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Abstract

In this paper, we introduce a constructive rigorous numerical method to compute
smooth manifolds implicitly defined by infinite dimensional nonlinear operators. We
compute a simplicial triangulation of the manifold using a multi-parameter continu-
ation method on a finite dimensional projection. The triangulation is then used to
construct local charts and an atlas of the manifold in the infinite dimensional domain
of the operator. The idea behind the construction of the smooth charts is to use the
radii polynomials to verify the hypotheses of the uniform contraction principle over a
simplex. The construction of the manifold is globalized by proving smoothness along
the edge of adjacent simplices. We apply the method to compute portions of a two-
dimensional manifold of equilibria of the Cahn-Hilliard equation.

1 Introduction

Partial differential equations (PDEs), delay differential equations (DDEs) and ordinary dif-
ferential equations arising from physics, biology, chemistry, economics or engineering often
depend on parameters. It is, therefore, natural to study the changes in the qualitative be-
havior of the solutions as one changes some parameters of the equations. Thus, it is not
surprising that there is a vast literature on numerical techniques devoted to continuation of
such solutions, often in the form of predictor-corrector algorithms. In the context of infinite
dimensional problems like PDEs and DDEs, the continuation algorithms have to be per-
formed on a finite dimensional projection, which raises the natural question of the validity
of the outputs. In order to address this fundamental question, rigorous one-parameter con-
tinuation methods have been proposed to compute global branches of solutions of PDEs and
DDEs [1, 2, 3, 4, 5]. While these methods have been applied to compute one-dimensional
manifolds, we are not aware of any rigorous method aiming at computing manifolds of
dimension greater than one. In this regard, we propose here a rigorous multi-parameter
continuation method to compute smooth two-dimensional manifolds implicitly defined by
zeros of nonlinear operators defined on infinite dimensional Banach spaces.

The construction of the manifold goes through several steps. First, a multi-parameter
continuation algorithm is applied to a finite dimensional projection in order to obtain an
approximate simplicial triangulation of the manifold. Second, the algorithm provides precise
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bounds in the Banach space around each approximate simplex within which a genuine
smooth local chart of the manifold is guaranteed to exist in the mathematically rigorous
sense. This is done by using the radii polynomials which provide an efficient way of verifying
the hypotheses of the uniform contraction principle on a thin set centered at the simplex. The
construction of the polynomials requires developing estimates that control the truncation
error terms (the tail part) involved in computing the approximate simplices using a finite
dimensional projection. The construction of the manifold is then globalized by proving
smoothness along the edge of adjacent simplices. This is done again by using the radii
polynomials together with the implicit function theorem. Combining all the above steps
yields a rigorous computation of the local charts and an atlas of the manifold.

Our motivation for developing such method comes from the study of finite and infinite
dimensional parameter dependent dynamical systems. From the point of view of dynamical
systems, the objects of interest are bounded solutions that exist globally in time, for instance,
equilibria (steady states), time periodic solutions, solutions of boundary value problems,
connecting orbits, etc. For a large class of problems, these solutions are more regular than
the typical solutions of the phase space. Based on this a priori knowledge of regularity,
spectral methods can be used to define a nonlinear operator f : R2 ×B1 → B2 such that a
solution x = (p, a) ∈ R2 ×B1 of

f(x) = 0 (1)

corresponds to a bounded solution of interest. The domain of f contains the parameter space
R2 and B1, B2 are infinite dimensional Banach spaces of fast decaying coefficients. In case
the targeted solution has a periodic profile, the infinite dimensional vector a = (ak)k≥k0

may
be the coefficients of the Fourier expansion of the solution, while, if the solution has a non
periodic profile, the infinite dimensional vector a may be the coefficients of the Chebyshev
polynomials expansion of the solution. The general goal of this paper is to develop a
systematic computer-assisted approach to the construction of local charts and atlas for
two-dimensional manifolds M⊂

{
x ∈ R2 ×B1 : f(x) = 0

}
.

Before proceeding further, it is worth mentioning that multi-parameter continuation
algorithms have already been proposed to compute smooth manifolds implicitly defined by
finite dimensional nonlinear equations [6, 7, 8, 9, 10]. In fact, the algorithm that we propose
here to compute the manifold is strongly inspired by the work of [7, 8]. Also, note that the
verification method based on the uniform contraction principle on each simplex is similar in
spirit to the pseudo-arclength continuation methods introduced in [1, 11] for smooth one-
dimensional manifolds. However, as mentioned above, and to the best of our knowledge,
this is the first time that a computational method is proposed for the rigorous computation
of two-dimensional smooth manifolds implicitly defined by infinite dimensional nonlinear
equations.

The paper is organized as follows. In Section 2, we present the rigorous method to
compute local smooth charts of two-dimensional manifolds implicitly defined by a C` func-
tion f acting between two infinite dimensional Banach spaces. In Section 3, we introduce
the algorithm to construct the finite dimensional simplicial approximation of the manifold.
We show in Section 4 how to combine the methods of Section 2 and Section 3 to glue the
charts and therefore construct rigorously the atlas of the smooth manifold. In Section 5,
we apply the method to rigorously compute a two-dimensional manifold of equilibria of the
Cahn-Hilliard PDE defined on a one-dimensional spatial domain with Neumann boundary
conditions. We finally conclude the paper in Section 6 where we present some potential
future applications, as well as extensions to the present work.
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2 Rigorous computation of the local charts

In this section, we develop a systematic rigorous computer-assisted approach to construct
local charts for two-dimensional manifolds M⊂

{
x ∈ R2 ×B1 : f(x) = 0

}
. More precisely,

we introduce an algorithm that provides precise bounds in the Banach space R2×B1 around
an approximate simplex within which a genuine smooth local chart of the manifold is rigor-
ously guaranteed to exist. The bounds are obtained with the use of the radii polynomials,
which provide an efficient means of determining a domain on which the uniform contraction
mapping theorem is applicable. The next section presents their definition.

2.1 Definition of the radii polynomials

In order to define the radii polynomials, we need to define explicitly the Banach spaces B1

and B2 on which the proofs of existence of the charts are going to be obtained. Recall that
a solution x = (p, a) of f(x) = 0 is made by a parameter p ∈ R2 and an infinite dimensional
vector a = (ak)k≥0 of coefficients (Fourier or Chebyshev) of the expansion of the a priori
unknown solution of interest. As already mentioned in Section 1, due to the regularity of
the solutions, the decay rate of the coefficients is fast. In fact, if the targeted solution is
analytic, the decay rate of its coefficients is faster than any algebraic decay. Considering
weights ωqk with algebraic growth rate q defined by

ωqk
def
=

{
1, if k = −2,−1, 0

kq, if k > 0,
(2)

define the norm
‖a‖q def

= sup
k≥0
{|ak|ωqk} , (3)

which is then used to define the Banach space

Ωq = {a = (ak)k≥0 : ‖a‖q <∞}. (4)

Define the spaces B1 = Ωq and B2 = Ωq
′

for some decay rates q, q′ ∈ R, and let

X
def
= R2 × Ωq.

Given x ∈ X, denote x−2 = p1, x−1 = p2 and xk = ak, for k ≥ 0. For x = (p, a) =
(p1, p2, a) ∈ X, define a norm on X by

‖x‖X = sup
k≥−2

{|xk|ωqk} = max{|p1|, |p2|, ‖a‖q}.

Using this construction, (X, ‖ · ‖X) is a Banach space. In order to construct local charts of
a two-dimensional manifold M⊂ {x ∈ X : f(x) = 0}, we consider first a finite dimensional
reduction of f that we denote by f (m) : Rm+2 → Rm. Essentially, f (m) consists of keeping
the first m + 2 coordinates of x and the first m components of f . Assume that, using an
iterative Newton’s method, we computed three points x̄0, x̄1, x̄2 ∈ Rm+2 approximately on
M, that is f (m)(x̄i) ≈ 0 (i = 0, 1, 2). Assume also that Df (m)(x̄i) ∈ L(Rm+2,Rm) has a
two dimensional kernel, or, equivalently, that it has full rank. Hence, for each i = 0, 1, 2,
assume the existence of linearly independent φi1, φ

i
2 ∈ Rm+2 such that Df (m)(x̄i)φ

i
j ≈ 0 for

j = 1, 2. For each i = 0, 1, 2, define Φ̄i = [φi1 φ
i
2] ∈ Rm+2 × R2. Note that, in practice, for

i = 0, 1, 2, the φij ’s will be mutually orthonormal vectors, for whose computation we refer to
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Section 3.1.3. As a consequence of the above construction, the plane spanned by φi1 and φi2
is the approximate tangent plane Tx̄iM to the surface M at the point x̄i (i = 0, 1, 2) and(

Df(x̄i)
Φ̄Ti

)
Φ̄i ≈

(
0
I

)
.

Now, let
D

def
= {s = (s1, s2) | s1, s2 ≥ 0 and s1 + s2 ≤ 1}.

Assuming that x̄1 − x̄0 and x̄2 − x̄0 are linearly independent, the following is a one-to-one
parameterization of a 2-dimensional simplex σ with vertices x̄0, x̄1 and x̄2:

x̄s
def
= x̄0 + s1(x̄1 − x̄0) + s2(x̄2 − x̄0), s = (s1, s2) ∈ D. (5)

Formally, the simplex is defined as σ
def
= ∪s∈D{x̄s}. For x̄s ∈ Rm+2, we identify (x̄s, 0∞) ∈ X

with x̄s, where 0∞ is the infinite dimensional vector with coordinates all equal to zero.
Consider the interpolation of the two-dimensional kernels Φ̄0, Φ̄1 and Φ̄2 defined by

Φ̄s
def
= Φ̄0 + s1(Φ̄1 − Φ̄0) + s2(Φ̄2 − Φ̄0), s = (s1, s2) ∈ D. (6)

As above, depending on the context, Φ̄s ∈ Rm+2×R2 or Φ̄s ∈ X ×R2. Consider now Φ̄Ts ∈
L(X,R2) as a linear operator between X and R2. Define the Banach space W = R2 × Ωq

′

and define Fs : X →W by

Fs(x) =

(
Φ̄Ts (x− x̄s)

f(x)

)
. (7)

Note that, for a given s ∈ D, a solution x of (7), if it exists, is the projection of x̄s ∈ σ
onto M orthogonally to σ. Our goal is now to find zeros of (7). Rather than working with
(7) directly, we recast the problem as a fixed point problem, essentially given by a Newton-
like operator defined on the full Banach space X. In order to obtain such operator, we
introduce an approximate inverse for DFs at an approximate solution. Assume that, with

the help of the computer, we have computed explicitly Am ≈
(
DF (m)

0 (x̄0)
)−1

a numerical

inverse of DF (m)
0 (x̄0). Furthermore, assume that we have verified that Am is invertible (this

hypothesis can be rigorously verified through the use of interval arithmetic). Given x ∈ X,
denote xF = (x−2, x−1, . . . , xm−1)T . Finally, define the linear operator A : W → X by

(Ax)k =

{
(AmxF )k, k = −2, . . . ,m− 1

µ−1
k xk, k ≥ m, (8)

where µk
def
= ∂fk

∂xk
(0). We make the assumption that µk →∞ as k →∞. Note for instance

that this assumption is verified when the operator (1) is obtained by expanding a semi-linear
PDE defined on an interval using Fourier series. We refer to Section 5 and to (40) for an
explicit example in the context of the fourth order Cahn-Hilliard equation. Assume that
m is taken large enough so that |µk| > 0 for all k ≥ m, one gets that A defined by (8)
is an invertible linear operator. The idea behind this choice of operator is that for large
enough projection dimension m, one should have that A ≈ DF0(x̄0)−1. Indeed, since we
know a priori that the coefficients of the (Fourier or Chebyshev) expansion of the bounded
solutions of interest decay fast, the off-diagonal terms in DF0(x̄0) of the form ∂fk

∂xl
should

rapidly go to zero as |k− l| grows. Since |µk| → ∞ as k →∞, the operator DF0(x̄0) should
be asymptotically diagonally dominant. Hence, at least in principle, the larger is m, the
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better is A as an approximation of DF0(x̄0)−1. Using the approximate inverse A given by
(8), define Ts : X → X by

Ts(x) = x−AFs(x). (9)

Define the closed ball of radius r centered at x̄s in X as Bx̄s(r) = x̄s +B(r), where

B(r) =
{
x ∈ X : ‖x‖X ≤ r

}
=

∞∏
k=−2

[
− r

ωqk
,
r

ωqk

]
= [−r, r]3 ×

∞∏
k=1

[
− r

kq
,
r

kq

]
is the closed ball of radius r centered at 0 in X. The idea is to introduce the radii polynomials
to find (if possible) a uniform positive radius r so that for every s ∈ D = {(s1, s2) | 0 ≤
s1 + s2 ≤ 1}, Ts : Bx̄s(r)→ Bx̄s(r) is a contraction. If such positive radius exists, then the

operator T̃ : D×B(r)→ B(r) defined by T̃ (s, y) = Ts(y+ x̄s)− x̄s is a uniform contraction.
The uniform contraction principle then yields a local chart within precise bounds given in
terms of the radius r. The smoothness of the chart itself is a separate issue, and is dealt
with later on in Section 2.3.

Recall the notation x−2 = p1, x−1 = p2 and xk = ak for k ≥ 0. Similarly, [Fs(x)]−2 =
[Φ̄Ts (x− x̄s)]1, [Fs(x)]−1 = [Φ̄Ts (x− x̄s)]2 and [Fs(x)]k = fk(x) for k ≥ 0. Define the uniform
bounds Y = (Yk)k≥−2 and Z = Z(r) = (Zk)k≥−2 satisfying∣∣∣[Ts(x̄s)− x̄s]k∣∣∣ ≤ Yk, ∀ s ∈ D, (10)

and
sup

b1,b2∈B(r)

∣∣∣[DTs(x̄s + b1)b2]k

∣∣∣ ≤ Zk(r), ∀ s ∈ D. (11)

Lemma 2.1. Consider s ∈ D. If there exists an r > 0 such that ‖Y + Z‖X < r, with Y
and Z satisfying (10) and (11), respectively, then Ts is a contraction mapping on Bx̄s(r)
with contraction constant at most ‖Z‖X/r < 1. Furthermore, there is a unique C` function
s ∈ D 7→ x̃(s) ∈ Bx̄s(r) such that Fs(x̃(s)) = 0, and x̃(s) lies in the interior of Bx̄s(r) for
all s ∈ D.

Proof. Fix an s ∈ D and consider x, y ∈ Bx̄s(r) such that x 6= y. For sake of simplicity of
the presentation, denote Ts by T . For any k ≥ −2, the mean value theorem implies

Tk(x)− Tk(y) = DTk(z)(x− y) (12)

for some z = z(k) ∈ {tx + (1− t)y : t ∈ [0, 1]} ⊂ Bx̄s(r). Note that r (x−y)
‖x−y‖s ∈ B(r). Thus

from (11),

|Tk(x)− Tk(y)| =
∣∣∣∣DTk(z)

r(x− y)

‖x− y‖X

∣∣∣∣ 1

r
‖x− y‖X ≤

Zk(r)

r
‖x− y‖X ≤ Zk(r),

and then

‖T (x)− T (y)‖X ≤
‖Z(r)‖X

r
‖x− y‖X .

Now, combining (11) and (12), one gets that |Tk(x)−Tk(y)| ≤ Zk(r). Triangular inequality
yelds

|Tk(x)− (x̄s)k| ≤ |Tk(x)− Tk(x̄s)|+ |Tk(x̄s)− (x̄s)k| ≤ Zk(r) + Yk.

Therefore for any x ∈ Bx̄s(r),

‖T (x)− x̄s‖X = sup
k≥−2

{|Tk(x)− (x̄s)k|ωqk} ≤ sup
k≥−2

{|Yk + Zk(r)|ωqk} = ‖Y + Z(r)‖X < r.
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This proves that T (Bx̄s(r)) ⊂ Bx̄s(r). We can conclude that T : Bx̄s(r) → Bx̄s(r) is a
contraction with contraction constant

κ
def
=
‖Z(r)‖X

r
< 1. (13)

Application of the contraction mapping theorem on the Banach space Bx̄s(r) gives the
existence and uniqueness of a solution x̃(s) of the equation Ts(x̃(s)) = x̃(s) in Bx̄s(r), and

therefore of Fs(x̃(s)) = 0. As in Lemma 5 in [1], the operator T̃ : D×B(r)→ B(r) defined
by

T̃ (s, y) = Ts(y + x̄s)− x̄s
is a uniform contraction on D. Since Fs ∈ C` (X,W ), we have T̃ ∈ C` (D ×B(r), B(r)).
By the uniform contraction principle (e.g. see [12]), x̃(s) is a C` function of s ∈ D.

Verifying in practice the hypotheses of Lemma 2.1 can be delicate. This is why we in-
troduce the radii polynomials, which provide an efficient way to determine (when possible)
the existence of a positive radius r such that the hypotheses of Lemma 2.1 are satisfied.
Before introducing the polynomials, we make two assumptions. Assume that there exists a
number M ≥ m, where m is the dimension of the finite dimensional projection f (m), such
that the bounds Y and Z satisfying (10) and (11) are such that

A1. Yk = 0 for all k ≥M .

A2. There exists a uniform polynomial bound Z̃M (r) such that, for all k ≥M ,

Zk(r) ≤ Z̃M (r)

ωqk
. (14)

Before introducing the radii polynomials, let us make a few comments on assumptions
A1 and A2. If equation (1) comes from a problem involving polynomial nonlinearities,
then the nonlinear terms in (1) are convolutions terms of the form (ā(j1) ∗ ā(j2) ∗ · · · ∗ ā(j`))k
which are eventually equal to zero for large enough k since āk = 0 for k ≥ m. Hence, by
construction of A defined in (8), and of the bound Y as in (10), there exists M such that
Yk can be defined to be 0 for k ≥ M . Now, there are some analytic convolution estimates
(e.g. the ones developed in [11, 13]) that allow computing Z̃M (r) satisfying (14). These
explicit estimates essentially follow from the fact that the Banach space Ωq given in (4) is
an algebra under discrete convolutions. The computation of the uniform polynomial bound
Z̃M (r) is presented explicitly in the example of Section 5. We are now ready to define the
radii polynomials.

Definition 2.2. Recall (10), (11) and (14). We define the finite radii polynomials (pk(r))M−1
k≥−2

by

pk(r) = Yk + Zk(r)− r

ωqk
, k = −2, . . . ,M − 1, (15)

and the tail radii polynomial by

p̃M (r) = Z̃M (r)− r. (16)

The following result justifies the construction of the radii polynomials of Definition 2.2.

Lemma 2.3. If there exists r > 0 such that pk(r) < 0 for all k = −2, . . . ,M , then there is
a unique C` function s ∈ D 7→ x̃(s) ∈ Bx̄s(r) such that Fs(x̃(s)) = 0, and x̃(s) lies in the
interior of Bx̄s(r) for all s ∈ D.
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Proof. For −2 ≤ k < M , notice that pk(r) < 0 implies that

ωqk
∣∣Yk + Zk(r)

∣∣ < r.

For k ≥M , since Yk = 0 and p̃M (r) < 0, we get that

ωqk
∣∣Yk + Zk(r)

∣∣ = ωqkZk(r) = Z̃M (r) < r.

Therefore we have
‖Y + Z‖X = sup

k≥−2
ωqk
∣∣Yk + Zk(r)

∣∣ < r.

The result then follows from Lemma 2.1.

2.2 Construction of the bounds required for the radii polynomials

While the explicit construction of the radii polynomials is problem dependent, we present
a general way to construct them. For a more detailed example, we refer to Section 5, where
the radii polynomials are explicitly defined and used to construct two-dimensional manifolds
of equilibria of the Cahn-Hilliard equation. To compute Y = (Yk)k≥−2 satisfying (10), we
expand

Ts(x̄s)− x̄s = −A
(

0
f(x̄s)

)
as a polynomial in the variables s1 and s2 by using a Taylor expansion of order nY ≥ 2. For

each i, j ≥ 0 such that 2 ≤ i+ j ≤ nY and for each k ≥ 0, consider y
(i,j)
k = y

(i,j)
k (x̄0, x̄1, x̄2)

such that

fk(x̄s) = fk(x̄0) + s1[fx(x̄0)(x̄1 − x̄0)]k + s2[fx(x̄0)(x̄2 − x̄0)]k +
∑

2≤i+j≤nY
i,j≥0

y
(i,j)
k si1s

j
2. (17)

From this and using the fact that |s1|, |s2| ≤ 1, assume we can obtain rigorous upper bounds

Y
(i,j)
k for the terms |y(i,j)

k |. Therefore, set YF = (Y−2, Y−1, . . . , Ym−1)T to be

YF = |Am|

|fF (x̄0)|+ |[fx(x̄0)(x̄1 − x̄0)]F |+ |[fx(x̄0)(x̄2 − x̄0)]F |+
∑

2≤i+j≤nY
i,j≥0

Y
(i,j)
F

 . (18)

From assumption A1, Yk = 0 for all k ≥ M , for some M ≥ m. For more details on the
existence of such M , we refer to the example in Section 5. For m ≤ k ≤M − 1, set

Yk =
1

|µk|

|fk(x̄0)|+ |[fk(x̄0)(x̄1 − x̄0)]F |+ |[fk(x̄0)(x̄2 − x̄0)]F |+
∑

2≤i+j≤nY
i,j≥0

Y
(i,j)
k

 . (19)

We now turn to the computation of Z(r) = (Zk(r))k≥−2 satisfying (11). To simplify the
computation, define the linear operator A† : X →W by

(A†x)k
def
=


[
DF (m)

0 (x̄0)xF

]
k
, if − 2 ≤ k ≤ m− 1

µkxk, if k ≥ m.
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Consider b1, b2 ∈ B(r) and expand

DTs(x̄s + b1)b2 = [I −ADFs(x̄s + b1)]b2

= [I −AA†]b2 −A[DFs(x̄s + b1)b2 −A†b2],

where the first term is expected to be small, provided that Am is a good approximate inverse

for DF (m)
0 (x̄0). The idea is to compute a Taylor expansion of the other term DFs(x̄s +

b1)b2 − A†b2 in the variables s1, s2 and r. Choose a Taylor expansion order nZ . Let

b1 = (p
(1)
1 , p

(1)
2 , a(1)) and b2 = (p

(2)
1 , p

(2)
2 , a(2)). Consider b̃1, b̃2 ∈ B(1) such that b1 = b̃1r

and b2 = b̃2r, and denote b̃1 = (p̃
(1)
1 , p̃

(1)
2 , ã(1)) and b̃2 = (p̃

(2)
1 , p̃

(2)
2 , ã(2)). Then, consider

z
(`,i,j)
k = z

(`,i,j)
k (b̃1, b̃2, x̄0, x̄1, x̄2, Φ̄0, Φ̄1, Φ̄2) such that

[DF(x̄s + b1)b2 −A†b2]k = [DF(x̄s + b̃1r)b̃2r −A†b̃2r]k

=

nZ∑
`=1

(nZ+1−`)∑
i=0

(nZ+1−`−i)∑
j=0

z
(`,i,j)
k si1s

j
2

 r`. (20)

Using the fact that |s1|, |s2| ≤ 1 and |(b̃1)k|, |(b̃1)k| ≤ ω−qk , assume that one can compute

bounds Z
(`)
k = Z

(`)
k (x̄0, x̄1, x̄2, Φ̄0, Φ̄1, Φ̄2) such that∣∣∣∣∣∣

(nZ+1−`)∑
i=0

(nZ+1−`−i)∑
j=0

z
(`,i,j)
k si1s

j
2

∣∣∣∣∣∣ ≤ Z(`)
k . (21)

Then set ZF (r) = (Z−2(r), . . . , Zm−1(r))T to

ZF (r) =
(∣∣∣I −AmDF (m)

0 (x̄0)
∣∣∣ω−qF ) r +

nZ∑
`=1

|Am|Z(`)
F r`. (22)

From assumption A2 there exists a uniform polynomial bound Z̃M (r) such that, for all
k ≥ M , (14) is satisfied. For more details on the existence of such bound for an explicit
problem, we refer to the example in Section 5. For m ≤ k ≤M − 1, set

Zk(r) =

nZ∑
`=1

1

|µk|
Z

(`)
k r`. (23)

Combining (18), (19), (22) and (23), we have all ingredients to construct the finite radii
polynomials (14) from Definition 2.2.

While the computation of the z
(`,i,j)
k and Z`k satisfying (20) and (21) is problem dependent

and presented only in the example of Section 5, let us compute explicitly z
(1,1,0)
k , z

(1,0,1)
k

and Z
(1)
k , for k ∈ {−2,−1}.

2.2.1 Computation of Z
(1)
k , for k ∈ {−2,−1}.

Letting k
def
= (−2,−1)T , note that

[DF(x̄s + b̃1r)b̃2r −A†b̃2r]k = s1

(
Φ̄1 − Φ̄0

)T
(b̃2)F r + s2

(
Φ̄2 − Φ̄0

)T
(b̃2)F r.

Therefore,

z
(1,1,0)
k =

(
Φ̄1 − Φ̄0

)T
(b̃2)F and z

(1,0,1)
k =

(
Φ̄2 − Φ̄0

)T
(b̃2)F ,
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so that we can set the bound Z
(1)
k ∈ R2

+ to be

Z
(1)
k =

∣∣∣(Φ̄1 − Φ̄0

)T ∣∣∣ω−qF +
∣∣∣(Φ̄2 − Φ̄0

)T ∣∣∣ω−qF , (24)

where ω−qF
def
= (1, 1, 1, 1, 1

2q ,
1
3q , . . . ,

1
(m−1)q )T ∈ Rm+2.

2.3 Smoothness of the local chart

Suppose that we have computed numerical approximations x̄0, x̄1 and x̄2 corresponding to
the simplex σ

def
= ∪s∈D{x̄s} ⊂ X. Assume also that the hypotheses of Lemma 2.3 have been

verified, yielding the existence of a set Σ
def
= ∪s∈DBx̄s(r) ⊂ X centered at the simplex σ,

and containing a genuine solution chart x̃(D) ⊂ Σ ⊂ X, where x̃ is a C` function such that
Fs(x̃(s)) = 0 for every s ∈ D. We want to show that the local chart x̃(D) is C` smooth.
For this we show that x̃ is a C` diffeomorphism. Since Fs(x̃(s)) = 0 we get, in particular,
that Φ̄Ts (x̃(s)− x̄s) = 0 for every s ∈ D. We have that

∂

∂s1

(
Φ̄Ts (x̃(s)− x̄s)

)
=

∂Φ̄Ts
∂s1

(x̃(s)− x̄s) + Φ̄Ts
∂

∂s1
(x̃(s)− x̄s)

= (Φ1 − Φ0)T (x̃(s)− x̄s) + Φ̄Ts

(
∂x̃

∂s1
− (x̄1 − x̄0)

)
= 0.

Hence,

Φ̄Ts
∂x̃

∂s1
(s) = Φ̄Ts (x̄1 − x̄0)− (Φ̄1 − Φ̄0)T (x̃(s)− x̄s). (25)

Similarly,

Φ̄Ts
∂x̃

∂s2
(s) = Φ̄Ts (x̄2 − x̄0)− (Φ̄2 − Φ̄0)T (x̃(s)− x̄s). (26)

Define the matrix function G : D → R2×2 by

G(s) =

(
Φ̄Ts

∂x̃

∂s1
(s) Φ̄Ts

∂x̃

∂s2
(s)

)
. (27)

The next result relates the fact that det(G) is non-vanishing on D to the smoothness of the
local chart x̃ obtained from Lemma 2.1. Before, given any ε > 0, define the set Dε to be
the ε-neighbourhood of D, i.e.

Dε
def
= {s = (s1, s2) | s1, s2 ≥ −ε and s1 + s2 ≤ 1 + ε}. (28)

Note that for any ε ≥ 0, D ⊂ Dε.

Lemma 2.4. Let ` ≥ 1. Suppose that the hypotheses of Lemma 2.1 are satisfied, yielding
the existence of a C` function x̃ : D → X such that Fs(x̃(s)) = 0, for all s ∈ D. Recall the
definition of G in (27). If

det(G(s)) 6= 0, for all s ∈ D, (29)

there exists ε > 0 such that x̃ : Dε → x̃(Dε) is a C` diffeomorphism, with Dε as in (28).

Proof. By construction of the radii polynomials, there exists ε1 > 0 such that the map
x̃ extends to a C` function on Dε1 . Now, x̃ ∈ C`(D) implies that det(G) : D → R is
continuous. Hence, since det(G) 6= 0 on D, there exists ε ∈ (0, ε1) such that det(G(s)) 6= 0
for every s ∈ Dε ⊂ Dε1 . Hence, x̃ : Dε → x̃(Dε) is a C` function. Since det(G) 6= 0 on Dε,
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∂x̃
∂s1

and ∂x̃
∂s2

are two linearly independent non trivial vectors in X. Hence, for any s0 ∈ Dε,
the operator

dx̃

ds
(s0) =

[
∂x̃

∂s1
(s0)

∂x̃

∂s2
(s0)

]
(30)

is a bounded linear isomorphism of Dε onto dx̃
ds (s0)(Dε). Then, by the Inverse Function

Theorem, there exists an open neighbourhood Vs0 of x̃(s0) in dx̃
ds (s0)(Dε) ⊂ X and a local

C` inverse function x̃−1
s0 : Vs0 → Dε such that x̃−1

s0 ◦ x̃ is the identity on Vs0 . Since,
x̃(Dε) ⊂ ∪s0∈DεVs0 , we can define a C` inverse function x̃−1 : x̃(Dε)→ Dε.

Having computed a simplex σ given by three numerical approximations x̄0, x̄1, x̄2 and
their respective kernels Φ̄0, Φ̄1, Φ̄2, the rigorous computation of a local smooth chart of
the manifold goes as follows: compute the radii polynomials through the use of interval
arithmetic, verify the hypotheses of Lemma 2.3 and finally verify the smoothness hypothesis
(29). We will refer to this procedure as “verification of the simplex σ”. Section 3 shows how
we compute a simplicial approximation (triangulation) of the implicitly defined manifold.
Then, the results in Section 4 yield an atlas which shows that what we actually computed
is a smooth C` manifold.

3 Multi-parameter continuation algorithm

As already mentioned, our method relies on the ability to compute a simplicial approxi-
mation (triangulation) of a portion of a two-dimensional manifold implicitly defined by an
infinite dimensional nonlinear equation on X. In order to carry out the computations, a
finite dimensional projection must first be considered. This means that, in practice, we need
to compute a triangulation of a manifold M embedded in Rn:

M⊂ {x ∈ Rn : F (x) = 0, with F : Rn → Rn−2},
where we typically think of F as being one realization of the map f (m) defined in Section 2,
for some m ∈ N. For sake of simplicity of the presentation, we use the same notation M to
denote the manifold embedded in Rn and the manifold embedded in the infinite dimensional
Banach space X. In addition to that, when describing the algorithm for the numerical
computation of a simplicial approximation of M, we will not distinguish between rigorous
mathematical statements and statements that are only “numerically true”. For example,
we may write x ∈M, but mean that we numerically compute x to be approximately inM.

There is a considerable amount of literature devoted to the numerical continuation of
multidimensional manifolds implicitly defined by nonlinear equations. The methods that
have been proposed essentially fall into two classes: simplicial methods (e.g. see [10] and
references therein) and predictor-corrector methods (see [6, 7, 8, 14]). Predictor-corrector
methods show more favorable computational complexity in the case of low dimensional man-
ifolds embedded in a high dimensional space, which is the case of interest for us. Moreover,
they are more prone to the implementation of adaptive strategies based on local proper-
ties of the manifold. From our standpoint, the main feature that distinguishes among the
predictor-corrector methods cited above is how the manifold is represented. In [6], the man-
ifold is represented as a set of overlapping neighborhoods, each defined through a chart, a
center point, basis for the tangent space at the center point, and other relevant data. A
triangulation of the manifold can be constructed a posteriori by appropriately connecting
the center points of the neighborhoods, but this does not allow for adaptive construction
of the triangulation. In [7, 8, 14] the manifold is represented as a database of nodes and
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simplices. The database is progressively built by adding one simplex at a time. This does
allow for appropriate evaluation of each simplex before it is actually added to the database,
which will be an essential feature of the method we propose (see Section 3.1.3).

For these reasons, we decided to build our algorithm upon the one proposed by Brodzik
and Rheinboldt in [8]. Even though the main philosophy of their algorithm is essentially
intact, yet we introduce several novelties that improve its robustness and make it suitable
for our purpose. The main distinguishing features of our algorithm are: adaptive step-
size selection based on the outcome of the verification test, check for non-local overlap
of simplices, a sorting rule on the “frontal nodes” aimed at limiting the computational
complexity of the aforementioned check, simplicial neighborhoods allowed to have more
than six simplices.

We now give a general description and some implementation details of the algorithm we
use to perform our task, putting particular emphasis on the novelties while passing over
some implementation details, for which we refer the reader to [8].

3.1 Description of the algorithm

Under suitable assumptions on DF , the solution set {x ∈ Rn : F (x) = 0} is a (collection
of) smooth manifold(s). We are interested in computing a triangulation of the portion of
the solution set that lies inside a given bounded region B of Rn.

3.1.1 Constructing the first patch

As is typical of all continuation techniques, the algorithm starts off by considering an initial,
user supplied, node x0 ∈ M ∩ B, and then proceeds to explore the manifold from there.
An initial regular hexagonal neighborhood centered at x0 on the tangent plane Tx0

M is
considered, where each vertex vi, i = 1, . . . , 6, of the hexagon is taken at a user supplied
distance h0 from x0. Each of the six vertices of the hexagon is then projected onto M
orthogonally to Tx0M, see Figure 1. The projection is done via a stationary Gauss-Newton
method. For x(0) = v1, . . . , v6, we iterate

x(k+1) = x(k) −DF (x0)+DF (x(k)), k = 0, 1, . . . (31)

until convergence, where DF (x0)+ = DF (x0)T
(
DF (x0)DF (x0)T

)−1
is the Moore-Penrose

pseudoinverse of DF (x0). Details and convergence properties of Gauss-Newton’s method
are in [15]. We declare successful convergence when∥∥∥x(k+1) − x(k)

∥∥∥ < tol
(

1 +
∥∥∥x(0)

∥∥∥)
within a prescribed number iterations. In all our computations, we have chosen tol = 10−12.
The implementation follows closely the one adopted in [8] and [14]. Let

DF (x0)T =
[
Q1 Q2

] [R
0

]
(32)

be a QR factorization of DF (x0)T , with Q1 ∈ Rn×(n−2) and Q2 ∈ Rn×2 having mutually
orthonormal columns, and R ∈ R(n−2)×(n−2) being upper triangular. As already mentioned
in Section 2, DF (·) will always be assumed to be full rank at each computed node on M.
In particular, DF (x0) is full rank, which implies that R is invertible. Then the iterations
(31) are implemented as follows:

solve Rz(k) = F (x(k)), set x(k+1) = x(k) −Q1z
(k), k = 0, 1, . . . (33)
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Note that the columns of Q2 form an orthonormal basis for kerDF (x0), which spans Tx0
M.

This also justifies the assertion that the iterates in (33) proceed in the direction perpen-
dicular to Tx0

M. The computation of the decomposition in (32) will be our only source of
orthonormal bases for tangent spaces.

If projection fails for a vertex vi, its distance from x0 is reduced by a fixed factor τ > 1
(i.e. h is replaced by h/τ) and projection is reattempted until convergence is successful or
a minimum distance hmin is reached. In all our computations, we have set τ = 1.2.

Assuming successful convergence for all the six vertices, six simplices and six new nodes
have been computed. Before they are added to the database, each simplex needs to be
checked for verification as specified in Section 3.1.3. If verification fails, the two edges of the
simplex that are connected to x0 are shortened again by τ and the test is reattempted until
it is successful or hmin is reached. Assuming successful outcome of the test on each simplex,
the simplices are added to the database and declared verified by setting an appropriate
flag to true, see Section 3.1.6. Upon being added to the database, each node is marked
as interior if it belongs to B, exterior otherwise. Among interior nodes, those that lie on
the boundary of the portion of M that still needs to be explored are marked as frontal.
Simplices that are incident to a frontal node will also be referred to as frontal.

At this stage the database contains six simplices and seven nodes, and, typically, all
nodes except x0 are expected to be frontal. The six simplices constitute the first patch1 of
the triangulation. The algorithm now proceeds via an advancing front technique.

x0
Tx0

M

Figure 1: First patch.

3.1.2 Advancing the front

Let Q be the (non-empty) set of all frontal nodes at a given stage. The algorithm will now
select a node in Q according to a given sorting rule (we will elaborate on this in Section
3.1.4), and attempt to complete its patch. Suppose the frontal node xc is picked. The
algorithm will now try to fill in the patch centered at xc with the missing simplices.

First, the existing simplices that are adjacent to xc are projected orthogonally on the
tangent plane TxcM. To do so, we compute the QR factorization of DF (xc) as in (32),
and then project their incident nodes on TxcM using the orthogonal projector P = Q2Q

T
2 .

Then the gap angle γ is computed. The gap angle γ is defined as the “exterior” angle, on
TxcM, formed by the two (projected) extremal edges of the incomplete patch, see Figure
2a. To compute it, we used the algorithm described in [7].

If the gap angle is too small (i.e. below a user defined threshold γmin) the two extremal
simplices of the patch are glued together by “identifying” their closer edges. Let e1 =
{xc, x1} and e2 = {xc, x2} be the two edges under consideration. In practice, this operation

1By “patch centered at x” we mean the neighborhood of simplices adjacent to x.
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is performed by simply projecting onM the point x̄ = 1
2 (x1+x2), identifying x1 and x2 with

x̄, and appropriately updating the adjacency relations in the database. Since this operation
modifies one node for each of the simplices involved, the corresponding verification flags are
set to false. In all our experiments, we set γmin = π/6.

Assume γ is above γmin. The number k of new simplices that need to be added to
complete the patch centered at xc is determined as follows:

k = min

{
1,

[
γ

π/3

]}
, (34)

with the added requirement that the total number of simplices that compose a patch cannot
exceed a prescribed number (which we chose equal to ten). Here [y] denotes the nearest
integer to y. Note that, through the use of formula (34), we aim at simplices whose angle
adjacent to xc is as close as possible to π/3.

Suppose k > 1. This means that k − 1 new nodes need to be computed to complete the
patch. We consider the k−1 half-lines on TxcM that divide γ into k equal parts, see Figure

2a. Along each direction, we form the predictors xpred
i , 1 ≤ i ≤ k−1, at distance h from xc.

The step-size h is chosen as follows: it is the length of the shorter edge adjacent to xc already
in the database, multiplied by the factor τ . All the predictors are consecutively projected
ontoM via the same method described in Section 3.1.1. If a projection fails, the step-size h
is reduced by the factor τ (again, just as in Section 3.1.1) and projection is reattempted for
all the predictors, until convergence is successful or hmin is reached. Assuming all projections
are successful with the common step-size h, let xi, 1 ≤ i ≤ k − 1, be the projected points.
These are, potentially, the k−1 new nodes that identify the k missing simplices. Whether or
not they will be incorporated into the database depends on the outcome of the verification.
Each of these simplices is checked for verification. If verification is successful, we proceed
to the next stage. If verification fails on a simplex, the simplex is rejected. The two edges
of the rejected simplex that are incident to xc are “shortened” again by τ , and verification
is reattempted until it is successful or hmin is reached. Note that shortening of an edge
is performed keeping the node xc fixed; this causes the other node incident to the edge to
detach from M, and triggers its re-projection onto M. If any previously verified simplex
was altered (i.e. one of its nodes was modified), the corresponding verification flag is set to
false.

In case k = 1, there is no need to compute new nodes. The simplex identified by the two
extremal edges of the incomplete patch will complete the patch. If it passes verification, we
proceed to the next stage. In case verification fails, the simplex is handled just as described
above.

Assuming successful verification, each simplex is checked for overlap with any of the
currently frontal simplices (see Section 3.1.5). The current version of the algorithm halts if
overlap is detected. Correct handling of this situation is ongoing work, and we anticipate it
will be a feature of a next version.

Finally, having ruled out overlap, all newly created simplices and nodes are added to the
database, with all simplices flagged as verified. Nodes are declared interior/exterior/frontal
as specified in Section 3.1.1.

We recall that we heuristically set τ = 1.2. In our experiments, this choice produced a
nearly optimal balance between two goals: minimizing the number of rejections and maxi-
mizing the average surface area of a simplex.

The simplices (if any) that, during the process described above, had their verification flag
set to false (due to alteration of one of their nodes) undergo the verification test again. In
case the verification test fails, we split the simplex in four new sub-simplices by appropriately
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pred
1

x
pred
2

xc

gap angle

(a) Computation of the predictors. (b) Patch completed.

Figure 2: Advancing the front: general step. Frontal simplices are colored in red. Incomplete
patches centered at priority frontal nodes are colored in yellow.

connecting the nodes of the original simplex and the mid-points of its edges (see Figure 3),
and then apply the verification test to each one of these new simplices. This is done only at
the level of the simplex, that is, the mid-points are not projected to the manifold. In case
the verification for some of these sub-simplices fails, any failing sub-simplex undergoes the
splitting process again. The process is repeated until either all the sub-simplices are verified
or a maximum number of subdivisions is reached. If the verification is successful before
the maximum number of subdivisions allowed is reached, the original simplex is declared
as verified and the sub-simplices are discarded. If the maximum number of subdivision is
reached the computation is halted.

Figure 3: Splitting of a simplex.

In our experiments, successful verification of a simplex turned out to be a much stricter
requirement than successful projection of predictors, so much that we can assert that, in
practice, the step-size selection strategy of our algorithm is solely driven by the verification.

3.1.3 Verification of a simplex

Let S = {x1, x2, x3} be a newly computed simplex. Before adding it to the database, we
need to rigorously verify, using interval arithmetic, the hypothesis of Lemmata 2.3 and 2.4.
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We refer to this procedure simply as verification, which is a test providing precise bounds in
the Banach space X around an approximate simplex within which a genuine smooth local
chart of the manifold is rigorously guaranteed to exist. We refer to Section 2 for details. In
order to carry out the verification, the matrices Φ̄i ∈ Rn×2, i = 1, 2, 3, introduced in Section
2, need to be available; we recall that each Φ̄i ∈ Rn×2 must have orthonormal columns that
span the kernel of DF (xi). In practice, each matrix is computed as follows.

Let Φref be a matrix whose columns form an orthonormal basis for Tx0
M, where we recall

that x0 is the first node considered on the triangulation. First, an orthonormal basis φi1, φ
i
2

for DF (xi) is computed through the decomposition in (32). Let Φi = [φi1, φ
i
2]. Then, Φi

is “rotated” as close as possible to Φref through the “moving frame” algorithm adopted by
Rheinboldt in [14], which renders a matrix Q ∈ R2×2, QTQ = I, such that ‖ΦiQ− Φref‖F is
minimized, where ‖·‖F denotes the Frobenius norm of a matrix. Finally, we set Φ̄i = ΦiQ.
Of course, we only run this procedure if xi was a newly computed node, not yet in the
database. Otherwise, we simply obtain the frame from the database, see Section 3.1.6.

As proved in [14], as far as range Φref induces a coordinate system on the portion of
M under interest, this procedure is guaranteed to produce frames Φ̄i that vary smoothly
with respect to the node xi. Motivation in using this procedure comes solely from the aim
to limit the magnitude of the first two coefficients in Table 4, and therefore increase the
chances of successful verification of a simplex.

3.1.4 Sorting the queue of frontal simplices

The way the queue of frontal nodes is visited is critical to the complexity of the procedure
described in Section 3.1.5, which grows proportionally to the number of frontal simplices.
This consideration has lead us to implement the sorting strategy that is described below.

Upon completion of a new patch (with the exemption of the first patch), we compute the
gap angle at the two “extremal” new frontal nodes, i.e. those that also belong to a simplex
external to the patch. If the gap angle is below a given threshold γprio, the corresponding
node is declared a priority node and the computed gap angle is saved in the database. In
all our computations, we have chosen γprio = 5π/6, which is equivalent to giving priority
to nodes whose completion of the patch needs two or less simplices. See Figure 2b. When
picking a new node from the set Q of frontal nodes, precedence is given to priority nodes.
In case there are more than one priority nodes, we pick first the node that has the smallest
gap angle.

Besides limiting the size of the set of frontal simplices, this strategy has proven success-
ful also in growing the triangulation, loosely speaking, convex, avoiding the formation of
“tentacles” that may cause artificial overlaps.

3.1.5 Checking for overlap

Before adding a newly created simplex to the database, one needs to verify that it does not
overlap with the portion of manifold that has already been triangulated. Failure to do so
may cause the algorithm to cover the same portion of the manifold more than once, and
even enter an infinite loop.

To detect this situation we have implemented a procedure based on the Separation
Theorem for convex sets [16]: any two disjoint compact convex sets in Rn are strictly
separated by a hyperplane. In particular, any two non-overlapping triangles on the plane
are separated by a line. It is easy to see that, in order to check whether two given triangles
on the plane overlap, it is enough to test each of the six lines that contain an edge of one
triangle as follows: if any of those lines separates the vertex that belongs to the same triangle
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from the three vertices that belong to the other, then the triangles do not overlap; if this
separation test fails for all the six lines, the triangles do overlap.

Our strategy to check for overlap of two simplices is an adaptation of the idea described
above to our context. Given two simplices T1 and T2, we perform the following separation
test :

1. (a) project T2 orthogonally on the 2-dimensional plane H determined by T1; Call T̃2

the projected simplex;

(b) for each line l ⊂ H that contains an edge of T1, check whether l separates the
vertex of T1 exterior to l from all the vertices of T̃2; in practice, the check is
performed projecting each vertex on a line (separating axis) l⊥ ⊂ H perpendicular
to l, see Figure 4; if l separates T1 and T̃2, declare T1 and T2 not overlapping and
leave the test;

2. repeat part 1. exchanging the roles of T1 and T2;

3. if parts 1. and 2. have not revealed the existence of a separating line, declare T1 and
T2 overlapping.

Before being added to the database of simplices, each newly created (and verified) sim-
plex is checked for overlap against all the frontal simplices currently in the database. It
is enough to consider only frontal simplices, as intersection with an non-frontal simplex is
ruled out by successful outcome of the verification. The separation test may produce false
negatives: clearly, the fact that T1 and T̃2 overlap does not necessarily imply that T1 and
T2 do so. In order to reinforce the test, we do as follows. In case of lack of separating line, a
proximity check is also performed: T1 and T2 are declared not-overlapping if their distance
is larger then 10 times the length of the longest edge.

l
⊥

l

T1
T̃2

Figure 4: Separation test; the two triangles are intended to lie on the plane H.

3.1.6 The database

The database is made of two structure arrays, named node and simplex. Each array consists
of several cell arrays that contain the relevant data of the triangulation, as shown in the
Tables 1 and 2. The k-th element of each array contains data that are relevant to the k-th
node, or simplex.
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name content
node.coord coordinates (n-dimensional column vector)
node.type node type; it’s an integer k that indicates one of the

following: interior (k = 0, 1), exterior (k = 2), frontal
without priority (k = −1), frontal with priority (k =
−2)

node.simplex indices of incident simplices
node.frame orthonormal basis for the tangent space (n× 2 matrix

with mutually orthonormal columns)
node.gap gap angle (non-empty only for priority nodes)

Table 1: Structure array of nodes

name content
simplex.node indices of the incident nodes
simplex.verified verification flag; 1 (true) if the simplex was successfully

verified, 0 (false) otherwise

Table 2: Structure array of simplices

We point out that the orthonormal frames in node.frame are saved (and, if necessary,
updated) only when a simplex incident to the corresponding node is successfully verified.
We always make sure that two adjacent simplices that passed verification did so sharing
exactly the same data (coordinates and orthonormal frames for the tangent space) at the
common nodes. This is key in going from computing the local charts to obtaining a globally
smooth atlas of the manifold, as will be explained in Section 4.

4 Rigorous computation of the global manifold

In Section 2 we show how to rigorously construct local smooth charts. In this section we
describe how these charts fit together to form a smooth manifold M. Suppose that we
have computed, as described in Section 3, a simplicial approximation S for a portion of the
solution set {x ∈ X : f(x) = 0}. For each simplex σ ∈ S assume that we have verified the
hypotheses of Lemma 2.1, and therefore we have a map x̃σ : D → X such that Fs(x̃σ(s)) = 0
for all s ∈ D, where we recall that D = {s = (s1, s2) | s1, s2 ≥ 0 and s1 + s2 ≤ 1}. By
Lemma 2.4 there is an ε = ε(σ) > 0 such that x̃σ can be extended to a C` diffeomorphism,
also denoted by x̃σ, on Dε

def
= {s = (s1, s2) | s1, s2 ≥ −ε and s1 + s2 ≤ 1 + ε}. For each

σ ∈ S, let Uσ = x̃σ(Dε) and define

M def
=
⋃
σ∈S

Uσ , (35)

then Uσ are charts and x̃−1
σ are chart maps forM. HenceM is a two-dimensional manifold.

To show thatM is a smooth manifold essentially all we have to show is that the local charts
are smooth along the edges of adjacent simplices.

First we show that we have a connected manifold. When computing the local charts for
two adjacent simplices, we want to make sure that the charts agree on the common edge.
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Since the charts are the zeros of Fs(x) given by (7), we need to construct the functions Fs(x)
in such a way that they agree along the common edges of adjacent simplices. Recalling that
the function Fs(x) is constructed for each simplex in terms of its vertices x̄i and the kernels
Φ̄i at the vertices, we need to make sure that the kernel used in each vertex is the same
for all simplices that share that vertex. For this reason, when computing the simplicial
approximation S, we compute and store one kernel for each vertex and perform the proofs
using these kernels. By doing so, the equations we solve on any two adjacent simplices agree
on the common edge, and we have a connected manifold.

In Theorem 4.2, we will prove that we have a smooth manifold. In order to do so, we
need the following lemma.

Lemma 4.1. Suppose that the hypotheses of Lemma 2.1 are satisfied, yielding the existence
of a C` function x̃ : D → X such that Fs(x̃(s)) = 0, for every s ∈ D. Then the linear
operator DFs(x̃(s)) is invertible for every s ∈ D.

Proof. Given s ∈ D, since x̃(s) ∈ Bx̄s(r), there exists b0 = b0(s) ∈ B(r) such that x̃(s) =
x̄s + b0. Hence, for every k, s ∈ D and every u ∈ B(1),∣∣∣[DTs(x̃(s))u]k

∣∣∣r =
∣∣∣[DTs(x̄s + b0)u]k

∣∣∣r ≤ sup
b1,b2∈B(r)

∣∣∣[DTs(x̄s + b1)b2]k

∣∣∣ ≤ Zk(r).

Therefore, recalling (13), the operator norm of DTs(x̃(s)) in X satisfies

‖DTs(x̃(s))‖X = sup
u∈B(1)

‖DTs(x̃(s))u‖X ≤
‖Z‖X
r

< 1. (36)

Recalling the definition of Ts in (9), DTs(x̃(s)) = I−ADFs(x̃(s)). From (36), the Neumann
series ofDTs(x̃(s)) converges in the operator norm ‖·‖X , and hence we have that the operator
ADFs(x̃(s)) = I − DTs(x̃(s)) is invertible. Therefore, DFs(x̃(s)), restricted to its image,
is invertible.

We now show that we have a smooth manifold. This means, in particular, that we can
define a tangent plane at every point of the manifold. In other words, the manifold does
not have any sharp points.

Theorem 4.2. M is a C` manifold.

Proof. We have from Lemma 2.4 that the chart maps x̃−1
σ are C` diffeomorphisms. To show

thatM is a C` manifold, we need to show that the local charts are smooth along the edges
of adjacent simplices. Suppose then that we have two local charts corresponding to two
adjacent simplices. More precisely, assume that we have two C` functions x̃(i) : Dε(σi) → X,

for i = 1, 2, corresponding to adjacent simplices σ1 and σ2, such that x̃(i)(s) is the unique
solution of

F (i)
s (x) =

(
Φ

(i)
s

T
(x− x(i)

s )
f(x)

)
in a set B

x
(i)
s
⊂ X for every s ∈ D. Since σ1 and σ2 share a common edge, we can assume,

without loss of generality, that the common solution along this common edge is parametrized

by x̃
(1)
(s1,0) = x̃

(2)
(s1,0), with s1 ∈ [0, 1]. Define g : Dε → X by

g(s1, s2) = F (1)
(s1,s2)(x̃

(2)(s1, s2)).

18



Then, for every s1 ∈ [0, 1], g(s1, 0) = F (1)
(s1,0)(x̃

(2)(s1, 0)) = 0. Since x̃(2) is C` on Dε, g(s1, 0)

is C` on (−ε, 1 + ε), which means that we can compute ∂g
∂s1

(s1, 0) for s1 ∈ [0, 1]. For each
s1 ∈ [0, 1] we get

∂g

∂s1
(s1, 0) = DxF (1)

(s1,0)(x̃
(2)(s1, 0))

∂x̃(2)

∂s1
(s1, 0).

From the proof of Lemma 2.4, the vector ∂x̃(2)

∂s1
(s1, 0) is nontrivial for each s1 ∈ [0, 1]. From

Lemma 4.1, DxF (1)
(s1,0)(x̃

(1)(s1, 0)) = DxF (1)
(s1,0)(x̃

(2)(s1, 0)) is invertible. Hence, we get that

the vector ∂g
∂s1

(s1, 0) is nontrivial for each s1 ∈ [0, 1]. Then, for a given s1 ∈ [0, 1], we can use
the Implicit Function Theorem to conclude that there exists ε2 > 0 such that g(s1, s2) =

F (1)
(s1,s2)(x̃

(2)(s1, s2)) = 0 for each s2 ∈ [−ε2, ε2], and that x̃(2) ∈ C`([0, 1] × [−ε2, ε2]).

Therefore, x̃(2) : [0, 1]× [−ε2, ε2]→ X glues C` smoothly the solutions x̃(1) and x̃(2).
Since the chart maps x̃−1

σ are C` diffeomorphisms and they are also C` smooth along
the edges of adjacent simplices, M is a C` manifold.

5 Two-dimensional manifold of equilibria of Cahn-Hilliard

Consider the Cahn-Hilliard equation{
ut = −∆(ε2∆u+ u− u3), in [0, 1]

uy = uyyy = 0, for y = 0, 1
(37)

defined on the interval domain [0, 1] ⊂ R, where u = u(y, t) and ε > 0 models the interaction
length. Equation (37) was introduced in [17] as a model for phase separation in binary
alloys. The model is mass preserving, meaning that, for any solution u, the total mass

σ
def
=
∫ 1

0
u(y, t)dy remains constant for all t ≥ 0. Doing a change of coordinates λ

def
= 1

ε2 > 0,
the equilibria of (37) are given by the solutions of the elliptic boundary value problem{

1
λ∆u+ u− u3 = c, in [0, 1]

uy = 0, for y = 0, 1
(38)

where the extra parameter c is defined by

c =

∫ 1

0

(u− u3)dy. (39)

The parameters σ and c are related by σ = c+
∫ 1

0
u3dy. Therefore, if one varies c and solves

for (38), then the parameter σ is uniquely determined.

Remark 5.1. There exists a branch of constant solutions (c, u(c)) of (38) such that u(c)−
u(c)3 = c. For c∗

def
=
√

1/3 − (
√

1/3)3, the branch undergoes a saddle-node bifurcation at
the parameter values c = −c∗ and c = c∗. We refer to the left picture in Figure 5 for a
geometric interpretation. A bifurcation curve from the constant solution u = u(c) is given
by δ(λ, c)

def
= 1 − 4

λπ
2 − 3u(c)2 = 0. Hence, one can investigate the manifold of equilibria

in the region R def
= {(λ, c) | δ(λ, c) > 0} which is above the curve δ(λ, c) = 0 in the (λ, c)

plane, see Figure 5.
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Figure 5: Left: The branch of constant solutions u = u(c) of (38) satisfying u(c) − u(c)3 = c.
Right: The bifurcation curve δ(λ, c) = 1− 4

λ
π2− 3u(c)2 = 0 associated to the piece of the solution

curve {(c, u(c)) | − c∗ < c < c∗ and u(−c∗) < u < u(c∗)}.

We expand solutions of (38) in the Fourier basis {cos(kπy) | k = 0, 1, 2, . . .} as follows:

u(y) = a0 + 2

∞∑
k=1

ak cos(kπy).

Define a = (ak)k≥0 to be the infinite dimensional vector of Fourier coefficients of the expan-
sion of u, p

def
= (λ, c) and let x

def
= (p, a). So (38) takes the form

fk(x)
def
= µk(λ)ak − (a3)k − δk,0c = 0, k ≥ 0 (40)

where µk(λ) = 1 − π2k2/λ are the eigenvalues of the linear operator in (38), where δk,l is
the Kronecker symbol and where we used the notation

(a ∗ b ∗ c)k =
∑

k1+k2+k3=k

kj∈Z

a|k1|b|k2|c|k3|, a3 = a ∗ a ∗ a.

From (40), we define f = (fk)k≥0. It can be shown that looking for solutions of (38) is
equivalent to looking for solutions of f(x) = 0 in the Banach space X = R2×Ωq, where Ωq =
{a = (ak)k≥0 : ‖a‖q < ∞} is the Banach space of infinite sequences algebraically decaying
to 0 at least as fast as k−q with decay rate q > 1 (e.g. see [13]). The regularity estimates
given by Lemma A.4 in Appendix A can be used to show that if a ∈ Ωq, then a3 ∈ Ωq. Since
µk(λ) = 1−π2k2/λ, one concludes that f given component-wise by (40) is defined as f : R2×
Ωq → Ωq−2. Consider the finite dimensional reduction f (m) : Rm+2 → Rm of f defined in
(40) by f (m)(xF ) = (fk(xF , 0∞))

m−1
k=0 ∈ Rm, where xF = (λ, c, a0, a1, . . . , am−1)T ∈ Rm+2.

Assume that one has computed x̄0, x̄1, x̄2 ∈ Rm+2 such that f (m)(x̄i) ≈ 0 for each i = 0, 1, 2
and that dim ker

(
Df (m)(x̄i)

)
= 2. For each i = 1, 2, 3, define Φ̄i = [φi1 φ

i
2] the (m+ 2)× 2

matrix whose columns are given by two linearly independent mutually orthonormal vectors
spanning ker

(
Df (m)(x̄i)

)
. Moreover, assume that the frames Φ̄i’s have been “rotated” as

described in Section 3.1.3.
As in Section 2, let x̄s = x̄0 + s1(x̄1 − x̄0) + s2(x̄2 − x̄0) and Φ̄s = Φ̄0 + s1(Φ̄1 −

Φ̄0) + s2(Φ̄2 − Φ̄0). Denote x̄s = (λs, cs, as) and x̄i = (λ̄i, c̄i, āi). Define the Banach space
W = R2 × Ωq−2. Consider Fs : X → W as in (7) and consider the finite dimensional
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reduction F (m)
s : Rm+2 → Rm+2 defined by

F (m)
s (xF )

def
=

(
Φ̄Ts (xF − x̄s)
f (m)(xF )

)
.

As in Section 2, define the linear operator A : W → X as follows. Assume we computed

an invertible matrix Am such that Am ≈ DF (m)
0 (x̄0)

−1
and define A as in (8), where the

tail of A is given by µ−1
k = (1 − π2k2/λ̄0)−1, for k ≥ m. Then, A maps W to X and one

can define the Newton-like operator Ts : X → X : x 7→ Ts(x) = x − AFs(x). As already
mentioned in Section 2, the idea of the construction of the local charts is to define the radii
polynomials introduced in Definition 2.2. Hence, we need to consider the bounds Y and Z
satisfying (10) and (11), respectively. To compute Y = (Yk)k≥k0

satisfying (10), we expand
f(x̄s) as a polynomial in the variables s1 and s2. For each i, j ≥ 0 such that 2 ≤ i+ j ≤ 3

and for each k ≥ 0, consider y
(i,j)
k = y

(i,j)
k (x̄0, x̄1, x̄2) such that

fk(x̄s) = µk(λs)(as)k − (a3
s)k − δk,0cs

= fk(x̄0) + s1[fx(x̄0)(x̄1 − x̄0)]k + s2[fx(x̄0)(x̄2 − x̄0)]k +
∑

2≤i+j≤3

i,j≥0

y
(i,j)
k si1s

j
2,

where

[fx(x̄0)(x̄1 − x̄0)]k =

(
1− π2k2

λ̄0

)
[ā2 − ā0]k

+
π2k2

λ̄2
0

(λ̄2 − λ̄0)[ā0]k − 3[ā2
0(ā2 − ā0)]k − δk,0(c̄2 − c̄0)

[fx(x̄0)(x̄2 − x̄0)]k =

(
1− π2k2

λ̄0

)
[ā1 − ā0]k

+
π2k2

λ̄2
0

(λ̄1 − λ̄0)[ā0]k − 3[ā2
0(ā1 − ā0)]k − δk,0(c̄1 − c̄0).

The coefficients y
(i,j)
k are given in Table 3. Note that some of these coefficients depend on

a ξ ∈ [λ̄0, λs], with λs = λ̄0 + s1(λ̄1 − λ̄0) + s2(λ̄2 − λ̄0), which comes from taking a Taylor
expansion of the function s = (s1, s2) 7→ µk(λs) around s = (0, 0). In practice, ξ is replaced

by the interval λ̄0 + [0 1](λ̄1 − λ̄0) + [0 1](λ̄2 − λ̄0) and |y(i,j)
k | is estimated with interval

arithmetic. Note that all the discrete convolutions in Table 3 are finite sums that can be
rigorously estimated combining interval arithmetic with the fast Fourier transform (FFT)

algorithm (e.g. see [18]). We then obtain rigorous upper bounds Y
(i,j)
k for the terms |y(i,j)

k |.
Using formula (18), we define YF = (Y−2, Y−1, . . . , Ym−1)T .

Let us now choose the M from assumption A1 from Section 2 that assumes Yk can be
taken to be 0 for all k ≥ M . Since (ā0)k = (ā1)k = (ā2)k = 0 for k ≥ m, then for every

k ≥ 3m − 2, fk(x̄0) = [fx(x̄0)(x̄1 − x̄0)]k = [fx(x̄0)(x̄2 − x̄0)]k = 0 and y
(i,j)
k = 0 for all

i, j. Indeed, for vectors a, b, c satisfying ak = bk = ck = 0 for k ≥ m, (a ∗ b ∗ c)k = 0 for
k ≥ 3m − 2. Hence, letting M = 3m − 2, we set Yk = 0, for k ≥ M . To define Yk for
m ≤ k ≤M − 1, consider µk = µk(λ̄0) = 1− π2k2/λ̄0 and use (19).

To ease the computation of the bound Z = (Zk)k≥k0
satisfying (11), we consider the

expansion (20), with the coefficients z
(`,i,j)
k being given in Table 4.
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k ∈ {0, . . . , 3m − 3}.

y
(2,0)
k

π2k2

λ̄2
0

(λ̄1 − λ̄0)(ā1 − ā0)k −
π2k2

ξ3
(λ̄1 − λ̄0)2(ā0)k − 3

(
ā0 ∗ (ā1 − ā0)2

)
k

y
(1,1)
k

π2k2

λ̄2
0

(λ̄2 − λ̄0)(ā1 − ā0)k + π2k2

λ̄2
0

(λ̄1 − λ̄0)(ā2 − ā0)k

− 2π2k2

ξ3
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā0)k − 6 (ā0 ∗ (ā2 − ā0) ∗ (ā1 − ā0))k

y
(0,2)
k

π2k2

λ̄2
0

(λ̄2 − λ̄0)(ā2 − ā0)k −
π2k2

ξ3
(λ̄2 − λ̄0)2(ā0)k − 3

(
ā0 ∗ (ā2 − ā0)2

)
k

y
(3,0)
k

−π
2k2

ξ3
(λ̄1 − λ̄0)2(ā1 − ā0)k −

(
(ā1 − ā0)3

)
k

y
(2,1)
k

− 2π2k2

ξ3
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā1 − ā0)k −

π2k2

ξ3
(λ̄1 − λ̄0)2(ā2 − ā0)k − 3

(
(ā2 − ā0) ∗ (ā1 − ā0)2

)
k

y
(1,2)
k

−π
2k2

ξ3
(λ̄2 − λ̄0)2(ā1 − ā0)k −

2π2k2

ξ3
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā2 − ā0)k − 3

(
(ā2 − ā0)2 ∗ (ā1 − ā0)

)
k

y
(0,3)
k

−π
2k2

ξ3
(λ̄2 − λ̄0)2(ā2 − ā0)k −

(
(ā2 − ā0)3

)
k

Table 3: The coefficients y
(i,j)
k .

Using the fact that |s1|, |s2| ≤ 1 and |(b̃1)k|, |(b̃1)k| ≤ ω−qk , consider the intermediate

bounds ẑ
(`)
k = ẑ

(`)
k (x̄0, x̄1, x̄2, Φ̄0, Φ̄1, Φ̄2) such that∣∣∣∣∣∣

(4−`)∑
i=0

(4−`−i)∑
j=0

z
(`,i,j)
k si1s

j
2

∣∣∣∣∣∣ ≤ ẑ(`)
k . (41)

The coefficients ẑ
(`)
k are given in Table 5.

Since many discrete convolutions in Table 5 are infinite, we use the following result to
estimate them.

Lemma 5.2. Consider a decay rate q ≥ 2 and a, b, c ∈ Ωq, where Ωq is defined in (4).
Consider a computational parameter M and define a(M) = (a0, a1, . . . , aM−1) ∈ RM . Define

b(M), c(M) similarly. Consider ε
(3)
k = ε

(3)
k (q,M,M) as in (48). Then, for k ∈ {0, . . . ,M−1},

|(a ∗ b ∗ c)k| ≤
∣∣∣(a(M) ∗ b(M) ∗ c(M)

)
k

∣∣∣+ 3(‖a‖q‖b‖q‖c‖q)ε(3)
k .

Proof. The result follows from Lemma A.6.

Using Lemma 5.2, we obtain rigorous upper bounds Z
(`)
k for the terms ẑ

(`)
k from Table 5.

Using formula (22) and (23), we define Zk for k ∈ {−2,−1, . . . ,M − 1}. Now, to obtain the
uniform polynomial bound Z̃M (r) of assumption A2, we use the following.

Lemma 5.3. Consider a decay rate q ≥ 2 and a, b, c ∈ Ωq, where Ωq is defined in (4).

Consider α
(3)
k as defined in (47). Then, for any k ≥M ≥ 6, α

(3)
k ≤ α

(3)
M and

|(a ∗ b ∗ c)k| ≤ (‖a‖q‖b‖q‖c‖q)
α

(3)
M

ωqk
. (42)

Proof. The result follows from Lemma A.4 and Lemma A.5.

Lemma 5.4. Consider λ0 > 0 and a number M such that

M >

√
λ0

π
. (43)

Then, for every k ≥M , one has that 1
|µk(λ0)| ≤ λ0

π2M2−λ0
and that

∣∣∣ π2k2

µk(λ0)

∣∣∣ ≤ π2M2λ0

π2M2−λ0
.
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k = (−2,−1)T .

z
(1,1,0)
k

(
Φ̄1 − Φ̄0

)T (b̃2)F

z
(1,0,1)
k

(
Φ̄2 − Φ̄0

)T (b̃2)F

k ∈ {0, . . . , 3m − 3}.

z
(1,0,0)
k


−3

(
ā2
0 ∗ ã

(2)
I

)
k
, for k < m

−3
(
ā2
0 ∗ ã

(2)
)
k
, for k ≥ m

z
(1,0,1)
k

(
π2k2

λ̄2
0

(ā2 − ā0)k −
2π2k2

λ̄3
0

(λ̄2 − λ̄0)(ā0)k

)
λ̃(2) + π2k2

λ̄2
0

(λ̄2 − λ̄0)(ã(2))k − 6
(
ā0 ∗ (ā2 − ā0) ∗ ã(2)

)
k

z
(1,0,2)
k

(
− 2π2k2

λ̄3
0

(λ̄2 − λ̄0)(ā2 − ā0)k + 3π2k2

ξ4
(λ̄2 − λ̄0)2(ā0)k

)
λ̃(2)

−π
2k2

ξ3
(λ̄2 − λ̄0)2(ã(2))k − 3

(
(ā2 − ā0)2 ∗ ã(2)

)
k

z
(1,0,3)
k

3π2k2

ξ4
(λ̄2 − λ̄0)2(ā2 − ā0)kλ̃

(2)

z
(1,1,0)
k

(
π2k2

λ̄2
0

(ā1 − ā0)k −
2π2k2

λ̄3
0

(λ̄1 − λ̄0)(ā0)k

)
λ̃(2) + π2k2

λ̄2
0

(λ̄1 − λ̄0)(ã(2))k − 6
(
ā0 ∗ (ā1 − ā0) ∗ ã(2)

)
k

z
(1,1,1)
k

(
− 2π2k2

λ̄3
0

(λ̄2 − λ̄0)(ā1 − ā0)k −
2π2k2

λ̄3
0

(λ̄1 − λ̄0)(ā2 − ā0)k + 6π2k2

ξ4
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā0)k

)
λ̃(2)

− 2π2k2

ξ3
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ã(2))k − 6

(
(ā2 − ā0) ∗ (ā1 − ā0) ∗ ã(2)

)
k

z
(1,1,2)
k

(
3π2k2

ξ4
(λ̄2 − λ̄0)2(ā1 − ā0)k + 6π2k2

ξ4
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā2 − ā0)k

)
λ̃(2)

z
(1,2,0)
k

(
− 2π2k2

λ̄3
0

(λ̄1 − λ̄0)(ā1 − ā0)k + 3π2k2

ξ4
(λ̄1 − λ̄0)2(ā0)k

)
λ̃(2)

−π
2k2

ξ3
(λ̄1 − λ̄0)2(ã(2))k − 3

(
(ā1 − ā0)2 ∗ ã(2)

)
k

z
(1,2,1)
k

(
6π2k2

ξ4
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā1 − ā0)k + 3π2k2

ξ4
(λ̄1 − λ̄0)2(ā2 − ā0)k

)
λ̃(2)

z
(1,3,0)
k

3π2k2

ξ4
(λ̄1 − λ̄0)2(ā1 − ā0)kλ̃

(2)

z
(2,0,0)
k

− 2π2k2

λ̄3
0

(ā0)kλ̃
(1)λ̃(2) − 6

(
ā0 ∗ ã

(1) ∗ ã(2)
)
k

z
(2,0,1)
k

(
− 2π2k2

λ̄3
0

(ā2 − ā0)k + 6π2k2

ξ4
(λ̄2 − λ̄0)(ā0)k

)
λ̃(1)λ̃(2) − 6

(
(ā2 − ā0) ∗ ã(1) ∗ ã(2)

)
k

z
(2,0,2)
k

6π2k2

ξ4
(λ̄2 − λ̄0)(ā2 − ā0)kλ̃

(1)λ̃(2)

z
(2,1,0)
k

(
− 2π2k2

λ̄3
0

(ā1 − ā0)k + 6π2k2

ξ4
(λ̄1 − λ̄0)(ā0)k

)
λ̃(1)λ̃(2) − 6

(
(ā1 − ā0) ∗ ã(1) ∗ ã(2)

)
k

z
(2,1,1)
k

(
6π2k2

ξ4
(λ̄2 − λ̄0)(ā1 − ā0)k + 6π2k2

ξ4
(λ̄1 − λ̄0)(ā2 − ā0)k

)
λ̃(1)λ̃(2)

z
(2,2,0)
k

6π2k2

ξ4
(λ̄1 − λ̄0)(ā1 − ā0)kλ̃

(1)λ̃(2)

z
(3,0,0)
k

3π2k2

ξ4
(ā0)k(λ̃(1))2λ̃(2) − 3

(
(ã(1))2 ∗ ã(2)

)
k

z
(3,0,1)
k

3π2k2

ξ4
(ā2 − ā0)k(λ̃(1))2λ̃(2)

z
(3,1,0)
k

3π2k2

ξ4
(ā1 − ā0)k(λ̃(1))2λ̃(2)

Table 4: The coefficients z
(`,i,j)
k .

Proof. Considering k ≥M , one has that |µk(λ0)| = |1− 1
λ0
k2π2| = 1

λ0
k2π2−1 = k2π2−λ0

λ0
≥

π2M2−λ0

λ0
> 0. That implies that 1

|µk(λ0)| ≤ λ0

π2M2−λ0
. Also,

∣∣∣ π2k2

µk(λ0)

∣∣∣ = π2k2λ0

k2π2−λ0
≤ π2M2λ0

π2M2−λ0
,

since the function x 7→ π2x2

π2x2−λ0
decreases for x ≥M .

Using the results of Lemma 5.3 and Lemma 5.4, we introduce the asymptotic polynomial

bound Z̃M (r) satisfying (14). For ` = 1, 2, 3, consider the asymptotic bound Z̃
(`)
M such that

for k ≥M and for all s ∈ D,

sup
b1,b2∈B(r)

∣∣∣[DTs(x̄s + b1)b2]k

∣∣∣ ≤ 3∑
`=1

1

|µk(λ0)| ẑ
(`)
k r` ≤

(
3∑
`=1

Z̃
(`)
M r`

)
1

ωqk
, (44)

where the Z̃
(`)
M can be found in Table 6. Using (44) and the coefficients of Table 6, define

the tail radii polynomial (16). Again, note that some of the coefficients in Table 6 depend
on a ξ between λ̄0 and λs = λ̄0 +s1(λ̄1− λ̄0)+s2(λ̄2− λ̄0) which comes from taking a Taylor

23



k = (−2,−1)T .

ẑ
(1)
k

∣∣∣(Φ̄1 − Φ̄0)T
∣∣∣ω−qF +

∣∣∣(Φ̄2 − Φ̄0)T
∣∣∣ω−qF

k ≥ 0.

ẑ
(1)
k

3ẑ
(0)
k

+

∣∣∣∣∣π2k2

λ̄2
0

(ā2 − ā0)k −
2π2k2

λ̄3
0

(λ̄2 − λ̄0)(ā0)k

∣∣∣∣∣ + π2k2

λ̄2
0

|λ̄2 − λ̄0|ω
−q
k

+ 6
(
|ā0| ∗ |ā2 − ā0| ∗ ω

−q
)
k

+

∣∣∣∣∣− 2π2k2

λ̄3
0

(λ̄2 − λ̄0)(ā2 − ā0)k + 3π2k2

ξ4
(λ̄2 − λ̄0)2(ā0)k

∣∣∣∣∣ + π2k2

|ξ3|
(λ̄2 − λ̄0)2ω

−q
k

+ 3
(
|ā2 − ā0|

2 ∗ ω−q
)
k

+ 3π2k2

ξ4
(λ̄2 − λ̄0)2|(ā2 − ā0)k| +

∣∣∣∣∣π2k2

λ̄2
0

(ā1 − ā0)k −
2π2k2

λ̄3
0

(λ̄1 − λ̄0)(ā0)k

∣∣∣∣∣ + π2k2

λ̄2
0

|λ̄1 − λ̄0|ω
−q
k

+6
(
|ā0| ∗ |ā1 − ā0| ∗ ω

−q
)
k

+

∣∣∣∣∣− 2π2k2

λ̄3
0

(λ̄2 − λ̄0)(ā1 − ā0)k −
2π2k2

λ̄3
0

(λ̄1 − λ̄0)(ā2 − ā0)k + 6π2k2

ξ4
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā0)k

∣∣∣∣∣
+ 2π2k2

|ξ3|
|λ̄2 − λ̄0||λ̄1 − λ̄0|ω

−q
k

+ 6
(
|ā2 − ā0| ∗ |ā1 − ā0| ∗ ω

−q
)
k

+

∣∣∣∣ 3π2k2

ξ4
(λ̄2 − λ̄0)2(ā1 − ā0)k + 6π2k2

ξ4
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā2 − ā0)k

∣∣∣∣
+

∣∣∣∣∣− 2π2k2

λ̄3
0

(λ̄1 − λ̄0)(ā1 − ā0)k + 3π2k2

ξ4
(λ̄1 − λ̄0)2(ā0)k

∣∣∣∣∣ + π2k2

|ξ3|
(λ̄1 − λ̄0)2ω

−q
k

+ 3
(
(ā1 − ā0)2 ∗ ω−q

)
k

+

∣∣∣∣ 6π2k2

ξ4
(λ̄2 − λ̄0)(λ̄1 − λ̄0)(ā1 − ā0)k + 3π2k2

ξ4
(λ̄1 − λ̄0)2(ā2 − ā0)k

∣∣∣∣ + 3π2k2

ξ4
(λ̄1 − λ̄0)2|(ā1 − ā0)k|

ẑ
(2)
k

2π2k2

|λ̄3
0|
|(ā0)k| + 6

(
|ā0| ∗ (ω−q)2

)
k

+

∣∣∣∣∣− 2π2k2

λ̄3
0

(ā2 − ā0)k + 6π2k2

ξ4
(λ̄2 − λ̄0)(ā0)k

∣∣∣∣∣ + 6
(
|ā2 − ā0| ∗ (ω−q)2

)
k

+ 6π2k2

ξ4
|λ̄2 − λ̄0||(ā2 − ā0)k| +

∣∣∣∣∣− 2π2k2

λ̄3
0

(ā1 − ā0)k + 6π2k2

ξ4
(λ̄1 − λ̄0)(ā0)k

∣∣∣∣∣ + 6
(
|ā1 − ā0| ∗ (ω−q)2

)
k

+

∣∣∣∣ 6π2k2

ξ4
(λ̄2 − λ̄0)(ā1 − ā0)k + 6π2k2

ξ4
(λ̄1 − λ̄0)(ā2 − ā0)k

∣∣∣∣ + 6π2k2

ξ4
|λ̄1 − λ̄0||(ā1 − ā0)k|

ẑ
(3)
k

3π2k2

ξ4
|(ā0)k| + 3

(
(ω−q)3

)
k

+ 3π2k2

ξ4
|(ā2 − ā0)k| +

3π2k2

ξ4
|(ā1 − ā0)k|

Table 5: The bounds ẑ
(`)
k . For k ∈ {0, . . . ,m− 1}, ẑ(0)

k =
(
|ā0|2 ∗ ω−qI

)
k
, where (ω−qI )k = 0

if |k| < m and (ω−qI )k = ω−qk otherwise. For k ≥ m, ẑ
(0)
k =

(
|ā0|2 ∗ ω−q

)
k
.

expansion of the function s = (s1, s2) 7→ µk(λs) around s = (0, 0). In practice, ξ is replaced

by the interval λ̄0 + [0 1](λ̄1 − λ̄0) + [0 1](λ̄2 − λ̄0) and Z̃
(`)
M is finally obtained with interval

arithmetic.

Z̃
(1)
M

3

(
λ0

π2M2−λ0

)
‖ā0‖

2
qα

(3)
M

+ 1
λ̄2

0

(
π2M2λ0
π2M2−λ0

)
|λ̄2 − λ̄0| + 6

(
λ0

π2M2−λ0

)
‖ā0‖q‖ā2 − ā0‖qα

(3)
M

+ 1
|ξ3|

(
π2M2λ0
π2M2−λ0

)
(λ̄2 − λ̄0)2 + 3

(
λ0

π2M2−λ0

)
‖ā2 − ā0‖

2
qα

(3)
M

+ 1
λ̄2

0

(
π2M2λ0
π2M2−λ0

)
|λ̄1 − λ̄0|

+6

(
λ0

π2M2−λ0

)
‖ā0‖q‖ā1 − ā0‖qα

(3)
M

+ 2
|ξ3|

(
π2M2λ0
π2M2−λ0

)
|λ̄2 − λ̄0||λ̄1 − λ̄0|

+6

(
λ0

π2M2−λ0

)
‖ā2 − ā0‖q‖ā1 − ā0‖qα

(3)
M

+ 1
|ξ3|

(
π2M2λ0
π2M2−λ0

)
(λ̄1 − λ̄0)2

+3

(
λ0

π2M2−λ0

)
‖ā1 − ā0‖

2
qα

(3)
M

Z̃
(2)
M

6

(
λ0

π2M2−λ0

)
‖ā0‖qα

(3)
M

+ 6

(
λ0

π2M2−λ0

)
‖ā2 − ā0‖qα

(3)
M

+ 6

(
λ0

π2M2−λ0

)
‖ā1 − ā0‖qα

(3)
M

Z̃
(3)
M

3

(
λ0

π2M2−λ0

)
α

(3)
M

Table 6: The bounds Z̃
(`)
M , for ` = 1, 2, 3.

We have finally all the ingredients to construct the radii polynomials {pk(r)}Mk=−2 of
Definition 2.2 with interval arithmetic. Once this is done, we can verify (if possible) the
hypotheses of Lemma 2.3 and then the smoothness hypothesis (29). As mentioned above,
this procedure is referred to as the verification of a simplex. Therefore, our algorithm
provides precise bounds in the Banach space around each approximate simplex within which
a genuine smooth local chart of the manifold is guaranteed to exist in the mathematically
rigorous sense. Using the method of Section 3 to obtain a triangulation of the manifold
based on successes or failures of the verification of each simplex, we can conclude, using the
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theory of Section 4, that we performed a rigorous computation of the smooth C` manifold.
We now present some results.

Example 5.5. As first example, we computed a manifold of equilibria of (37) identified by
the following constraints:

λ ∈ [39, 41], δ(λ, c) ≥ 10−3 .

For the projection f (m), we took m = 40, i.e. we kept the first 40 Fourier modes of
solutions u of (37). We also fixed the algebraic decay rate of the Banach space Ωq as defined
in (4) to be q = 2. We started the computation from a point x0 ∈ R42 numerically on the
manifold. We obtained x0 by fixing c = 0 and following in λ (via a standard path-following
algorithm) the branch of equilibria that bifurcates from the trivial solution at λ = 4π2, up
to λ ≈ 40. The actual coordinates of x0 can be downloaded from [22]. Furthermore, we
chose h0 = 4.5× 10−3 and hmin = 10−5, see Section 3 for the meaning of these parameters.

Starting from x0, we applied the method described in Section 3, with the (unsubstantial)
exception reported in a Remark below. The computation was completed successfully (i.e.
it terminated due to absence of frontal nodes) and resulted in a database made of 57960
nodes and 114059 simplices. The number of rejected steps (due to verification failures) was
21585, which accounts for nearly 16% of the total work. At the end, all simplices had been
successfully verified, with 6814 simplices requiring 1 splitting and 13 simplices requiring 2
to 5 splittings.

Denote by S1 the simplicial approximation obtained as described above. A geometric
representation of S1 is presented in Figure 6. On each simplex σ ∈ S1 the hypotheses of
Lemma 2.1 were verified yielding a map x̃σ : D → X such that Fs(x̃σ(s)) = 0. By Lemma 2.4
there is an ε = ε(σ) > 0 such that x̃σ can be extended to a C` diffeomorphism, also denoted
by x̃σ, on Dε

def
= {s = (s1, s2) | s1, s2 ≥ −ε and s1 + s2 ≤ 1 + ε}. For each σ ∈ S1, let

Uσ = x̃σ(Dε).

Theorem 5.6. Consider S1, the simplicial approximation defined above. Then, the set

M1
def
=

⋃
σ∈S1

Uσ

is a smooth two-dimensional manifold implicitly defined by the infinite dimensional nonlinear
equation f = 0, with f given component-wise by (40). Moreover, M1 yields a smooth two-
dimensional manifold of equilbria of the Cahn-Hilliard equation (37). Furthermore, for each
σ ∈ S1 defined by σ = {x̄s | s ∈ D}, one has that

sup
s∈D
‖x̃σ(s)− x̄s‖X ≤ r,

where r = r(σ) is the radius obtained by solving the radii polynomials as in Lemma 2.3.

Example 5.7. As second example, we computed again a manifold of equilibria of the
Cahn-Hilliard equation, this time identified by the constraints:

λ ∈ [69.9, 70.1], δ(λ, c) ≥ 0.2 .

As in Example 5.5, we kept m = 40 Fourier modes, and chose the decay rate for Ωq to
be q = 2. We started the computation from a point x0 ∈ R42 numerically on the manifold,
obtained just like in Example 5.5, but with λ ≈ 70 (again, see [22] for the actual coordinates
of x0), and chose h0 = 10−2 and hmin = 10−5. Also in this case, the computation termi-
nated successfully, this time with a resulting database of 24168 nodes and 47658 simplices.
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Rejected steps were 7646, i.e. nearly 14% of the total work. All simplices were successfully
verified, with 3446 of them requiring 1 splitting.

Denote by S2 the simplicial approximation obtained as described above. S2 is depicted
in Figure 7. On each simplex σ ∈ S2 the hypotheses of Lemma 2.1 were verified yielding
a map x̃σ : D → X such that Fs(x̃σ(s)) = 0. By Lemma 2.4, there is an ε = ε(σ) > 0
such that x̃σ can be extended to a C` diffeomorphism, also denoted by x̃σ, on Dε. For each
σ ∈ S2, let Uσ = x̃σ(Dε).

Theorem 5.8. Consider S2 the simplicial approximation defined above. Then, the set

M2
def
=

⋃
σ∈S2

Uσ

is a smooth two-dimensional manifold implicitly defined by the infinite dimensional nonlinear
equation f = 0, with f given component-wise by (40). Moreover, M2 yields a smooth two-
dimensional manifold of equilbria of the Cahn-Hilliard equation (37). Furthermore, for each
σ ∈ S2 defined by σ = {x̄s | s ∈ D}, one has that

sup
s∈D
‖x̃σ(s)− x̄s‖X ≤ r,

where r = r(σ) is the radius obtained by solving the radii polynomials as in Lemma 2.3.

Remark. The only exception to the strategy described in Section 3 is that, during the nu-
merical triangulation of the manifold, verification of simplices was (temporarily) performed
–without– interval arithmetic. This is because the overhead associated to the use of interval
arithmetic makes the computation impossible to be performed on a single computing unit.
Hence, proper verification of simplices was postponed to a distributed computed environ-
ment, where it was spread over 500 processors. To witness the benefit of this strategy,
verification of all simplices for the computation outlined in Example 5.5 required 39 hours
(the duration of the longest-lasting process), with a total CPU time of approximately 680
days, while that of Example 5.7 required 18 hours, and a total CPU time of approximately
206 days.

Remark. The software was developed in MATLAB, and interval arithmetics computations
were carried out by the toolbox INTLAB [19]. The construction of the database for the
triangulations was performed on a desktop computer equipped with Intel Core 2 Duo E6400
2.13GHz CPU and 2 GB of RAM, while verification of the simplices was performed on the
PACE HPC environment at the Georgia Institute of Technology. The complete database of
nodes and simplices for both computation above, as well as the MATLAB code used to run
the verification, can be found at [22].

6 Conclusion

In this paper we introduce a new rigorous multi-parameter continuation method to compute
smooth two-dimensional manifolds implicitly defined by zeros of nonlinear operators defined
on infinite dimensional Banach spaces. The method is applied to compute two portions a
two-dimensional manifold of equilibria of the 1D Cahn-Hilliard PDE.

The method proved itself robust and successful when applied to the 1D Cahn-Hilliard
equation. Yet, of course, we believe there is room for improvement. Rigorously computing
large portions of a manifold can be burdensome. This is mostly due to the high computa-
tional cost involved in verifying a simplex with interval arithmetic. This is a motivation to
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Figure 6: The solution manifold of Theorem 5.6. On this plot, the L2 norm of the solution
u is depicted. The red curve corresponds to the curve of constant equilibria of the 1D Cahn-
Hilliard equation (37) from which the solution manifold bifurcates. The curve of constant
solutions together with its corresponding (λ, c) parameter values can be found in Figure 5.

try to minimize the number of simplices needed to “cover” a given portion of a manifold, as
well as the number of simplices rejected due to verification failure. This is work in progress.
Another improvement concerns the correct handling of situations where overlap of frontal
simplices of the triangulation is detected. This also is work in progress. Note that we did
not detect any overlap in the Examples presented in Section 5. We now conclude the paper
by discussing future directions.

We believe it would interesting to explore the possibility of rigorously detecting bifurca-
tions, for instance those related to loss of rank of the Jacobian matrix. The smooth singular
value decomposition would be a useful tool for this project, see [20]. It would also be valuable
to try to prove existence of cusp bifurcations in the two dimensional manifold of equilibria
of the 2D Cahn-Hilliard model as numerically suggested in [4]. Another interesting problem
would be to extend the work of [21] and compute two-dimensional manifolds of connecting
orbits in the Gray-Scott model for autocatalytic reaction.
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Figure 7: The solution manifold of Theorem 5.8. On this plot, the first component of the
solution u is depicted.
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A Estimates

This appendix provides the necessary convolution estimates required to construct the radii
polynomials for the Cahn-Hilliard equation studied in Section 5.

Consider a decay rate q ≥ 2, a computational parameter M ≥ 6 and define, for k ≥ 3,

γk = γk(q)
def
= 2

[
k

k − 1

]q
+

[
4 ln(k − 2)

k
+
π2 − 6

3

] [
2

k
+

1

2

]q−2

. (45)
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Figure 8: Profile of the initial point x0 ∈ R42 numerically on the manifold (the actual
coordinates of x0 can be downloaded from [22]). This point correspond to one of the
equilibrium solution on the manifold of Theorem 5.6 at (λ, c) = (40, 0).

Lemma A.1. For q ≥ 2 and k ≥ 4 we have

k−1∑
k1=1

kq

kq1(k − k1)q
≤ γk.

Proof. First observe that

k−1∑
k1=1

kq

kq1(k − k1)q
= 2

[
k

k − 1

]q
+ kq−1

k−2∑
k1=2

k

kq1(k − k1)q

= 2

[
k

k − 1

]q
+ kq−1

[
k−2∑
k1=2

k − k1

kq1(k − k1)q
+

k−2∑
k1=2

k1

kq1(k − k1)q

]

= 2

[
k

k − 1

]q
+ kq−1

[
k−2∑
k1=2

1

kq1(k − k1)q−1
+

k−2∑
k1=2

1

kq−1
1 (k − k1)q

]

= 2

[
k

k − 1

]q
+ 2

k−2∑
k1=2

kq−1

kq−1
1 (k − k1)q

.

Using the above we define

φ
(q)
k :=

k−2∑
k1=2

kq−1

kq−1
1 (k − k1)q

=
1

2

k−2∑
k1=2

kq

kq1(k − k1)q
.
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We then obtain the following recurrence inequality

φ
(q)
k =

k−2∑
k1=2

kq−1

kq−1
1 (k − k1)q

= kq−2
k−2∑
k1=2

(k − k1) + k1

kq−1
1 (k − k1)q

=
1

k

k−2∑
k1=2

kq−1

kq−1
1 (k − k1)q−1

+

k−2∑
k1=2

kq−2

kq−2
1 (k − k1)q

≤ 1

k

k−2∑
k1=2

kq−1

kq−1
1 (k − k1)q−1

+
1

2

k−2∑
k1=2

kq−2

kq−2
1 (k − k1)q−1

=

[
2

k
+

1

2

]
φ

(q−1)
k .

Applying the above inequality q − 2 times we get

φ
(q)
k ≤ φ

(2)
k

[
2

k
+

1

2

]q−2

.

Also

φ
(2)
k =

k−2∑
k1=2

k

k1(k − k1)2
=

k−2∑
k1=2

1

k1(k − k1)
+

k−2∑
k1=2

1

(k − k1)2

=
1

k

[
k−2∑
k1=2

1

k1
+

k−2∑
k1=2

1

k − k1

]
+

k−2∑
k1=2

1

(k − k1)2

=
2

k

k−2∑
k1=2

1

k1
+

k−2∑
k1=2

1

k2
1

≤ 2

k
ln (k − 2) +

π2

6
− 1.

Using the above inequalities we get

k−1∑
k1=1

kq

kq1(k − k1)q
= 2

[
k

k − 1

]q
+ 2φ

(q)
k ≤ 2

[
k

k − 1

]q
+ 2φ

(2)
k

[
2

k
+

1

2

]q−2

≤ 2

[
k

k − 1

]q
+

[
4 ln (k − 2)

k
+
π2 − 6

3

] [
2

k
+

1

2

]q−2

= γk.

Define the weights by

ωqk :=

{
1, if k = 0

|k|q, if k 6= 0.

Lemma A.2 (Quadratic estimates). Given a decay rate q ≥ 2 and M ≥ 6. For k ∈ Z,

define the quadratic asymptotic estimates α
(2)
k = α

(2)
k (q,M) by

α
(2)
k

def
=



1 + 2

M∑
k1=1

1

ω2q
k1

+
2

M2q−1(2q − 1)
, for k = 0

M∑
k1=1

2ωqk
ωqk1

ωqk+k1

+
2ωqk

(k +M + 1)qMq−1(q − 1)

+2 +

k−1∑
k1=1

ωqk
ωqk1

ωqk−k1

, for 1 ≤ k ≤M − 1

2 + 2

M∑
k1=1

1

ωqk1

+
2

Mq−1(q − 1)
+ γM , for k ≥M,

(46)
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and for k < 0,

α
(2)
k

def
= α

(2)
|k| .

Then, for any k ∈ Z, ∑
k1+k2=k

kj∈Z

1

ωqk1
ωqk2

≤ α
(2)
k

ωqk
.

Proof. For k = 0,

∑
k1+k2=0

kj∈Z

1

ωqk1
ωqk2

= 1 + 2

M∑
k1=1

1

ω2q
k1

+ 2

∞∑
k1=M+1

1

ω2q
k1

≤ 1 + 2

M∑
k1=1

1

ω2q
k1

+

∫ ∞
M

dx

x2q

≤ 1 + 2

M∑
k1=1

1

ω2q
k1

+
2

M2q−1(2q − 1)
=
α

(2)
0

ωq0
.

For 1 ≤ k ≤M − 1, and recalling that the one-dimensional weights (2),

∑
k1+k2=k

kj∈Z

1

ωqk1
ωqk2

=
1

ωqk

[
M∑
k1=1

2ωqk
ωqk1

ωqk+k1

+

∞∑
k1=M+1

2ωqk
ωqk1

ωqk+k1

+
2

ωq0
+

k−1∑
k1=1

ωqk
ωqk1

ωqk−k1

]

≤ 1

ωqk

[
M∑
k1=1

2ωqk
ωqk1

ωqk+k1

+
2ωqk

(k +M + 1)q

∫ ∞
M

dx

xq
+ 2 +

k−1∑
k1=1

ωqk
ωqk1

ωqk−k1

]

≤ 1

ωqk

[
M∑
k1=1

2ωqk
ωqk1

ωqk+k1

+
2ωqk

(k +M + 1)qMq−1(q − 1)
+ 2 +

k−1∑
k1=1

ωqk
ωqk1

ωqk−k1

]
=
α

(2)
k

ωqk
.

Finally, for k ≥M , one gets from Lemma A.1 that

∑
k1+k2=k

kj∈Z

1

ωqk1
ωqk2

=
1

ωqk

[
2

∞∑
k1=1

ωqk
ωqk1

ωqk+k1

+
2

ωq0
+

k−1∑
k1=1

ωqk
ωqk1

ωqk−k1

]

≤ 1

ωqk

[
2

M∑
k1=1

1

ωqk1

+ 2

∞∑
k1=M+1

1

ωqk1

+
2

ωq0
+ γk

]

≤ 1

ωqk

[
2

M∑
k1=1

1

ωqk1

+ 2

∫ ∞
M

dx

xq
+

2

ωq0
+ γM

]

≤ 1

ωqk

[
M∑
k1=1

2

ωqk1

+
2

Mq−1(q − 1)
+ 2 + γM

]
=
α

(2)
k

ωqk
.

Lemma A.3. For any k ∈ Z with |k| ≥M ≥ 6, we have that α
(2)
k ≤ α

(2)
M .

Proof. For k ≥ 6, the fact that ln(k−1)
k+1 ≤ ln(k−2)

k implies that γk+1(q) ≤ γk(q). By definition

of α
(2)
k , for |k| ≥M , one gets that α

(2)
k ≤ α

(2)
M .
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Lemma A.4 (Cubic estimates). Given q ≥ 2 and M ≥ 6. Let

Σ∗a :=

M−1∑
k1=1

α
(2)
k1
Mq

ωqk1

(
M − k1

)q + α
(2)
M

(
γM −

M−1∑
k1=1

1

ωqk1

)
,

α̃
(2)
M := max

{
α

(2)
k | k = 0, . . . ,M

}
, Σ∗b := α̃

(2)
M γM and Σ∗ := min {Σ∗a,Σ∗b}. Define the cubic

asymptotic estimates α
(3)
k = α

(3)
k (s,M) by

α
(3)
k

def
=



α
(2)
0 + 2

M−1∑
k1=1

α
(2)
k1

ω2q
k1

+
2α

(2)
M

(M − 1)2q−1(2q − 1)
, for k = 0

M−k∑
k1=1

α
(2)
k+k1

ωqk
ωqk1

ωqk+k1

+
α

(2)
M ωqk

(M + 1)q(M − k)q−1(q − 1)
+

k−1∑
k1=1

α
(2)
k1
ωqk

ωqk1
ωqk−k1

+

M∑
k1=1

α
(2)
k1
ωqk

ωqk1
ωqk+k1

+
α

(2)
M ωqk

(M + k + 1)qMq−1(q − 1)
+ α

(2)
k + α

(2)
0 ,

for 1 ≤ k ≤M − 1

α
(2)
M

M∑
k1=1

1

ωqk1

+
2α

(2)
M

Mq−1(q − 1)
+ Σ∗ +

M∑
k1=1

α
(2)
k1

ωqk1

+ α
(2)
M + α

(2)
0 , for k ≥M

(47)
and for k < 0,

α
(3)
k

def
= α

(3)
|k| .

Then, for any k ∈ Z, ∑
k1+k2+k3=k

kj∈Z

1

ωqk1
ωqk2

ωqk3

≤ α
(3)
k

ωqk
.

Moreover, α
(3)
k ≤ α

(3)
M , for all k ≥M .

Proof. In what follows, the estimates are obtained similarly as in the proof of Lemma A.2

with the difference that we often use the fact α
(2)
k ≤ α

(2)
M , for all k ≥M (see e.g. Remark A.1

in [13]). For k = 0,

∑
k1+k2+k3=0

kj∈Z

1

ωqk1
ωqk2

ωqk3

≤ α
(2)
0 + 2

M−1∑
k1=1

α
(2)
k1

ω2q
k1

+
2α

(2)
M

(M − 1)2q−1(2q − 1)
=
α

(3)
0

ωq0
.

For k > 0,

∑
k1+k2+k3=k

kj∈Z

1

ωqk1
ωqk2

ωqk3

≤
∞∑
k1=1

[
1

ωqk1

α
(2)
k+k1

ωqk+k1

]
+

k−1∑
k1=1

[
1

ωqk1

α
(2)
k−k1

ωqk−k1

]
+

∞∑
k1=1

[
1

ωqk+k1

α
(2)
k1

ωqk1

]

+
1

ωq0

α
(2)
k

ωqk
+

1

ωqk

α
(2)
0

ωq0
.
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Consider k ∈ {1, . . . ,M − 1}. Since α
(2)
k ≤ α

(2)
M , for all k ≥M by Lemma A.3, we have

∞∑
k1=1

α
(2)
k+k1

ωqk1
ωqk+k1

≤ 1

ωqk

[
M−k∑
k1=1

α
(2)
k+k1

ωqk
ωqk1

ωqk+k1

+
α

(2)
M ωqk

(M + 1)q(M − k)q−1(q − 1)

]
.

Similarly,

∞∑
k1=1

α
(2)
k1

ωqk1
ωqk+k1

≤ 1

ωqk

[
M∑
k1=1

α
(2)
k1
ωqk

ωqk1
ωqk+k1

+
α

(2)
M ωqk

(M + k + 1)qMq−1(q − 1)

]
.

From the definition of α
(3)
k for k ∈ {1, . . . ,M − 1}, one gets that

∑
k1+k2+k3=k

kj∈Z

1

ωqk1
ωqk2

ωqk3

≤ α
(3)
k

ωqk
.

For k ≥M , using again that α
(2)
k ≤ α

(2)
M by Lemma A.3, one gets that

∞∑
k1=1

α
(2)
k+k1

ωqk1
ωqk+k1

≤ 1

ωqk

[
α

(2)
M

M∑
k1=1

1

ωqk1

+
α

(2)
M

Mq−1(q − 1)

]
.

Using Lemma A.1,

k−1∑
k1=1

α
(2)
k1

ωqk1
ωqk−k1

=

M−1∑
k1=1

α
(2)
k1

ωqk1
ωqk−k1

+
1

ωqk

k−1∑
k1=M

ωqkα
(2)
k1

ωqk1
ωqk−k1

≤ 1

ωqk

M−1∑
k1=1

α
(2)
k1

ωqk1

(
1− k1

k

)q +
α

(2)
M

ωqk

k−1∑
k1=M

ωqk
ωqk1

ωqk−k1

≤ 1

ωqk

[
M−1∑
k1=1

α
(2)
k1

ωqk1

(
1− k1

M

)q + α
(2)
M

(
k−1∑
k1=1

ωqk
ωqk1

ωqk−k1

−
M−1∑
k1=1

ωqk
ωqk1

ωqk−k1

)]

≤ 1

ωqk

[
M−1∑
k1=1

α
(2)
k1
Mq

ωqk1

(
M − k1

)q + α
(2)
M

(
γM −

M−1∑
k1=1

1

ωqk1

)]
=

1

ωqk
Σ∗a.

Hence,
k−1∑
k1=1

α
(2)
k1

ωqk1
ωqk−k1

≤ α̃
(2)
M

ωqk
γM =

1

ωqk
Σ∗b .

Recalling that Σ∗ = min {Σ∗a,Σ∗b}, one gets that

k−1∑
k1=1

α
(2)
k1

ωqk1
ωqk−k1

≤ 1

ωqk
Σ∗. Also,

∞∑
k1=1

α
(2)
k1

ωqk1
ωqk+k1

≤ 1

ωqk

[
M∑
k1=1

α
(2)
k1

ωqk1

+
α

(2)
M

Mq−1(q − 1)

]
.
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Combining the above inequalities, we get, for the case k ≥M ,

∑
k1+k2+k3=k

kj∈Z

1

ωqk1
ωqk2

ωqk3

≤ 1

ωqk

[
α

(2)
M

M∑
k1=1

1

ωqk1

+
2α

(2)
M

Mq−1(q − 1)
+ Σ∗

+

M∑
k1=1

α
(2)
k1

ωqk1

+ α
(2)
M + α

(2)
0

]
=
α

(3)
k

ωqk
.

Lemma A.5. For any k ∈ Z with |k| ≥M ≥ 6, we have that α
(3)
k ≤ α

(3)
M .

Proof. For k ≥ 6, the fact that ln(k−1)
k+1 ≤ ln(k−2)

k implies that γk+1(q) ≤ γk(q). By definition

of α
(3)
k , for |k| ≥M , one gets that α

(3)
k ≤ α

(3)
M .

Lemma A.6. Given q ≥ 2 and 6 ≤ M̄ ≤M , define for 0 ≤ k ≤ M̄ − 1

ε
(3)
k = ε

(3)
k (q, M̄ ,M) :=

M−k∑
k1=M̄

α
(2)
k+k1

ωqk1
ωqk+k1

(48)

+

M+k∑
k1=M̄

α
(2)
k1−k

ωqk1
ωqk1−k

+
α

(2)
M

(M + 1)q(q − 1)

[
1

(M − k)q−1
+

1

(M + k)q−1

]

and for k < 0

ε
(3)
k (q, M̄ ,M) := ε

(3)
|k| (q, M̄ ,M).

Fix 0 ≤ |k| ≤ M̄ − 1 and ` ∈ {1, 2, 3}. Then, we have that∑
k1+k2+k3=k

max{|k1|,...,|k`|}≥M̄

1

ωqk1
ωqk2

ωqk3

≤ `ε(3)
k .

Proof. We have that ∑
k1+k2+k3=k

max{|k1|,...,|k`|}≥M̄

1

ωqk1
ωqk2

ωqk3

≤ `
∑

k1+k2+k3=k

|k1|≥M̄

1

ωqk1
ωqk2

ωqk3

,

and
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∑
k1+k2+k3=k

|k1|≥M̄

1

ωqk1
ωqk2

ωqk3

=

−M̄∑
k1=−∞

1

ωqk1

∑
k2+k3=k−k1

1

ωqk2
ωqk2

ωqk3

+

∞∑
k1=M̄

1

ωqk1

∑
k2+k3=k−k1

1

ωqk2
ωqk2

ωqk3

≤
∞∑

k1=M̄

[
α

(2)
k+k1

ωqk1
ωqk+k1

+
α

(2)
k1−k

ωqk1
ωqk1−k

]

≤
M−k∑
k1=M̄

α
(2)
k+k1

ωqk1
ωqk+k1

+ α
(2)
M

∞∑
k1=M−k+1

1

ωqk1
ωqk+k1

+

M+k∑
k1=M̄

α
(2)
k1−k

ωqk1
ωqk1−k

+ α
(2)
M

∞∑
k1=M+k+1

1

ωqk1
ωqk1−k

≤
M−k∑
k1=M̄

α
(2)
k+k1

ωqk1
ωqk+k1

+

M+k∑
k1=M̄

α
(2)
k1−k

ωqk1
ωqk1−k

+
α

(2)
M

(M + 1)q(q − 1)

[
1

(M − k)q−1
+

1

(M + k)q−1

]
= ε

(3)
k .
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