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Abstract

In this paper we extend the ideas of the so-called validated continuation technique to the
context of rigorously proving the existence of equilibria for partial differential equations defined
on higher-dimensional spatial domains. For that effect we present a new set of general analytic
estimates. These estimates are valid for any dimension and are used, together with rigorous
computations, to construct a finite number of radii polynomials. These polynomials provide a
computationally efficient method to prove, via a contraction argument, the existence and local
uniqueness of solutions for a rather large class of nonlinear problems. We apply this technique
to prove existence and local uniqueness of equilibrium solutions for the Cahn-Hilliard and the
Swift-Hohenberg equations defined on two- and three-dimensional spatial domains.

1 Introduction

Partial differential equations (PDEs) arising in fluid dynamics and material science are naturally
defined on two- and three-dimensional spatial domains. With the extensive use of PDE modeling
in engineering, developing new mathematical tools to study rigorously these equations is of central
importance in science. However, analytically finding solutions of nonlinear PDEs is generally an
extremely difficult problem. The availability of powerful computers and sophisticated software then
makes numerical simulation the primary tool for scientists and engineers confronted with nonlinear
problems. In particular, one of the most efficient methods for determining equilibria of a parameter
dependent PDE

ut = E(u, λ), λ ∈ R (1)

is to use a predictor-corrector continuation algorithm. Since (1) is infinite dimensional, the numerical
method is applied to a finite dimensional approximation. This raises the natural question of the
validity of the output. How does one make sure that the truncation error term induced by computing
on a finite projection did not lead to spurious branches of solutions? In order to address this question,
several computer-assisted proofs of existence of solutions of nonlinear PDEs were presented in the
last decade (see for example [1, 2, 3, 4, 5, 6]). These proofs are based on local topological arguments
like the non vanishing of the Conley Index of a small isolating neighborhood of the solution or on
a contraction mapping argument, both of which rely on the fact that the linear part of the PDE
governs, at least locally, the behavior of the system. The most fundamental problem in developing
these rigorous numerical methods is to control the truncation error terms by building sharp enough
∗Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan (gameiro@math.kyoto-u.ac.jp). This

author was partially supported by the JSPS Postdoctoral Fellowship No. P08016 and by the JSPS Grant-in-Aid for
Scientific Research No. 2008016, Ministry of Education, Science, Technology, Culture and Sports, Japan.
†Rutgers University, Department of Mathematics, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA

(lessard@math.rutgers.edu). This author was partially supported by NSF grant DMS-0511115, by DARPA, and by
DOE grant DE-FG02-05ER25711.

1



analytic estimates so that the computer can be used to verify that the nonlinear part is locally
negligible. In the above cited papers, the bounds on the truncation errors are given in terms of
regularity conditions on the solutions. In [2, 3, 7, 6] and in [4, 5], such estimates are presented for
PDEs defined on one- and two-dimensional rectangular spatial domains, respectively. In this paper,
we present new analytic estimates for PDEs defined on d−dimensional spatial domains. To the best
of our knowledge, this is the first attempt to present general estimates in this context. We then
use these general estimates to extend the ideas of the so-called validated continuation method to
the context of rigorously proving the existence of equilibria for PDEs defined on higher-dimensional
domains. It is important to mention that validated continuation was originally introduced as a
semi-rigorous numerical method, where some of the computations are allowed to be non-rigorous.
In this way, the results of the computations are not computer-assisted proofs due to round-off
errors (see [3]). In the present work, we extend the ideas of validated continuation to PDEs in
higher dimensions, and we make all computations rigorous by using interval arithmetic. In this
way we produce completely rigorous computer-assisted proofs. Hence, we refer to this method as
rigorous continuation. Although we present the theory in the context of finding equilibria of PDEs,
the method should be applicable to rigorously compute equilibria for systems of PDEs and time
periodic solutions of PDEs.

Validated continuation was introduced in [3] and later on improved in [8] to compute discrete
branches of equilibria of (1), when the PDE is defined on a one dimensional (interval) spatial do-
main. Combining the information obtained from the predictor-corrector steps with rigorous interval
arithmetic computations and analytic estimates, this rigorous numerical method verifies that the
numerically produced equilibrium solution for the finite dimensional system can be used to explic-
itly define a set which contains a unique solution for the infinite dimensional problem. In [9, 10, 11],
validated continuation was adapted to compute global smooth branches of time periodic solutions
of delay differential equations and ordinary differential equations. As mentioned earlier, the main
focus of the present work is to develop a set of consistent general analytic estimates in order to prove
existence of steady state solutions of (1). To make things more precise, we assume that E(·, λ) is a
densely defined operator on a Hilbert space H, and is explicitly given by

ut = L(u, λ) +
p∑

n=2

qnu
n (2)

in a domain Ω ⊂ Rd, where λ ∈ R is a parameter, L = L(·, λ) : D(L) ⊂ H → H is a parameter
dependent linear operator, and qn = qn(λ) ∈ R are the coefficients of the polynomial nonlinearity of
degree p. We also assume that H has an orthogonal basis {ψk}k∈Zd formed by eigenfunctions of L,
which are assumed to be independent of λ, and that the domain of L is given by

D(L) =

u =
∑

k∈Zd

ckψk ∈ H

∣∣∣∣∣∣
∑

k∈Zd

µkckψk converges

 ,

where µk = µk(λ) are the eigenvalues of L(·, λ). Then the expansion of (2) in terms of the basis
{ψk}k∈Zd takes the form

ċk = µkck +
p∑

n=2

qn
∑

k1+···+kn=k

kj∈Zd

ck1 · · · ckn , (3)

with k = (k1, . . . , kd) ∈ Zd, where kj = (kj1, . . . , k
j
d) ∈ Zd for 1 ≤ j ≤ n, and ċk = d

dtck. Defining
the vector of a priori unknown coefficients by c := {ck}k∈Zd , when looking for equilibrium solutions
of (3), we need to solve

fk(c, λ) := µkck +
p∑

n=2

qn
∑

k1+···+kn=k

kj∈Zd

ck1 · · · ckn = 0, (4)
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for every k = (k1, . . . , kd) ∈ Zd. Denoting f := {fk}k∈Zd we show, in Section 3, that solving the
infinite dimensional problem

f(x, λ) = 0 (5)

for x := {xk}k∈Zd in a Banach space Xs of fast decaying coefficients is equivalent to looking for
equilibrium solutions of (2). The theoretical justification for this choice of Banach space lies is the
fact that the solutions we are looking for have sufficient regularity.

Remark 1.1. All the results presented in this paper are valid if the coefficients {ck}k∈Zd in the
expansion (3) are complex. This is the case if the PDE (2) is complex or if we use complex-valued
functions as basis elements, like complex exponentials as Fourier basis for example. In that case we
can split ck in its real and imaginary parts and define (4) for

c̃k :=

(
Re(ck)
Im(ck)

)
,

and define

f̃k :=

(
Re(fk)
Im(fk)

)
.

In such case, the formulas presented in Section 3 have two components and the inequalities should
be understood as component-wise.

Next we describe in detail the space Xs, but first we need to introduce some notation. As
already suggested above, we use boldface type to denote multi-indices as in k = (k1, . . . , kd) ∈ Zd.
We denote by | · | the component-wise absolute value, that is, |k| := (|k1|, . . . , |kd|). Given k,n ∈ Zd
we also use component-wise inequalities. So that k < n, for example, means that kj < nj for all
1 ≤ j ≤ d. Similarly for k ≤ n, k > n, and k ≥ n. Throughout this paper m = (m1, . . . ,md) and
M = (M1, . . . ,Md) always denote computational parameters such that M ≥m, and Mj ≥ 6 for all
1 ≤ j ≤ d. Also s = (s1, . . . , sd) always denote the “decay rate”, where each sj is the decay rate on
the jth-coordinate, and is such that sj ≥ 2 for all 1 ≤ j ≤ d. We also denote the finite set of indices
of “sizes” m and M respectively by Fm := {k ∈ Zd | |k| < m} and FM := {k ∈ Zd | |k| < M}.
Notice that Fm = Fm1 × · · · × Fmd

, where Fmj
:= {kj ∈ Z | |kj | < mj}. Similarly for FM .

We now describe the space Xs. Recalling the definition of the one-dimensional weights ωsk in
(41) from Appendix A, we define the d-dimensional weights

ωs
k :=

d∏
j=1

ω
sj

kj
,

which are used to define the norm
‖x‖s = sup

k∈Zd

ωs
k|xk|,

and the Banach space
Xs = {x | ‖x‖s <∞} , (6)

consisting of sequences with algebraically decaying tails according to the rate s. We look for solutions
of (5) within balls B ⊂ Xs of radius r (with respect to the norm ‖ · ‖s). The idea of rigorous
continuation is to construct a parameter dependent contraction Tλ : B → B and to use a contraction
mapping theorem to conclude the existence of a unique solution of f(x, λ) = 0 within the set B. The
contraction rate of Tλ depends on the magnitude of the eigenvalues of L(·, λ). The verification of the
contraction depends on a subtle balance between the growth of the eigenvalues and our control on
the truncation error, provided by analytic estimates. The slower the eigenvalues grow, the sharper
the analytic estimates on the nonlinear truncation error terms need to be. The construction of
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the estimates is done in Section 2. In order to verify the hypotheses of a contraction argument
in a computationally efficient way, we recall the notion of radii polynomials [9, 10, 3, 8, 11]. The
independent variable of the polynomials is the radius r of the ball B. In essence, we solve for the
set B, by finding a radius r that makes all the radii polynomials simultaneously negative. A brief
discussion on these polynomials and the theory of rigorous continuation in done in Section 3. In
Section 4 we explicitly construct the radii polynomials for the case of a cubic nonlinerarity. Finally,
in Section 5 we present applications of the method to the Cahn-Hilliard and the Swift-Hohenbergh
PDEs defined on two- and three-dimensional spatial domains. It is worth emphasizing that for each
of the computed solutions, we have a computed-assisted proof of existence and local uniqueness of
an equilibrium for the PDE.

2 Analytic Estimates

One of the fundamental step for the computation of (steady state) solutions of partial differential
equations is to build sharp enough analytic estimates on the nonlinear terms. In particular, the
nonlinear part of (5) involves convolution terms of the form(

c(1) ∗ · · · ∗ c(n)
)

k
:=

∑
k1+···+kn=k

kj∈Zd

c
(1)

k1 · · · c(n)
kn , (7)

where each c(j) = {c(j)k }k∈Zd is a sequence of real (or complex) numbers indexed by k ∈ Zd. As men-
tioned earlier, the bounds on the truncation errors are given in terms of regularity conditions on the
solutions. More precisely, assuming that each coefficient c(j)k goes to zero with a certain decay rate,
one shows that the convolution term (7) goes to zero with the same decay. These general asymptotic
bounds are presented in Section 2.1. In Section 2.2, we consider the computational parameter M
which provides a computational alternative to improve the general bounds of Section 2.1. More
specifically, for k ∈ FM one splits (7) into a finite sum of “size” M that we explicitly compute
using interval arithmetic and an infinite sum that we bound using analytic estimates. Finally, in
Section 2.3, we consider the case k 6∈ FM and derive a uniform asymptotic bound for (7). Using
this uniform bound, the verification of the above mentioned contraction mapping theorem reduces
to a finite number of computations as is described in Section 3.

2.1 General Estimates

The goal of this section is to generalize the different one-dimensional estimates presented in [9, 2,
3, 8, 6] to the d-dimensional case. These new d-dimensional estimates are constructive and are
based on the rather sharp one-dimensional general estimates defined in [9]. These one-dimensional
estimates are presented in Appendix A. We present them because we introduce some modifications
(see Remark A.5) and also for the sake of completeness. Recalling the definition of α(n)

k from
Appendix A we define

α
(n)
k = α

(n)
k (s,M) :=

d∏
j=1

α
(n)
kj

(sj ,Mj). (8)

The following bounds are given in terms of regularity conditions on the solutions.

Lemma 2.1 (General estimates). Suppose there exist A1, A2, . . . , An such that for every j ∈
{1, . . . , n} and every k ∈ Zd, we have that ∣∣∣c(j)k

∣∣∣ ≤ Aj
ωs

k

, (9)
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Then, for any k ∈ Zd, we get that

∣∣∣(c(1) ∗ · · · ∗ c(n)
)

k

∣∣∣ ≤
 n∏
j=1

Aj

 α
(n)
k

ωs
k

. (10)

Proof. We have that

∣∣∣(c(1) ∗ · · · ∗ c(n)
)

k

∣∣∣ =

∣∣∣∣∣∣∣∣
∑

k1+···+kn=k

k1,...,kn∈Zd

c
(1)

k1 · · · c(n)
kn

∣∣∣∣∣∣∣∣ ≤
∑

k1+···+kn=k

k1,...,kn∈Zd

A1

ωs
k1

· · · An
ωs

kn

=

 n∏
j=1

Aj


 ∑

k1+···+kn=k

k1,...,kn∈Zd

1
ωs

k1 · · ·ωs
kn



=

 n∏
j=1

Aj


 ∑

k1+···+kn=k

k1,...,kn∈Zd

d∏
j=1

1
ω
sj

k1
j
· · ·ωsj

kn
j



=

 n∏
j=1

Aj




d∏
j=1

∑
k1

j
+···+kn

j
=kj

k1
j ,...,k

n
j ∈Z

1
ω
sj

k1
j
· · ·ωsj

kn
j


≤

 n∏
j=1

Aj

 d∏
j=1

α
(n)
kj

ω
sj

kj

=

 n∏
j=1

Aj

 α
(n)
k

ωs
k

,

where the last inequality follows from Lemma A.4. �

2.2 Refinement for the Case k ∈ FM

We now present a possible refinement for the general bounds introduced in Section 2.1, by allowing
one to do explicit computations. Given sequences c(j) = {c(j)k }k∈Zd we define c(j)FM

, the finite part of
c(j), component-wise by (

c
(j)
FM

)
k

=

{
c
(j)
k , if k ∈ FM

0, if k 6∈ FM

and consider the splitting(
c(1) ∗ · · · ∗ c(n)

)
k

=
(
c
(1)
FM
∗ · · · ∗ c(n)

FM

)
k

+
∑

k1+···+kn=k

{k1,...,kn}6⊂FM

c
(1)

k1 · · · c(n)
kn , (11)

where the first term is a finite convolution sum and is explicitly computed using the Fast Fourier
Transform (FFT) algorithm and interval arithmetic as described in [8]. We use the following results
to bound the infinite sum in the splitting above. Recalling the definition of ε(n)

k in (42) from
Appendix A we define

ε
(n)
k = ε

(n)
k (s,M) :=

α
(n)
k

ωs
k

max
j=1,...,d

 ω
sj

kj

α
(n)
kj

(sj ,Mj)
ε

(n)
kj

(sj ,Mj)

 . (12)
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Lemma 2.2. Given k ∈ FM and assuming that the regularity condition (9) is satisfied, we have∣∣∣∣∣∣∣∣
∑

k1+···+kn=k

{k1,...,k`}6⊂FM

c
(1)

k1 · · · c(n)
kn

∣∣∣∣∣∣∣∣ ≤ `
 n∏
j=1

Aj

 ε
(n)
k .

Proof. We have that∣∣∣∣∣∣∣∣
∑

k1+···+kn=k

{k1,...,k`}6⊂FM

c
(1)

k1 · · · c(n)
kn

∣∣∣∣∣∣∣∣ ≤
 n∏
j=1

Aj

 ∑
k1+···+kn=k

{k1,...,k`}6⊂FM

1
ωs

k1

· · · 1
ωs

kn

≤ `

 n∏
j=1

Aj

 ∑
k1+···+kn=k

k1 6∈FM

1
ωs

k1

· · · 1
ωs

kn

≤ `

 n∏
j=1

Aj

 max
j0=1,...,d




d∏

j=1
j 6=j0

∑
k1

j
+···+kn

j
=kj

k1
j ,...,k

n
j ∈Z

1
ω
sj

k1
j
· · ·ωsj

kn
j


∑

k1
j0

+···+kn
j0

=kj0
k1

j0
6∈FMj0

1
ω
sj0
k1

j0
· · ·ωsj0

kn
j0


≤ `

 n∏
j=1

Aj

 max
j0=1,...,d


 d∏

j=1
j 6=j0

α
(n)
kj

ω
sj

kj

 ε
(n)
kj0


= `

 n∏
j=1

Aj

α(n)
k

ωs
k

max
j=1,...,d

 ω
sj

kj

α
(n)
kj

ε
(n)
kj

 = `

 n∏
j=1

Aj

 ε
(n)
k ,

where the last two inequalities follow from Lemma A.4 and Corollary A.6, respectively. �

Corollary 2.3. Given k ∈ FM and assuming that the regularity condition (9) is satisfied, we have

∣∣∣(c(1) ∗ · · · ∗ c(n)
)

k

∣∣∣ ≤ ∣∣∣(c(1)
FM
∗ · · · ∗ c(n)

FM

)
k

∣∣∣+ n

 n∏
j=1

Aj

 ε
(n)
k .

Proof. The result immediately follows from the splitting (11) and Lemma 2.2. �

2.3 Uniform Estimate for the Case k /∈ FM

In this section we present a uniform estimate for the case k 6∈ FM . For M ∈ N, with M ≥ 6 and
s ≥ 2 we define

α̃
(n)
M = α̃

(n)
M (s,M) := max

{
α

(n)
k (s,M) | k = 0, . . . ,M

}
,

and then

α̃
(n)
M = α̃

(n)
M (s,M) := max

j0=1,...,d

α(n)
Mj0

(sj0 ,Mj0)
d∏

j=1
j 6=j0

α̃
(n)
Mj

(sj ,Mj)

 . (13)

We then have the following lemma.
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Lemma 2.4. Given k 6∈ FM and assuming that the regularity condition (9) is satisfied, we have

∣∣∣(c(1) ∗ · · · ∗ c(n)
)

k

∣∣∣ ≤
 n∏
j=1

Aj

 α̃
(n)
M

ωs
k

. (14)

Proof. Since k 6∈ FM , there exists j0 ∈ {1, . . . , d} such that |kj0 | ≥ Mj0 . From Remark A.1, this
implies that α(n)

kj0
≤ α(n)

Mj0
, and therefore

α
(n)
k = α

(n)
kj0

d∏
j=1
j 6=j0

α
(n)
kj
≤ α(n)

Mj0

d∏
j=1
j 6=j0

α̃
(n)
Mj
≤ α̃(n)

M .

The result then follows from the general estimates given by (10). �

3 Rigorous Continuation and Radii Polynomials

Using the general analytic estimates for discrete convolution sums introduced in the previous sec-
tions, we can generalize the ideas from the validated continuation method [9, 10, 3, 8, 11] to the
context of proving rigorously the existence of equilibria of PDEs defined on d-dimensional domains.
We refer to this as rigorous continuation. The essential ingredient of this method is the construction
of the radii polynomials. Their construction combines the analytic estimates introduced in Section 2
with a computational version of the Banach Fixed Point Theorem applied to subsets of Xs (see
Lemma 3.3). Hence, the fact that Xs is a Banach space is crucial. The proof of the following is
standard and it is omitted.

Lemma 3.1. Xs = {x | ‖x‖s <∞} is a Banach space.

As mentioned in Section 1, we transform the problem of looking for equilibrium solutions of (2)
into the equivalent problem (5). The two problems are equivalent under regularity assumptions on
the solution of the PDE. The following lemma makes this precise.

Lemma 3.2. Assume the following regularity condition on the solutions of (2): If

u =
∑

k∈Zd

ckψk (15)

is a solution of (2) in H, then c = {ck}k∈Zd ∈ Xs.
Under this assumption and assuming that {‖ψk‖}k∈Zd is a bounded sequence, finding equilibrium

solutions of (2) in H is equivalent to finding solutions of (5) in Xs.

Proof. Assume that u is an equilibrium solution of (2) in H. Since u ∈ H, it is given by (15) with
ck := 〈u,ψk〉

‖ψk‖2 . Since by assumption c = {ck}k∈Zd ∈ Xs, then from the construction in Section 1 it is
a solution of (5).

For the reciprocal, assume that c ∈ Xs a solution of (5). Since the sequence {‖ψk‖}k∈Zd is
bounded, we can assume without loss of generality that {ψk}k∈Zd is an orthonormal basis. We have
that ωs

k|ck| ≤ ‖c‖s <∞, which implies that

∑
k∈Zd

|ck|2 ≤ ‖c‖2s
∑

k∈Zd

(1/ωs
k)2 ≤ ‖c‖2s

α
(2)
0

ωs
0

<∞,
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where the second inequality follows from Lemma 2.1. Therefore the series (15) converges and we
can use it to define u. Combining Lemma 2.1 and the fact that c is a solution of (5), there exists a
positive constant D such that

|µkck| =

∣∣∣∣∣∣∣∣
p∑

n=2

qn
∑

k1+···+kn=k

kj∈Zd

ck1 · · · ckn

∣∣∣∣∣∣∣∣ ≤
D

ωs
k

,

for every k ∈ Zd. We then have that

∑
k∈Zd

|µkck|2 =
∑

k∈Zd

∣∣∣∣∣∣∣∣
p∑

n=2

qn
∑

k1+···+kn=k

kj∈Zd

ck1 · · · ckn

∣∣∣∣∣∣∣∣
2

≤ D2
∑

k∈Zd

(1/ωs
k)2 <∞.

This implies that ∑
k∈Zd

µkckψk

and ∑
k∈Zd

 p∑
n=2

qn
∑

k1+···+kn=k

kj∈Zd

ck1 · · · ckn

ψk

converge, and therefore u is in the domain of L. Therefore, from the construction in Section 1, u is
obviously a equilibrium solution of (2) in H. �

From now on, we assume that finding zeros of (5) is equivalent to finding equilibria of (2). To
study problem (5) in the context of one dimensional domains, the notion of validated continuation
was introduced in [3]. Using ideas from this method, we now introduce a rigorous continuation
method to prove existence and local uniqueness of equilibria of PDEs defined on d-dimensional
domains. The basic idea of the method is to find first a numerical approximation for a zero of (5),
then use this approximation to transform (5) into an equivalent fixed point problem, and finally use
this fixed point problem to prove the existence and local uniqueness of an equilibrium in a small
neighborhood of the initially computed approximation. In order to compute the initial numerical
approximation we first need to reduce the infinite dimensional problem (5) to a finite dimensional
one. This is obtained by means of a Galerkin projection.

Given x = {xk}k∈Zd we denote its finite part of size m and its corresponding infinite part
respectively by xFm

:= {xk}k∈Fm
and xIm

:= {xk}k 6∈Fm
. Now consider a Galerkin projection of (5)

of dimension m given by f (m) := {f (m)
k }k∈Fm

, where f (m)
k : Rm1···md × R→ R, is given by

f
(m)
k (xFm

, λ) := fk((xFm
, 0Im

), λ) = µkck +
p∑

n=2

qn
∑

k1+···+kn=k

kj∈Fm

ck1 · · · ckn , (16)

for k ∈ Fm. Now suppose that at the parameter value λ0, we numerically find x̄Fm
such that

f (m)(x̄Fm
, λ0) ≈ 0. Defining x̄ := (x̄Fm

, 0Im
) ∈ Xs we assume that f(x̄, λ0) ≈ 0 and use x̄ to

define a fixed point problem equivalent to (5). For this purpose, assume that the Jacobian matrix
Df (m)(x̄Fm , λ0) is non-singular and let J−1

m be an approximation for its inverse. In the applications
in this paper we take J−1

m to be a numerical approximation for the inverse of Df (m)(x̄Fm , λ0), but
in principle it could be any approximation. The only requirement is that J−1

m is non-singular.

8



We then define the linear operator J−1 on sequence spaces, which acts as an approximation for
the inverse of Df(x̄, λ0). Where, for x = {xk}k∈Zd , it is defined component-wise by

[
J−1(x)

]
k

:=


[
J−1

m (xFm
)
]

k
, if k ∈ Fm

µ−1
k xk, if k 6∈ Fm.

Using the above we define
T (x) = Tλ0(x) := x− J−1f(x, λ0).

We want to uniquely enclose fixed points of T into closed balls B(x̄, r) in Xs centered at x̄. One
can easily check that the closed ball of radius r in Xs, centered at the origin, is given by

B(r) := B(0, r) =
∏

k∈Zd

[
− r

ωs
k

,
r

ωs
k

]
.

The closed ball of radius r centered at x̄ is

B(x̄, r) = x̄+B(r).

As proved in Lemma 3.3, to show that T is a contraction mapping, we need bounds Yk and Zk for
all k ∈ Zd, such that ∣∣∣[T (x̄)− x̄

]
k

∣∣∣ ≤ Yk, (17)

and
sup

b,c∈B(r)

∣∣∣[DT (x̄+ b)c
]
k

∣∣∣ ≤ Zk. (18)

The following Lemma is very similar to Theorem 2.1 in [7], but the Banach space Xs involved in
the proof is different. Hence, we decide here to present the proof for sake of completeness.

Lemma 3.3. Fix the parameter value λ = λ0. If there exists r > 0 such that

‖Y + Z‖s < r, (19)

with Y := {Yk}k∈Zd and Z := {Zk}k∈Zd , satisfying (17) and (18), respectively, then there is a
unique x̃ ∈ B(x̄, r) such that f(x̃, λ0) = 0. Moreover, x̃ is in the interior of B(x̄, r).

Proof. For given k ∈ Zd and x, y ∈ B(x̄, r), by the Mean Value Theorem, we have that

Tk(x)− Tk(y) = DTk(z)(x− y)

for some z ∈ {tx+ (1− t)y | t ∈ [0, 1]} ⊂ B(x̄, r). Then

∣∣Tk(x)− Tk(y)
∣∣ =

∣∣∣∣DTk(z)
r(x− y)
‖x− y‖s

∣∣∣∣ 1
r
‖x− y‖s ≤

Zk

r
‖x− y‖s, (20)

and so ∣∣Tk(x)− x̄k

∣∣ ≤ ∣∣Tk(x)− Tk(x̄)
∣∣+
∣∣Tk(x̄)− x̄k

∣∣ ≤ Zk + Yk.

Hence,
‖T (x)− x̄‖s = sup

k∈Zd

ωs
k

∣∣Tk(x)− x̄k

∣∣ ≤ sup
k∈Zd

ωs
k

∣∣Zk + Yk

∣∣ = ‖Y + Z‖s < r. (21)

This implies that T (x) ∈ B(x̄, r) and hence that T maps B(x̄, r) into itself. From (20) we also get
that

‖T (x)− T (y)‖s = sup
k∈Zd

ωs
k

∣∣Tk(x)− Tk(x)
∣∣ ≤ (‖Z‖s/r)‖x− y‖s,

9



and since Yk ≥ 0 and Zk ≥ 0, it follows that ‖Z‖s ≤ ‖Y + Z‖s < r. We therefore have that the
Lipschitz constant of T on B(x̄, r) can be estimated above by ‖Z‖s/r < 1, and so T is a contraction
mapping. Since the operator J−1 is invertible, zeros of f correspond to fixed points of T . An
application of the Banach Fixed Point Theorem yields the existence of a unique x̃ ∈ B(x̄, r) such
that T (x̃) = x̃ or equivalently that f(x̃, λ0) = 0. By (21), x̃ is in the interior of B(x̄, r). �

In order to compute the upper bounds Yk and Zk we choose M ∈ Nd such that M ≥ p(m−1)+1
component-wise, that is,

Mj ≥ p(mj − 1) + 1

for all 1 ≤ j ≤ d, where p is the degree of the polynomial nonlinearity in (2). We have that
T (x̄) − x̄ = −J−1f(x̄, λ0). Since x̄ is such that x̄k = 0 for k 6∈ Fm we get that fk(x̄, λ0) = 0 for
every k 6∈ FM . Hence we define Y = {Yk}k∈Zd as

Yk :=


[
|J−1

m f (m)(x̄Fm , λ0)|
]
k
, if k ∈ Fm

|µ−1
k fk(x̄, λ0)|, if k ∈ FM \ Fm

0, if k 6∈ FM

Rather than give general formulas for the upper bounds Zk, we show explicitly in Section 4 how
to compute them for the case of a cubic nonlinearity. However, Lemma 3.4 shows that, as for Yk,
we can find a uniform upper bound for all k 6∈ FM , and hence only need to compute with Zk for
k ∈ FM . In order to define this upper bound, we first derive a general formula for [DT (x̄ + b)c]k
with k 6∈ Fm. Using the notation[

(x̄+ b)n−1 ∗ c
]

k
:=

∑
k1+···+kn=k

kj∈Zd

(x̄+ b)k1 · · · (x̄+ b)kn−1ckn

we have that [
Df(x̄+ b, λ0)c

]
k

= µkck +
p∑

n=2

nqn
[
(x̄+ b)n−1 ∗ c

]
k
,

where µk = µk(λ0). Now assuming that k 6∈ Fm and setting b = ru and c = rv, for u, v ∈ B(1), we
get, by the Binomial Theorem, that

[
DT (x̄+ b)c

]
k

= − 1
µk

p∑
n=2

nrqn
[
(x̄+ ru)n−1 ∗ v

]
k

= − 1
µk

p∑
n=2

nrqn

n−1∑
j=0

(
n− 1
j

)
rj
[
x̄n−1−j ∗ uj ∗ v

]
k

. (22)

Lemma 3.4. Assume there is a uniform lower bound

µ̃M ≤ |µk|, for all k 6∈ FM . (23)

Then we can find a uniform upper bound Z̃M , independent of k, such that

sup
b,c∈B(r)

∣∣∣[DT (x̄+ b)c
]
k

∣∣∣ ≤ r

ωs
k

Z̃M for all k 6∈ FM .

Proof. Notice that ∣∣x̄k

∣∣ ≤ ‖x̄‖s
ωs

k

10



for all k ∈ Zd. Applying Lemma 2.4 to equation (22), for k 6∈ FM , we get

∣∣∣[DT (x̄+ b)c
]
k

∣∣∣ ≤ r

ωs
k

1
|µk|

p∑
n=2

n|qn|

n−1∑
j=0

(
n− 1
j

)
‖x̄‖n−1−j

s α̃
(n)
M rj


≤ r

ωs
k

1
µ̃M

p∑
n=2

n|qn|

n−1∑
j=0

(
n− 1
j

)
‖x̄‖n−1−j

s α̃
(n)
M rj

.
Defining

Z̃M :=
1
µ̃M

p∑
n=2

n|qn|

n−1∑
j=0

(
n− 1
j

)
‖x̄‖n−1−j

s α̃
(n)
M rj

 (24)

we get the result. �

Using the above we define for {Zk}k 6∈FM
by

Zk :=
r

ωs
k

Z̃M . (25)

Notice that Z̃M is a polynomial in r, independent of k. To define {Zk}k∈FM
, which are also

polynomials in r, we need to compute upper bounds for
∣∣[DT (x̄+ b)c

]
k

∣∣. This is done for the case
of a cubic nonlinearity in Section 4. In order to verify the existence of a radius r satisfying the
hypothesis (19), we introduce the following polynomials.

Definition 3.5. We define the finite radii polynomials {pk(r)}k∈FM
by

pk(r) := Yk + Zk −
r

ωs
k

, (26)

and the tail radii polynomial by
p̃M (r) := Z̃M − 1. (27)

Corollary 3.6. Assume that condition (23) in Lemma 3.4 is satisfied and consider the radii poly-
nomials {pk}k∈FM

and p̃M given by (26) and (27), respectively. If there exists r > 0 such that
pk(r) < 0 for all k ∈ FM and p̃M (r) < 0, then there is a unique x̃ ∈ B(x̄, r) such that f(x̃, λ0) = 0.
Moreover, x̃ is in the interior of B(x̄, r).

Proof. For k ∈ FM , notice that pk(r) < 0 implies that

ωs
k

∣∣Yk + Zk

∣∣ < r.

For k 6∈ FM , since Yk = 0 and p̃M (r) < 0, we get that

ωs
k

∣∣Yk + Zk

∣∣ = ωs
kZk = rZ̃M < r.

Therefore we have

‖Y + Z‖s = sup
k∈Zd

ωs
k

∣∣Yk + Zk

∣∣ = max
{

max
k∈FM

{
ωs

k

∣∣Yk + Zk

∣∣} , rZ̃M

}
< r.

The result then follows from Lemma 3.3. �
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Rigorous continuation is based on a classical predictor-corrector continuation algorithm [12]:
given, within a prescribed tolerance, a solution u0 at parameter value λ0, the predictor step produces
an approximate equilibrium ũ1 at nearby parameter value λ1, and the corrector step, often based
on a Newton-like operator, takes ũ1 as its input and produces, once again within the prescribed
tolerance, a solution u1 at λ1. Hence, at every step of the continuation algorithm, we build the radii
polynomials defined by (26) and (27) and look for the existence of r > 0 such that pk(r) < 0 for
all k ∈ FM and p̃M (r) < 0. If we are successful at a given step, we obtain a proof of existence
and local uniqueness of a true equilibrium solution for the original PDE (1), and then we continue
to the next step. It is worth pointing out that the computation of the solutions and of the radius
r are done using standard numerical methods. Only the computation of the coefficients of the
radii polynomials and the check of the polynomial inequalities is made rigorous by using interval
arithmetic. This procedure hence yields a computer-assisted proof of existence of solutions. We
call this procedure rigorous continuation for equilibria of PDEs defined on d-dimensional spatial
domains. It is important to note that the main difficulty in the construction of the radii polynomials
is to compute the upper bounds Zk.

4 Radii Polynomials for Cubic Nonlinearity

In this section we derive the formulas for the radii polynomials for the case of a cubic nonlinearity,
that is, for f of the form

fk(x, λ) := µkxk + q3

∑
k1+k2+k3=k

kj∈Zd

xk1xk2xk3 . (28)

In order to compute Zk it is convenient to denote J̃m := Df (m)(x̄Fm
, λ0) and introduce the operator

[
J̃(x)

]
k

:=


[
J̃m(xFm

)
]

k
, if k ∈ Fm

µkxk, if k 6∈ Fm,

which acts as an approximate inverse for the operator J−1. We then split DT (x̄+ b)c as follows

DT (x̄+ b)c =
(
I − J−1J̃

)
c− J−1

(
Df(x̄+ b, λ0)− J̃

)
c, (29)

where the first term is very small for k ∈ Fm, and is zero for k 6∈ Fm. For k ∈ Fm we have the
bounds ∣∣∣[(I − J−1J̃

)
c
]

k

∣∣∣ ≤ r [∣∣∣I − J−1
m Df (m)(x̄Fm , λ0)

∣∣∣ω−s
Fm

]
k

=: rZ(0)
k ,

where ω−s
Fm

:= {1/ωs
k}k∈Fm

, and | · | represents component-wise absolute values. As for the second
term in (29), we have that[

Df(x̄+ b, λ0)c
]
k

= µkck + 3q3

[
x̄2 ∗ c+ 2x̄ ∗ b ∗ c+ b2 ∗ c

]
k
,

and

[
J̃c
]
k

=


µkck + 3q3

∑
k1+k2+k3=k

kj∈Fm

x̄k1 x̄k2ck3 , for k ∈ Fm

µkck, for k 6∈ Fm.

We now consider u, v ∈ B(1) defined by b = ru and c = rv so that we can expand the expression[(
Df(x̄+ b, λ0)− J̃

)
c
]
k

in terms of r as[(
Df(x̄+ b, λ0)− J̃

)
c
]

k
= 3q3

(
C

(1)
k r + 2C(2)

k r2 + C
(3)
k r3

)
,
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where

C
(1)
k :=



∑
k1+k2+k3=k

k1,k2∈Fm, k3 6∈Fm

x̄k1 x̄k2vk3 , for k ∈ Fm

∑
k1+k2+k3=k

k1,k2∈Fm, k3∈Zd

x̄k1 x̄k2vk3 , for k 6∈ Fm,

C
(2)
k :=

∑
k1+k2+k3=k

k1∈Fm, k2,k3∈Zd

x̄k1uk2vk3 , and C
(3)
k :=

∑
k1+k2+k3=k

kj∈Zd

uk1uk2vk3 .

We now want to find upper bounds Z(1)
k , Z(2)

k and Z(3)
k so that |C(j)

k | ≤ Z
(j)
k , for j = 1, 2, 3. Consider

the splitting

C
(1)
k =



∑
k1+k2+k3=k

k1,k2∈Fm, k3∈FM\Fm

x̄k1 x̄k2vk3 +
∑

k1+k2+k3=k

k1,k2∈Fm, k3 6∈FM

x̄k1 x̄k2vk3 , for k ∈ Fm

∑
k1+k2+k3=k

k1,k2∈Fm, k3∈FM

x̄k1 x̄k2vk3 +
∑

k1+k2+k3=k

k1,k2∈Fm, k3 6∈FM

x̄k1 x̄k2vk3 , for k 6∈ Fm.

Using Lemma 2.2 for k ∈ FM we set

Z
(1)
k :=



∑
k1+k2+k3=k

k1,k2∈Fm, k3∈FM\Fm

|x̄k1 ||x̄k2 |(1/ωs
k3) + ‖x̄‖2sε(3)

k , for k ∈ Fm

∑
k1+k2+k3=k

k1,k2∈Fm, k3∈FM

|x̄k1 ||x̄k2 |(1/ωs
k3) + ‖x̄‖2sε(3)

k , for k ∈ FM \ Fm.

For C(2)
k and C

(3)
k we consider the splittings

C
(2)
k =

∑
k1+k2+k3=k

k1∈Fm, k2,k3∈FM

x̄k1uk2vk3 +
∑

k1+k2+k3=k

k1∈Fm, {k2,k3}6⊂FM

x̄k1uk2vk3 ,

and
C

(3)
k =

∑
k1+k2+k3=k

kj∈FM

uk1uk2vk3 +
∑

k1+k2+k3=k

{k1,k2,k3}6⊂FM

uk1uk2vk3 .

We again use Lemma 2.2 for k ∈ FM to set

Z
(2)
k :=

∑
k1+k2+k3=k

k1∈Fm, k2,k3∈FM

|x̄k1 |(1/ωs
k2)(1/ωs

k3) + 2‖x̄‖sε(3)
k , for k ∈ FM ,

and
Z

(3)
k :=

∑
k1+k2+k3=k

kj∈FM

(1/ωs
k1)(1/ωs

k2)(1/ωs
k3) + 3ε(3)

k , for k ∈ FM .

Finally, using (25) for the case k 6∈ FM , we have

Zk :=



3|q3|
[∣∣J−1

m

∣∣ (Z(1)
Fm

r + 2Z(2)
Fm

r2 + Z
(3)
Fm

r3
)]

k
+ Z

(0)
k r, for k ∈ Fm

3|q3||µ−1
k |
(
Z

(1)
k r + 2Z(2)

k r2 + Z
(3)
k r3

)
, for k ∈ FM \ Fm

r

ωs
k

Z̃M , for k 6∈ FM ,
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where Z̃M , defined in (24), is given by

Z̃M =
1
µ̃M

3|q3|
(
‖x̄‖2sα̃(3)

M + 2‖x̄‖sα̃(3)
M r + α̃

(3)
M r2

)
.

We then have that the radii polynomials, defined in Definition 3.5, for the general cubic problem
(28) are given, for k ∈ Fm, by

pk(r) = Yk +
(
Z

(0)
k + 3|q3|

[∣∣J−1
m

∣∣Z(1)
Fm

]
k
− 1/ωs

k

)
r+(

6|q3|
[∣∣J−1

m

∣∣Z(2)
Fm

]
k

)
r2 +

(
3|q3|

[∣∣J−1
m

∣∣Z(3)
Fm

]
k

)
r3,

for k ∈ FM \ Fm, by

pk(r) = Yk +

(
3|q3|Z(1)

k

|µk|
− 1
ωs

k

)
r +

6|q3|Z(2)
k

|µk|
r2 +

3|q3|Z(3)
k

|µk|
r3,

and finally,

p̃M (r) =
3|q3|α̃(3)

M

µ̃M
r2 +

6|q3|‖x̄‖sα̃(3)
M

µ̃M
r +

3|q3|‖x̄‖2sα̃(3)
M

µ̃M
− 1. (30)

Remark 4.1. Note that p̃M , given by (30), always has two distinct real roots, since its discriminant

equals 12|q3|α̃(3)
M

µ̃M
> 0. Hence, the only way we could fail to find a positive r such that p̃M (r) < 0 is

if 3|q3|‖x̄‖2sα̃
(3)
M

µ̃M
− 1 ≥ 0. In practice, before starting the rigorous numerical computations of the radii

polynomials, we check if
3|q3|‖x̄‖2sα̃(3)

M

µ̃M
< 1. (31)

If condition (31) is not satisfied, we a priori know that the proof fails. Hence, we need to increase the
value of µ̃M , which, as shown in Section 5, can be done by increasing the computational parameter
M .

5 Applications

In this section we present applications to the Cahn-Hilliard and the Swift-Hohenbergh PDEs defined
on two- and three-dimensional domains. For all the examples in this section we arbitrarily choose
an interval for the continuation parameter and compute all the solutions bifurcating from the trivial
solution along that parameter interval. We then follow each branch of solutions for several steps
until the running time of the computations reaches a fixed maximum allowed time. No attempt is
made to compute the complete bifurcation diagram for the given PDE, nor to continue the solution
branches for larger values of the continuation parameter, since the goal is to show the applicability
of the method.

For all the computations in this section we use the projection dimension m, the computational
parameter M , and the decay rate s uniform component-wise, that is, we use m = (m, . . . ,m),
M = (M, . . . ,M), and s = (s, . . . , s). In all the computations we use the projection dimension
m = 8 along the trivial branch u ≡ 0 and m = 8 to start the branches bifurcating from this trivial
branch. At each step of the continuation algorithm if the proof is successful we proceed to the next
step along the branch using the same projection dimension. If, on a given step, the proof fails we
increase the projection dimension m by one, recompute the solution at that step and try to prove
existence again. We then repeat this process for all the steps in the computations. Using this
approach we proved the existence of all solutions presented in this section.
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As for the computational parameters M and s, we choose them either arbitrarily or based on
experimentation. For the computations in this paper we choose M as the smallest integer such that
M ≥ 3m− 2 and that condition (31) is satisfied.

5.1 Cahn-Hilliard Equation

In this section we apply rigorous continuation to the Cahn-Hilliard equationut = −∆(ε2∆u+ u− u3), in Ω
∂u

∂n
=
∂∆u
∂n

= 0, on ∂Ω
(32)

where Ω ⊂ Rd is a bounded rectangular domain, ε > 0 models the interaction length, and n denotes
the unit outer normal to ∂Ω, that is, we have no-flux boundary conditions for both u and ∆u.
Equation (32) was introduced in [13, 14, 15] as a model for phase separation in binary alloys. The
model is mass preserving, meaning that, for any solution u, the total mass

σ :=
1
|Ω|

∫
Ω

u(y, t)dy

remains constant for all t ≥ 0, which introduces the additional parameter σ. The equilibria of (32)
are given by the solutions of ε

2∆u+ u− u3 = c in Ω
∂u

∂n
= 0 on ∂Ω

which introduce yet another parameter

c :=
1
|Ω|

∫
Ω

(
u(y)− u(y)3

)
dy.

In this paper we assume that both alloys have equal concentrations, which means that the total
mass is equal to zero. We also consider only the case c = 0. In this case, studying the equilibria of
(32) is equivalent to studying the equilibria of the Allen-Cahn equation [16]ut = ε2∆u+ u− u3, in Ω

∂u

∂n
= 0, on ∂Ω.

(33)

Due to the Neumann boundary conditions, if we consider the domain as

Ω =
d∏
j=1

[0, `j ],

we can express the solutions in terms of a cosine basis {ψk}k∈Nd given by

ψk(y) :=
d∏
j=1

cos(kjLjyj),

where Lj = π/`j , for j = 1, . . . , d. Notice that we only need to consider the basis elements for k ≥ 0.
However, if we use the expansion

u =
∑

k∈Zd

akψk
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with the assumption that a|k| = ak for k ∈ Zd, then the expansion of (33) takes the form

fk(a, λ) := µkak −
∑

k1+k2+k3=k

kj∈Zd

ak1ak2ak3 ,

where
µk = 1− 1

λ

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
,

with λ = 1/ε2, and we have that f|k| = fk, for all k ∈ Zd. Therefore, we only need to solve fk = 0
for k ≥ 0. The remaining quantity needed to construct the radii polynomials of Section 4 is µ̃M

satisfying (23).

Lemma 5.1 (Construction of µ̃M > 0). Assuming that

min
1≤j≤d

{
M2
j L

2
j

}
> λ, (34)

and defining

µ̃M :=
1
λ

min
1≤j≤d

{
M2
j L

2
j

}
− 1 > 0, (35)

we have that
|µk| ≥ µ̃M , for all k 6∈ FM .

Proof. Given k 6∈ FM , there exists 1 ≤ j0 ≤ d such that kj0 ≥Mj0 , then

1
λ

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
≥ 1
λ

(
M2
j0L

2
j0

)
≥ 1
λ

min
1≤j≤d

{
M2
j L

2
j

}
> 1,

where the last inequality follows from (34). Therefore we have

|µk| =
1
λ

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
− 1 ≥ 1

λ
min

1≤j≤d

{
M2
j L

2
j

}
− 1 = µ̃M . �

Remark 5.2. Notice that we can always ensure that condition (34) is satisfied by taking M large
enough.

We present some results for the Cahn-Hilliard equation in a two-dimensional rectangle in Figure 1
and Figure 2, and in a three-dimensional rectangle in Figure 3 and Figure 4.

5.2 Swift-Hohenberg Equation

In this section we consider the Swift-Hohenberg equation

ut = νu− (1 + ∆)2u− u3 (36)

with periodic boundary conditions on a rectangular bounded domain Ω ⊂ Rd. Equation (36) was
introduced in [17] to describe the onset of Rayleigh-Bénard convection, and is widely used as a model
for pattern formation. The parameter ν > 0 is the reduced Rayleigh number. In addition to the
periodic boundary conditions, we assume the following symmetry conditions

u(y, t) = u(|y|, t), (37)

for all x ∈ Rd, where |y| := (|y1|, . . . , |yd|). This means that we are looking for solutions of (36)
that are even and periodic in each of the space variables. Due to this symmetry and the boundary
conditions, if we take the domain as

Ω =
d∏
j=1

[0, `j ],
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Figure 1: Some branches of equilibria for the Cahn-Hilliard equation in the 2D domain Ω = [0, π]×
[0, π/1.1]. We refer to these branches as branch 1 through branch 6 according to the labels above.
For λ = 1/ε2 in the interval [11, 19.5] all the bifurcations from the trivial solution are computed.
They occur at λ ≈ 11.89, 13.84, 14.89, 16, 17.21, and 19.36. The proof was successful for all the
points in each of the branches in the plot with s = 2.

Figure 2: Solutions for the Cahn-Hilliard equation in 2D. Plotted are the solutions corresponding
to the last point of the respective branches in Figure 1. Plot (1) corresponds to the branch 1 and
is computed using m = 28 and M = 1090; (2) corresponds to the branch 2 and is computed using
m = 38 and M = 1352; (3) corresponds to the branch 3 and is computed using m = 38 and
M = 1400; (4) corresponds to the branch 4 and is computed using m = 13 and M = 1355; (5)
corresponds to the branch 5 and is computed using m = 15 and M = 1111; and (6) corresponds to
the branch 6 and is computed using m = 13 and M = 1387.
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Figure 3: Some branches of equilibria for the Cahn-Hilliard equation in the 3D domain Ω = [0, π]×
[0, π/1.001]× [0, π/1.002]. We refer to these branches as branch 1 through branch 7 according to the
labels above. For λ = 1/ε2 in the interval (0, 3.5] all the bifurcations from the trivial solution are
computed. They occur at λ ≈ 1, 1.002, 1.004, 2.002, 2.004, 2.006, and 3.006. For all the points in
each of the branches in the plot, the proof was successful using s = 2.

we can expand the solutions using a cosine basis {ψk}k∈Nd given by

ψk(y) :=
d∏
j=1

cos(kjLjyj),

where Lj = 2π/`j , for j = 1, . . . , d. As in the previous section, we only need to consider the basis
elements for k ≥ 0. However, if we use the expansion

u =
∑

k∈Zd

akψk

with the assumption that a|k| = ak for k ∈ Zd, then the expansion of (36) takes the form

fk(a, λ) := µkak −
∑

k1+k2+k3=k

kj∈Zd

ak1ak2ak3 ,

where
µk = λ−

[
1−

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)]2
,

with λ = ν, and f|k| = fk, for all k ∈ Zd. Therefore, we only need to solve fk = 0 for k ≥ 0. As in
Section 5.1, we need to compute µ̃M satisfying (23).

Lemma 5.3 (Construction of µ̃M > 0). Assuming that

min
1≤j≤d

{
M2
j L

2
j

}
> 1 +

√
λ, (38)
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Figure 4: Solutions for the Cahn-Hilliard equation in 3D. Plotted are isosurfaces of the solutions
corresponding to the last point of the respective branches in Figure 3. Plot (1) corresponds to the
branch 1 and is computed using m = 8 and M = 218; (2) corresponds to the branch 2 and is
computed using m = 8 and M = 218; (3) corresponds to the branch 3 and is computed using m = 8
and M = 212; (4) corresponds to the branch 4 and is computed using m = 8 and M = 182; (5)
corresponds to the branch 5 and is computed using m = 8 and M = 176; (6) corresponds to the
branch 6 and is computed using m = 8 and M = 176; and (7) corresponds to the branch 7 and is
computed using m = 8 and M = 170.
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and defining

µ̃M :=
[

min
1≤j≤d

{
M2
j L

2
j

}
− 1
]2

− λ > 0, (39)

we have that
|µk| ≥ µ̃M , for all k 6∈ FM .

Proof. Given k 6∈ FM , there exists 1 ≤ j0 ≤ d such that kj0 ≥Mj0 , then

k2
1L

2
1 + · · ·+ k2

dL
2
d ≥M2

j0L
2
j0 ≥ min

1≤j≤d

{
M2
j L

2
j

}
> 1,

which implies that [(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)
− 1
]2
≥
[

min
1≤j≤d

{
M2
j L

2
j

}
− 1
]2

> λ.

where the last inequality follows from (38). Therefore we conclude that

|µk| =
[
1−

(
k2

1L
2
1 + · · ·+ k2

dL
2
d

)]2
− λ ≥

[
1− min

1≤j≤d

{
M2
j L

2
j

}]2

− λ = µ̃M . �

Remark 5.4. Notice that, as for the Cahn-Hilliard equation, we can always ensure that condition
(38) is satisfied by increasing increasing M .

We present some results for the Swift-Hohenberg equation in a two-dimensional rectangle in
Figure 5 and Figure 6, and in a three-dimensional rectangle in Figure 7 and Figure 8.
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ν

‖u
‖

Figure 5: Some branches of equilibria for the Swift-Hohenberg equation in the 2D rectangle Ω =
[0, 2π]× [0, 2π/1.1]. We refer to these branches as branch 1 through branch 7 according to the labels
above. For ν in the interval [0, 20] all the bifurcations from the trivial solution are computed. They
occur at ν ≈ 0, 0.0441, 1, 1.4641, 9, 14.7456, and 17.7241. The proof was successful for all the points
in each of the branches in the plot using s = 2.
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Figure 6: Solutions for the Swift-Hohenberg equation in 2D. Plotted are the solutions corresponding
to the last point of the respective branches in Figure 5. Branch 3 corresponds to the trivial solution
u ≡
√
ν − 1, and hence is not plotted. Plot (1) corresponds to the branch 1 and is computed using

m = 24 and M = 72; (2) corresponds to the branch 2 and is computed using m = 8 and M = 24;
(4) corresponds to the branch 4 and is computed using m = 8 and M = 24; (5) corresponds to
the branch 5 and is computed using m = 8 and M = 38; (6) corresponds to the branch 6 and is
computed using m = 8 and M = 32; and (7) corresponds to the branch 7 and is computed using
m = 8 and M = 24.
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Figure 7: Some branches of equilibria for the Swift-Hohenberg equation in the 3D rectangle Ω =
[0, 2π]× [0, 2π/1.1]× [0, 2π/1.2]. We refer to these branches as branch 1 through branch 8 according
to the labels above. For ν in the interval [0, 8] all the bifurcations from the trivial solution are
computed. They occur at ν ≈ 0, 0.0441, 0.1936, 1, 1.4641, 2.0736, 2.7225, and 7.0225. The proof
was successful for all the points in each of the branches in the plot with s = 4.
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Figure 8: Solutions for the Swift-Hohenberg equation in 3D. Plotted are isosurfaces of the solutions
corresponding to the last point of the respective branches in Figure 5. Branch 4 corresponds to the
trivial solution u ≡

√
ν − 1. Plot (1) corresponds to the branch 1 and is computed using m = 8 and

M = 48; (2) corresponds to the branch 2 and is computed using m = 8 and M = 48; (3) corresponds
to the branch 3 and is computed using m = 14 and M = 42; (5) corresponds to the branch 5 and is
computed using m = 8 and M = 36; (6) corresponds to the branch 6 and is computed using m = 8
and M = 36; (7) corresponds to the branch 7 and is computed using m = 8 and M = 34; and (8)
corresponds to the branch 8 and is computed using m = 8 and M = 24.
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6 Conclusion

The emphasis of this paper is on the presentation of the analytic estimates and on the presentation of
a new rigorous continuation for equilibria of higher-dimensional PDEs. As already mentioned at the
beginning of Section 5, no attempts were made to do more extensive computations. We plan next to
use our method to analyze the bifurcation structure of the PDEs considered in this paper, as well as
other model problems. In addition to that, we propose to apply the theory introduced in [10] to the
computation of global smooth branches of equilibria of higher-dimensional PDEs. As a consequence
of such a rigorous computation, we would have results about non-existence of secondary bifurcations
from the rigorously computed smooth branches of equilibria. To the best of our knowledge this
would be the first time that such a method is presented in the context of nonlinear PDEs defined
on spatial domains higher than one.
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A One-dimensional Estimates

In this section we present the one-dimensional estimates from [9]. First, let us recall some quantities
introduced in [9]. Consider a decay rate s ≥ 2, a computational parameter M ≥ 6 and define, for
k ≥ 3,

γk = γk(s) := 2
[

k

k − 1

]s
+
[

4 ln(k − 2)
k

+
π2 − 6

3

] [
2
k

+
1
2

]s−2

. (40)

Then, for k ∈ Z, we define α(2)
k = α

(2)
k (s,M) by

α
(2)
k :=


4 + 1

22s−1(2s−1) , for k = 0

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+
∑k−1
k1=1

ks

ks
1(k−k1)s , for 1 ≤ k ≤M − 1

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+ γk, for k ≥M,

and for k < 0,
α

(2)
k := α

(2)
|k| .

We also define α(n)
k = α

(n)
k (s,M), for n ≥ 3, by

α
(n)
k :=



α
(n−1)
0 + 2

∑M−1
k1=1

α
(n−1)
k1
k2s
1

+ 2α
(n−1)
M

(M−1)2s−1(2s−1) , for k = 0

∑M−k−1
k1=1

α
(n−1)
k+k1

ks

ks
1(k+k1)s + α

(n−1)
M ks

[
1

(M−k)sMs + 1
(M−k)s−1(M+1)s(s−1)

]
+α(n−1)

k +
∑k−1
k1=1

α
(n−1)
k1

ks

ks
1(k−k1)s + α

(n−1)
0 +

∑M−1
k1=1

α
(n−1)
k1

ks

ks
1(k+k1)s

+ α
(n−1)
M

(M−1)s−1(s−1) , for 1 ≤ k ≤M − 1

α
(n−1)
M

[
2 + 1

2s + 1
3s + 1

3s−1(s−1) + 1
(M−1)s−1(s−1) + γk

]
+α(n−1)

0 +
∑M−1
k1=1

(
α

(n−1)
k1
ks
1

[
1 + Ms

(M−k1)s

])
, for k ≥M

and for k < 0,
α

(n)
k := α

(n)
|k| .
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Remark A.1. For any k ∈ Z with |k| ≥M ≥ 6, we have that α(n)
k ≤ α(n)

M .

Proof. For k ≥ 6, the fact that ln(k−1)
k+1 ≤ ln(k−2)

k implies that γk+1(s) ≤ γk(s). By definition of α(2)
k ,

for |k| ≥ M , one gets that α(2)
k ≤ α

(2)
M . The conclusion follows from the construction of α(n)

k , for
|k| ≥M . �

We also define the one-dimensional weights

ωsk :=

{
1, if k = 0
|k|s, if k 6= 0.

(41)

The goal is to find asymptotic bounds for infinite convolution sums of the form∑
k1+···+kn=k

kj∈Z

c
(1)
k1
· · · c(n)

kn
,

assuming that the sequences c(j) = {c(j)k }k∈Z have decay rates of the form∣∣∣c(j)k ∣∣∣ ≤ Aj
ωsk
.

First notice that ∣∣∣∣∣∣∣∣
∑

k1+···+kn=k

kj∈Z

c
(1)
k1
· · · c(n)

kn

∣∣∣∣∣∣∣∣ ≤
∑

k1+···+kn=k

kj∈Z

A1 · · ·An
ωsk1 · · ·ωskn

,

and ∑
k1+···+kn=−k

kj∈Z

1
ωsk1 · · ·ωskn

=
∑

k1+···+kn=k

kj∈Z

1
ωsk1 · · ·ωskn

.

Therefore for the rest of this section we just need to consider the cases k ∈ N, and sums of the form∑
k1+···+kn=k

kj∈Z

1
ωsk1 · · ·ωskn

.

Lemma A.2. For s ≥ 2 and k ≥ 4 we have
k−1∑
k1=1

ks

ks1(k − k1)2
≤ γk.

Proof. First observe that

k−1∑
k1=1

ks

ks1(k − k1)s
= 2

[
k

k − 1

]s
+ ks−1

k−2∑
k1=2

k

ks1(k − k1)s

= 2
[

k

k − 1

]s
+ ks−1

[
k−2∑
k1=2

k − k1

ks1(k − k1)s
+

k−2∑
k1=2

k1

ks1(k − k1)s

]

= 2
[

k

k − 1

]s
+ ks−1

[
k−2∑
k1=2

1
ks1(k − k1)s−1

+
k−2∑
k1=2

1
ks−1

1 (k − k1)s

]

= 2
[

k

k − 1

]s
+ 2

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

.
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Using the above we define

φ
(s)
k :=

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

=
1
2

k−2∑
k1=2

ks

ks1(k − k1)s
.

We then obtain the following recurrence inequality

φ
(s)
k =

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

= ks−2
k−2∑
k1=2

(k − k1) + k1

ks−1
1 (k − k1)s

=
1
k

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s−1

+
k−2∑
k1=2

ks−2

ks−2
1 (k − k1)s

≤ 1
k

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s−1

+
1
2

k−2∑
k1=2

ks−2

ks−2
1 (k − k1)s−1

=
[

2
k

+
1
2

]
φ

(s−1)
k .

Applying the above inequality s− 2 times we get

φ
(s)
k ≤ φ

(2)
k

[
2
k

+
1
2

]s−2

.

Also

φ
(2)
k =

k−2∑
k1=2

k

k1(k − k1)2
=

k−2∑
k1=2

1
k1(k − k1)

+
k−2∑
k1=2

1
(k − k1)2

=
1
k

[
k−2∑
k1=2

1
k1

+
k−2∑
k1=2

1
k − k1

]
+

k−2∑
k1=2

1
(k − k1)2

=
2
k

k−2∑
k1=2

1
k1

+
k−2∑
k1=2

1
k2

1

≤ 2
k

ln (k − 2) +
π2

6
− 1.

Using the above inequalities we get

k−1∑
k1=1

ks

ks1(k − k1)2
= 2

[
k

k − 1

]s
+ 2φ(s)

k ≤ 2
[

k

k − 1

]s
+ 2φ(2)

k

[
2
k

+
1
2

]s−2

≤ 2
[

k

k − 1

]s
+
[

4 ln (k − 2)
k

+
π2 − 6

3

] [
2
k

+
1
2

]s−2

= γk. �

Lemma A.3. Given s ≥ 2 and M ≥ 6, suppose there exist A1, A2 such that for every j ∈ {1, 2}
and every k ∈ Z, we have that

∣∣∣c(j)k ∣∣∣ ≤ Aj

ωs
k

. Then, for any k ∈ Z, we have that∣∣∣∣∣∣∣∣
∑

k1+k2=k

kj∈Z

c
(1)
k1
c
(2)
k2

∣∣∣∣∣∣∣∣ ≤ A1A2
α

(2)
k

ωsk
.
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Proof. For k = 0 we have

∑
k1+k2=0
kj∈Z

1
ωsk1ω

s
k2

=
−1∑

k1=−∞

1
ωsk1ω

s
−k1

+
1

ωs0ω
s
0

+
∞∑
k1=1

1
ωsk1ω

s
−k1

=
1

ωs0ω
s
0

+ 2
∞∑
k1=1

1
ωsk1ω

s
k1

= 1 + 2
∞∑
k1=1

1
k2s

1

≤ 4 +
1

22s−1(2s− 1)
.

For k > 0 we have

∑
k1+k2=k

kj∈Z

1
ωsk1ω

s
k2

=
−1∑

k1=−∞

1
ωsk1ω

s
k−k1

+
2

ωs0ω
s
k

+
k−1∑
k1=1

1
ωsk1ω

s
k−k1

+
∞∑

k1=k+1

1
ωsk1ω

s
k−k1

=
∞∑
k1=1

1
ωsk1ω

s
k+k1

+
2

ωs0ω
s
k

+
k−1∑
k1=1

1
ωsk1ω

s
k−k1

+
∞∑
k1=1

1
ωsk1ω

s
k+k1

=
1
ωsk

[
2
∞∑
k1=1

ωsk
ωsk1ω

s
k+k1

+
2
ωs0

+
k−1∑
k1=1

ωsk
ωsk1ω

s
k−k1

]

≤ 1
ωsk

[
2
ωs0

+ 2
∞∑
k1=1

1
ωsk1

+
k−1∑
k1=1

ωsk
ωsk1ω

s
k−k1

]

=
1
ks

[
2 + 2

∞∑
k1=1

1
ks1

+
k−1∑
k1=1

ks

ks1(k − k1)s

]

≤ 1
ks

[
4 +

2
2s

+
2
3s

+
2

3s−1(s− 1)
+

k−1∑
k1=1

ks

ks1(k − k1)s

]
.

In the two inequalities above we used integral estimates to bound the infinite sums. Using these
inequalities and the upper bound γk from Lemma A.2 we have the result. �

Lemma A.4. Given s ≥ 2 and M ≥ 6, suppose there exist A1, . . . , An such that for every j ∈
{1, . . . , n} and every k ∈ Z, we have that

∣∣∣c(j)k ∣∣∣ ≤ Aj

ωs
k

. Then, for any k ∈ Z, we have that∣∣∣∣∣∣∣∣
∑

k1+···+kn=k

kj∈Z

c
(1)
k1
· · · c(n)

kn

∣∣∣∣∣∣∣∣ ≤
 n∏
j=1

Aj

 α
(n)
k

ωsk
.
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Proof. For k = 0 we have

∑
k1+···+kn=0

kj∈Z

1
ωsk1 · · ·ωskn

=
−1∑

k1=−∞

[
1
ωsk1

∑
k2+···+kn=−k1

kj∈Z

1
ωsk2 · · ·ωskn

]
+

1
ωs0

∑
k2+···+kn=0

kj∈Z

1
ωsk2 · · ·ωskn

+
∞∑
k1=1

[
1
ωsk1

∑
k2+···+kn=−k1

kj∈Z

1
ωsk2 · · ·ωskn

]
=

1
ωs0

∑
k2+···+kn=0

kj∈Z

1
ωsk2 · · ·ωskn

+ 2
∞∑
k1=1

[
1
ωsk1

∑
k2+···+kn=−k1

kj∈Z

1
ωsk2 · · ·ωskn

]
≤

1
ωs0

α
(n−1)
0

ωs0
+ 2

∞∑
k1=1

[
1
ωsk1

α
(n−1)
k1

ωsk1

]
= α

(n−1)
0 + 2

∞∑
k1=1

α
(n−1)
k1

k2s
1

≤

α
(n−1)
0 + 2

M−1∑
k1=1

α
(n−1)
k1

k2s
1

+
2α(n−1)

M

(M − 1)2s−1(2s− 1)
=
α

(n)
0

ωs0
.

For k > 0 we have∑
k1+···+kn=k

kj∈Z

1
ωsk1 · · ·ωskn

=
−1∑

k1=−∞

[
1
ωsk1

∑
k2+···+kn=k−k1

kj∈Z

1
ωsk2 · · ·ωskn

]
+

1
ωs0

∑
k2+···+kn=k

kj∈Z

1
ωsk2 · · ·ωskn

+
k−1∑
k1=1

[
1
ωsk1

∑
k2+···+kn=k−k1

kj∈Z

1
ωsk2 · · ·ωskn

]
+

1
ωsk

∑
k2+···+kn=0

kj∈Z

1
ωsk2 · · ·ωskn

+
∞∑

k1=k+1

[
1
ωsk1

∑
k2+···+kn=k−k1

kj∈Z

1
ωsk2 · · ·ωskn

]

≤
∞∑
k1=1

[
1
ωsk1

α
(n−1)
k+k1

ωsk+k1

]
+

k−1∑
k1=1

[
1
ωsk1

α
(n−1)
k−k1
ωsk−k1

]
+
∞∑
k1=1

[
1

ωsk+k1

α
(n−1)
k1

ωsk1

]

+
1
ωs0

α
(n−1)
k

ωsk
+

1
ωsk

α
(n−1)
0

ωs0
.

Consider k ∈ {1, . . . ,M − 1}. Since α(n−1)
k1

≤ α(n−1)
M , for all k1 ≥M , we have

∞∑
k1=1

α
(n−1)
k+k1

ωsk1ω
s
k+k1

=
M−k−1∑
k1=1

α
(n−1)
k+k1

ωsk1ω
s
k+k1

+
∞∑

k1=M−k

α
(n−1)
k+k1

ωsk1ω
s
k+k1

≤
M−k−1∑
k1=1

α
(n−1)
k+k1

ωsk1ω
s
k+k1

+ α
(n−1)
M

∞∑
k1=M−k

1
ωsk1ω

s
k+k1

≤
M−k−1∑
k1=1

α
(n−1)
k+k1

ωsk1ω
s
k+k1

+ α
(n−1)
M

∞∑
k1=1

1
ks1(k + k1)s

≤ 1
ks

[
M−k−1∑
k1=1

α
(n−1)
k+k1

ks

ωsk1ω
s
k+k1

+ α
(n−1)
M

(
1

(M − k)sMs
+

1
(M − k)s−1(M + 1)s(s− 1)

)]
.
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Similarly,
∞∑
k1=1

α
(n−1)
k1

ωsk1ω
s
k+k1

≤ 1
ks

[
M−1∑
k1=1

α
(n−1)
k1

ks

ωsk1ω
s
k+k1

+
α

(n−1)
M

(M − 1)s−1(s− 1)

]
.

From the definition of α(n)
k for k ∈ {1, . . . ,M − 1}, it follows that

∑
k1+···+kn=k

kj∈Z

1
ωsk1 · · ·ωskn

≤ α
(n)
k

ωsk
.

Consider now k ≥M , then

∞∑
k1=1

α
(n−1)
k+k1

ωsk1ω
s
k+k1

+
α

(n−1)
k

ks
≤ α

(n−1)
M

ks

[
2 +

1
2s

+
1
3s

+
1

3s−1(s− 1)

]
.

Using Lemma A.2, we get that

k−1∑
k1=1

α
(n−1)
k1

ωsk1ω
s
k−k1

=
M−1∑
k1=1

α
(n−1)
k1

ωsk1ω
s
k−k1

+
1
ks

k−1∑
k1=M

ksα
(n−1)
k1

ωsk1ω
s
k−k1

≤ 1
ks

M−1∑
k1=1

α
(n−1)
k1

ωsk1
(
1− k1

k

)s +
α

(n−1)
M

ks

k−1∑
k1=M

ks

ωsk1ω
s
k−k1

≤ 1
ks

[
M−1∑
k1=1

α
(n−1)
k1

ωsk1
(
1− k1

M

)s + α
(n−1)
M γk

]
.

Also,
∞∑
k1=1

α
(n−1)
k1

ωsk1ω
s
k+k1

≤ 1
ks

[
M−1∑
k1=1

α
(n−1)
k1

ωsk1
+

α
(n−1)
M

(M − 1)s−1(s− 1)

]
.

Combining the above inequalities, we get∑
k1+···+kn=k

kj∈Z

1
ωsk1 · · ·ωskn

≤ 1
ks

[
α

(n−1)
0 +

M−1∑
k1=1

α
(n−1)
k1

ks1

(
1 +

1(
1− k1

M

)s)
+ α

(n−1)
M

(
2 + 1

2s + 1
3s + 1

3s−1(s−1) + 1
(M−1)s−1(s−1) + γk

)]
=
α

(n)
k

ωsk
. �

Remark A.5. Note that the α(n)
k provides, for 1 ≤ |k| ≤M − 1, a slight improvement over the α(p)

k

defined in Section A.2 in [9]. The difference comes from the following upper bound
∞∑

k1=M−k

1
ks1(k + k1)s

≤ 1
(M − k)sMs

+
1

(M − k)s−1(M + 1)s(s− 1)
.

In [9], the coarser upper bound
∞∑

k1=M−k

1
ks1(k + k1)s

≤ 1
ks

[
1 +

1
2s

+
1
3s

+
1

3s−1(s− 1)

]

is used to construct α(p)
k .
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The following corollary of Lemma A.4 gives better bounds for the cases 0 ≤ |k| ≤M − 1. Given
s ≥ 2 and M ≥ 6 we define, for k ≥ 0,

ε
(n)
k = ε

(n)
k (s,M) :=

2α(n−1)
M

(s− 1)(M − 1)s−1(M + k)s
+
M+k−1∑
k1=M

α
(n−1)
k1−k

ωsk1ω
s
k1−k

(42)

and for k < 0
ε

(n)
k (s,M) := ε

(n)
|k| (s,M).

Corollary A.6. Given s ≥ 2 and M ≥ 6, for n ≥ 3 and 0 ≤ |k| ≤M − 1 we have that∣∣∣∣∣∣∣∣
∑

k1+···+kn=k

kj∈Z

c
(1)
k1
· · · c(n)

kn

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

∑
k1+···+kn=k

|kj |<M

c
(1)
k1
· · · c(n)

kn

∣∣∣∣∣∣∣∣+ n

(
n∏
i=1

Ai

)
ε

(n)
k .

Proof. Notice that∑
k1+···+kn=k

kj∈Z

c
(1)
k1
· · · c(p)kn

=
∑

k1+···+kn=k

|kj |<M

c
(1)
k1
· · · c(n)

kn
+
∑

k1+···+kn=k

max{|kj |}≥M

c
(1)
k1
· · · c(n)

kn
.

Without loss of generality, suppose that |k1| ≥M in the second sum. Then

∑
k1+···+kn=k

|k1|≥M

1
ωsk1 · · ·ωskn

=
−M∑

k1=−∞

1
ωsk1

∑
k2+···+kn=k−k1

1
ωsk2 · · ·ωskn

+
∞∑

k1=M

1
ωsk1

∑
k2+···+kn=k−k1

1
ωsk2 · · ·ωskn

≤
∞∑

k1=M

[
α

(n−1)
k+k1

ωsk1ω
s
k+k1

+
α

(n−1)
k1−k

ωsk1ω
s
k1−k

]

≤
[

2α(n−1)
M

∞∑
k1=M

1
ωsk1ω

s
k+k1

+
M+k−1∑
k1=M

α
(n−1)
k1−k

ωsk1ω
s
k1−k

]

≤
[

2α(n−1)
M

(M + k)s(M − 1)s−1(s− 1)
+
M+k−1∑
k1=M

α
(n−1)
k1−k

ωsk1ω
s
k1−k

]
.

The result then follow from the definition of ε(n)
k . �
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