ β

(1)
M . We now bound β

(2)
k (ν). Recall

(37) and assume first that k ∈ N× IM2
, and so k2 ≥M2. Let a = |νk4

2 − k2
2|, b = k1L̄. From (63)

β
(2)
k (ν) =

k1k2L̄

(νk4
2 − k2

2)2 + (k1L̄)2
=
k2

a

ab

a2 + b2
≤ k2

2a
≤ β̃(2)

∞,M2
=

1

2M3
2 (ν0 − |∆ν | − 1

M2
2

)
. (66)

Assume now that k ∈ IM1 × {k2} for some k2 = 1, . . . ,M2 − 1. Then k1 ≥ M1. One can write

β
(2)
k (ν) = k2f(k1L̄), with f(x) = x

γ+x2 , where γ = (νk4
2−k2

2)2. We have that f(0) = limx→∞ f(x) = 0 and

that f(x) > 0 for x > 0. Also, x =
√
γ is the only x > 0 such that f ′(x) = 0. That implies that for every

x ≥ √γ, f is decreasing. Therefore, for any 1 ≤ k2 < M2 satisfying x = k1L̄ ≥M1L̄ ≥ √γ = |νk4
2 − k2

2|,

β
(2)
k (ν) = k2f(k1L̄) ≤ k2f(M1L̄) =

k2M1L̄

(νk4
2 − k2

2)2 + (M1L̄)2
.

Recalling k∗2 in (58), if k2 ∈ {1, . . . , k∗2}, then

β
(2)
k (ν) = β

(2)
k1,k2

(ν) ≤ β̃(2)
M1,k2

=
k2M1L̄

((ν0 − |∆ν |)k4
2 − k2

2)2 + (M1L̄)2
. (67)

For the final cases k2 ∈ {k∗2 + 1, . . . ,M2 − 1}, we have that

β
(2)
k (ν) = β

(2)
k1,k2

(ν) ≤ 1

2k3
2(ν0 − |∆ν | − 1

k22
)

(68)

which is a positive bound, thanks to (59).

The proof of the following result is a direct application of Lemma 6.2 and Lemma 6.5.

Lemma 6.6. Given M = (M1,M2) � (m1,m2), let

V
(1,0)
∞,M2

def
=

∥∥∥∥∥2

(
β̃

(1)
∞,M2

β̃
(2)
∞,M2

β̃
(2)
∞,M2

β̃
(1)
∞,M2

)(
(‖ā‖s + ‖b̄‖s)α(0,1)

M1,s1
α

(0,0)
M2,s2

‖ā‖sα(0,0)
M1,s1

α
(0,0)
M2,s2

+ ‖b̄‖sα(1,1)
M1,s1

α
(0,0)
M2,s2

)∥∥∥∥∥
∞

(69)

V
(1,1)
∞,M2

def
=

∥∥∥∥∥3|L̇|
2L̄

I2 + 2

(
β̃

(1)
∞,M2

β̃
(2)
∞,M2

β̃
(2)
∞,M2

β̃
(1)
∞,M2

)(
(‖ȧ‖s + ‖ḃ‖s)α(0,1)

M1,s1
α

(0,0)
M2,s2

‖ȧ‖sα(0,0)
M1,s1

α
(0,0)
M2,s2

+ ‖ḃ‖sα(1,1)
M1,s1

α
(0,0)
M2,s2

)∥∥∥∥∥
∞

(70)

V
(2,0)
∞,M2

def
=

∥∥∥∥∥ 3

L̄
I2 + 4

(
β̃

(1)
∞,M2

β̃
(2)
∞,M2

β̃
(2)
∞,M2

β̃
(1)
∞,M2

)(
2α

(0,1)
M1,s1

α
(0,0)
M2,s2

α
(0,0)
M1,s1

α
(0,0)
M2,s2

+ α
(1,1)
M1,s1

α
(0,0)
M2,s2

)∥∥∥∥∥
∞

. (71)

Consider k 6∈ FM with k ∈ N× IM2 . Then, for (i, j) = {(1, 0), (1, 1), (2, 0)},

‖Rk(ν, L̄)−1C
(i,j)
k ‖∞ ≤ V (i,j)

∞,M2
ω−sk . (72)
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Defining the bound

Z̃∞,M2(r, |∆ν |) def
= V

(1,0)
∞,M2

r + V
(1,1)
∞,M2

|∆ν |r + V
(2,0)
∞,M2

r2, (73)

we get that for any k 6∈ FM with k ∈ N× IM2

sup
x1,x2∈Br(0)

‖[DTν(xν + x1)x2]k‖∞ ≤ sup
x1,x2∈Br(0)

∥∥∥∥∥∥Rk(ν, L̄)−1
2∑
j=1

2−j∑
l=0

C
(j,l)
k rj∆l

ν

∥∥∥∥∥∥
∞

≤ Z̃∞,M2(r, |∆ν |)ω−sk .

Lemma 6.7. Let k 6∈ FM with k ∈ IM1
× {k2}, for some k2 = 1, . . . ,M2 − 1. Let

V
(1,0)
M1,k2

def
= 2

(
β̃

(1)
M1,k2

+ β̃
(2)
M1,k2

) (
ΨM1,k2(ā) + ΨM1,k2(b̄)

)
(74)

V
(1,1)
M1,k2

def
=

3|L̇|
2L̄

+ 2
(
β̃

(1)
M1,k2

+ β̃
(2)
M1,k2

)(
ΨM1,k2(ȧ) + ΨM1,k2(ḃ)

)
(75)

V
(2,0)
M1,k2

def
=

∥∥∥∥∥ 3

L̄
I2 + 4

(
β̃

(1)
∞,M2

β̃
(2)
∞,M2

β̃
(2)
∞,M2

β̃
(1)
∞,M2

)(
2α

(0,1)
M1,s1

α
(0,0)
M2,s2

α
(0,0)
M1,s1

α
(0,0)
M2,s2

+ α
(1,1)
M1,s1

α
(0,0)
M2,s2

)∥∥∥∥∥
∞

. (76)

Then, for (i, j) = {(1, 0), (1, 1), (2, 0)},∥∥∥Rk(ν, L̄)−1C
(i,j)
k

∥∥∥
∞
≤ V (i,j)

M1,k2
ω−sk . (77)

Proof. The proof follows from Lemma 6.4 and Lemma 6.5.

For each k2 = 1, . . . ,M2 − 1, defining the bound

Z̃M1,k2(r, |∆ν |) def
= V

(1,0)
M1,k2

r + V
(1,1)
M1,k2

|∆ν |r + V
(2,0)
M1,k2

r2, (78)

we get that for any k 6∈ FM with k ∈ IM1
× {k2}, for some k2 = 1, . . . ,M2 − 1

sup
x1,x2∈Br(0)

‖[DTν(xν + x1)x2]k‖∞ ≤ sup
x1,x2∈Br(0)

∥∥∥∥∥∥Rk(ν, L̄)−1
2∑
j=1

2−j∑
l=0

C
(j,l)
k rj∆l

ν

∥∥∥∥∥∥
∞

≤ Z̃M1,k2(r, |∆ν |)ω−sk .

6.3 Definition of the radii polynomials

The radii polynomials of Definition 5.2 can now be defined. Combining (47) and (55), we set

pk(r, |∆ν |) def
= Z

(2)
k r2 +

(
Z

(1)
k − ω−sk Id(k)

)
r + Yk(|∆ν |), k ∈ FM . (79)

Using (73), let
p̃∞,M2(r, |∆ν |) = Z̃∞,M2(r, |∆ν |)− r + ỸM (|∆ν |), (80)

and using (78), for k2 = 1, . . . ,M2 − 1, let

p̃M1,k2(r, |∆ν |) def
= Z̃M1,k2(r, |∆ν |)− r + ỸM (|∆ν |). (81)

6.4 Algorithm for the rigorous computation of global smooth branches of
periodic orbits for the Kuramoto-Sivashinsky equation

Before presenting the general algorithm, we introduce a short algorithm that automatically generates the
value of M = (M1,M2) before attempting to prove a piece of branch.
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Algorithm 6.8 (A priori choice for M = (M1,M2)). At the parameter value ν0, let x̄Fm = (L̄, ā, b̄) ∈
Rn(m) with n = n(m)

def
= 2m1m2 − 2m1 −m2 + 2 an approximate solution satisfying F (m)(xFm , ν0) ≈ 0.

Fix a decay rate s = (s1, s2).

1. (Determining M2) Compute the analytic estimates α
(0,0)
∞,s1 , α

(0,1)
∞,s1 , α

(1,1)
∞,s1 and α

(0,0)
∞,s2 using (136).

Recalling (20), compute

‖ā‖s = sup
k∈I
|āk|ωsk and ‖b̄‖s = sup

k∈I
|b̄k|ωsk.

Recalling condition (28), initiate the process by fixing M2 = max(m2,
1√
ν0

). Compute β̃
(1)
∞,M2

and

β̃
(2)
∞,M2

defined by (62) by letting ∆ν = 0. Compute V
(1,0)
∞,M2

defined in (69) by using α
(0,0)
∞,s1 , α

(0,1)
∞,s1 ,

α
(1,1)
∞,s1 and α

(0,0)
∞,s2 instead of α

(0,0)
M1,s1

, α
(0,1)
M1,s1

, α
(1,1)
M1,s1

and α
(0,0)
M2,s2

. If

V
(1,0)
∞,M2

< 0.95, (82)

then the choice of M2 is done. If (82) does not hold, then increase the dimension of M2 by one,

recompute β̃
(1)
∞,M2

, β̃
(2)
∞,M2

and V
(1,0)
∞,M2

and check if (82) holds. Continue this process until condition
(82) is satisfied. This process necessarily terminates.

2. (Determining M1) Consider M2 the value obtained from Step 1. Initiate the process of choosing
M1 by setting M1 = m1. Compute k∗2 satisfying (58), that is

k∗2
def
= max

k2∈{1,...,M2−1}

{
k2

∣∣ |ν0k
4
2 − k2

2| ≤M1L̄
}
.

For k2 = 1, . . . ,M2−1, compute β̃
(1)
M1,k2

and β̃
(2)
M1,k2

given respectively by (60) and (61) with ∆ν = 0,
that is

β̃
(1)
M1,k2

=
|ν0k

4
2 − k2

2|k2

(ν0k4
2 − k2

2)2 + (M1L̄)2

β̃
(2)
M1,k2

=


k2M1L̄

(ν0k4
2 − k2

2)2 + (M1L̄)2
, k2 = 1, . . . , k∗2

1

2k3
2(ν0 − 1

k22
)
, k2 = k∗2 + 1, . . . ,M2 − 1.

For k2 = 1, . . . ,M2−1, compute ΨM1,k2(ā) and ΨM1,k2(b̄) using the formula (56). Compute V
(1,0)
M1,k2

given by (74). If

max
k2=1,...,M2−1

V
(1,0)
M1,k2

< 0.95, (83)

then the choice of M1 is done. If condition (83) does not hold, then we increase M1 by one until
condition (83) is satisfied. This process necessarily terminates.

We now present a general algorithm for the rigorous computation of global smooth branches of periodic
orbits for the Kuramoto-Sivashinsky equation (1).

Algorithm 6.9 (Computing global branches of periodic orbits). To compute rigorously global
smooth branches of periodic orbits of the Kuramoto-Sivashinsky equation (1) on the parameter range
[νmin, νmax], we proceed as follows.

1. Choose a minimum step-size ∆min > 0 and set the maximum step-size ∆max = 1
2 (νmax − νmin).

Initiate a decay rate s = (s1, s2) and a projection dimension m = (m1,m2). Choose the initial
parameter value ν0 = νmin with an initial step size ∆ν > 0, or choose the initial parameter value
ν0 = νmax with an initial step size ∆ν < 0. The initial step size ∆ν is chosen such that |∆ν | ∈
[∆min,∆max]. Initiate a temporary step size ∆0

ν = 0, an initial predictor x̂Fm of F (m)(xFm , 0) and
an initial radius r0 = 0.
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2. Initiate B0 = Br0(x̂), where x̂
def
= (x̂Fm , 0Im).

3. With a Newton-like iterative scheme, find near x̂Fm an approximate solution x̄Fm of F (m)(xFm , ν0) =
0. Using Algorithm 6.8, determine automatically the value M = (M1,M2) � (m1,m2) (this choice
of M ensures that the tail radii polynomials succeed for small |∆ν |). Calculate an approximate

solution ẋFm of DF (m)(x̄Fm , ν0)ẋFm + ∂F(m)

∂ν (x̄Fm , ν0) = 0.

4. Compute the coefficients of the radii polynomials in (79), (80) and (81).

5. Let

I0
def
=
{
r ≥ 0 | pk(r, 0) < 0, ∀ k ∈ FM , p̃∞,M2

(r, 0) < 0 and p̃M1,k2(r, 0) < 0, ∀ k2 = 1, . . . ,M2 − 1
}
.

If I0 = ∅ increase m1,m2 or change the value of the decay rate s = (s1, s2) and go back to
Step 3. If I0 6= ∅, compute 0 < r−1 < r+

1 such that {r−1 , r+
1 } ⊂ I0. Consider B1−

def
= Br−1

(x̄) and

B1+
def
= Br+1

(x̄), where x̄ = (x̄Fm , 0Im). Using Remark 5.5, verify that B0 ⊂ B1+ or B1− ⊂ B0.

6. Let

I =[I−, I+]
def
=
{
r ≥ 0 | pk(r, |∆ν |) < 0, ∀k ∈ FM , p̃∞,M2(r, |∆ν |) < 0, p̃M1,k2(r, |∆ν |) < 0, ∀k2 = 1, . . . ,M2 − 1

}
.

• If I = ∅ then go to Step 8.

• If I 6= ∅ then let r = I−+I+
2 . If, computing with interval arithmetic, one can verify that

pk(r, |∆ν |) < 0 for all k ∈ FM , that p̃M1,k2(r, |∆ν |) < 0 for all k2 = 1, . . . ,M2 − 1, and
p̃∞,M2

(r, |∆ν |) < 0, then go to Step 7; else go to Step 8.

7. Update ∆0
ν ← ∆ν and r0 ← r. If 10

9 |∆ν | ≤ ∆max then update ∆ν ← 10
9 ∆ν and go to Step 6; else

go to Step 9.

8. If ∆0
ν 6= 0 then go to Step 9; else if 9

10 |∆ν | ≥ ∆min then update ∆ν ← 9
10∆ν and go to Step 6; else

go to Step 10.

9. The continuation step has succeeded. Store, for future reference, x̄Fm , ẋFm , r0, ν0 and ∆0
ν . Let

ν1 = ν0 + ∆0
ν . Make the updates ν0 ← ν1, ∆ν ← ∆0

ν , x̂Fm ← x̄Fm + ∆0
ν ẋFm and ∆0

ν ← 0. Update
B0 ← Br0(x̂) and go to Step 3 for the next continuation step.

10. The continuation step has failed. Either decrease ∆min and return to Step 8; or increase some of
the components of m and return to Step 3, or terminate the algorithm unsuccessfully at ν = ν0

7 Computing Floquet exponents: an eigenvalue problem

Define the right-hand side of the Kuramoto-Sivashinsky equation (1) as

E(u) = −νuyyyy − uyy + 2uuy. (84)

Assume that at a given parameter value ν > 0, we have proven the existence of ũ a periodic orbit of
(1) using the theory of the previous sections. Assume that ũ(t + p, y) = ũ(t, y) for all t ∈ R and for all
y ∈ [0, 2π]. At this point we do not require p to be the minimal period of the periodic orbit.

Linearize (84) about ũ and consider the linear system with periodic coefficients

Φ̇ = DE(ũ)Φ. (85)

More explicitly, one has that DE(ũ)φ = −νφyyyy −φyy + 2(ũφy + ũyφ). Let us parametrize the invariant
normal bundle of the periodic orbit associated to the eigenvalue λ by v. Then v satisfies the equation

Φv(0, y) = eλtv(t, y). (86)
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Differentiating equation (86) and using (85), we obtain the invariance equation

vt + λv = DE(ũ)v = −νvyyyy − vyy + 2(vyũ+ ũyv). (87)

A solution (λ, v(t, y)) of the invariance equation (90) is called an eigenvalue-eigenvector pair.

Remark 7.1. As mentioned above, p is not necessarily the minimal period of the periodic orbit. This
is important because sometimes, we want to compute the eigenvector v as a 2τ -periodic function in time
with τ the minimal period of the orbit. This is useful when computing eigenvectors parameterizing non
orientable normal (un)stable bundles.

Definition 7.2. If p is the minimal period of the periodic orbit, the number λ is called a Floquet exponent.

Remark 7.3. Consider an eigenvalue-eigenvector pair (λ, v(t, y)) of the invariance equation (90) such
that v(t + p, y) = v(t, y) for all t and x ∈ [0, 2π] for some p > 0. If |eλp| > 1, then the periodic orbit is
unstable.

Let v a p-periodic function in time and 2π-periodic in space. Hence, one can expand v as follows

v(t, y) =
∑

k=(k1,k2)∈Z2

vke
iL̃k1teik2y. (88)

Denote the coefficients of the solution ũ by (L̃, ã, b̃) with p = 2π/L̃, and consider the space-time Fourier
expansion of ũ given by

ũ(t, y) =
∑

k=(k1,k2)∈Z2

ũke
iL̃k1teik2y, ũk = ãk + ib̃k. (89)

Plugging the Fourier expansions (88) of v and (89) of ũ in the invariance equation (90), one obtains that

hk(λ, v)
def
=
(
k1L̃i+ λ+ νk4

2 − k2
2

)
vk − 2i

∑
k1+k2=k

k1
2(vk1 ũk2 + ũk1vk2)

=
(
k1L̃i+ λ+ νk4

2 − k2
2

)
vk − 2k2i

∑
k1+k2=k

vk1 ũk2 . (90)

Since v ∈ R, then for any k = (k1, k2) ∈ Z2, one has that v−k = conj(vk), where v−k = v−k1,−k2 . Since
v(t,−y) = −v(t, y), we get that vk1,−k2 = −vk1,k2 , for all (k1, k2) ∈ Z2. Hence, for every k = (k1, k2) ≥ 0,
we have the following relations

v−k1,−k2 = conj(vk) vk1,−k2 = −vk v−k1,k2 = −conj(vk). (91)

The relations (91) imply that to describe entirely the expansion of the eigenvector v, one only needs to
consider the vk with non negative indices. From (91), we get that

Re(vk1,0) = 0, k1 ≥ 0, Im(vk1,0) = 0, k1 ≥ 0, Re(v0,k2) = 0, k2 ≥ 0. (92)

More explicitly, let
ck

def
= Re(vk) and dk

def
= Im(vk),

Using (4), we get that ck1,0 = dk1,0 = 0 for all k1 ≥ 0 and c0,k2 = 0 for all k2 ≥ 0. Hence, in practice,
we need to consider c = {ck}k�(1,1) and d = {dk}k�(0,1) as variables. Since the eigenvalue λ is a variable,
let us define the vector of unknowns x by

xk =


λ, k = (0, 0)

dk, k = (0, k2) � (0, 1)(
ck

dk

)
, k = (k1, k2) � (1, 1).

(93)
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Recalling the definition of the set of indices I in (7), one set x = {xk}k∈I . Hence, finding the eigenvector
v(t, y) of (88) corresponds to finding infinite dimensional vectors of the form x = {xk}k∈I given by (93).

Eigenpairs (λ, v) of (88) come in family as (λ, αv) is also a solution of (88) for any α ∈ R. We
therefore impose a phase condition in order to apply a contraction mapping argument. We fix the length
of the eigenvector at time t = 0 to be approximately equal to 1 by imposing the condition

η(x)
def
=
∑
|k|≤3

v2
k − 1 =

∑
|k|≤3

(c2k + d2
k)− 1 = 0. (94)

We solve for solutions of (90) satisfying η(x) = 0. Let

fk
def
= Re(hk(λ, v)) =

(
λ+ νk4

2 − k2
2

)
ck − k1L̃dk + 2k2

∑
k1+k2=k

(
ãk1dk2 + ck1 b̃k2

)
gk

def
= Im(hk(λ, v)) = k1L̃ck +

(
λ+ νk4

2 − k2
2

)
dk − 2k2

∑
k1+k2=k

(ãk1ck2 − b̃k1dk2).

Define F = {Fk}k∈I component-wise by

Fk =


η, k = (0, 0)

gk, k = (0, k2) � (0, 1)(
fk

gk

)
, k = (k1, k2) � (1, 1).

(95)

Finding an eigenvalue-eigenvector pair (λ, v) satisfying (90) and η = 0 is therefore equivalent to solve

F(x) = 0. (96)

For sake of simplicity of the presentation, for k = (k1, k2) � (0, 1), let

Rk(ν, λ)
def
=


λ+ νk4

2 − k2
2, k = (0, k2) � (0, 1)(

λ+ νk4
2 − k2

2 −k1L̃

k1L̃ λ+ νk4
2 − k2

2

)
, k = (k1, k2) � (1, 1)

(97)

Nk(x)
def
=


−2(ã ∗ c)k + 2(b̃ ∗ d)k, k = (0, k2) � (0, 1)(
2(ã ∗ d)k + 2(b̃ ∗ c)k
−2(ã ∗ c)k + 2(b̃ ∗ d)k

)
, k = (k1, k2) � (1, 1)

(98)

so that for every k = (k1, k2) � (0, 1),

Fk(x) = Rk(ν, λ)xk + k2Nk(x). (99)

7.1 The fixed point operator T for the eigenvalue problem

Assume an approximate solution x̄ = (λ̄, c̄, d̄) of F = 0 has been found at the parameter value ν where
F = {Fk}k∈I is given component-wise by (95). Consider a Galerkin projection of (96) of dimension n(m)

given by F (m) def
= {F (m)

k }k∈Fm , where F (m) : Rn(m) × R→ Rn(m), is given component-wise by

F (m)
k (xFm)

def
= Fk((xFm , 0Im)), k ∈ Fm,

where Fk((xFm , 0Im)) is evaluated using (95). Now suppose that we numerically found x̄Fm such that
F (m)(x̄Fm) ≈ 0. We define x̄

def
= (x̄Fm , 0Im) ∈ Xs. Denote

x̄k =


λ̄, k = (0, 0)

d̄k, k = (0, k2) � (0, 1)(
c̄k

d̄k

)
, k = (k1, k2) � (1, 1),
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where c̄k = d̄k = 0 for k 6∈ Fm. Assume the Jacobian matrix DF (M)(x̄Fm,0) is non-singular and let
AM be a numerical approximation for its inverse. To define the tail of the linear operator, we need the
following result.

Lemma 7.4. Let M = (M1,M2) � (m1,m2), ν0 > 0 and λ̄ ∈ R. If(
ν0M

2
2 − 1

)
M2

2 + λ̄ > 0, (100)

then Rk(ν0, λ̄) given by (97) is invertible for all k 6∈ FM .

Proof. The proof is similar to the proof of Lemma 4.1.

We define the linear operator A on sequence spaces, which acts as an approximation for the inverse
of DF(x̄) as [

A(x)
]
k

def
=


[
AmxFM

]
k
, if k ∈ FM

Rk(ν0, λ̄)−1xk, if k 6∈ FM .
(101)

Let
T (x)

def
= x−AF(x). (102)

Lemma 7.5. Consider M = (M1,M2) � (m1,m2) and let s = (s1, s2) � (1, 1) a decay rate. Assume
that AM is invertible and that (100) holds. Then T : Xs → Xs and the solutions of (96) are in one to
one correspondence with the fixed points of T .

Remark 7.6. Note that since we look for solutions of F(x) = 0 given in (96) in the Banach space Xs

given (21)

7.2 Rigorous computation of an eigenvalue-eigenvector pair

Consider bounds Yk and Zk for all k ∈ I, such that∣∣∣[T (x̄)− x̄
]
k

∣∣∣ ≤ Yk, (103)

and
sup

x1,x2∈Br(0)

∣∣∣[DT (x̄+ x1)x2

]
k

∣∣∣ ≤ Zk(r). (104)

Lemma 7.7. If there exists an r > 0 such that ‖Y + Z‖s < r, with Y
def
= {Yk}k∈I and Z

def
= {Zk}k∈I ,

satisfying (103) and (104), respectively, then T is a contraction mapping on Br(x̄) with contraction
constant at most ‖Y + Z‖s/r < 1. Furthermore, there is a unique x̃ ∈ Br(x̄) such that F(x̃) = 0, and x̃
lies in the interior of Br(x̄).

To obtain uniform asymptotic bounds for the Yk, we compute ỸM such that

Yk =
1

ωsk
ỸM Id(k), for k /∈ FM . (105)

Assume there exist Z̃M1,1(r), . . . , Z̃M1,M2−1(r), and Z̃∞,M2
(r) such that for k /∈ FM with k =

(k1, k2) ∈ IM1
× {k2}, for some k2 ∈ {1, . . . ,M2 − 1}, then

Zk(r) = Zk1,k2(r)
def
=

1

ωsk
Z̃M1,k2(r)I2, (106)

and for k /∈ FM with k ∈ N× IM2
, then

Zk(r) = Zk1,k2(r)
def
=

1

ωsk
Z̃∞,M2

(r)Id(k), (107)

where Id(k) = 1 if d(k) = 1, Id(k) = (1, 1)T if d(k) = 2.
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Definition 7.8. We define the finite radii polynomials {pk(r)}k∈FM
by

pk(r)
def
= Zk(r)− r

ωsk
Id(k) + Yk, (108)

and the tail radii polynomials by

p̃M1,k2(r)
def
= Z̃M1,k2(r)− r + ỸM , for k2 = 1, . . . ,M2 − 1, (109)

and
p̃∞,M2

(r)
def
= Z̃∞,M2

(r)− r + ỸM . (110)

Lemma 7.9. If there exists r > 0 such that pk(r) < 0 for all k ∈ FM , p̃M1,k2(r) < 0, for all k2 =
1, . . . ,M2 − 1 and p̃∞,M2(r) < 0, then there exists a unique x̃ ∈ Br(x̄) such that F(x̃) = 0.

7.3 Radii polynomials for the eigenvalue problem

Recall that (L̄, ā, b̄) is the approximate periodic orbit and that (L̃, ã, b̃) is the fixed point of (31) (corre-
sponding to a periodic solution of (1) via the relation (22)) obtained from applying Lemma 5.3. Let rγ
the radius of the ball that contains the periodic orbit. Let L̂

def
= 1

rγ
(L̃−L̄), â

def
= 1

rγ
(ã− ā) and b̂

def
= 1

rγ
(b̃− b̄)

so that L̃ = L̄+ rγL̂, ã = ā+ rγ â and b̃ = b̄+ rγ b̂. Then |L̂| = 1
rγ
|L̃− L̄| ≤ 1,

‖â‖s =
1

rγ
‖ã− ā‖s =

1

rγ
sup
k∈I

ωsk|(ã− ā)k| ≤ 1 and ‖b̂‖s =
1

rγ
‖b̃− b̄‖s =

1

rγ
sup
k∈I

ωsk|(b̃− b̄)k| ≤ 1.

Moreover,

Fk(x̄) = Rk(ν0, λ̄)x̄k + k2Nk(x̄)

=

(
λ̄+ ν0k

4
2 − k2

2 −k1L̃

k1L̃ λ̄+ ν0k
4
2 − k2

2

)(
c̄k
d̄k

)
+ k2

(
2(ã ∗ d̄)k + 2(b̃ ∗ c̄)k
−2(ã ∗ c̄)k + 2(b̃ ∗ d̄)k

)
=

(
λ̄+ ν0k

4
2 − k2

2 −k1L̄
k1L̄ λ̄+ ν0k

4
2 − k2

2

)(
c̄k
d̄k

)
+ k2

(
2(ā ∗ d̄)k + 2(b̄ ∗ c̄)k
−2(ā ∗ c̄)k + 2(b̄ ∗ d̄)k

)
+

[(
0 −k1L̂

k1L̂ 0

)(
c̄k
d̄k

)
+ k2

(
2(â ∗ d̄)k + 2(b̂ ∗ c̄)k
−2(â ∗ c̄)k + 2(b̂ ∗ d̄)k

)]
rγ .

For all k � (1, 1), denote

F̄k(x̄)
def
=

(
λ̄+ ν0k

4
2 − k2

2 −k1L̄
k1L̄ λ̄+ ν0k

4
2 − k2

2

)(
c̄k
d̄k

)
+ k2

(
2(ā ∗ d̄)k + 2(b̄ ∗ c̄)k
−2(ā ∗ c̄)k + 2(b̄ ∗ d̄)k

)
(111)

Hence,

|Fk(x̄)| ≤
∣∣F̄k(x̄)

∣∣+ ρkrγ
def
=
∣∣F̄k(x̄)

∣∣+

(
k1|d̄k|+ 4k2(‖c̄‖s + ‖d̄‖s)α(0,1)

k1,s1
α

(0,0)
k2,s2

k1|c̄k|+ 2k2‖c̄‖sα(0,0)
k1,s1

α
(0,0)
k2,s2

+ 2k2‖d̄‖sα(1,1)
k1,s1

α
(0,0)
k2,s2

)
rγ .

Since T (x̄)− x̄ = −AF(x̄), let

Yk
def
=
∣∣∣[AM F̄ (M)(x̄Fm , 0)

]
k

∣∣∣+ |[AMρFM
]k| rγ , k ∈ FM . (112)

To compute the uniform asymptotic bounds ỸM satisfying (105), notice that F̄k(x̄) = 0 for every
k 6∈ FM̄ , with FM̄ given by (48). Hence, set

ỸM
def
= max
k∈FM̄\FM

∣∣Rk(ν0, λ̄)−1F̄k(x̄)
∣∣ωsk (113)

+ 2

∥∥∥∥∥
(
β̃

(1)
∞,M2

β̃
(2)
∞,M2

β̃
(2)
∞,M2

β̃
(1)
∞,M2

)(
2(‖c̄‖s + ‖d̄‖s)α(0,1)

M1,s1
α

(0,0)
M2,s2

‖c̄‖sα(0,0)
M1,s1

α
(0,0)
M2,s2

+ ‖d̄‖sα(1,1)
M1,s1

α
(0,0)
M2,s2

)∥∥∥∥∥
∞

rγ .
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Remark 7.10. If M = (M1,M2) � M̄ = (2m1 − 1, 2m2 − 1), then the set FM̄ \ FM is empty. In this
case, we let ỸM = 0.

In order to compute the bound Zk satisfying (104), for all k, it is convenient to introduce the operator
A† whose action on a vector x ∈ Xs is given component-wise by

[
A†(x)

]
k

def
=


[
DF (M)(x̄Fm , 0)xFM

]
k
, if k ∈ FM

Rk(ν0, λ̄)xk, if k 6∈ FM ,
(114)

which acts as an approximate inverse for the operator A defined in (101). We consider the splitting

DT (x̄+ x1)x2 =
(
I −AA†

)
x2 −A

(
DF(x̄+ x1)−A†

)
x2, (115)

where the first term is small for k ∈ FM , and is zero for k 6∈ FM . For k ∈ FM , we have that∣∣[(I −AA†)x2

]
k

∣∣ ≤ [∣∣∣I −AMDF (M)(x̄Fm , 0)
∣∣∣ω−sFM

]
k
r (116)

where ω−sFM

def
= {ω−sk Id(k)}k∈FM

, and |·| represents component-wise absolute values. Consider u, v ∈ B1(0)

defined by x1 = ru and x2 = rv so that we can expand the expression
[(
DF(x̄+ x1)−A†

)
x2

]
k

in terms

of r. Denote u = (λ(u), c(u), d(u)) and v = (λ(v), c(v), d(v)) component-wise as in (54). We have that[(
DF(x̄+ ru)−A†

)
rv
]
0,0

= 0.

For k ∈ I \ {(0, 0)}, consider the expansion[(
DF(x̄+ ru)−A†

)
rv
]
k

= C
(2)
k r2 + C

(1)
k r,

where the coefficients are given by

C
(1)
k

def
=


2k2

[(
(ā ∗ d(v)

IM
)k + (c

(v)
IM
∗ b̄)k

−(ā ∗ c(v)
IM

)k + (b̄ ∗ d(v)
IM

)k

)
+

(
(â ∗ d(v)

IM
)k + (c

(v)
IM
∗ b̂)k

−(â ∗ c(v)
IM

)k + (b̂ ∗ d(v)
IM

)k

)
rγ

]
, if k ∈ FM

2k2

[(
(ā ∗ d(v))k + (c(v) ∗ b̄)k
−(ā ∗ c(v))k + (b̄ ∗ d(v))k

)
+

(
(â ∗ d(v))k + (c(v) ∗ b̂)k
−(â ∗ c(v))k + (b̂ ∗ d(v))k

)
rγ

]
, if k 6∈ FM ,

C
(2)
k

def
=

(
λ(v)c

(u)
k + λ(u)c

(v)
k

λ(v)d
(u)
k + λ(u)d

(v)
k

)
.

For any k2, the first components of C
(1,0)
0,k2

and C
(2,0)
0,k2

equal 0. We are ready to compute the bounds
Zk(r) satisfying (104). In Section 7.3.1, we compute the bounds for k ∈ FM , and in Section 7.3.2, we
compute the bounds for k 6∈ FM .

7.3.1 The bound Zk(r), for k ∈ FM

In order to compute the bounds Zk(r) for k ∈ FM , we introduce intermediate upper bounds z
(1,0)
k , z

(2,0)
k

such that |C(1,0)
k | ≤ z(1,0)

k and |C(2,0)
k | ≤ z(2,0)

k . These are given by

z
(1,0)
k

def
= 2|k2|

[(
(|ā| ∗ ω(−s,b)

IM
)k + (ω

(−s,a)
IM

∗ |b̄|)k
(|ā| ∗ ω(−s,a)

IM
)k + (|b̄| ∗ ω(−s,b)

IM
)k

)
+

(
2α

(0,1)
k1,s1

α
(0,0)
k2,s2

α
(0,0)
k1,s1

α
(0,0)
k2,s2

+ α
(1,1)
k1,s1

α
(0,0)
k2,s2

)
rγω

−s
k

]

z
(2,0)
k

def
= 2

(
ω

(−s,b)
k

ω
(−s,a)
k

)
.
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Letting

Z
(1)
k

def
=
[∣∣∣I −AMDF (M)(x̄)

∣∣∣ω−sFM

]
k

+
[
|AM | z(1,0)

FM

]
k

Z
(2)
k

def
=
(
|AM | z(2,0)

FM

)
k

we set, for k ∈ FM ,

Zk(r)
def
= Z

(2)
k r2 + Z

(1)
k r. (117)

7.3.2 The bound Zk(r, |∆ν |) for k 6∈ FM

Consider fixed λ̄ > 0 and ν0 > 0. For any k 6∈ FM , let

β
(1)
k

def
=

|λ̄+ ν0k
4
2 − k2

2|k2

(λ̄+ ν0k4
2 − k2

2)2 + (k1L̃)2
and β

(2)
k

def
=

k1k2L̃

(λ̄+ ν0k4
2 − k2

2)2 + (k1L̃)2
.

Lemma 7.11. Consider L̄ > 0 and ν > 0. Given M = (M1,M2), consider

k∗2
def
= max

k2∈{1,...,M2−1}

{
k2

∣∣ |λ̄+ ν0k
4
2 − k2

2| ≤M1L̃
}
. (118)

Assume that

ν0 >
1

(k∗2 + 1)2
. (119)

For k2 = 1, . . . ,M2 − 1, let

β̃
(1)
M1,k2

def
=

|λ̄+ ν0k
4
2 − k2

2|k2

(λ̄+ ν0k4
2 − k2

2)2 + (M1L̃)2
(120)

β̃
(2)
M1,k2

def
=


k2M1L̃

(λ̄+ ν0k4
2 − k2

2)2 + (M1L̃)2
, k2 = 1, . . . , k∗2

1

2(ν0k3
2 − 1− |λ̄|k2 )

, k2 = k∗2 + 1, . . . ,M2 − 1
(121)

and let

β̃
(1)
∞,M2

def
=

1

ν0M3
2 − 1− |λ̄|M2

and β̃
(2)
∞,M2

def
=

1

2(ν0M3
2 − 1− |λ̄|M2

)
.

Let k 6∈ FM . If k ∈ IM1×{k2} for some k2 = 1, . . . ,M2−1, then β
(1)
k (ν) ≤ β̃(1)

M1,k2
and β

(2)
k (ν) ≤ β̃(1)

M1,k2
.

If k ∈ N× IM2 , then β
(1)
k (ν) ≤ β̃(1)

∞,M2
and β

(2)
k (ν) ≤ β̃(2)

∞,M2
.

Proof. The proof is similar to the proof of Lemma 6.5.

Lemma 7.12. Let

V
(1)
∞,M2

def
=

∥∥∥∥∥2

(
β̃

(1)
∞,M2

β̃
(2)
∞,M2

β̃
(2)
∞,M2

β̃
(1)
∞,M2

)(
(‖ā‖s + ‖b̄‖s + 2rγ)α

(0,1)
M1,s1

α
(0,0)
M2,s2

(‖ā‖s + rγ)α
(0,0)
M1,s1

α
(0,0)
M2,s2

+ (‖b̄‖s + rγ)α
(1,1)
M1,s1

α
(0,0)
M2,s2

)∥∥∥∥∥
∞

(122)

V
(2)
∞,M2

def
= 2

(
β̃

(1)
∞,M2

+ β̃
(2)
∞,M2

)
. (123)

Consider k 6∈ FM with k ∈ N× IM2
. Then, for i = 1, 2,

‖Rk(ν0, λ̄)−1C
(i)
k ‖∞ ≤ V

(i)
∞,M2

ω−sk . (124)
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Defining the bound

Z̃∞,M2
(r)

def
= V

(2)
∞,M2

r2 + V
(1)
∞,M2

r, (125)

we get that for any k 6∈ FM with k ∈ N× IM2

sup
x1,x2∈Br(0)

‖[DT (x̄+ x1)x2]k‖∞ ≤ sup
x1,x2∈Br(0)

∥∥∥Rk(ν0, λ̄)−1
(
C

(1)
k r + C

(2)
k r2

)∥∥∥
∞
≤ Z̃∞,M2

(r)ω−sk .

Lemma 7.13. Let k 6∈ FM with k ∈ IM1
× {k2}, for some k2 = 1, . . . ,M2 − 1 and let

V
(1)
M1,k2

def
=

∥∥∥∥∥2

(
β̃

(1)
M1,k2

β̃
(2)
M1,k2

β̃
(2)
M1,k2

β̃
(1)
M1,k2

)(
ΨM1,k2(ā) + ΨM1,k2(b̄) + 2α

(0,1)
M1,s1

α
(0,0)
M2,s2

rγ

ΨM1,k2(ā) + ΨM1,k2(b̄) + (α
(0,0)
M1,s1

α
(0,0)
M2,s2

+ α
(1,1)
M1,s1

α
(0,0)
M2,s2

)rγ

)∥∥∥∥∥
∞
(126)

V
(2)
M1,k2

def
= 2. (127)

Then, for i = 1, 2,

‖Rk(ν0, λ̄)−1C
(i)
k ‖∞ ≤ V

(i)
M1,k2

ω−sk .

For each k2 = 1, . . . ,M2 − 1, defining the bound

Z̃M1,k2(r)
def
= V

(2)
M1,k2

r2 + V
(1)
M1,k2

r, (128)

we get that for any k 6∈ FM with k ∈ IM1
× {k2}, for some k2 = 1, . . . ,M2 − 1

sup
x1,x2∈Br(0)

‖[DT (x̄+ x1)x2]k‖∞ ≤ Z̃M1,k2(r)ω−sk .

The radii polynomials of Definition 7.8 can now be defined.
Combining (112) and (117), we set

pk(r)
def
= Z

(2)
k r2 +

(
Z

(1)
k − ω−sk Id(k)

)
r + Yk, k ∈ FM . (129)

Using (113) and (125), let
p̃∞,M2

(r) = Z̃∞,M2
(r)− r + ỸM , (130)

and using (128), for k2 = 1, . . . ,M2 − 1, let

p̃M1,k2(r)
def
= Z̃M1,k2(r)− r + ỸM . (131)

8 Results

In this final section, we present several sample theorems about existence of periodic orbits. Given a
numerical solution x̄ = (L̄, ā, b̄) ∈ Rn(m) with n(m) = 2m1m2 − 2m1 −m2 + 2 and a parameter value ν,
denote the associated approximate periodic solution by

ū(t, y) =
∑
k∈Fm

(āk + ib̄k)eiL̄k1teik2y. (132)

Also, given an exact solution x̃ = (L̃, ã, b̃) ∈ Br(x̄) of F(x̃, ν) = 0, denote the associated exact periodic
solution by

ũ(t, y) =
∑
k∈Z2

(ãk + ib̃k)eiL̃k1teik2y. (133)
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8.1 Global branch of periodic orbits

The proof of the following result is obtained by applying Algorithm 6.9.

Theorem 8.1. For each segment of curve in the diagram of Figure 2 there exists a smooth branch of
periodic orbits of (1). The branch is parameterized by ν ∈ [νmin, νmax] = [0.12175, 0.1310], and the period
of the orbits ranges in the interval τ ∈ [τmin, τmax] = [1.92610, 3.03565].

In Table 1, we provide data for the periodic orbit of Theorem 8.1 at the parameter value ν = 0.127.
This orbit was also proven with ∆ν = 2×10−5. Note that in [18], the proof of the same orbit was performed
with ∆ν ≈ 10−7. The branch of periodic orbits of Theorem 8.1 parameterized over ν ∈ [νmin, νmax] is
portrayed in Figure 2.

m = (m1,m2) M = (M1,M2) Time (in seconds) ∆ν C0 and L2 errors

m = (9, 14) M = (63, 40) 51.64631 0 ≈ 10−2

m = (30, 15) M = (64, 40) 54.8595 2× 10−5 ≈ 10−3

m = (40, 80) M = (64, 80) 460.50071 2× 10−5 ≈ 10−11

Table 1: Proofs data of the periodic of Theorem 8.1 at ν = 0.127 with period τ ≈ 2.2443335614892281.

0.122 0.124 0.126 0.128 0.13 0.132

2

2.2

2.4

2.6

2.8

3

ν

τ

Figure 2: Theorem 8.1 demonstrates the existence of a smooth branch of periodic orbits of the Kuramoto-
Sivashinsky PDE (1). For each ν ∈ [νmin, νmax] = [0.12175, 0.1310], each true solution x̃ν is proved to
lie in a ball, given by (33), of radius r = 7.98829× 10−5 around the numerical approximation x̄ν . More
explicitly, the true solution x̃ν is such that ‖x̃ν − x̄ν‖s ≤ r, with the decay rate s = (s1, s2) = (1.4, 1.2).

8.2 Sample theorems at fixed parameter values

Finally, we present several sample theorems at fixed parameter values. Each existence proof is obtained
by fixing ∆ν = 0, ny constructing the radii polynomials defined in (79), (80) and (81), and then by
applying Lemma 5.3 successfully. Each result concerning Floquet exponents is obtained by constructing
the radii polynomials (129), (130) and (131), and by applying Lemma 7.9.
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Theorem 8.2. Let ν = 0.032, m = (m1,m2) = (40, 80), M = (M1,M2) = (200, 82) and s = (s1, s2) =
(1.4, 1.2). Consider x̄ = (L̄, ā, b̄) ∈ Rn(m) = R6242 given in the file x0pt032.txt, and let ū(t, y) the
associate approximation given by (132). Then there exists a function ũ(t, y), a classical solution of
(1) such that ũ is periodic with respect to t with period τ ∈ 0.818577285749405 + δ[−1, 1], with δ =
1.061985× 10−13, and such that

‖ũ(0, ·)− ū(0, ·)‖C0 ≤ 1.74978× 10−10, and ‖ũ(0, ·)− ū(0, ·)‖L2 ≤ 2.78737× 10−11.

Note that the periodic orbit of Theorem 8.2 is apparently stable, but we do not have a proof of this
statement. Note also that in [18], the proof of the same orbit was performed with m2 = 23 space Fourier
modes, the C0 error norm was 9.46 × 10−4, the L2 error norm was 9.59 × 10−4 and the error norm for
the period was 4× 10−4 (compare with 1.07× 10−13 with our approach).

Theorem 8.3. Let ν = 0.029909, m = (m1,m2) = (50, 80), M = (M1,M2) = (240, 85) and s =
(s1, s2) = (1.4, 1.2). Consider x̄ = (L̄, ā, b̄) ∈ R7822 given in the file x0pt02991.txt and consider the
associate approximation ū(t, y) given in (132). Then there exists a function ũ(t, y), a classical solution
of (1) such that ũ is periodic with respect to t with period τ ∈ 0.898089445890309 + δ[−1, 1], with
δ = 1.77012× 10−13, and such that

‖ũ(0, ·)− ū(0, ·)‖C0 ≤ 2.42296× 10−10, and ‖ũ(0, ·)− ū(0, ·)‖L2 ≤ 3.85972× 10−11.

Moreover, there exists a positive real Floquet exponent λ > 0 (in fact it is a positive Lyapunov exponent)
with λ ≈ 1.337449912731968 associated to the periodic orbit. Since |eλτ | > 1, then the periodic orbit is
unstable. The periodic orbit is portrayed in Figure 3.

β9(t)
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β
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(t
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-0.2
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-0.1

-0.05

0

0.05

Figure 3: (Left) The periodic orbit of Theorem 8.3 at ν = 0.02991. (Right) The Fourier modes
(β9(t), β10(t)), where the βk2(t) are given by (139).

Theorem 8.4. Let ν = 4/150, m = (m1,m2) = (60, 90), M = (M1,M2) = (180, 90) and s = (s1, s2) =
(1.4, 1.2). Consider x̄ = (L̄, ā, b̄) ∈ R10592 given in the file x 4over450.txt and consider the associate
approximation ū(t, y) given in (132). Then there exists a function ũ(t, y), a classical solution of (1) such
that ũ is periodic with respect to t with period τ ∈ 0.534173514309819+δ[−1, 1], with δ = 9.925582×10−14,
and such that

‖ũ(0, ·)− ū(0, ·)‖C0 ≤ 3.84039× 10−10, and ‖ũ(0, ·)− ū(0, ·)‖L2 ≤ 6.11767× 10−11.

Let p = 2τ . Then there exists an eigenvalue-eigenvector pair (λ, v) of (90) with v(t + p, y) = v(t, y) for
all t ∈ R and for all y ∈ [0, 2π] such that λ > 0 with λ ≈ 1.018412816297953. Since |eλτ | > 1, then the
periodic orbit is unstable. The periodic orbit is portrayed in Figure 4.
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Figure 4: (Left) The profile of a periodic orbit of (1) at ν = 4/150, as proven in Theorem 8.4. The
period is τ ≈ 0.534173514309816 and it has been proven that this orbit is unstable. (Right) In black,
the three Fourier coefficients (β7(t), β8(t), β9(t)) of the τ -periodic orbit. In cyan, the rigorously computed
two-dimensional unstable normal bundle of the periodic orbit. The apparent rapid change in the bundle
is only an artifact of the projection. Indeed, the bundle is smooth over the period of the periodic orbit.

Theorem 8.5. Let ν = 0.0266, m = (m1,m2) = (45, 80), M = (M1,M2) = (95, 80) and s = (s1, s2) =
(1.4, 1.2). Consider x̄ = (L̄, ā, b̄) ∈ R7032 given in the file x0pt0266.txt and consider the approximation
ū(t, y) given in (132). Then there exists a function ũ(t, y), a classical solution of (1) such that ũ is
periodic with respect to t with period τ ∈ 0.321226891718833 + δ[−1, 1] with δ = 8.152573× 10−15 and

‖ũ(0, ·)− ū(0, ·)‖C0 ≤ 8.72278× 10−11, and ‖ũ(0, ·)− ū(0, ·)‖L2 ≤ 1.38953× 10−11.

Let p = 2τ . Then there exists an eigenvalue-eigenvector pair (λ, v) of (90) with v(t + p, y) = v(t, y) for
all t ∈ R and for all y ∈ [0, 2π] such that λ > 0 with λ ≈ 5.031359038130527. Since |eλp| > 1, then the
periodic orbit is unstable. The periodic orbit as well as a visualization of the unstable bundle associated
to the eigenvector v are depicted in Figure 5.
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Figure 5: (Left) The unstable periodic orbit of (1) at ν = 0.0266 as proved in Theorem 8.5. (Right)
The three Fourier coefficients (β1(t), β3(t), β4(t)) of the τ -periodic orbit of (1) at ν = 0.0266 with
τ ≈ 0.321226891718828. In cyan, the unstable normal bundle of the periodic orbit as computed in
Theorem 8.5. Each “side” of the bundle has a different colour (i.e. blue and red). One can see from this
finite dimensional projection that the eigenvector is 2τ -periodic and not τ -periodic.
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Theorem 8.6. Let ν = 0.024, m = (m1,m2) = (80, 85), M = (M1,M2) = (190, 92) and s = (s1, s2) =
(1.4, 1.2). Consider x̄ = (L̄, ā, b̄) ∈ R13357 given in the file x0pt024.txt and consider the approximation
ū(t, y) given in (132). Then there exists a function ũ(t, y), a classical solution of (1) such that ũ is
periodic with respect to t with period τ ∈ 0.590231732991113 + δ[−1, 1] with δ = 9.542892× 10−14 and

‖ũ(0, ·)− ū(0, ·)‖C0 ≤ 3.02426× 10−10, and ‖ũ(0, ·)− ū(0, ·)‖L2 ≤ 4.81759× 10−11.

Moreover, there exists a positive real Floquet exponent (in fact a Lyapunov exponent) λ with λ ≈
1.429704455017047 associated to the periodic orbit. Since |eλτ | > 1, then the periodic orbit is unsta-
ble. A visualization of the unstable bundle is depicted in Figure 6.

Figure 6: In black, the three Fourier coefficients (β1(t), β2(t), β3(t)) of the τ -periodic orbit of (1) at
ν = 0.024 with τ ≈ 0.578517950173901. In cyan, the unstable normal bundle of the periodic orbit as
computed in Theorem 8.6. Each “side” of the bundle has a different colour (i.e. blue and red), and one
can see that the eigenvector is τ -periodic as the orbit.

Theorem 8.7. Let ν = 0.0225, m = (m1,m2) = (70, 85), M = (M1,M2) = (155, 88) and s = (s1, s2) =
(1.4, 1.2). Consider x̄ = (L̄, ā, b̄) ∈ Rn(m) = R11677 given in the file x0pt0225.txt, and let ū(t, y)
the associate approximation given by (132). Then there exists a function ũ(t, y), a classical solution
of (1) such that ũ is periodic with respect to t with period τ ∈ 0.541896528414205 + δ[−1, 1], with
δ = 1.54559× 10−14, and such that

‖ũ(0, ·)− ū(0, ·)‖C0 ≤ 5.81092× 10−11, and ‖ũ(0, ·)− ū(0, ·)‖L2 ≤ 9.25668× 10−12.

The periodic orbit is portrayed in Figure 7.

The periodic orbit of Theorem 8.7 is apparently stable, but we do not have a proof of this statement.

Theorem 8.8. Let ν = 0.111485, m = (m1,m2) = (135, 33), M = (M1,M2) = (610, 34) and s =
(s1, s2) = (1.4, 1.2). Consider x̄ = (L̄, ā, b̄) ∈ Rn(m) = R9147 given in the file x 0pt111485 gamma hopf.txt,
and let ū(t, y) the associate approximation given by (132). Then there exists a function ũ(t, y), a classical
solution of (1) such that ũ is periodic with respect to t with period τ ∈ 20.063697521371836 + δ[−1, 1],
with δ = 2.51984× 10−6, and such that

‖ũ(0, ·)− ū(0, ·)‖C0 ≤ 9.21181× 10−6, and ‖ũ(0, ·)− ū(0, ·)‖L2 ≤ 1.46743× 10−6.

The periodic orbit is portrayed in Figure 8.
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Figure 7: (Left) The periodic orbit of (1) at ν = 0.0225 as proven in Theorem 8.7. (Right) The Fourier
modes (β1(t), β2(t)), where the βk2(t) are given by (139).
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Figure 8: (Left) A periodic orbit at ν = 0.111485 of Theorem 8.8. The time period τ is greater than
20. (Top right) The two Fourier coefficients (β2(t), β5(t)) of the τ -periodic orbit, where the βk2(t) are
given by (139). (Bottom right) A zoom-in of the same orbit.

A Estimates

A.1 1d estimates

Recall that for a vector a = (ak)k∈Z, ‖a‖s = supk∈Z |ak|ωsk, where the 1d weights ωsk are given by (19).

Lemma A.1 (1d estimates). Let M ≥ 10 and K ≥ 1 computational parameters, and let s ∈ (1, 1.45].
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Define

αk,s
def
=



1 + 2

K∑
j=1

1

j2s
+

2

(2s− 1)K2s−1
, if k = 0

2 + 2

K∑
j=1

ks

js(k + j)s
+

2ks

(k +K + 1)s(s− 1)Ks−1
+

k−1∑
j=1

ks

js (k − j)s , if 1 ≤ k < M

2 + 4

K∑
j=1

1

js
+

4

(s− 1)Ks−1
, if k ≥M

(134)

and

δ
(i,j)
k

def
=

{
1− δ1,iδ1,j , if k = 0

2− δ1,i − δ1,j , if k ≥ 1.

Define

α
(i,j)
k,s = αk,s − δ(i,j)

k . (135)

Then, for all k ∈ Z

∑
k1+k2=k

1

ωsk1ω
s
k2

≤
α

(1,1)
k,s

ωsk∑
k1+k2=k

k1 6=0

1

ωsk1ω
s
k2

≤
α

(0,1)
k,s

ωsk

∑
k1+k2=k

k1,k2 6=0

1

ωsk1ω
s
k2

≤
α

(0,0)
k,s

ωsk
.

The proof is a slight modification of the estimates in Proposition 1 in [20]. The hypothesis that
M ≥ 40 is taken large enough so that the estimates in [20] hold. See Remark 1 in [20] for more details.

Since for the cases k ≥ M ≥ 10, the bound (135) does not depend on k, denote, given a large
computational parameter K > 1,

α(i,j)
∞,s

def
= δ1,i + δ1,j + 4

K∑
j=1

1

js
+

4

(s− 1)Ks−1
. (136)

A.2 2d estimates

Lemma A.2 (2d estimates). Let a = (ak)k∈Z2 such that ak1,0 = a0,k2 = 0 for all k1, k2 ∈ Z, and
b = (bk)k∈Z2 such that bk1,0 = 0 for all k1 ∈ Z. Recall (23), and assume that a, b ∈ `∞s , that is

‖a‖s = sup
k∈Z2

ωsk|ak| <∞ and ‖b‖s = sup
k∈Z2

ωsk|bk| <∞.

|(a ∗ a)k| ≤
α

(0,0)
k1,s1

α
(0,0)
k2,s2

ωsk
‖a‖2s, |(a ∗ b)k| ≤

α
(0,1)
k1,s1

α
(0,0)
k2,s2

ωsk
‖a‖s‖b‖s, |(b ∗ b)k| ≤

α
(1,1)
k1,s1

α
(0,0)
k2,s2

ωsk
‖b‖2s. (137)

Proof. Define

Sa = {k = (k1, k2) : k1 6= 0 and k2 6= 0} and Sb = {k = (k1, k2) : k2 6= 0}
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the set of indices on which a and b have respectively non zero entries. Then

|(a ∗ a)k| =

∣∣∣∣∣∣∣∣
∑

k1+k2=k

k1,k2∈Z2

ak1ak2

∣∣∣∣∣∣∣∣ ≤
∑

k1+k2=k

k1∈Sa,k2∈Sa

1

ωs
k1ωsk2

‖a‖2s =
∑

k1+k2=k

k1∈Sa,k2∈Sa

1

ωs1
k11
ωs1
k21

· 1

ωs2
k12
ωs2
k22

‖a‖2s

=

 ∑
k11+k21=k1

k11,k
2
1 6=0

1

ωs1
k11
ωs1
k21


 ∑
k12+k22=k2

k12,k
2
2 6=0

1

ωs2
k12
ωs2
k22

 ‖a‖2s ≤ α
(0,0)
k1,s1

α
(0,0)
k2,s2

ωsk
‖a‖2s,

where the last inequality follows from Lemma A.1. Similarly,

|(a ∗ b)k| =

∣∣∣∣∣∣∣∣
∑

k1+k2=k

k1,k2∈Z2

ak1bk2

∣∣∣∣∣∣∣∣ ≤
∑

k1+k2=k

k1∈Sa,k2∈Sb

1

ωs
k1ωsk2

‖a‖s‖b‖s =
∑

k1+k2=k

k1∈Sa,k2∈Sb

1

ωs1
k11
ωs1
k21

· 1

ωs2
k12
ωs2
k22

‖a‖s‖b‖s

=

 ∑
k11+k21=k1

k11 6=0

1

ωs1
k11
ωs1
k21


 ∑
k12+k22=k2

k12,k
2
2 6=0

1

ωs2
k12
ωs2
k22

 ‖a‖s‖b‖s ≤ α
(0,1)
k1,s1

α
(0,0)
k2,s2

ωsk
‖a‖s‖b‖s,

and

|(b ∗ b)k| =

∣∣∣∣∣∣∣∣
∑

k1+k2=k

k1,k2∈Z2

bk1bk2

∣∣∣∣∣∣∣∣ ≤
∑

k1+k2=k

k1∈Sb,k2∈Sb

1

ωs
k1ωsk2

‖b‖2s =
∑

k1+k2=k

k1∈Sb,k2∈Sb

1

ωs1
k11
ωs1
k21

· 1

ωs2
k12
ωs2
k22

‖b‖2s

=

 ∑
k11+k21=k1

1

ωs1
k11
ωs1
k21


 ∑
k12+k22=k2

k12,k
2
2 6=0

1

ωs2
k12
ωs2
k22

 ‖b‖2s ≤ α
(1,1)
k1,s1

α
(0,0)
k2,s2

ωsk
‖b‖2s.

Remark A.3. For s ∈ (1, 1.45), αk,s as defined in Lemma A.1 satisfy αk,s ≤ αk+1,s for all k ≥ 0.

As a consequence of the previous remark, we have the following asymptotic estimate.

Lemma A.4 (Asymptotic Estimates). Assume that all hypotheses of Lemma A.2 hold. Denote
M = (M1,M2) � (40, 40). Given k 6∈ FM , we have that

|(a ∗ a)k| ≤
α

(0,0)
M1,s1

α
(0,0)
M2,s2

ωsk
‖a‖2s, |(a ∗ b)k| ≤

α
(0,1)
M1,s1

α
(0,0)
M2,s2

ωsk
‖a‖s‖b‖s, |(b ∗ b)k| ≤

α
(1,1)
M1,s1

α
(0,0)
M2,s2

ωsk
‖b‖2s.
(138)

B Visualizing the orbit with the time Fourier coefficients

It is common to visualize the solutions in a state space of Fourier coefficients. To do this, rewrite the
Fourier expansion (2) as

u(t, y) =
∑
k∈Z2

cke
iLk1teik2y =

∑
k2∈Z

def
=αk2 (t)︷ ︸︸ ︷(∑

k1∈Z
ck1,k2e

iLk1t

)
eik2y.
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Recalling the third relation of (3), i.e. c−k1,k2 = −conj(ck) and the third relation of (4) i.e. a0,k2 =
Re(c0,k2) = 0 for all k2 ≥ 0,

αk2(t) =
∑
k1∈Z

ck1,k2e
iLk1t

= c0,k2 −
∞∑
k1=1

conj(ck1,k2)e−iLk1t +

∞∑
k1=1

ck1,k2e
iLk1t

= i

[
b0,k2 + 2

∞∑
k1=1

(ak1,k2 sin(k1Lt) + bk1,k2 cos(k1Lt))

]
.

Letting

βk2(t)
def
= b0,k2 + 2

∞∑
k1=1

(ak1,k2 sin(k1Lt) + bk1,k2 cos(k1Lt)) (139)

we get using (3) that β−k2 = −βk2 and therefore that

u(t, y) = −2

∞∑
k2=1

βk2(t) sin(k2y).
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[6] Yueheng Lan and Predrag Cvitanović. Unstable recurrent patterns in Kuramoto-Sivashinsky dy-
namics. Phys. Rev. E (3), 78(2):026208, 12, 2008.

[7] Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continuation for equilibria
of PDEs. SIAM J. Numer. Anal., 45(4):1398–1424 (electronic), 2007.

[8] J. B. van den Berg, C. M. Groothedde, and J. F. Williams. Rigorous computation of a radially
symmetric localized solution in a Ginzburg-Landau problem. SIAM J. Appl. Dyn. Syst., 14(1):423–
447, 2015.

34



[9] Marcio Gameiro and Jean-Philippe Lessard. Analytic estimates and rigorous continuation for equi-
libria of higher-dimensional PDEs. J. Differential Equations, 249(9):2237–2268, 2010.

[10] Jan Bouwe van den Berg and J. F. Williams. Validation of the bifurcation diagram in the 2D
Ohta-Kawasaki problem. Preprint, 2016.

[11] Roberto Castelli and Holger Teismann. Rigorous numerics for NLS: bound states, spectra, and
controllability. Physica D, 2016.

[12] H. B. Keller. Lectures on numerical methods in bifurcation problems, volume 79 of Tata Institute
of Fundamental Research Lectures on Mathematics and Physics. Published for the Tata Institute
of Fundamental Research, Bombay, 1987. With notes by A. K. Nandakumaran and Mythily Ra-
maswamy.

[13] Alan R. Champneys and Björn Sandstede. Numerical computation of coherent structures. In Numer-
ical continuation methods for dynamical systems, Underst. Complex Syst., pages 331–358. Springer,
Dordrecht, 2007.

[14] Jan Bouwe van den Berg, Jean-Philippe Lessard, and Konstantin Mischaikow. Global smooth solu-
tion curves using rigorous branch following. Math. Comp., 79(271):1565–1584, 2010.
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