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Abstract

In this paper, Chebyshev series and rigorous numerics are combined to compute solu-
tions of the Euler-Lagrange equations for the one-dimensional Ginzburg-Landau model of
superconductivity. The idea is to recast solutions as fixed points of a Newton-like operator
defined on a Banach space of rapidly decaying Chebyshev coefficients. Analytic estimates,
the radii polynomials and the contraction mapping theorem are combined to show existence
of solutions nearby numerical approximations. Coexistence of as many as seven nontrivial
solutions is proved.
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1 Introduction

According to the Ginzburg-Landau theory of superconductivity [1], the electromagnetic proper-
ties of a superconducting material of width 2d subjected to a tangential external magnetic field
are described by a pair (φ, ψ) which minimizes the free energy functional

G = G(φ, ψ) =
1

2d

∫ d

−d

(
φ2(φ2 − 2) +

2(φ′)2

κ2
+ 2φ2ψ2 + 2(ψ′ − he)2

)
dξ. (1)

In this context, the functionalG is known as the Ginzburg-Landau energy, and provides a measure
of the difference between normal and superconducting states of the material. The function φ
measures the density of superconducting electrons and the function ψ is the magnetic field
potential. The parameter d is the size of the superconducting material, he is the external magnetic
field and κ is the Ginzburg-Landau parameter, which is a dimensionless constant distinguishing
different superconductors. More precisely, 0 < κ < 1/

√
2 characterizes type I superconductors

while κ > 1/
√

2 characterizes type II superconductors [2] (e.g. see Figure 1(a)).
A standard variational argument shows that the Ginzburg-Landau energy (1) has a minimizer

and that the minimizer is a solution of the Euler-Lagrange equations, which are given by the
boundary value problem (BVP)
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φ′′ = κ2φ(φ2 + ψ2 − 1)

ψ′′ = φ2ψ

φ′(±d) = 0, ψ′(±d) = he.

(2)

The Ginzburg-Landau BVP (2) has been studied by many authors (e.g. see [3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15] and the references therein). This list of references is by no means meant
to provide a complete review of the literature of the work done on (2). Several people have also
studied the Ginzburg-Landau model in higher dimensions [16, 17, 18, 19].

A solution (φ, ψ) of (2) is called symmetric if

φ′(0) = 0 and ψ(0) = 0, (3)

and called asymmetric otherwise. If (3) holds, then φ is even and ψ is odd. There is a family of
solutions of (2) of the form

(φ(ξ), ψ(ξ) = (0, heξ + q), q ∈ R, (4)

which are symmetric when q = 0 and asymmetric otherwise. We refer to solutions (4) as trivial
and refer to solutions that are not of the form (4) as nontrivial.

An interesting review of results and open problems about existence, uniqueness and coexis-
tence of nontrivial symmetric and asymmetric solutions of (2) can be found in [13]. Moreover, in
[13], Aftalion et al. present a detailed numerical study of the bifurcations arising in (2), where
they obtain a complete description of the solutions over the range of physically important pa-
rameters (d, κ, he). They consider (d, κ) ∈ D

def
= [0, 5] × [0, 1.4], leave he as a parameter, and

investigate bifurcations of symmetric and asymmetric solutions as he varies. They numerically
obtain two partitions for D. The first one is D = S1∪S2∪S3 and it characterizes the symmetric
solutions so that in Si, there are i symmetric solutions. The second partition is D = A0∪A1∪A2

and it characterizes the asymmetric solutions so that in Aj , there are 2j asymmetric solutions.
Note that asymmetric solutions come in pairs. Indeed, one can easily verify from (2) that if
(φ(ξ), ψ(ξ)) is an asymmetric solution, then (φ(−ξ),−ψ(−ξ)) is another asymmetric solution. A
geometric representation of the two partitions of D can be found in Figure 1(a). The following
conjecture follows from the analysis and the numerical investigation of [13].

Conjecture 1.1 For i ∈ {1, 2, 3}, j ∈ {0, 1, 2} and (d, κ) ∈ Si ∩ Aj, there exists he such that
there exist i nontrivial symmetric solutions and 2j nontrivial asymmetric solutions of (2).

Partial progress has been made toward a proof of Conjecture 1.1, but many cases remain
open. Perhaps the most interesting open question arising from Conjecture 1.1 concerns the
region S3 ∩ A2, where as many as seven solutions may coexist. Seydel is the first in 1983 to
give numerical evidence of existence of parameters for which four asymmetric solutions and
three symmetric solutions may coexist [5]. In 1996, Hastings et al. comment in [8] that “this
[analysis] goes only part way towards verifying the numerical results of Seydel, where as many as
seven solutions are found in a limited parameter range. This remains an interesting problem for
future research.” In 2000, Dancer et al. in [12] write that “the initial motivation for our paper
was Seydel’s bifurcation diagram, and our goal was to prove that in some parameter range the
problem could have as many as seven solutions, but unfortunately we have not achieved this goal.
Seydel’s bifurcation diagram can be found in Figure 1(b). Besides the region S3∩A2, other cases
are interesting. For instance, as mentioned in [13], “it is an interesting open problem to prove
that both symmetric and asymmetric solutions coexist in S1∩A2.” The goal of the present paper
is to prove these open questions for specific parameter values using the rigorous computational
methods of [20, 21, 22, 23, 24] and more specifically with the approach as introduced in [25].
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Moreover, when (a, κ) tends to a point (ã, κ(ã))

on κ4(a), then has and hb tend to hs. When (a, κ)

tends to a point (ã, κ5(ã)) on κ5(a), then has tends
to hs and has to hb.

Of particular physical interest is the following:

Conjecture 10. Let a > 0. If κ > κ4(a) then has >

hs.

Thus, as h0 decreases from infinity, the material
is in the normal state until h0 reaches the value has
where the bifurcation of asymmetric solutions occurs.
If a > a∗ and κ > κ5(a), or if a ≤ a∗ and κ > κ4(a),
then the bifurcating asymmetric branch is supercritical
and plays an important role in the onset of supercon-
ductivity in the material. In the following we explain
the implications of Conjecture 10. In the physics lit-
erature, has is defined as hc3 and hs as hc2. It is well
known to physicists that when κ is fixed bigger than
0.4 and a is taken large enough (which corresponds
to κ being above max(κ4(a), κ5(a))), when the exte-
rior magnetic field h0 is decreased from infinity, su-
perconductivity is not nucleated first in the volume of
the sample, which would give rise to symmetric solu-
tions, but rather in a sheath near the surface, due to
the existence of asymmetric solutions. This is called
surface superconductivity. If the slab is very thick, the
two surface solutions f (x) and f (−x) do not inter-
act. In this region, superconductivity is first nucleated
in surface layers of size 1/κ near the boundaries, and
the middle part of the material is normal. Now, if the
slab is of intermediate size, the solutions f (x) and
f (−x) interfere to create vortices. Indeed, recall that
the original Ginzburg–Landau energy is gauge invari-
ant so that a solution (f (x), q(x)) has the same en-
ergy as (eiκcyf (x), q(x)+c) for any constant c. Thus,
when the sample is not too large, and h decreases be-
low has, the linear combination of the asymmetric so-
lutions f (x) and f (−x) create two-dimensional vor-
tices along the mid-plane x = 0. This is reflected in
the formula:

ψ = cos ky(f (x) + f (−x)

+i sin ky(f (x) − f (−x)). (14)

Further discussion of vortex formation and the details

of the derivation of formula (14) are given in Tinkham
[6]. In particular, the distance between two vortices
along the x = 0 plane is proportional to 1/xβ . Indeed,
when moving up the asymmetric branch h(β), we find
that xβ , tends to zero as β approaches the branching
point on the symmetric branch. This means that the
distance between the two vortices tends to infinity.
At the limit, the material is perfectly superconducting
because f is symmetric.
In fact, as described in [5], hs and has can both be

measured: has by nucleation of superconductivity as
we have seen and hs by magnetic transition, which
needs bulk superconductivity to take place.
Boeck and Chapman [35] have studied surface su-

perconductivity in detail and they have determined the
regimes of (a, κ) where the asymmetric solution gives
rise to a surface sheath or to vortex solutions, through
formula (14).
Now recall that the surface sheath is of size 1/κ (that

is of order of the coherence length ξ ), so it is consis-
tent that a condition for surface superconductivity to
exist should be a ≥ C/κ . As mentioned by Tinkham
[[6],p.136], physicists had found that 2C ∼= 1.81 but
did not know how to predict the details of changeover
of behaviour on this curve. We believe that our numer-
ical results answer this open question. A curve similar
to κ4(a) was also mentioned by Boeck and Chapman
[35].
The global results of our numerical investigations

are shown graphically in Fig. 9 where for each region

Fig. 9. Curves κ1(a), κ2(a), κ3(a), κ4(a) and κ5(a).
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Global bifurcation diagram for the 1-D Ginzburg–Landau model 273

Figure 1. The horizontal axis is h and the vertical axis is a(d). The solid curve is the branch of
symmetric solutions while the dotted curve is the branch of asymmetric solutions. The end points
of these curves, other than (0, 0), are bifurcations from a normal state.

Subsequently, Aftalion and Chapman used methods of matched asymptotic expansions

to study some of the phenomena found by Aftalion & Troy [4, 5].

The first rigorous study of the global bifurcation diagram for symmetric solutions

was by Kwong [19]. He proved that for any (, d) there is a unique curve of symmetric

solutions which can be given in the form h = h(�(0)) for 0 < �(0) < 1. This curve is

smooth, and h(1) = 0, h(0) = hs. Hastings, Kwong and Troy studied the nature of this

curve for large d, showing that it has at least one minimum, followed by at least one

maximum, if  >
p

1/2. This implies that, for some values of h, there will be at least

three solutions of the boundary value problem in this range of  and d. They also showed

that for any fixed  2 (0, 1
p

2
), if d is su�ciently large then for some range of h there will

be at least two solutions. More recently, Aftalion & Troy [3] proved that for su�ciently

small d, there is only one symmetric solution, and there are no asymmetric solutions.

(Numerically, it appears that asymmetric solutions begin when d reaches approximately

0.905 [7, 2].)

Up to now, very little has been done concerning the global structure of asymmetric

solutions (in the parameters , d, h) or of bifurcations away from the normal states. Some

initial conjectures were made by Aftalion [1]. However, a numerical study by Seydel [23]

shows that the picture can be quite complicated. He considers only a single configuration,

namely d = 2.5,  = 1, and presents essentially the graph in Figure 1, in which h is plotted

against the value of a at the right-hand end of the interval [�d, d]. (Seydel uses a(�d)

instead of a(d). There are a number of possible ‘bifurcation curves’ which one can draw for

this problem. For example, we could plot h vs. �(0), as was done for symmetric solutions

by Hastings et al. [18]. We elect here to follow Seydel and plot a(d) vs. h. Either kind of

curve gives the important information of how many solutions there are for a given h.)

Among the features we see here are the existence of up to seven solutions for a given

h, and the bifurcation of asymmetric solutions from the symmetric branch. It must be

remembered, though, that asymmetric solutions occur in pairs, and modulo a symmetric

he

 (d)

Type I

Type II

(a) (b)

Figure 1: (a) Figure taken from [13] with permission from the authors. The regions Si ∩Aj (i ∈ {1, 2, 3}
and j ∈ {0, 1, 2}) are delimited by black lines. The regions corresponding to the two different types of
superconductors are pictured in yellow (type I) and green (type II), where 0 < κ < 1/

√
2 characterizes

type I while κ > 1/
√

2 characterizes type II. (b) A global bifurcation diagram when (d, κ) = (2.5, 1) ∈
S3 ∩ A2 taken from [12] with permission from the authors.

Our proposed approach to the problem has a different flavour than the standard tools of
nonlinear analysis (e.g. bifurcation and perturbation theory, degree theory, global bifurcation
theorems). It combines the strength of numerical analysis, approximation theory, spectral meth-
ods, fixed point theory, functional analysis and interval arithmetic (e.g. see [26]) to demonstrate
that nearby numerical approximations, there are solutions of (2). This approach uses the field
of rigorous numerics (described in Section 2), and as opposed to classical methods in nonlin-
ear analysis it does not require knowing the existence of a trivial solution from which one can
perturb. In fact, our method is a perturbative result from a numerical approximation,and this
implies that it is extremely suitable to prove conjectures about coexistence of solutions. However,
as opposed to global methods, our proposed method works well for specific parameter values,
rather than globally (i.e. for all parameters). Let us now present our four main results.

Theorem 1.1 Define (d, κ) = (3.5, 0.9) ∈ S3 ∩ A2. Then at he = 0.85, there exist three sym-

metric solutions x
(i)
s = (φ

(i)
s , ψ

(i)
s ) (i = 1, 2, 3) and four asymmetric solutions x

(i)
a = (φ

(i)
a , ψ

(i)
a )

(i = 1, 2, 3, 4) of (2). Each solution is nontrivial and all solutions are distinct. Hence, there are
seven coexisting nontrivial solutions.

The proof of Theorem 1.1 can be found in Section 4. A geometrical interpretation of the global
bifurcation diagram with fixed (d, κ) = (3.5, 0.9) and he left as a free parameter is depicted in
Figure 2. The profile of each of the seven nontrivial coexisting solutions of Theorem 1.1 can be
found in Figure 3.

Theorem 1.2 Let (d, κ) = (1.6, 1.2) ∈ S1 ∩ A2. Then at he = 1.1, there exist one symmetric

solution x
(1)
s = (φ

(1)
s , ψ

(1)
s ) and four asymmetric solutions x

(i)
a = (φ

(i)
a , ψ

(i)
a ) (i = 1, 2, 3, 4) of (2).

Each solution is nontrivial and all solutions are distinct.

The proof of Theorem 1.2 can be found in Section 4. A geometrical interpretation of the global
bifurcation diagram with fixed (d, κ) = (1.6, 1.2) and he left as a free parameter is depicted in
Figure 4. The profile of each of the five nontrivial coexisting solutions of Theorem 1.2 can be
found in Figure 5.

Theorem 1.3 Let (d, κ) = (4, 0.3) ∈ S2∩A1 and he = 0.8. There exist two symmetric solutions

x
(i)
s = (φ

(i)
s , ψ

(i)
s ) (i = 1, 2) and two asymmetric solutions x

(i)
a = (φ

(i)
a , ψ

(i)
a ) (i = 1, 2) of (2). All

solutions are nontrivial and distinct.
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Figure 2: The global bifurcation diagram when (d, κ) = (3.5, 0.9) ∈ S3∩A2. The data from this diagram

was used to obtain the proof of Theorem 1.1. At he = 0.85, there exist three symmetric solutions x
(1)
s ,...,

x
(3)
s and four asymmetric solutions x

(1)
a ,..., x

(4)
a of (2).
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Figure 3: For (d, κ) = (3.5, 0.9) ∈ S3 ∩ A2 and he = 0.85, the solution profiles of the seven nontrivial

coexisting solutions of Theorem 1.1: three symmetric solutions x
(i)
s = (φ

(i)
s , ψ

(i)
s ), i = 1, 2, 3, and four

asymmetric solutions x
(i)
a = (φ

(i)
a , ψ

(i)
a ), i = 1, 2, 3, 4. Each solution is defined on [−d, d] = [−3.5, 3.5]. Note

that φ
(1)
s (d) ≈ 0.821, φ

(2)
s (d) ≈ 0.161, φ

(3)
s (d) ≈ 0.050, φ

(1)
a (d) ≈ 0.849, φ

(2)
a (d) ≈ 0.827, φ

(3)
a (d) ≈ 0.221

and φ
(4)
a (d) ≈ 3.37× 10−4.

The proof of Theorem 1.3 can be found in Section 4. A geometrical interpretation of the
global bifurcation diagram with fixed (d, κ) = (4, 0.3) and he left as a free parameter is depicted
in Figure 6.

Theorem 1.4 Define (d, κ) = (3, 0.6) ∈ S2 ∩ A2. Then at he = 0.9, there exist two symmetric

solutions x
(i)
s = (φ

(i)
s , ψ

(i)
s ) (i = 1, 2) and four asymmetric solutions x

(i)
a = (φ

(i)
a , ψ

(i)
a ) (i =

1, 2, 3, 4) of (2). All solutions are nontrivial and distinct.
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Figure 4: The global bifurcation diagram when (d, κ) = (1.6, 1.2) ∈ S1∩A2. The data from this diagram

was used to obtain the proof of Theorem 1.2. At he = 1.1, there exist one symmetric solution x
(1)
s and

four asymmetric solutions x
(1)
a , x

(2)
a , x

(3)
a and x

(4)
a of (2).
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Figure 5: For (d, κ) = (1.6, 1.2) ∈ S1 ∩ A2 and he = 1.1, the profiles of the solutions of Theorem 1.2:

1 symmetric solution x
(1)
s = (φ

(1)
s , ψ

(1)
s ) and 4 asymmetric solutions x

(i)
a = (φ

(i)
a , ψ

(i)
a ), i = 1, 2, 3, 4.

Each solution is defined on [−d, d] = [−1.6, 1.6]. φ
(1)
s (d) ≈ 0.600, φ

(1)
a (d) ≈ 0.785, φ

(2)
a (d) ≈ 0.688,

φ
(3)
a (d) ≈ 0.419 and φ

(4)
a (d) ≈ 0.0842.

The proof of Theorem 1.4 can be found in Section 4. A geometrical interpretation of the
global bifurcation diagram with fixed (d, κ) = (3, 0.6) and he left as a free parameter is depicted
in Figure 7.

As mentioned above, the proofs of Theorems 1.1, 1.2, 1.3 and 1.4 are done using rigorous
numerics, which is a field that aims at constructing algorithms that provide an approximate
solution to a problem together with precise bounds within which the solution is guaranteed to
exist in the mathematically rigorous sense. In our context, Chebyshev series are combined with
rigorous numerics to compute solutions of (2). The idea is to recast solutions as fixed points of
a Newton-like operator defined on a Banach space of rapidly decaying Chebyshev coefficients
and to use the contraction mapping theorem to show existence of solutions nearby numerical
approximations. Note that a similar approach can be used to prove existence of connecting orbits
(e.g. see [25]). The radii polynomials (first introduced in [20] to compute equilibria of PDEs)
are used to construct sets on which the contraction mapping theorem is applicable, and their
construction is a combination of analytic estimates and interval arithmetic computations. The
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Figure 6: The global bifurcation diagram when (d, κ) = (4, 0.3) ∈ S2 ∩ A1. The data from this diagram

was used to obtain the proof of Theorem 1.3. At he = 0.8, there exist two symmetric solutions x
(1)
s , x

(2)
s

and two asymmetric solutions x
(1)
a , x

(2)
a of (2).
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Figure 7: The global bifurcation diagram when (d, κ) = (3, 0.6) ∈ S2 ∩ A2. The data from this diagram

was used to obtain the proof of Theorem 1.4. At he = 0.9, there exist two symmetric solutions x
(1)
s , x

(2)
s

and four asymmetric solutions x
(1)
a , x

(2)
a , x

(3)
a , x

(4)
a of (2).

last steps of the proofs of Theorems 1.1, 1.2, 1.3 and 1.4 are are done by running the MATLAB
codes which are available at [?].

Remark 1.1 We also obtained rigorous results concerning existence of solutions in S1∩A0 and
S2∩A0, but we do not present them here, as these two regions are better understood theoretically.
The codes for the proofs can be found at [?].

Remark 1.2 Note that our proposed approach is certainly not the only rigorous computational
method that could have been used to prove the above results. For instance, a rigorous numerical
integration of the equations combined with studying an appropriate Poincaré section could have
been used. The choice of the approach is a matter of taste. However, since the Euler-Lagrange
equation (2) is naturally a boundary value problem, we believe that our collocation-type approach
based on Chebyshev series is a natural choice.

6



The paper is organized as follows: in Section 2, we introduce the rigorous computational
method and the theoretical definition of the radii polynomials; in Section 3, analytic estimates
are used to obtain the explicit formulas for the radii polynomials; in Section 4, the proofs of
Theorems 1.1, 1.2, 1.3 and 1.4 are presented.

2 The rigorous computational method

The rigorous computational method used here is based on the general method first introduced
in [25]. More precisely, the idea is to expand solutions of (2) using their Chebyshev series, plug
the expansion in the equation, obtain an equivalent infinite dimensional problem of the form
f(x) = 0 to solve in a Banach space of rapidly decaying Chebyshev coefficients, and finally to
get the existence, via a fixed point argument, of a solution of f(x) = 0 nearby a numerical
approximation of a finite dimensional projection of f . The fixed point argument is solved by
using the radii polynomials, which provide an efficient way of constructing a set on which the
contraction mapping theorem is applicable. We begin by setting up the problem f(x) = 0.

2.1 Setting up f(x) = 0

Setting u = (u1, u2, u3, u4) = (φ, φ′, ψ, ψ′) and introducing the new independent variable t = ξ/d,
(2) becomes

du

dt
= Ψ(u)

def
= d




u2

κ2u1(u2
1 + u2

3 − 1)
u4

u2
1u3


 , u2(±1) = 0, u4(±1) = he, (5)

where u = u(t) is defined for t ∈ [−1, 1]. Let P (θ)
def
= u(−1) = (θ1, 0, θ2, he), where θ = (θ1, θ2) =

(u1(−1), u3(−1)) ∈ R2 is a variable that is used to compensate the fact that the values of u1(−1)
and u3(−1) are not fixed. Letting

F (θ, u)(t)
def
=




u2(1)
u4(1)− he

P (θ) +

∫ t

−1
Ψ(u(s))ds− u(t)


 , t ∈ [−1, 1], (6)

a solution (θ, u) of F (θ, u) = 0 is a solution of (5) and therefore solves the Euler-Lagrange BVP
(2), provided that u is sufficiently smooth. Expand u with Chebyshev series

u(t) = a0 + 2
∑

k≥1

akTk(t) =
∑

k∈Z
akTk(t), (7)

where Tk : [−1, 1] → [−1, 1] (k ≥ 0) are the Chebyshev polynomials defined by T0(t) = 1,
T1(t) = t and Tk+1(t) = 2tTk(t) − Tk−1(t), for k ≥ 1, and where a−k

def
= ak, T−k

def
= Tk, ak =

(a
(1)
k , a

(2)
k , a

(3)
k , a

(4)
k )T ∈ R4. Define the infinite dimensional vector of Chebyshev coefficients a =

(ak)k≥0. Using that Tk(1) = 1 for every k ≥ 0, define

η(θ, a)
def
= (u2(1), u4(1)− he) = (a

(2)
0 + 2

∑

j≥1

a
(2)
j , a

(4)
0 + 2

∑

j≥1

a
(4)
j − he). (8)

Since Chebyshev polynomials are in fact Fourier series in disguise [27], as Tk(cos ξ) = cos(kξ)
with ξ = arccos t, the Chebyshev coefficients of the product of two functions is given by the
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discrete convolution of the Chebyshev coefficients of each function (e.g. see [25]). In the context
of the vector field defined in (5),

Ψ(u(t)) = c0 + 2
∑

k≥1

ckTk(t) =
∑

k∈Z
ckTk(t), (c−k = ck), (9)

where

ck =




c
(1)
k

c
(2)
k

c
(3)
k

c
(4)
k


 = d




a
(2)
k

κ2
(
[a(1)a(1)a(1)]k + [a(1)a(3)a(3)]k − a

(1)
k

)

a
(4)
k

[a(1)a(1)a(3)]k


 , (10)

and for i, j ∈ {1, 3},

[a(1)a(i)a(j)]k =
∑

k1+k2+k3=k
k1,k2,k3∈Z

a
(1)
k1
a

(i)
k2
a

(j)
k3
, (a

(`)
−k = a

(`)
k ).

Plugging the expansions (7) and (9) in (6), and using the properties
∫
T0(s)ds = T1(s),

∫
T1(s)ds =

(T2(s) + T0(s))/4 and
∫
Tk(s)ds = 1

2

(
Tk+1(s)
k+1 − Tk−1(s)

k−1

)
for k ≥ 2,

P (θ) +

∫ t

−1
Ψ(u(s))ds− u(t) = f̃0 + 2

∑

k≥1

f̃kTk(t),

where f̃0
def
= P (θ) − a0 + c0 − c1

2 − 2
∑

j≥2
(−1)j

j2−1
cj and f̃k

def
=

ck−1−ck+1

2k − ak, for k ≥ 1. Denote

x = (θ, a) so that x−1 = θ ∈ R2 and xk = ak ∈ R4 for k ≥ 0. Finally, define f(x) = (fk(x))k≥−1

component-wise by

fk(x) =





(a
(2)
0 + 2

∑

j≥1

a
(2)
j , a

(4)
0 + 2

∑

j≥1

a
(4)
j − he), k = −1,

P (θ)− a0 + c0 −
c1

2
− 2

∑

j≥2

(−1)j

j2 − 1
cj , k = 0,

−2kak + ck−1 − ck+1, k ≥ 1,

(11)

where f0 = f̃0 and fk
def
= 2kf̃k for k ≥ 1. The importance of introducing the operator (11) is that

solutions of f(x) = 0 correspond to solutions of the BVP (2) (see Lemma 2.1). Hence, coexistence
of solutions of the Euler-Lagrange equations reduces to demonstrate that the operator f defined
component-wise by (11) has several coexisting nontrivial roots.

The next step is to introduce the Banach space Xs of fast decaying Chebyshev coefficients
with algebraic decay ks on which the operator f is defined, and to introduce the equivalent
fixed point problem T (x) = x. Note that the fixed point operator T is defined as a Newton-like
operator defined near a numerical approximation x̄ ∈ Xs. The idea is that locally, the operator
T should be a contraction on a small ball containing x̄. The way to find the ball is done using
the radii polynomials. This is described in Section 2.3.

2.2 The Banach space Xs and the fixed point problem T (x) = x

Let ‖θ‖∞ = max{|θ1|, |θ2|}, ‖ak‖∞ = max
i=1,...,4

{|a(i)
k |} for k ≥ 0 and define the weights

ωsk
def
=

{
1, if k = 0

|k|s, if k 6= 0.
(12)
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The Banach space on which we solve the problem f(x) = 0 is defined by

Xs =

{
x = (xk)k≥−1 : ‖x‖s

def
= sup

k≥−1
{‖xk‖∞ωsk} <∞

}
, (13)

which is a space of algebraically decaying sequences with decay rate s > 1. Next, we show that
f : Xs → Xs−1 and that if x ∈ Xs solves f(x) = 0 for some s > 1, then x ∈ Xs0 for any s0 > 1.
Hence, a root x = (θ, a) of (11) implies that its Chebyshev coefficients decay faster than any
algebraic decay. This comes as no surprise as a solution u = (u1, u2, u3, u4) = (φ, φ′, ψ, ψ′) of
the analytic differential equation (2) is analytic. This implies that the Chebyshev expansion x
of any solution of (2) is in the space Xs.

Lemma 2.1 Let f(x) = (fk(x))k≥−1 as in (11). Then the following statements hold.

(a) f : Xs → Xs−1, s > 1.

(b) If x ∈ Xs is a solution of f(x) = 0, then x ∈ Xs0 for any s0 > 1.

(c) The Chebyshev expansion u(t) = a0 + 2
∑

k≥1 akTk(t) is a solution of F (θ, u) = 0 where F
is the integral operator (6) if and only if x = (θ, a) ∈ Xs solves f(x) = 0.

(d) Any solution x = (θ, u) of f(x) = 0 yields a unique solution (φ, ψ) of the Euler-Lagrange
boundary value problem (2).

Proof 2.1 First of all, for any s > 1, the space of scalar algebraically decaying sequences

Ωs def
= {a = (ak)k∈N : ak ∈ R, sup

k≥0
{|ak|ωsk} <∞} (14)

is an algebra under discrete convolution. Indeed, for any a, b ∈ Ωs, there exists a constant
α = α(a, b) < ∞ such that |(a ∗ b)k| = |

∑
k1+k2=k

ki∈Z
a|k1|b|k2|| ≤

α
ωsk

(e.g. see [28] if s ≥ 2 and [29]

if s ∈ (1, 2)). This implies that a ∗ b ∈ Ωs, and hence that (Ωs, ∗) is an algebra.

(a) Consider x = (θ, a) ∈ Xs. For each i = 1, 2, 3, 4, |a(i)
k | ≤ ‖a‖s/ω

s
k. Recalling (8),

‖f−1(x)‖∞ = ‖η(θ, a)‖∞ < ∞ since s > 1. Consider the Chebyshev coefficients (ck)k≥0 of

Ψ(u) defined in (10). Since Ωs is an algebra, then ‖c‖s <∞. Hence, ‖ck‖∞ ≤ ‖c‖sωsk
and therefore

‖
∑

j≥2
cj

j2−1
‖∞ ≤ ‖c‖s

∑
j≥2

1
js(j2−1)

< ∞. This implies that ‖f0(x)‖∞ < ∞. Moreover, there

exists a constant α1 <∞ such that ‖fk(x)‖∞ = ‖−2kak+ck−1−ck+1‖∞ ≤ 2‖a‖s
ωs−1
k

+ ‖c‖s
ωsk+1

+ ‖c‖s
ωsk−1

≤
α1

ωs−1
k

for all k ≥ 1. It follows that ‖f(x)‖s−1 <∞ and therefore that f(x) ∈ Xs−1.

(b) If x ∈ Xs is a solution of f(x) = 0, then for any k ≥ 1, fk(x) = −2kak+ck−1−ck+1 = 0,

or in other words ak = − 1
2k (ck+1 − ck−1). Since ‖ck‖∞ ≤ ‖c‖sωsk

, there exists a constant α2 < ∞
such that

sup
k≥1
{‖ak‖∞ωs+1

k } ≤ sup
k≥1
{ 1

2k
(‖ck+1‖∞ + ‖ck−1‖∞)ωs+1

k } ≤ α2.

That shows that x = (θ, a) ∈ Xs+1. Repeating the same argument inductively and using the fact
that Xs1 ⊂ Xs2 for any s1 ≥ s2, one gets that x ∈ Xs0 for all s0 > 1.

(c) By construction of f in (11) and by part (b), it is immediate to verify that (θ, u), with
u(t) = a0 + 2

∑
k≥1 akTk(t) and θ = (u1(−1), u3(−1)), is a solution of F (θ, u) = 0 where F is

the integral operator (6) if and only if x = (θ, a) ∈ Xs solves f(x) = 0.
(d) It follows from (c) and by construction that any solution x = (θ, u) of f(x) = 0 yields a

unique solution (φ, ψ) of the Euler-Lagrange boundary value problem (2).
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The strategy to find solutions of f(x) = 0 is now to consider an equivalent fixed point
operator T : Xs → Xs whose fixed points are in one-to-one correspondence with the zeros of
f . More precisely, the operator T is a Newton-like operator about an approximate solution x̄ of
f . In order to compute this numerical approximation we introduce a Galerkin projection. Let
m > 1 and define the finite dimensional projection Πm : Xs → Xs

m by Πmx = (xk)
m−1
k=−1. Note

that Xs
m
∼= R4m+2. The Galerkin projection of f is defined by

f (m) : Xs
m → Xs

m : xF 7→ Πmf(xF , 0∞), (15)

where 0∞
def
= (I − Πm)0. Identifying (xF , 0∞) with xF ∈ Xs

m
∼= R4m+2, we think of f (m) :

R4m+2 → R4m+2. Using Newton’s method, assume that we have computed x̄F ∈ R4m+2 such
that f (m)(x̄F ) ≈ 0 and let x̄ = (θ̄, ā) = (θ̄, āF , 0∞) = (x̄F , 0∞) ∈ Xs. Let Bx̄(r) = x̄+B(r), the
closed ball in Xs of radius r centered at x̄, with

B(r) =

{
x ∈ Xs : ‖x‖s = sup

k≥−1
{‖xk‖∞ωsk} ≤ r

}
=
∏

k≥−1

[
− r

ωsk
,
r

ωsk

]ζ(k)

, (16)

where ζ(−1) = 2 and ζ(k) = 4 for k ≥ 0. In order to define the fixed point operator T , we

introduce a (4m + 2) × (4m + 2) matrix Am ≈
(
Df (m)(x̄F )

)−1
, which is obtained using the

computer. Assume that the finite dimensional matrix Am is invertible (this hypothesis can be
rigorously verified with interval arithmetic). Define the linear invertible operator A : Xs → Xs+1

by

(Ax)k =

{
(Am(Πmx))k, k = −1, . . . ,m− 1(

1
−2k

)
xk, k ≥ m.

(17)

Finally define the Newton-like operator T : Xs → Xs about the numerical solution x̄ by

T (x) = x−Af(x). (18)

2.3 Finding r > 0 such that T maps Bx̄(r) into itself and that T : Bx̄(r) →
Bx̄(r) is a contraction

The next step is to determine a positive radius r of the ball Bx̄(r) so that T maps Bx̄(r) into
itself and that T : Bx̄(r) → Bx̄(r) is a contraction. If such r > 0 exists, an application of the
contraction mapping theorem yields the existence of a unique fixed point x̃ of T within the closed
ball Bx̄(r). By invertibility of the linear operator A, one can conclude that x̃ is the unique solution
of f(x) = 0 in the ball Bx̄(r). By Lemma 2.1, this unique solution represents a solution u(t) of
the operator (5). The task of finding r > 0 is achieved with the notion of the radii polynomials
(originally introduced in [20] to compute equilibria of PDEs), which provide an efficient way of
constructing a set on which the contraction mapping theorem is applicable. Their construction
depends on some bounds that we introduce shortly. Before that, we introduce the notation �
to denote component-wise inequality, that is given two vectors v and w, v � w if and only if
vi ≤ wi for all i. Similarly, the notation ≺ denotes component-wise strict inequality. The radii
polynomials are in fact polynomial bound inequalities in the variable radius r which represent
sufficient conditions to have that T : Bx̄(r) → Bx̄(r) is a contraction. These polynomials are
defined in terms of two bounds: Y and Z.

The bound Y = (Yk)k≥−1 satisfies
∣∣∣
[
T (x̄)− x̄

]
k

∣∣∣ � Yk, k ≥ −1, (19)

where Y−1 ∈ R2
+ and Yk ∈ R4

+ for k ≥ 0. The bound Z(r) = (Zk(r))k≥−1 satisfies

sup
ξ1,ξ2∈B(r)

∣∣∣
[
DT (x̄+ ξ1)ξ2

]
k

∣∣∣ � Zk(r), k ≥ −1, (20)
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where Z−1(r) ∈ R2
+ and Zk(r) ∈ R4

+ for k ≥ 0. Since the vector field Ψ(u) defined in (5) is cubic,
we can compute a cubic polynomial expansion in r for Zk(r). Consider now a computational
parameter M ≥ 3m − 1 where m is the dimension of the Galerkin projection (15). Then the
bounds Y and Z satisfying (19) and (20) can be constructed such that

R1. Yk = 0 ∈ R4 for all k ≥ 3m− 1, since for any k ≥ 3m− 2, āk = 0 and ck = ck(ā) = 0, and
therefore fk(x̄) = −2kāk + ck−1(ā)− ck+1(ā) = 0, for all k ≥ 3m− 1.

R2. There exists (using the analytic estimates introduced in [28]) a uniform polynomial bound
Z̄M+1(r) ∈ R4

+ such that for all k ≥M + 1,

Zk(r) �
Z̄M+1(r)

ωsk
. (21)

Defintion 2.1 Let 1ζ(k)
def
=

ζ(k) times︷ ︸︸ ︷
(1, . . . , 1)∈ Rζ(k). The finite radii polynomials are

pk(r) = Yk + Zk(r)−
r

ωsk
1ζ(k), k = −1, . . . ,M, (22)

and the tail radii polynomial is

pM (r) = Z̄M+1(r)− r14. (23)

Theorem 2.1 If there exists r > 0 such that pk(r) ≺ 0 for all k = −1, . . . ,M + 1, then
T : Bx̄(r) → Bx̄(r) is a contraction and therefore there exists a unique x̃ ∈ Bx̄(r) such that
T (x̃) = x̃. Hence, there exists a unique x̃ ∈ Bx̄(r) such that f(x̃) = 0.

Proof 2.2 The proof is a consequence of the contraction mapping theorem. We refer to Corollary
3.6 in [23] for a complete proof.

The strategy to rigorously compute solutions of f defined in (11) is to construct the radii
polynomials of Definition 2.1, to verify the hypothesis of Theorem 2.1, and to use the result
of Lemma 2.1 to conclude that u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F (θ, u) = 0 with

θ = (u1(−1), u3(−1)), where F is the integral operator (6).
While the computation of the bound Y satisfying (19) is rather straightforward, the com-

putation of the polynomial bound Z(r) satisfying (20) is more involved. In order to simplify its
computation, we introduce the linear invertible operator A† : Xs → Xs−1 by

(A†x)k =

{
(Df (m)(x̄F )(Πmx))k, k = −1, . . . ,m− 1

(−2k)xk, k ≥ m.
(24)

We then split T (x) = x−Af(x) = (I −AA†)x−A(f(x)−A†x). Letting ξ1 = wr, ξ2 = vr with
w, v ∈ B(1), one has that

DT (x̄+ ξ1)ξ2 = (I −AA†)ξ2 −A
(
Df(x̄+ ξ1)ξ2 −A†ξ2

)

=
[
(I −AA†)v

]
r −A

(
Df(x̄+ wr)vr −A†vr

)
.

(25)

The first term of (25) is of the form εr, where ε
def
= (I − AA†)v ∈ Xs should be small. The

coefficient of r in the second term [Df(x̄ + wr)vr − A†vr]k should be small for large Galerkin
projection dimension m. Hence, for m large enough, the coefficient of r in the radii polynomials
of Definition 2.1 can expected to be negative, and therefore the hypothesis of Theorem 2.1 may
be verified. We now derive explicitly the radii polynomials.
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3 Explicit construction of the radii polynomials

In this section, the computation of the bounds involved in the radii polynomials are presented
in greater details. Fix a dimension m for the Galerkin projection (15) and consider x̄ = (θ̄, ā) =
(x̄F , 0∞) such that f (m)(x̄F ) ≈ 0, where f is the operator given in (11). We fix the decay rate
s = 2. Recalling R1, we obtain

[
T (x̄)− x̄

]
k

=
[
−Af(x̄)

]
k

=





[
−Amf (m)(x̄)

]
k
, k = −1, 0, ...,m− 1

1

2k
fk(x̄), m ≤ k < 3m− 1

0, k ≥ 3m− 1.

Then, compute Y−1 . . . , Y3m−2 using interval arithmetic with the formulas

Yk =





∣∣[−Amf (m)(x̄)
]
k

∣∣ , k = −1, 0, ...,m− 1
1

2k
|fk(x̄)|, m ≤ k < 3m− 1

0, k ≥ 3m− 1.

(26)

To simplify the computation and the presentation of the coefficients of Zk(r), we consider

vectors z
(1)
k , z

(2)
k and z

(3)
k such that

[Df(x̄+ wr)vr −A†vr]k ≺ z
(1)
k r + z

(2)
k r2 + z

(3)
k r3. (27)

We use the following notation, x̄ = (θ̄, ā), w = (θ̃1, ã1), v = (θ̃2, ã2). Before defining the vec-

tors z
(1)
k , z

(2)
k and z

(3)
k , let us introduce the explicit computation of Dfk(x̄+wr)v for each k ≥ −1.

Computation of Dfk(x̄ + wr)v

k = −1: It follows from definition of η in (8) that

Df−1(x̄+ wr)v =




[ã
(2)
2 ]0 + 2

∑

k≥1

[ã
(2)
2 ]k

[ã
(4)
2 ]0 + 2

∑

k≥1

[ã
(4)
2 ]k


 .

k = 0: For i, j ∈ {1, 3}, set

[s1ij ]k(τ)
def
=
[(
ā(1) + ã

(1)
1 r + τ ã

(1)
2

)(
ā(i) + ã

(i)
1 r + τ ã

(i)
2

)(
ā(j) + ã

(j)
1 r + τ ã

(j)
2

)]
k
.

Computing the derivative with respect to τ and evaluating at τ = 0 yields

[s111]′k
def
=
∂[s111]k
∂τ

∣∣∣∣
τ=0

=
[
3(ā(1))2ã

(1)
2 + 6ā(1)ã

(1)
1 ã

(1)
2 r + 3(ã

(1)
1 )2ã

(1)
2 r2

]
k

[s113]′k
def
=
∂[s113]k
∂τ

∣∣∣∣
τ=0

=
[
(ā(1))2ã

(3)
2 + 2ā(1)ã

(1)
2 ā(3) + 2ā(1)ã

(1)
1 ã

(3)
2 r + 2ā(1)ã

(1)
2 ã

(3)
1 r

+ 2ã
(1)
1 ã

(1)
2 ā(3)r + (ã

(1)
1 )2ã

(3)
2 r2 + 2ã

(1)
1 ã

(1)
2 ã

(3)
1 r2

]
k

[s133]′k
def
=
∂[s133]k
∂τ

∣∣∣∣
τ=0

=
[
ã

(1)
2 (ā(3))2 + 2ā(1)ā(3)ã

(3)
2 + 2ã

(1)
2 ā(3)ã

(3)
1 r + 2ã

(1)
1 ā(3)ã

(3)
2 r

+ 2ā(1)ã
(3)
1 ã

(3)
2 r + ã

(1)
2 (ã

(3)
1 )2r2 + 2ã

(1)
1 ã

(3)
1 ã

(3)
2 r2

]
k
.
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Therefore,

Df0(x̄+ wr)v = −[ã2]0+

d




(θ̃2)1 + [ã
(2)
2 ]0 −

1

2
[ã

(2)
2 ]1 − 2

∞∑

k=2

[ã
(2)
2 ]k

(−1)k

k2 − 1

κ2
(

[s111]′0 + [s133]′0 − [ã
(1)
2 ]0 −

1

2

(
[s111]′1 + [s133]′1 − [ã

(1)
2 ]1

)
− 2

∞∑

k=2

(
[s111]′k + [s133]′k − [ã

(1)
2 ]k

)
(−1)k

k2 − 1

)

(θ̃2)2 + [ã
(4)
2 ]0 −

1

2
[ã

(4)
2 ]1 − 2

∞∑

k=2

[ã
(4)
2 ]k

(−1)k

k2 − 1

[s113]′0 −
1

2
[s113]′1 − 2

∞∑

k=2

[s113]′k
(−1)k

k2 − 1




.

k ≥ 1: Using that fk(x) = −2kak + ck−1 − ck+1 for k ≥ 1, one gets that

Dfk(x̄+ wr)v = −2k[ã2]k+

d




[ã
(2)
2 ]k−1 − [ã

(2)
2 ]k+1

κ2

(
[s111]′k−1 + [s133]′k−1 − [ã

(1)
2 ]k−1 − [s111]′k+1 − [s133]′k+1 + [ã

(1)
2 ]k+1

)

[ã
(4)
2 ]k−1 − [ã

(4)
2 ]k+1

[s113]′k−1 − [s113]′k+1



.

For w ∈ B(1), |w−1|∞, |w0|∞ ≤ 1, |wk|∞ ≤ k−s, wk = ([ã
(1)
1 ]k, [ã

(2)
1 ]k, [ã

(3)
1 ]k, [ã

(4)
1 ]k), and

similarly for v. Hence, for k ≥ 0, i ∈ {1, 2} and j ∈ {1, 2, 3, 4},
∣∣(ã(j)

i )k
∣∣ ≤ 1

ωsk
.

We introduce the notation ω−s
def
= (ω−sk )k≥−1, ω−sF

def
= (ω−sk )m−1

k=−1 ∈ Rm+1 and ω−sI
def
= ω−s −

ω−sF . Also Ā(i) def
= max

k∈{0,1,...,m−1}
{ωsk|ā

(i)
k |} for i = 1, 2, 3, 4, which implies that |ā(i)

k | ≤
Ā(i)

ωsk
. Before

obtaining the bounds z
(1)
k , z

(2)
k and z

(3)
k in (27), we need some analytic estimates, which are

explained in detail in Appendix A.

Lemma 3.1 Consider the decay rate s = 2 and a, b, c ∈ Ωs, where Ωs is defined in (14) with

norm ‖a‖s = supk≥0{|ak|ωsk}. Consider α
(3)
k as defined in (34). Then, for any k ≥ 0,

|(abc)k| ≤ (‖a‖2‖b‖2‖c‖2)
α

(3)
M

ω2
k

. (28)

Proof 3.1 The result follows from Lemma A.4 and Lemma A.5.

The bound of Lemma 3.1 can be improved by performing some interval arithmetic compu-
tations.

Lemma 3.2 Consider the decay rate s = 2 and a, b, c ∈ Ωs. Consider a computational parameter

M and define a(M) = (a0, a1, . . . , aM−1) ∈ RM . Define b(M), c(M) similarly. Consider ε
(3)
k =

ε
(3)
k (2,M) as in (35). Then, for k ∈ {0, . . . ,M − 1},

|(abc)k| ≤
∣∣∣
(
a(M)b(M)c(M)

)
k

∣∣∣+ 3(‖a‖2‖b‖2‖c‖2)ε
(3)
k .

Proof 3.2 The result follows from Lemma A.6.
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The convolutions terms |
(
a(M)b(M)c(M)

)
k
| can be bounded with the Fast Fourier Transform

(FFT) algorithm on the computer together with interval arithmetic.

Computation of the bounds z
(1)
k , z

(2)
k , z

(3)
k

Case k = −1: Since
[
Df(x̄+ rw)v −A†v

]
−1

=


2

∑

k≥m
[ã

(2)
2 ]k, 2

∑

k≥m
[ã

(4)
2 ]k



T

, then

∣∣[Df(x̄+ rw)v −A†v
]
−1

∣∣ � z(1)
−112

def
=

(
M−1∑

k=m

2

ks
+

2

(M − 1)s−1(s− 1)

)
12.

Case k = 0: Let [S111]k
def
= [s111]′k−([s111]′k)F , [S113]k

def
= [s113]′k−([s113]′k)F and [S133]k

def
= [s133]′k−

([s133]′k)F . Then,

[
Df(x̄+ rw)v −A†v

]
0

=

d




−2
∑

k≥m

[ã
(2)
2 ]k

(−1)k

k2 − 1

κ2
(

[S111]0 + [S133]0 −
1

2

(
[S111]1 + [S133]1

)
− 2

∑

k≥m

(
[S111]k + [S133]k − [ã

(1)
2 ]k

)
(−1)k

k2 − 1

)

−2
∑

k≥m

[ã
(4)
2 ]k

(−1)k

k2 − 1

[S113]0 −
1

2
[S113]1 − 2

∑

k≥m

[S113]k
(−1)k

k2 − 1




.

In order to find the bounds z
(1)
0 , z

(2)
0 , and z

(3)
0 satisfying (27) for k = 0, we need first to bound the

terms |[S111]k|, |[S113]k| and |[S133]k|. Using the analytic estimates of Lemma 3.1 and Lemma 3.2,
we can compute upper bounds for

[
ω−sI |a(i)||a(j)|

]
k
,
[
ω−sω−s|a(i)|

]
k

and
[
ω−sω−sω−s

]
k

to obtain

|[S111]k| ≤3
[
ω−sI |ā

(1)|2
]
k

+ 6
[
(ω−s)2|ā(1)|

]
k
r + 3

[
(ω−s)3

]
k
r2

≤





3

[ ∑

k1+k2+k3=k
m≤|k1|<M

[ω−sI ]k1 [|ā(1)|]k2 [|ā(1)|]k3 + 3(Ā(1))2ε
(3)
k

]

+6

[ ∑

k1+k2+k3=k
0≤|k1|<M

[ω−s]k1 [ω−s]k2 [|ā(1)|]k3 + 3Ā(1)ε
(3)
k

]
r + 3

α
(3)
M

ωsk
r2, 0 ≤ k < M

α
(3)
M

ωsk

(
3(Ā(1))2 + 6Ā(1)r + 3r2

)
, k ≥M,
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|[S113]k| ≤
[
ω−sI |ā

(1)|2 + 2ω−sI |ā
(3)||ā(1)|

]
k

+
[
4(ω−s)2|ā(1)|+ 2(ω−s)2|ā(3)|

]
k
r + 3

[
(ω−s)3

]
k
r2

≤





∑

k1+k2+k3=k
m≤|k1|<M

[ω−sI ]k1 [|ā(1)|]k2 [|ā(1)|]k3 + 3(Ā(1))2ε
(3)
k

+2

( ∑

k1+k2+k3=k
m≤|k1|<M

[ω−sI ]k1 [|ā(1)|]k2 [|ā(3)|]k3 + 3Ā(1)Ā(3)ε
(3)
k

)

+

[
4

( ∑

k1+k2+k3=k
0≤|k1|<M

[ω−s]k1 [ω−s]k2 [|ā(1)|]k3 + 3Ā(1)ε
(3)
k

)

+2

( ∑

k1+k2+k3=k
0≤|k1|<M

[ω−s]k1 [ω−s]k2 [|ā(3)|]k3 + 3Ā(3)ε
(3)
k

)]
r + 3

α
(3)
M

ωsk
r2, 0 ≤ k < M

α
(3)
M

ωsk

(
(Ā(1))2 + 2Ā(1)Ā(3) +

(
4Ā(1) + 2Ā(3)

)
r + 3r2

)
, k ≥M,

|[S133]k| ≤
[
ω−sI |ā

(3)|2 + 2ω−sI |ā
(1)||ā(3)|

]
k

+
[
4(ω−s)2|ā(3)|+ 2(ω−s)2|ā(1)|

]
k
r + 3

[
(ω−s)3

]
k
r2

≤





∑

k1+k2+k3=k
m≤|k1|<M

[ω−sI ]k1 [|ā(3)|]k2 [|ā(3)|]k3 + 3(Ā(3))2ε
(3)
k

+2

( ∑

k1+k2+k3=k
m≤|k1|<M

[ω−sI ]k1 [|ā(1)|]k2 [|ā(3)|]k3 + 3Ā(1)Ā(3)ε
(3)
k

)

+

[
4

( ∑

k1+k2+k3=k
0≤|k1|<M

[ω−s]k1 [ω−s]k2 [|ā(3)|]k3 + 3Ā(3)ε
(3)
k

)

+2

( ∑

k1+k2+k3=k
0≤|k1|<M

[ω−s]k1 [ω−s]k2 [|ā(1)|]k3 + 3Ā(1)ε
(3)
k

)]
r + 3

α
(3)
M

ωsk
r2, 0 ≤ k < M

α
(3)
M

ωsk

(
(Ā(3))2 + 2Ā(1)Ā(3) +

(
4Ā(3) + 2Ā(1)

)
r + 3r2

)
, k ≥M.

The finite sums appearing in the upper bounds of [S111]k, [S113]k and [S133]k when k < M are
computed using the FFT algorithm together with interval arithmetics. Defining V111, V113, V133

as in Table 1 and W111,W113,W133 as follows

W
(1)
111 = 3(Ā(1))2, W

(2)
111 = 6Ā(1), W

(3)
111 = 3

W
(1)
113 = (Ā(1))2 + 2Ā(1)Ā(3), W

(2)
113 = 4Ā(1) + 2Ā(3), W

(3)
113 = 3

W
(1)
133 = (Ā(3))2 + 2Ā(1)Ā(3), W

(2)
133 = 4Ā(3) + 2Ā(1), W

(3)
133 = 3,

and collecting the coefficients of r, we obtain the upper bounds

|[S1ij ]k| ≤ [V
(1)

1ij ]k + [V
(2)

1ij ]kr + [V
(3)

1ij ]kr
2, 0 ≤ k < M,

|[S1ij ]k| ≤
α

(3)
M

ωsk

(
W

(1)
1ij +W

(2)
1ij r +W

(3)
1ij r

2

)
, k ≥M.
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V
(1)
111

3

[ ∑
k1+k2+k3=k
m≤|k1|<M

[ω
−s
I ]k1 [|ā(1)|]k2 [|ā(1)|]k3 + 3(Ā

(1)
)
2
ε
(3)
k

]

V
(2)
111

6

[ ∑
k1+k2+k3=k
0≤|k1|<M

[ω
−s

]k1 [ω
−s

]k2 [|ā(1)|]k3 + 3Ā
(1)
ε
(3)
k

]

V
(3)
111 3

α
(3)
M

ωs
k

V
(1)
113

∑
k1+k2+k3=k
m≤|k1|<M

[ω
−s
I ]k1 [|ā(1)|]k2 [|ā(1)|]k3 + 3(Ā

(1)
)
2
ε
(3)
k

+ 2

[ ∑
k1+k2+k3=k
m≤|k1|<M

[ω
−s
I ]k1 [|ā(1)|]k2 [|ā(3)|]k3 + 3Ā

(1)
Ā

(3)
ε
(3)
k

]

V
(2)
113

4

[ ∑
k1+k2+k3=k
0≤|k1|<M

[ω
−s

]k1 [ω
−s

]k2 [|ā(1)|]k3 + 3Ā
(1)
ε
(3)
k

]
+ 2

[ ∑
k1+k2+k3=k
0≤|k1|<M

[ω
−s

]k1 [ω
−s

]k2 [|ā(3)|]k3 + 3Ā
(3)
ε
(3)
k

]

V
(3)
113 3

α
(3)
M

ωs
k

V
(1)
133

∑
k1+k2+k3=k
m≤|k1|<M

[ω
−s
I ]k1 [|ā(3)|]k2 [|ā(3)|]k3 + 3(Ā

(3)
)
2
ε
(3)
k

+ 2

[ ∑
k1+k2+k3=k
m≤|k1|<M

[ω
−s
I ]k1 [|ā(1)|]k2 [|ā(3)|]k3 + 3Ā

(1)
Ā

(3)
ε
(3)
k

]

V
(2)
133

4

[ ∑
k1+k2+k3=k
0≤|k1|<M

[ω
−s

]k1 [ω
−s

]k2 [|ā(3)|]k3 + 3Ā
(3)
ε
(3)
k

]
+ 2

[ ∑
k1+k2+k3=k
0≤|k1|<M

[ω
−s

]k1 [ω
−s

]k2 [|ā(1)|]k3 + 3Ā
(1)
ε
(3)
k

]

V
(3)
133 3

α
(3)
M

ωs
k

Table 1: The Formulas for V
(`)

1ij for i, j ∈ {1, 3} and for ` = 1, 2, 3.

Finally, using the estimates

∣∣∣∣∣
∞∑

k=m

[S1ij ]k
(−1)k

k2 − 1

∣∣∣∣∣ ≤
M−1∑

k=m

|[S1ij ]k|
k2 − 1

+
∑

k≥M

|[S1ij ]k|
k2 − 1

≤
M−1∑

k=m

(V
(1)

1ij )k + (V
(2)

1ij )kr + (V
(3)

1ij )kr
2

k2 − 1

+ α
(3)
M

(
W

(1)
1ij +W

(2)
1ij r +W

(3)
1ij r

2

) ∑

k≥M

1

ks(k2 − 1)

and
∣∣∣∣∣
∑

k≥m
[ã

(j)
i ]k

(−1)k

k2 − 1

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

k≥m

1

ks(k2 − 1)

∣∣∣∣∣ ≤
M−1∑

k=m

1

ks(k2 − 1)
+

1

M2 − 1

1

(M − 1)s−1(s− 1)
,

we obtain the bounds z
(1)
0 , z

(2)
0 , and z

(3)
0 satisfying (27) for k = 0. The formulas for z

(1)
0 , z

(2)
0 ,

and z
(3)
0 are given in Table 2 in Appendix A.

Cases 0 < k < m− 1: Similarly as in the case for k = 0, one gets that

[
Df(x̄+ rw)v −A†v

]
k

= d




0

κ2

(
[S111]k−1 + [S133]k−1 − [S111]k+1 − [S133]k+1

)

0
[S113]k−1 − [S113]k+1



,

and
∣∣[Df(x̄ + rw)vr − A†vr

]
k

∣∣ � z
(1)
k r + z

(2)
k r2 + z

(3)
k r3, where the formulas for z

(1)
k , z

(2)
k , and

z
(3)
k are given in Table 2 in Appendix A.
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Cases k = m− 1, k = m

[
Df(x̄+ rw)v −A†v

]
k

=

d




−[ã
(2)
2 ]k+1

κ2

(
[S111]k−1 + [S133]k−1 − [ã

(1)
2 ]k−1 − [S111]k+1 − [S133]k+1 + [ã

(1)
2 ]k+1

)

−[ã
(4)
2 ]k+1

[S113]k−1 − [S113]k+1




and
∣∣[Df(x̄ + rw)vr − A†vr

]
k

∣∣ � z
(1)
k r + z

(2)
k r2 + z

(3)
k r3, where the formulas for z

(1)
k , z

(2)
k , and

z
(3)
k are given in Table 2 in Appendix A.

Cases m < k ≤M

[
Df(x̄+ rw)v −A†v

]
k

=

d




[ã
(2)
2 ]k−1 − [ã

(2)
2 ]k+1

κ2

(
[S111]k−1 + [S133]k−1 − [ã

(1)
2 ]k−1 − [S111]k+1 − [S133]k+1 + [ã

(1)
2 ]k+1

)

[ã
(4)
2 ]k−1 − [ã

(4)
2 ]k+1

[S113]k−1 − [S113]k+1




and
∣∣[Df(x̄ + rw)vr − A†vr

]
k

∣∣ ≤ z
(1)
k r + z

(2)
k r2 + z

(3)
k r3, where the formulas for z

(1)
k , z

(2)
k , and

z
(3)
k are given in Table 2 in Appendix A.

We can finally combine all the above bounds and let

Z
(i)
F

def
= |Am| z(i)

F , for i = {1, 2, 3}

Z
(i)
k

def
=

1

2k
z

(i)
k , for i = {1, 2, 3}, k ≥ m

Z
(0)
F

def
=
∣∣∣I −AmDf (m)(x̄F )

∣∣∣ ω̃−sF
Z

(0)
k

def
= 0 for k ≥ m,

where ω̃−sF
def
=
(
(ω−sk )ζ(k)

)
k≥−1

, with (ω−sk )ζ(k) =

ζ(k) times︷ ︸︸ ︷
(ω−sk , . . . , ω−sk ). We can finally define, for k =

−1, . . . ,M ,

Zk(r)
def
=
(
Z

(0)
k + Z

(1)
k

)
r + Z

(2)
k r2 + Z

(3)
k r3. (29)

For k > M , we need the tail radii polynomial (23) to ensure that Yk + Zk(r) − r
ks14 =

1
2k

(
z

(1)
k r+ z

(2)
k r2 + z

(3)
k r3

)
− r

ks14 ≺ 0 for all k ≥M + 1. Using Lemma 3.1, consider asymptotic

bounds z̃
(i)
M+1 such that z

(1)
k �

z̃
(i)
M+1

ks for all k > M and for i = 1, 2, 3. The bounds can be found
at the end of Table 2. Hence, for all k > M , one has that
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Yk + Zk(r)−
r

ks
14 =

1

2k

(
z

(1)
k r + z

(2)
k r2 + z

(3)
k r3

)
− r

ks
14

� 1

2k

(
z̃

(1)
M+1

ks
r +

z̃
(2)
M+1

ks
r2 +

z̃
(3)
M+1

ks
r3

)
− r

ks
14

� 1

ks

[(
z̃

(1)
M+1

2(M + 1)
r +

z̃
(2)
M+1

2(M + 1)
r2 +

z̃
(3)
M+1

2(M + 1)
r3

)
− 14r

]
.

Hence, we set

Z̄M+1(r)
def
=

z̃
(3)
M+1

2(M + 1)
r3 +

z̃
(2)
M+1

2(M + 1)
r2 +

z̃
(1)
M+1

2(M + 1)
r. (30)

Combining the bounds (26), (29) and (30), we have the radii polynomials

pk(r) =

{
Yk + Zk(r)− r

ωsk
1ζ(k), −1 ≤ k ≤M,

Z̄M+1(r)− r14, k = M + 1.
(31)

We are now ready to present the proofs of the theorems in Section 1.

4 Proofs of the theorems

The computer-assisted proof of each theorem is done using MATLAB and the package IntLab
[30]. The proofs can be reproduced by running the program G L PROOF INTV AL for each
of the four partitions considered. As mentioned previously, the idea of the proofs is to con-
struct the radii polynomials (31), verify the hypothesis of Theorem 2.1, and use Lemma 2.1
to conclude that u(t) = (u1, u2, u3, u4) = (φ, φ′, ψ, ψ′) = a0 + 2

∑
k≥1 akTk(t) is a solution of

the Ginzburg-Landau boundary value problem (2). All codes can be found at [?]. The data of
the global diagram for each case were computed seperately and are provided for the proof to be
reproduced. The main program loads these data such as the approximate solution and the values
of each parameter (κ, d, he). It then computes the bounds Y , Z satisfying (26), (29), (30), and
determines the positive interval on which the radii polynomials are negative. If such an interval
exists, the solution is in a ball centered around the approximate solution. Then, the program
attests that all solutions are isolated from each other by verifying that no intervals overlap. Each
proof is done in the space X2, that is in the space of sequences decaying at least as fast as k−2.

Proof. [Proof of Theorem 1.1] The proof can be reproduced by running the programG L PROOF INTV AL
from the folder S3A2 available at [?]. In this case M = 6m − 1 and the value of m for each
solution is given by the following table

S3 ∩ A2 x
(1)
s x

(2)
s x

(3)
s x

(1)
a x

(2)
a x

(3)
a x

(4)
a

m 260 210 330 280 190 190 280
.

Proof. [Proof of Theorem 1.2] The proof can be reproduced by running the programG L PROOF INTV AL
from the folder S1A2 available at [?]. In this case M = 4m − 1 and the value of m for each
solution is given by the following table.

S1 ∩ A2 x
(1)
s x

(1)
a x

(2)
a x

(3)
a x

(4)
a

m 190 150 180 180 150
.
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Proof. [Proof of Theorem 1.3] The proof can be reproduced by running the programG L PROOF INTV AL
from the folder S2A1 available at [?]. In this case M = 5m − 1 and the value of m for each
solution is given by the following table.

S2 ∩ A1 x
(1)
s x

(2)
s x

(1)
a x

(2)
a

m 250 80 100 100
.

Proof. [Proof of Theorem 1.4] The proof can be reproduced by running the programG L PROOF INTV AL
from the folder S2A2 available at [?]. In this case M = 5m − 1 and the value of m for each
solution is given by the following table.

S2 ∩ A2 x
(1)
s x

(2)
s x

(1)
a x

(2)
a x

(3)
a x

(4)
a

m 150 70 90 120 90 120
.

5 Conclusion

In this paper, we introduced a rigorous computational method using Chebyshev series to com-
pute solutions of the Euler-Lagrange equations for the one-dimensional Ginzburg-Landau model
of superconductivity. Our approach used analytic estimates, the radii polynomials and the con-
traction mapping theorem to show existence of solutions near numerical approximations. Coex-
istence of as many as seven nontrivial solutions was proved. This result is new and prior to this
paper has been open for more than thirty years.

Finally, let us briefly mention that none of the apparent bifurcations that appeared in our
diagrams have been proved rigorously. However, we believe that the method introduced in [31]
could be applied to prove that the bifurcations are there, especially since many bifurcations seem
to involve the breaking of some symmetry.
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A Estimates and bounds

This appendix provides the necessary convolution estimates required and the final bounds zk
to construct the radii polynomials constructed in Section 3. All proofs can be found in [28, 23].
Consider a decay rate s ≥ 2, a computational parameter M ≥ 6 and define, for k ≥ 3,

γk = γk(s)
def
= 2

[
k

k − 1

]s
+

[
4 ln(k − 2)

k
+
π2 − 6

3

] [
2

k
+

1

2

]s−2

. (32)

Lemma A.1 For s ≥ 2 and k ≥ 4 we have

k−1∑

k1=1

ks

ks1(k − k1)s
≤ γk.

Lemma A.2 (Quadratic estimates) Given a decay rate s ≥ 2 and M ≥ 6. For k ∈ Z, define

the quadratic asymptotic estimates α
(2)
k = α

(2)
k (s,M) by

α
(2)
k

def
=





1 + 2
M∑

k1=1

1

ω2s
k1

+
2

M2s−1(2s− 1)
, for k = 0

M∑

k1=1

2ωsk
ωsk1

ωsk+k1

+
2ωsk

(k +M + 1)sM s−1(s− 1)

+2 +
k−1∑

k1=1

ωsk
ωsk1

ωsk−k1

, for 1 ≤ k ≤M − 1

2 + 2

M∑

k1=1

1

ωsk1

+
2

M s−1(s− 1)
+ γM , for k ≥M,

(33)

and for k < 0,

α
(2)
k

def
= α

(2)
|k| .

Then, for any k ∈ Z,
∑

k1+k2=k

kj∈Z

1

ωsk1
ωsk2

≤
α

(2)
k

ωsk
.

Lemma A.3 For any k ∈ Z with |k| ≥M ≥ 6, we have that α
(2)
k ≤ α

(2)
M .

Proof A.1 For k ≥ 6, the fact that ln(k−1)
k+1 ≤ ln(k−2)

k implies that γk+1(s) ≤ γk(s). By definition

of α
(2)
k , for |k| ≥M , one gets that α

(2)
k ≤ α

(2)
M .

Lemma A.4 (Cubic estimates) Given s ≥ 2 and M ≥ 6. Let

Σ∗a
def
=

M−1∑

k1=1

α
(2)
k1
M s

ωsk1

(
M − k1

)s + α
(2)
M


γM −

M−1∑

k1=1

1

ωsk1


 ,

α̃
(2)
M

def
= max

{
α

(2)
k | k = 0, . . . ,M

}
, Σ∗b

def
= α̃

(2)
M γM and Σ∗

def
= min {Σ∗a,Σ∗b}. Define the cubic
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asymptotic estimates α
(3)
k = α

(3)
k (s,M) by

α
(3)
k

def
=





α
(2)
0 + 2

M−1∑

k1=1

α
(2)
k1

ω2s
k1

+
2α

(2)
M

(M − 1)2s−1(2s− 1)
, for k = 0

M−k∑

k1=1

α
(2)
k+k1

ωsk
ωsk1

ωsk+k1

+
α

(2)
M ωsk

(M + 1)s(M − k)s−1(s− 1)
+

k−1∑

k1=1

α
(2)
k1
ωsk

ωsk1
ωsk−k1

+
M∑

k1=1

α
(2)
k1
ωsk

ωsk1
ωsk+k1

+
α

(2)
M ωsk

(M + k + 1)sM s−1(s− 1)
+ α

(2)
k + α

(2)
0 ,

for 1 ≤ k ≤M − 1

α
(2)
M

M∑

k1=1

1

ωsk1

+
2α

(2)
M

M s−1(s− 1)
+ Σ∗ +

M∑

k1=1

α
(2)
k1

ωsk1

+ α
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and for k < 0,
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Moreover, α
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Lemma A.5 For any k ∈ Z with |k| ≥M ≥ 6, we have that α
(3)
k ≤ α

(3)
M .

Proof A.2 For k ≥ 6, the fact that ln(k−1)
k+1 ≤ ln(k−2)

k implies that γk+1(s) ≤ γk(s). By definition

of α
(3)
k , for |k| ≥M , one gets that α

(3)
k ≤ α

(3)
M .

Lemma A.6 Given s ≥ 2 and M ≥ 6, define for 0 ≤ k ≤M − 1

ε
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=
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]
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Fix 0 ≤ |k| ≤M − 1 and ` ∈ {1, 2, 3}. Then, we have that

∑

k1+k2+k3=k

max{|k1|,...,|k`|}≥M
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≤ `ε(3)
k .
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Table 2: Formulas for zk
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