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Abstract. This is the second paper in a two-part series examining numerical simula-
tions of buoyancy-driven flow in the presence of large viscosity contrasts. In the first pa-
per, we demonstrated that a combination of three numerical tools, an extended ghost-
fluid-type method, the level set approach, and the extension velocity technique accurately
simulate complex interface dynamics in the presence of large viscosity contrasts. In this
paper, we use this three-fold numerical method to investigate bubble dynamics in the
conduits of basaltic volcanos with a focus on normal Strombolian eruptions. Strombolian-
type activity, named after the famously episodic eruptions at Stromboli volcano, is char-
acterized by temporally discrete fountains of incandescent clasts. The mildly explosive
nature of normal Strombolian activity, as compared to more effusive variants of basaltic
volcanism, is related to the presence of dissolved gas in the magma, yielding a complex
two-phase-flow problem.

We present a detailed scaling analysis allowing identification of the pertinent regime
for a given flow problem. The dynamic interactions between gas and magma can be clas-
sified into three non-dimensional regimes based on bubble sizes and magma viscosity. Re-
solving the fluid dynamics at the scale of individual bubbles is not equally important
in all three regimes: As long as bubbles remain small enough to be spherical, their dy-
namic interactions are limited compared to the rich spectrum of coalescence and breakup
processes observed for deformable bubbles, in particular once inertia ceases to be neg-
ligible. One key finding in our simulations is that both large gas bubbles and large conduit-
filling gas pockets (’slugs’) are prone to dynamic instabilities that lead to their rapid breakup
during buoyancy-driven ascent. We provide upper-bound estimates for the maximum sta-
ble bubble size in a given magmatic system and discuss the ramifications of our results
for two commonly used models of normal Strombolian-type activity, the Rise-Speed-Dependent
(RSD) model and the Collapsing-Foam (CF) model.

1. Introduction

Many basaltic volcanoes erupt substantial amounts of
gas while expelling comparatively little degassed magma.
This observation suggests that gas segregation must have
occurred prior to eruption and warrants attributing the ex-
istence of explosive basaltic volcanism to the presence of
exsolved volatiles. Since the exsolution of gas is largely sup-
pressed in the case of sufficiently deep sea-floor volcanism,
explosive basaltic activity should be very rare at mid-ocean
ridges [Head and Wilson, 2003] and expected to occur pri-
marily at subaerial volcanoes, in agreement with observa-
tions.

Substantial progress has been made in understanding the
early stages of eruptions in basaltic volcanos, i.e., bubble
nucleation and growth (e.g. Sparks [1978]; Mangan et al.
[1993]; Hurwitz and Navon [1994]; Toramaru [1995]; Gard-
ner et al. [1999]; Mourtada-Bonnefoi and Laporte [2002];
Proussevitch and Sahagian [2005]), and its late stages, i.e.,
fragmentation (e.g. Sparks et al. [1994]; Mangan and Cash-
man [1996]; Papale [1999]; Zhang [1999]; Spieler et al. [2004];

Copyright 2010 by the American Geophysical Union.
0148-0227/10/B07410$9.00

Namiki and Manga [2008]). However, the complex fluid dy-
namical interactions that may arise between these two stages
still pose many open questions [Gonnermann and Manga,
2007].

This paper complements prior studies [Manga and Stone,
1993, 1994, 1995] by not only examining two-phase flow in
the Stokes, but also in the Navier-Stokes regime at low to
moderate Reynolds number (Re). Analyzing flow behavior
at finite Re is of interest for Strombolian-type eruptions be-
cause inertia is not generally negligible. Inertial effects be-
come important because of (1) the low viscosity of basaltic
magma as compared to more silicic counterparts and (2) the
high rise speed of gas pockets in the meter range, which are
thought to cause normal Strombolian activity [Blackburn
et al., 1976; Vergniolle and Brandeis, 1994, 1996; Vergniolle
et al., 1996; Harris and Ripepe, 2007].

Refining our understanding of bubble dynamics in
basaltic flow is important to (1) inform the interpretation of
vesicle morphology and bubble size distributions observed
in thin sections and the conclusions drawn for the flow con-
ditions at quenching, (2) identify meaningful assumptions
about interface dynamics used in two-phase-flow models,
which refrain from resolving the gas-magma interface di-
rectly, and (3) verify how the gas dynamics observed in
laboratory experiments change at scales representative of
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volcanic systems. We devote special attention to identify-
ing the ramifications of our results for the two commonly
used models of explosive basaltic volcanism, the Rise-Speed-
Dependent (RSD) model pioneered by Wilson [1980] and the
Collapsing-Foam (CF) model [Vergniolle and Jaupart , 1986;
Jaupart and Vergniolle, 1988, 1989].

Both models agree in relating normal Strombolian style
eruptions to the presence of a segregated gas phase. More
precisely, both models assume that normal Strombolian ac-
tivity is caused by the bursting of large gas slugs at the free
surface, an idea pioneered by Blackburn et al. [1976] and
refined in a large number of subsequent studies. They dif-
fer, however, in the presumed location where this gas slug
is thought to form. The CF model assumes that gas ac-
cumulation occurs in the magma chamber or, more gener-
ally, under a large roof area in the conduit, implying that
the gas slug originates at moderate to great depth and as-
cends stably through the volcanic conduit. In contrast, the
RSD model asserts that the gas slug forms gradually dur-
ing ascent through a cascade of coalescence, implying that
slug formation occurs at comparatively shallow depth. To
compare these contrasting views and to verify the regimes
for which they are applicable, we investigate the following
two questions numerically: (1) How likely is a coalescence
cascade, as suggested by the RSD model, and under which
conditions could interactions between multiple bubbles lead
to coalescence and formation of a single large gas slug? (2)
How likely is it that large pockets of gas can ascend sta-
bly over long distances, as suggested by the CF model, and
under which circumstances is that to be expected?

This paper is structured in the following way: Section 2
introduces the governing equations and identifies the rele-
vant non-dimensional regimes. In section 3 we discuss theo-
retical constraints on bubble stability and estimate the max-
imum stable bubble sizes for typical basaltic systems. Sec-
tion 4 describes our modeling approach and the details of
the simulations we perform. Section 5 presents our results
and section 9 the ramifications of our findings for the ap-
plicability of the RSD and CF model. We end with a brief
summary (section 7) of the main contributions of this paper
to understanding explosive basaltic volcanism.

2. Governing equations and scaling analysis

The flow in each domain (i.e. gas and magma) satisfies
the Navier-Stokes equation

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+∇ ·

[
µ(∇v + (∇v)T)

]
+ ρg .

(1)
and the incompressibility constraint

∇ · v = 0 . (2)

Throughout the paper we denote the velocity field by v =
(u, v, w)T, the pressure by p, the density by ρ, the dynamic
viscosity by µ, and the gravitational acceleration by g. The
boundary conditions at the gas-magma interface are a dis-
continuous step in both density

ρ(φ) =

{
ρg forφ < 0
ρf forφ ≥ 0 ,

(3)

and viscosity

µ(φ) =

{
µg forφ < 0
µf forφ ≥ 0 ,

(4)

where the subscripts refer to either ’gas’ or ’fluid’ and φ is
the level set function used to represent the interface (see
Suckale et al. [2010]).

Additionally, the jump condition at the interface needs to
be fulfilled:  n

t1

t2

 (pI − τ)nT

 =

 σκ
0
0

 , (5)

where I is the unit matrix, σ the surface tension, τ the stress
tensor, κ the curvature of the interface, and n, t1, t2 the nor-
mal vector and the two tangential vectors to the interface
moving with the local fluid velocity.

Using the sign of the level set function φ as an indica-
tor for the two different phases in the manner defined above
(eqs. 3 and 4), we combine the governing equations for the
two phases into one

ρ(φ)

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+∇ ·

[
µ(φ)(∇v + (∇v)T)

]
+gρ(φ)− σκ(φ)δ(φ)n (6)

where the delta function δ(φ) implies that surface tension
only acts at the interface.

The two-phase flow systems investigated in this paper
span a wide range of fluid dynamical regimes. In order to
non-dimensionalize the governing equation (eq. 6), we define
the following set of characteristic scales

x = ax′, v = v0v
′, t =

a

v0
t′, p = v2

0ρ p
′, ρ = ρ ρ′,

µ = µfµ
′ , (7)

where v0 denotes the rise speed of the bubble or gas pocket,
a the radius of the bubble, and µf the viscosity of the
magma. Substituting these characteristic quantities into
equation 6, rearranging, and dropping the primes yields the
non-dimensional multi-phase Navier-Stokes equation

ρ(φ)

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+

1

Re
∇ ·
[
µ(φ)(∇v + (∇v)T)

]
+
ρ(φ)

Fr
ẑ − 1

We
κ(φ)δ(φ)n , (8)

where ẑ denotes the unit vector in vertical direction. The
boundary and jump conditions are non-dimensionalized ac-
cordingly.

Equation 8 highlights that the relevant non-dimensional
numbers are

Re =
ρfv0a

µf
(Reynolds number) (9)

Fr =
v2

0

ga
(Froude number) (10)

We =
ρfav

2
0

σ
(Weber number) (11)

Π1 =
µf
µg

(viscosity ratio) . (12)

In the special case where Re = 0, the non-dimensional
groups determining the dynamics of the system reduce to
the Bond or Eötvös number

Bo =
∆ρga2

σ
(13)

and Π1 as defined previously. Throughout the paper we use
the variable Π to denote non-dimensional numbers, which
do not bear specific names. In section 4, we introduce ad-
ditional non-dimensional ratios to characterize the initial
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Figure 1. Dependence of the three main non-
dimensional domains on bubble radius and magma vis-
cosity. We assume a magma density of ρf = 3500 kg/m3

and a surface-tension coefficient of σ = 0.3 N/m. The
boundary of regime 1, characterized by spherical bubbles
and negligible inertia, is determined only by the size of
the bubbles, because Bo does not depend on magma vis-
cosity (see eq. 13). Regime 2, in which bubbles become
deformable but inertia remains negligible, only exists at
sufficiently high viscosity, µ ≥ 3 Pa·s.

condition, the relative position, and the size ratio of two
bubbles.

The non-dimensional numbers (eqs. 9, 10, 11, and 13)
have intuitive physical interpretations: Re is a measure of
the relative importance of inertia to viscous forces. Fr is
the ratio of inertia to buoyancy forces and We the ratio of
inertia to surface tension. Bo is used to quantify the degree
to which bubbles are able to deform in the Stokes regime. It
corresponds to the ratio of viscous to surface tension forces,
such that Bo� 1 describes the case in which surface tension
becomes largely negligible, resulting in extreme bubble de-
formability. In the special case of buoyancy-driven flow, the
Capillary number Ca is identical to Bo, which can be seen
when substituting the Stokes rise speed into the expression

for Ca, yielding Ca = µv
σ

= ∆ρga2

σ
= Bo.

A wide range of flow regimes may arise in basaltic vol-
canism, because both the bubble radius and the viscosity of
basaltic magma may vary by several orders of magnitude.
The three main non-dimensional regimes are illustrated in
Figure 1. They are characterized by gas bubbles that are
(1) spherical with negligible inertia (Bo < 1 and Re < 1),
(2) deformable with negligible inertia (Bo > 1 and Re < 1),
and (3) deformable with non-negligible inertia (Bo > 1 and
Re > 1). In the interest of completeness, we note that a
non-dimensional regime defined by (Bo > 1 and Re < 1)
is conceivable theoretically, but of little relevance in a geo-
physical context, because it would imply an unrealistically
low magma viscosity.

All simulations presented in this paper were computed
on a Cartesian grid using finite differences. The grid resolu-
tion of the computations is included in the respective figure
captions and corresponds to the number of grid cells in the
x-, y-, and z-direction, if applicable. Detailed convergence
tests are included in the online supplement. In the Stokes
regime, we employ our recently developed method for re-
solving buoyancy-driven interface dynamics in the presence

of large viscosity contrasts described in detail in Suckale
et al. [2010]. Our Navier-Stokes solver is based on the pro-
jection method pioneered by Chorin [1968], combined with a
ghost-fluid-based representation of the material discontinu-
ities and jump conditions [Kang et al., 2000; Liu et al., 2000].
An abbreviated description of the discretization scheme can
be found in the online supplement.

3. Theoretical estimates of bubble breakup

Theoretically, one would expect that the stable size of
gas bubbles in stagnant fluids should be limited, because
the stabilizing effect of surface tension on the bubble surface
decreases rapidly with increasing bubble radius and because
the large density contrast between gas and magma will cause
perturbations to grow by a Rayleigh-Taylor instability. The
latter tendency is counteracted by viscous forces slowing the
rate of growth of unstable interfacial waves (e.g. [Bellman
and Pennington, 1954; Grace et al., 1978]).

A disturbance of wavelength λ on the bubble surface will
be suppressed by surface tension if λ is smaller than the
critical value

λcr = 2π

√
σ

g∆ρ
. (14)

Thus, λcr provides a lower bound for identifying potentially
unstable wavelengths. A reasonable upper bound is half the
circumference of the fluid particle

λup = πa , (15)

because a surface perturbation cannot exceed the bubble it-
self in size [Grace et al., 1978]. Together, λcr and λup yield
an estimate of the maximum stable bubble radius

acr = 2

√
σ

g∆ρ
, (16)

implying that gas bubbles with radii in the mm-range or
larger (a > acr) would be prone to breakup in basaltic liq-
uid if the effect of viscosity was neglected.

For small accelerations, Rayleigh-Taylor instabilities form
only when a more dense fluid overlies a lighter one. Hence,
it is the leading surface of the bubble where the first in-
dentation of wavelength λ > λcr forms. Splitting of the
bubble, however, requires that this indentation grows fast
enough to reach the trailing surface of the bubble before it
is swept around to the equator of the bubble and stops grow-
ing through a Rayleigh-Taylor instability [Clift et al., 1974;
Grace et al., 1978]. Growth of a disturbance occurs in sev-
eral stages. During the early phase, while the amplitude of a
disturbance is small with respect to its wavelength λ, growth
is exponential and characterized by growth rate n. We as-
sume that breakup only occurs if the instability reaches the
base of the bubble during its exponential growth period. It
follows that the maximum stable bubble size can be esti-
mated by requiring that the time available for growth, ta,
exceeds that required for growth, tg [Grace et al., 1978].

The time available for growth, ta, depends on how fast
a Rayleigh-Taylor instability in the center of the leading
bubble surface is swept outwards by viscous forces. The
tangential velocity of the perturbation is determined by the
terminal velocity of the bubble [Grace et al., 1978] yielding
the approximate expression

ta ≈
a

v0
ln

(
cot

(
λ

8a

))
(17)

in the limit of µf � µg and for λcr < λ < λup. We esti-
mate the terminal velocity in eq. 17 based on the empirical
correlations summarized in Grace et al. [1978].
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Figure 2. Wavelength-dependence of the growth rate n over a wide range of magma viscosities µf =
1, 10, 100, and 1000 Pa·s. The other parameters used in the computation are ρf = 3500 kg/m3, ρg =
1.226 kg/m3, g = 9.81 m/s2, and σ = 0.3 N/m. The vertical grey line delimits the stable size range
a < λcr. The grey dots indicate the fastest growing wavelength for a specific µf from the approximative
expression for λmax (eq. 19) that is only valid at large viscosities.

The time required for growth, tg = 1/n, depends on vis-
cous damping of the interfacial waves and may be estimated,
to a first approximation, from linearized stability theory
(e.g. [Bellman and Pennington, 1954]). For magmatic sys-
tems where µf � µg, we can use the simplified expression
[Plesset and Whipple, 1974]

n2 + 2
µf
ρf
k2n− ∆ρ

ρf + ρg
gk +

σk3

ρf + ρg
= 0 , (18)

where k = 2π/λ is the wavenumber. Figure 2 summarizes
the numerical solutions of equation 18 over several orders
of magnitude in µf . The dashed vertical line delimits the
stable size regime where a < λcr. The grey dots indicate the
surface wavelength which is expected to grow fastest for a
given magma viscosity based on the approximative approach
by Plesset and Whipple [1974]

λmax = 4π

(
µ2
f

ρ2
f g

ρf + ρg
ρf − ρg

)1/3

. (19)

Grace et al. [1978] compared experimentally observed
and theoretically predicted breakup times and concluded
that gas bubbles rising through stagnant fluid break up if
ta > 3.8tg. Although their analysis was performed at much
lower viscosities, we adopt this empirical criterion to esti-
mate the maximum stable bubble radius for a wider range of
magma viscosities (see Table 1). Given the semi-empirical
nature of the model and the simplifications it is based on
[Batchelor , 1987], the values in Table 1 should be treated
with some caution. For a detailed comparison of theoretical
and computed bubble sizes see sec. 5.

Table 1. Theoretical prediction of the maximum stable bub-
ble radius amax in basaltic magma of different viscosities µf .
Additional parameters used in the computation: ρf = 3500

kg/m3, ρg = 1.226 kg/m3, g = 9.81 m/s2, surface tension
σ = 0.3 N/m, and viscosity ratio 10−6.

Magma viscosity Maximum bubble radius
µf [Pa·s] amax [m]

10 0.06
25 0.12
50 0.18
75 0.24
100 0.29
250 0.53
500 0.84
750 1.10
1000 1.33

4. Simulations
4.1. Modeling approach

The main objective of our study is to analyze bubble dy-
namics in basaltic conduits in which flow is driven primarily
by gas. Since bubble ascent is only dynamically important
if the bubble rise speed is large relative to the characteristic
flow speed in the surrounding fluid, we only consider stag-
nant fluids in our computations. Our numerical model is set
up as follows. First, we do not consider bubble nucleation
or diffusive growth of the gas bubbles. This simplification is
motivated by the fact that fluid dynamical interactions be-
tween bubbles become most relevant once the bubbles have
reached sufficiently large radii to deform (Bo > 1) (see also
Manga and Stone [1993, 1994, 1995]). At this stage, diffu-
sive bubble growth (limited by the initial volatile content
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and the bubble number density) is thought to have slowed
substantially and starts to come to a halt: For an initial wa-
ter content of 0.5 wt.%, Sparks [1978] estimated a maximum
bubble radius of ∼5 mm. Similarly, Proussevitch and Saha-
gian [1996] obtained a maximum size of 6-8 mm for bubbles
originating from magma with 1.52 - 3.03 wt.% water. De-
compression growth is incorporated in our model (see eq.
8).

Second, all of our simulations are isothermal, because our
computational domain is only several bubble radii in size.
On such small spatial scales, temperature is typically not
expected to vary dramatically. In addition, we note that (1)
Sparks [1978] demonstrated that the expansion of gas bub-
bles by decompression can be approximated as an isother-
mal process due to a balance of cooling resulting from work
done in expanding and conductive heat transfer and (2) that
a vertical temperature gradient is unlikely to have an impor-
tant effect on bubble stability [Rother and Davis, 2005].

Third, we assume flow to be incompressible in both the
liquid magma and the gas. Although gas compressibility
plays a significant role for the dynamics on the length scale
of the entire conduit, its effect at the scale of the bubble
radius is small. Very large gas pockets are possible excep-
tions and our simulations might underestimate their expan-
sion. While further study is needed to anticipate the dy-
namic consequences in detail, two recent numerical studies
[Crowdy , 2003; Pozrikidis, 2001] indicate that taking the
gas compressibility into account will tend to destabilize gas
bubbles. Thus, our estimates of maximum bubble size and
breakup time are likely upper-bound estimates.

Fourth, we assume that both the volatile phase and the
surrounding basaltic magma have Newtonian rheology (sec.
2). For the gas phase, this assumption is straight-forward.
The Newtonian behavior of basaltic melts has been well-
established from experiments (e.g. Shaw [1969]; Ryerson
et al. [1988]). Rheological complexities arising from the pres-
ence of gas bubbles in the melt are fully resolved in our sim-
ulations. The effect of crystals, however, is only included by
defining an effective viscosity, which implies that the crystals
are assumed to be small compared to the bubbles.

Finally, by basing our simulations on the Navier-Stokes
equation, we model both phases as continua. Molecular
interactions such as the effect of surfactants (i.e. ’sur-
face active agents’) are not resolved. Although they may
play an important role just prior to coalescence or breakup,
their properties are essentially unknown for gas bubbles in
basaltic magma [Sparks, 1978]. In the absence of resolving
the details of the molecular interactions upon microscopic
approach of two interfaces, we ’define’ coalescence to occur
in our simulations once the distance between two interfaces
has decreased to below grid resolution ∆x. This coalescence
condition is corroborated by field studies that have shown
that thin magmatic films become unstable in the µm range
[Klug et al., 2002].

Before proceeding to the specific setup of our simulations,
a few comments on comparing simulations with different di-
mensions might be in order. We argue that there is a merit in
performing both two- and three-dimensional computations.
While simulations in three dimensions are appealing for be-
ing a more realistic representation of the physical problem
at hand, two-dimensional simulations offer the possibility of
resolving the dynamics with greater accuracy because they
can be performed at higher numerical resolution. However,
caution is advised in comparing interface dynamics in two
and three dimensions, not only because of differences in the
flow field (the direct three-dimensional analogue of a two-
dimensional bubble is a cylinder of infinite extent, not a
sphere), but also because surface energy scales as ∼ ML/T2

in two dimensions and as ∼ ML2/T2 in three dimensions.
Kinetic energy on the other hand, scales as ∼ ML2/T2 in
both cases. Thus, the scaling of a fluid dynamical system
might differ notably between two and three dimensions.

4.2. Stability analysis of isolated gas bubbles

We investigate the shape and stability of an isolated
gas bubble rising in basaltic magma over the three non-
dimensional regimes identified in Figure 1. The boundary
conditions are ’no-slip’ on top and bottom and ’periodic’
on the sides, implying that an infinite number of bubbles
are juxtaposed in the conduit. The viscosity ratio is set to
Π1 = 10−6 in all simulations.

The setup of the computation implicitly assumes that the
gas flux in the conduit is low enough for isolated gas bubbles
to exist in the flow. The maximum gas flux to which this
scenario applies is approximately given by the gas flux in
the modeled computational domain. Out of the three types
of simulations considered in this paper, the case of isolated
gas bubbles implies the lowest overall gas flux.

4.3. Impact of multibubble interactions on stability
and interface dynamics

The second sequence of simulations aims at constraining
the role of the dynamic interaction between multiple bub-
bles on coalescence, breakup, and deformation over the three
non-dimensional regimes in Figure 1. In addition to the non-
dimensional numbers derived in sec. 2, we use the bubble
size ratio Π2 = a1/a2 and the non-dimensional separation
distances in vertical and horizontal direction, Π3 = dz/a1

and Π4 = dx/a1, to characterize the different initial condi-
tions. We focus on interactions between bubbles that are
comparable in size, i.e. Π2 = O(1). If the radius of one of
the bubbles is significantly larger than the other, the large
difference in rise speed will limit the time scale of inter-
action. Similarly, we consider sufficiently small separation
distances, i.e. Π3 = O(1) and Π4 = O(1). Analogous to the
case of an isolated bubble, we use ’periodic’ boundary con-
ditions on both sides and ’no-slip’ on top and bottom. Due
to the presence of multiple bubbles in the computational
domain, the gas flux in the model system is several times
higher than that assumed in the previous case (sec. 4.2).

4.4. Stability analysis of conduit-filling gas pockets
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Figure 3. Overview of the non-dimensional regime cov-
ered by the 95 simulations (black dots) constraining the
stability of isolated gas bubbles at Re > 1 (sec. 4.2). The
grey shading delimits the domain in which we observe
breakup in two dimensions. A comparison with the shape
regimes for bubbles during buoyant ascent [Grace et al.,
1976] confirms that we reproduce the expected steady-
state shape correctly in our computations. Note that we
did not perform simulations for low Bo and high Re, be-
cause that case is of little relevance for basaltic magmas.
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If the gas flux in the magmatic system is increased further
as compared to the low (section 4.2) and moderate (section
4.3) gas fluxes considered so far, bubbly flow will transform
into slug flow (e.g. [Mudde, 2005; Lucas et al., 2005]). In
the slug regime, flow is no longer dominated by bubbles, but
instead by conduit-filling pockets of gas. For clarification
purposes, we note that in the engineering literature these
conduit-filling pockets of gas are referred to as ’Taylor bub-
bles’ while ’slug’ denotes the bubbly mixture in between. In
contrast, it is common in the geophysical literature to use
’slug’ to refer to the conduit-filling gas pocket itself. We
abide by the convention of the geophysical literature.

The third group of simulations is targeted at investigating
the stability and dynamic behavior of slugs. A key differ-
ence of this case compared to the computations outlined in
sections 4.2 and 4.3 is that while the first two sequences
of simulations are independent of the conduit geometry, we
now have to assume an explicit conduit geometry: We model
the conduit as being vertical with rectangular ’no-slip’ walls.

In order to track the behavior of the gas slug over a longer
segment of the conduit, we define more elongated computa-
tional domains. The non-dimensional number Π5 = ds

w
=

O(1) captures the relative size of the initial diameter of the
gas pocket, ds, to the conduit width, w. We continue to use
a spherical initial condition because it is the most stable.

5. Results
5.1. Dynamic instability of isolated gas bubbles
during ascent

A spherical drop is an exact steady solution to the Stokes
equation [Batchelor , 2000]. Kojima et al. [1984] was the
first to investigate the stability of this solution experimen-
tally and demonstrated that small disturbances to the spher-
ical shape of a dynamical drop can lead to highly distorted
shapes, even in the Stokes regime. These findings were con-
firmed soon afterwards through numerical studies [Koh and
Leal , 1989; Pozrikidis, 1990]. In agreement with these inves-
tigations, we observe that gas bubbles stabilize to a spherical
shape in the first regime (Bo < 1 and Re < 1) independent
of the initial perturbations to the interface. In the second
regime (Bo > 1 and Re < 1), however, a wide range of dis-
torted interfaces can develop, depending on the initial condi-
tion of the bubble. In the extreme case, the bubble can break
up if either the initial distortions of the interface are suffi-
ciently large or if surface tension is negligible. These findings
are in agreement with prior studies [Pozrikidis, 1990].

Under flow conditions representative of the third regime
(Bo > 1 and Re > 1), the breakup of an isolated bubble
occurs even in the absence of any distortions of the initial
interface position. We performed a total of 95 simulations in
this regime (Fig. 3). We observe two breakup mechanisms of
an initially spherical bubble during buoyancy-driven ascent:
(1) gradual breakup in which small droplets are torn off the
rear of the bubble (Fig. 4B) and (2) catastrophic breakup
in which the bubble collapses rapidly into a large number of
bubbles with intermediate to small sizes (Fig. 4C).

Fig. 4A shows a bubble reaching its steady-state shape,
a dimpled ellipsoidal cap (e.g. Clift et al. [2005]), with-
out breaking up. Fig. 4B illustrates a gradual-breakup se-
quence. As the bubble deforms into steady state, the inter-
face thins out predominantly at the periphery of its trailing
surface. A thin layer of gas develops which eventually be-
comes unstable and is torn up into several small droplets.
The sizes and number of these satellite drops increase with
Re. Both the formation of a thin sheet of gas trailing the
bubble (referred to as ’skirt’) and the breaking-off of small
satellite drops are commonly observed in experiments (e.g.
Wegener and Parlange [1973] and references therein).

An extreme example of catastrophic breakup in two di-
mensions is illustrated in Fig. 4C. This mechanism initially
resembles the gradual variant: A small dimple forms at the

A. No breakup

B. Gradual breakup

C. Catastrophic breakup

Figure 4. Breakup modes of an initially spherical bub-
ble in two dimensions. A: An initially spherical bubble
reaches its steady-state shape without breakup (Re ≈ 5,
Fr ≈ 0.4, We ≈ 90, and Π1 = 10−6). The snapshots
shown are at non-dimensional times t = 0, 1.97, 3.93,
and 5.90. B: Gradual breakup during which three small
bubbles are torn off each side. The run is characterized
by Re ≈ 25, Fr ≈ 0.3, We ≈ 800 and Π1 = 10−6. Snap-
shots are at t = 0, 1.42, 2.08, and 2.48. C: An extreme
example of breakup in the catastrophic regime character-
ized by Re ≈ 250, Fr ≈ 0.16, We ≈ 1350 and Π1 = 10−6.
Snapshots are shown for non-dimensional times t = 0,
0.59, 1.03, 1.58, 1.91, 2.04, 2.26, and 2.49. The exact
sequence of catastrophic breakup is highly dependent on
both material parameters and grid resolution, particu-
larly after the initial rupturing of the upper surface of
the bubble. The grid resolution in all runs is 80× 160.
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Figure 5. Catastrophic breakup of an initially spherical bubble in three dimensions. The non-
dimensional numbers are Re ≈ 16, Bo ≈ 1150, and Π1 = 10−6. We stress that, analogous to the
two-dimensional case (Fig. 4C), it is likely that a series of small bubbles is generated during catastrophic
breakup in three dimensions, but is not resolved in three dimensions due to resolution restrictions.
The computation was performed in a three-dimensional domain with a grid resolution of 75 × 75 × 50
equidimensional cells. Thus, the resolution in this three-dimensional computation is comparable to the
two-dimensional simulation in Figure 4C. The snapshots shown refer to non-dimensional times t = 0,
1.15, 1.73, 2.88, 3.45, and 4.3. Note that the grey square on the bottom is displayed for visualization
purposes only. It does not indicate the size of the computational domain.
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rear of the bubble and grows rapidly in magnitude over time.
Contrary to the case of gradual breakup, however, the lead-
ing surface of the bubble also begins to deform soon af-
ter the onset of motion and small-wavelength perturbations
λ � a are apparent well before breakup (Fig. 4C, panel
3). Eventually, the gas bubble breaks up, first along the
perturbations on the leading surface (Fig. 4C, panel 4) and
subsequently along the sides (Fig. 4C, panel 5–8).

In three dimensions, we observe the same sequence of
breakup regimes from gradual to catastrophic. In the case
of gradual breakup, a ring of smaller droplets is torn off the
rear of the original bubble as it deforms into its steady-state

Figure 6. Dependence of the breakup time tB on bub-
ble radius a for gradual breakup. In order to evaluate
the dependence of tB , the computation is dimensional
with ρf = 3500 kg/m3, ρg = 1.226 kg/m3, g = 9.81
m/s2, σ = 0.3 N/m, µf = 10 Pa·s, and µg = 10−5 Pa·s.
The breakup time is expressed in percent of the initial
breakup time at a = 5.4 cm. The numerical data points
are associated with an error bar reflecting the finite time
step ∆t in the computation. The line represents a cubic
fit through the data.
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Figure 7. Overview of the non-dimensional regime cov-
ered by 52 simulations (black dots) investigating the ef-
fect of multibubble interactions on breakup at Re > 0
(sec. 4.3). The computations have been binned based
on their initial conditions, where 1.1 ≤ Π2 ≤ 2.0,
1.1 ≤ Π3 ≤ 2.0 and 1.1 ≤ Π4 ≤ 3.0. The grey shading
visualizes our finding that while coalescence and breakup
commonly occur in sequence at Re > 0, coalescence dom-
inates at small Re and breakup at large Re.

shape. During catastrophic breakup, the rapid growth of
the dimple in the rear of the bubble first leads to the for-
mation of a torus, which then breaks apart azimuthally into
several bubbles (Fig. 5). This type of breakup (i.e. torus
formation and subsequent azimuthal breakup) has been ob-
served both numerically and experimentally for sedimenting
drops at low to intermediate Re (e.g. Machu et al. [2001]).
Interestingly, we find that for a given Bo, the onset of catas-
trophic breakup occurs at much lower Re in three compared
to two dimensions.

An analysis of our simulations indicates that bubble
breakup in basaltic systems is controlled primarily by Re.
The other non-dimensional numbers play a minor role, al-
though they may delay or enhance breakup slightly. The
onset of gradual breakup occurs approximately at Re > 5.
With increasing Re (Re ∼ O(10)), the location of initial
breakup shifts from the sides of the bubble surface more
and more upwards and the sizes and number of broken-off
bubbles increase. Thus, breakup becomes increasingly ’effi-
cient’ at intermediate Re, by which we mean that the radius
of the largest bubble after breakup is significantly smaller
than the original bubble radius. If Re exceeds the onset of
breakup (Re ≈ 5) by more than an order of magnitude, the
mode of breakup changes to catastrophic. During a catas-
trophic breakup sequence, the original radius of the bubble
is reduced dramatically. For example, the area of the largest
bubble after breakup in Figure 4C is only ≈ 33 % of the ini-
tial bubble area.

In both two and three dimensions, we find that for a given
set of material parameters of magma and gas, the tendency
for a bubble to break up depends sensitively on its size. This
strong size-dependence of the breakup time can be under-
stood through the following simple scaling argument. The
relevant physical parameters for breakup are: bubble radius
a ∼ L, surface tension σ ∼ M/T2, density difference ∆ρ ∼
M/L3, dynamic viscosity µ ∼ M/LT and gravitational ac-
celeration g ∼ L/T2 (where M stands for mass, L for length,
and T for time) yielding

tB ∼
σa3∆ρ2

µ3
, (20)

when requiring that tB ∼ T. We are able to confirm the
hypothesized dependence of breakup time on bubble radius
tB ∼ a3 only for gradual breakup and only during its initial
stages (Re� O(100), see Fig. 6). At larger Re, we observe a
more complex correlation between breakup time and bubble
radius as detailed in the online supplement. Independent of
the exact scaling of tB with a, however, breakup occurs very
rapidly, typically before the bubble has travelled a distance
comparable to its own diameter.

5.2. Effect of multibubble interactions on breakup

At higher gas fluxes than those considered in the pre-
ceding section, the interaction between bubbles plays an in-
creasingly important role. This is particularly true when
bubbles are deformable, i.e., in regimes two (Bo > 1 and
Re < 1) and three (Bo > 1 and Re > 1). One well-known
consequence of bubble deformability is enhanced coalescence
in the Stokes regime [Manga and Stone, 1993, 1994, 1995].
In this section we demonstrate that coalescence is only
one aspect of multibubble interactions, because deformabil-
ity enhances not only coalescence but also breakup. Since
multibubble interactions play a marginal role for interface
dynamics in the first regime (Bo < 1 and Re < 1), we
will not discuss this regime further. The second regime
(Bo > 1 and Re < 1) is more interesting, because, while
small deformations impede coalescence [Rother et al., 1997;
Rother and Davis, 2001], large deformations enhance coales-
cence [Manga and Stone, 1993, 1994, 1995]. For easily de-
formable bubbles (Bo > 50) of comparable size (Π2 = O(1)),
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Figure 8. A three-dimensional computation of two deformable bubbles coming into close contact with-
out coalescing. Non-dimensional numbers are Re ≈ 2, Bo ≈ 166, Π1 = 10−6, Π2 = 1.43, Π3 = 1.2, and
Π4 = 2.0. Snapshots are at t = 0, 2.04, 3.06, 4.08, 5.10, and 6.12. The resolution is 50× 50× 80.

multibubble interactions can manifest themselves in three
ways in the Stokes regime, depending on Bo and the non-
dimensional separation distance Π4 as analyzed in detail by
Zinchenko et al. [1999]: (1) At large horizontal distances
Π4, the two bubbles will pass each other without topological
change of the interface. (2) In a certain range of horizon-
tal distances Π4, the interaction of the bubbles will lead to
breakup of either one or both bubbles. Typically, breakup
proceeds by a small drop being torn off an ascending bubble
because of the presence of a trailing drop [Zinchenko et al.,
1997, 1999; Davis, 1999; Kushner et al., 2001]. (3) At even
smaller distances Π4, the two bubbles coalesce with each
other [Manga and Stone, 1993, 1994, 1995]. In our inves-
tigation of multibubble interactions at finite Re, we focus
on bubbles in the stable regime (Re < O(10)). The reason
is that bubbles in the unstable size range will be rare in a
typical flow field, because of their rapid breakup (sec. 5.1).
Figure 7 gives an overview of the non-dimensional range cov-
ered by our simulations. Qualitatively, we observe a similar
range of dynamic interactions at low Re as compared to Re
= 0 [Zinchenko et al., 1999]. Quantitatively, however, we
find that the range of non-dimensional separation distances
over which coalescence occurs decreases with increasing Re.
For example, at intermediate (Re ∼ O(10)), two bubbles
coalesce only if they lie approximately within the line of as-
cent of each other (i.e. Π4 < 1.2). At low Re (Re ∼ O(1)),
coalescence is observed over a much wider range of initial
separation distances. Figure 8 shows an example of a three-
dimensional computation of two deformable bubbles passing
each other despite their small initial separation. It should
be noted at this point that three-dimensional computation
of bubble interactions are challenging because of the high
resolution required to accurately resolve the fluid dynam-

ics in the thin magmatic film separating the two bubbles.
Therefore, we primarily focus on two dimensions in this sec-
tion. Please refer to the online appendix for a more detailed
discussion or resolution restrictions.

On the basis of our simulations, we identify two other im-
portant characteristics of multibubble interactions at finite
Re: (1) We are no longer able to identify a ’typical’ breakup
sequence as for the case of an isolated bubble (sec. 5.1) or in
the Stokes regime [Zinchenko et al., 1999]. Figure 9 shows
two examples of breakup at Re > 0 for slightly different hor-
izontal separation distances (Π4 = 2 (A) and Π4 = 1.8 (B)),
highlighting that the exact breakup process is very sensitive
to initial conditions. (2) Coalescence and breakup are clearly
not mutually exclusive. In fact, we find that breakup and
coalescence occur in sequence in the majority of simulations,
sometimes repeatedly (see Fig. 9B). The balance between
coalescence and breakup depends primarily on Re (as long
as Bo ∼ O(100) or larger) with coalescence more commonly
observed at small Re and breakup more commonly observed
at large Re (see Fig. 7).

One important ramification of the observed balance be-
tween coalescence and breakup is that multibubble interac-
tions can destabilize bubbles that would not have broken up
when isolated, even in the Stokes regime as long as Bo is
sufficiently high (Bo > 10). A comparison of the time scale
of breakup induced by multibubble interactions to that of
breakup for isolated bubbles indicates that unstable bubbles
break up more rapidly than they interact (see Fig. 9).

5.3. Dynamic instability of slugs

As mentioned previously (sec 4.4) slugs scale differ-
ently than isolated bubbles, implying that the three scaling
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A. Sequence of breakup

B. Sequence of coalescence and breakup

C. Sequence of breakup for unstable bubbles

Figure 9. A and B: Two breakup sequences as a consequence of differing initial separation distances in
the vertical direction Π4 = 2 (A) and Π4 = 1.8 (B). Both computations are based on Re ≈ 5, Fr ≈ 0.2,
We ≈ 70, Π1 = 10−6, Π2 = 1.43, and Π3 = 1.16. The snapshots shown for the first computation (top)
refer to non-dimensional times t = 0, 1.5, 3.0, 4.5, and 6.0. Those on the bottom to t = 0, 2.32, 3.48, 4.41,
and 5.80. C: Multi-bubble interactions for bubbles in the unstable size range (sec. 5.1). Non-dimensional
numbers are Re ≈ 350, Fr ≈ 0.2, We ≈ 3000, Π1 = 10−6, Π2 = 1.43, Π3 = 1.16, and Π4 = 2. Snapshots
are at non-dimensional times t = 0, 0.34, 0.51, 0.64, and 0.87. Initially, the deformation of each bubble
is reminiscent of the breakup sequence of isolated bubbles (Figure 4). The presence of the other bubble
only becomes apparent during the late stages of breakup, indicating that unstable bubbles break up more
rapidly than they interact. All three computations are based on a grid resolution of 100× 200.

regimes illustrated in Fig. 1 are no longer necessarily mean-
ingful. Most importantly, the limiting case of high surface
tension forces (Fig. 1, regime 1) does not apply, because
slugs only move if they are sufficiently deformable, namely
if

ρfga
2

σ
≈ Bo > 0.842 (21)

as has been determined experimentally [Bretherton, 1961].
Thus, a diameter of several mm is typically required for
slugs in basaltic magma to ascend under their own buoy-
ancy. Since our main goal is to investigate the stabil-
ity of conduit-filling slugs, we focus on Re > 1 (Fig. 10).
Analogous to the case of isolated gas bubbles (sec. 5.1), we

observe two regimes of breakup, gradual and catastrophic
(Fig. 11). Gradual breakup results in small droplets being
torn off the gas pocket in the vicinity of the walls. Contrary
to the case of isolated gas bubbles, where multiple droplets
are commonly torn off the original bubble simultaneously
(sec. 5.1), gradual breakup of slugs tends to occur repeat-
edly. Figure 11A shows an example of a single sequence of
gradual breakup and Figure 11B a double sequence of grad-
ual breakup. We observe repeated breakup for most slugs
in the unstable regime. The number of breakup cycles and
the size of torn-off bubbles increase with Re.

An extreme case of catastrophic breakup is illustrated
in Figure 11C. Initially, it proceeds similarly to the case of
an isolated bubble: A dimple forms in the rear of the slug
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and grows over time. However, the dimple does not reach
the upper surface of the slug, because of the large volume
of gas confined in a narrow conduit. Instead, rupture akin
to gradual breakup occurs along the sides. Simultaneously,
a Rayleigh-Taylor instability forms on the upper surface,
propagates through the gas volume, and leads to breakup of
the remaining gas slug into two equally sized segments. Sim-
ilar to the isolated case, the onset of catastrophic breakup
is not discontinuous. Small-wavelength perturbations are
apparent on the leading surface of the slug well before the
regime of catastrophic breakup is reached. Therefore, cycli-
cal breakup may be interpreted as a more moderate variant
of catastrophic breakup.

A special consideration when investigating slug breakup is
the vicinity of the solid wall and the role it plays for breakup.
Not surprisingly, we find that at Π5 > 0.8 breakup is ob-
served at all Re and clearly results from the close proximity
of the initial interface to the boundary. However, lowering
the fill factor to Π5 ≤ 0.7 eliminates this bias. Figure 12
demonstrates that the breakup behavior described in this
section is not a boundary artifact. It shows the steady-state
shapes of three gas slugs of equal volume and initial shape
at varying Re. As expected, the steady-state width of the
slug increases with increasing Re, which leads to an increase
in shear stresses in the magmatic film separating the slug
from the conduit walls and facilitates dynamic instabilities.
To further clarify the role of the proximity of the conduit
walls for breakup, we compare the onset of breakup for a gas
slug to an isolated gas bubble of identical size. We find that
conduit walls have a slightly stabilizing effect, which seems
to be primarily the consequence of the lower rise speed of
the slug (and potentially also of the different steady-state
shape of the slug, see Fig. 12). Therefore, although we ob-
serve slug breakup at approximately the same Re as bubble
breakup, this Re is representative of a slightly larger volume
of gas in the case of a slug.

6. Discussion
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Figure 10. Overview of the non-dimensional regime
covered by 69 simulations (black dots) to constrain the
stability of gas slugs (sec. 4.4). For all computations
Π1 = 10−6 and Π5 = 0.7. The grey shading delimits the
domain in which we observe breakup in two dimensions.

6.1. Comparison of theoretical and numerical
constraints on bubble breakup

Despite the seemingly obvious differences between grad-
ual and catastrophic (Fig. 4) breakup, we argue that they
are both manifestations of the breakup mechanism outlined
in section 3. In the case of catastrophic breakup, the con-
nection to the theoretical breakup model is evident: Small-
wavelength perturbations are apparent on the leading sur-
face of the bubble (Fig. 4C, panel 2) and growth of these
Rayleigh-Taylor instabilities eventually leads to breakup of
the bubble surface (Fig. 4C, panel 3). For breakup se-
quences at intermediate Re, surface perturbations can still
be distinguished visually, although they no longer grow fast
enough to cause breakup along the leading surface. The
slower growth can be explained by dispersive viscous damp-
ing. As plotted in Figure 2, barely unstable wavelength grow
very slowly at high viscosities (µ >= 100Pa s).

The conclusion that both gradual and catastrophic
breakup fit well into the theoretical framework (sec. 3) war-
rants a brief comparison of predicted (Table 1) to computed
maximum stable bubble sizes. We perform this comparison
only in two dimensions, because the semi-empirical model
itself relies on a linearized stability analysis in two dimen-
sions [Grace et al., 1978; Plesset and Whipple, 1974]. In
our computations, we use the same physical parameters as
in Table 1 with µf = 10 Pa·s. We find good agreement
between predicted and numerical results. The bubble size,
agrad, that marks the onset of the regime of gradual breakup
is smaller than the predicted maximum bubble size by ap-
proximately agrad ≈ 0.85 amax. Clearly, the critical radius
for the onset of gradual breakup is not a very good proxy
for the maximum stable bubble size, because the size of the
bubble changes only marginally during this moderate vari-
ant of breakup. The extreme form of catastrophic breakup
is observed for bubble radii of acat ≈ 2.2 amax. During these
more violent breakup sequences, the initial bubble size is
typically reduced by at least 50 %, leaving a bubble of ap-
proximately the size predicted in Table 1.

A noteworthy deviation of our simulations from the
breakup model (sec. 4.1) is that instabilities do not neces-
sarily disappear once they have reached the periphery of the
bubble surface, as would be expected for a Rayleigh-Taylor
instability. The cyclical breakup of gas slugs in Fig. 11B
is an example. We hypothesize that breakup in this case
might be the result of the combined effect of a Rayleigh-
Taylor and a Kelvin-Helmholtz instability. As the initial
Rayleigh-Taylor instability is advected along the leading sur-
face of the slug, it approaches the conduit walls, and shear-
ing intensifies. The surface perturbation may then grow
through a Kelvin-Helmholtz instability and eventually trig-
ger breakup along the sides of the slug. The onset of a
Kelvin-Helmholtz instability is determined by the Richard-
son number, Ri = Fr−1. Although Ri for bubbles and slugs
in basaltic systems is typically too high to expect the spon-
taneous formation of a Kelvin-Helmholtz instability, a pre-
existing perturbation could still grow through this mecha-
nism.

6.2. Non-dimensional conditions for a coalescence
cascade

The RSD model assumes that the gas slugs representative
of normal Strombolian activity form through progressive co-
alescence of gas bubbles. It relies on two main assumptions
about the fluid dynamical interactions between magmatic
and gaseous phase: (1) It assumes that a large bubble coa-
lesces with all smaller bubbles lying within the vertical line
of ascent of the large bubble [Wilson and Head , 1981; Parfitt
and Wilson, 1995] and (2) it proposes that coalescences can
lead to a run-away situation resulting in the formation of a
single large bubble.
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A. Gradual breakup

B. Cyclical variant of gradual breakup

C. Catastrophic breakup

Figure 11. Breakup modes of an initially spherical gas slug in two dimensions. A: During gradual
breakup, small bubbles are torn off the rear of the slug analogous to the case of an isolated bubble (Fig.
4B). The non-dimensional numbers are Re ≈ 10, Fr ≈ 0.14, We ≈ 95, Π1 = 10−6, and Π5 = 0.67. The
snapshots shown are at non-dimensional times t = 0, 0.30, 0.60, 0.90, 1.20, and 1.47. B: Gradual breakup
may occur cyclically. The non-dimensional numbers for this computation are Re ≈ 50, Fr ≈ 0.16, We
≈ 100, Π1 = 10−6, and Π5 = 0.67. Snapshots are at non-dimensional times t = 0, 0.94, 1.33, 1.56,
1.93, and 2.20. C: Simultaneous to catastrophic breakup, gradual breakup occurs along the walls. The
non-dimensional numbers are Re ≈ 80, Fr ≈ 0.10, We ≈ 3000, Π1 = 10−6, and Π5 = 0.7. The snapshots
shown are at t = 0, 0.29, 0.59, 0.88, 1.18, and 1.47. All three computations were performed at grid
resolutions of 80× 240.
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On the basis of our numerical experiments, we conclude
that the first assumption is justified for deformable bubbles
of comparable size (Π2 ∼ O(1)). In fact, the assumption
is rather conservative because the range of initial separa-
tion distances in the horizontal direction which result in
bubble coalescence is Π4 > 1 at Re < O(10) (sec. 5.2).
Judging from our simulations, the second assumption is less
straight-forward, because both coalescence and breakup are
commonly observed in free flow at finite Re (provided that
Bo� 1). As discussed in section 5.2, the balance of coales-
cence and breakup depends primarily on Re. Once bubbles
grow sufficiently such that Re > O(10), breakup dominates,
gradually reducing the average bubble size. In that case,
continued breakup and coalescence of bubbles would yield a
bubble population with a maximum bubble radius compa-
rable to the critical radius for gradual breakup of isolated
bubbles (sec. 5.1). Evidently, this rationale only applies
to free flow, where the average bubble radius a � d, with
d representing the half width of the conduit. We conclude
that it is possible for gas slugs to form through a coalescence
cascade only if the viscosity is sufficiently high and/or the
conduit sufficiently narrow such that bubbles are character-
ized by Bo > 1 and Re < O(1) throughout the evolution of
the cascade.

For Stromboli, the volume of the slug is thought to be
on the order of V ≈ 20 − −35 m3 [Ripepe and Marchetti ,
2002]. Since the characteristic radius in our computations
is based on the spherical initial condition, a Strombolian
slug would thus be represented by an effective radius of sev-
eral meters (r approx1.7 − −2 m). Given the large size
of the slug, we estimate that a minimal magma viscosity
on the order of µf ≈ 5 × 104 Pa·s would be required for
a coalescence cascade in the upper conduit. Estimates for
the viscosity of Strombolian lava vary from 50 − 500 Pa·s
[Vergniolle et al., 1996] for the samples acquired by Capaldi
et al. [1978] and Francalanci et al. [1989] to 101.5− 104 Pa·s
in a more recent study evaluating viscosity at Stromboli as
a function of temperature and water content [Misiti et al.,
2009]. Most commonly, values in the range of O(100) Pa·s
are used (e.g. [Blackburn et al., 1976; Vergniolle and Bran-
deis, 1996; Vergniolle et al., 1996]). Nonetheless, it might
not be unrealistic to expect that the effective viscosity in
the upper conduit is significantly elevated (µf ∼ O(104)
Pa·s or larger) because of its high phenocryst content (e.g.
[Bertagnini et al., 1999; Francalanci et al., 1999; Rosi et al.,
2000]). An important caveat is that our numerical approach

Re ≈ 2 Re ≈ 3 Re ≈ 4 

Figure 12. Dependence of the steady-state shape of
conduit-filling slugs on Re. All computations are based
on a spherical initial condition and Π5 = 0.7. At finite
Re, a dimple forms at the rear of the slug visible on all
three interfaces. As Re increases from left to right, the
steady-state width of the slug increases and the magmatic
films separating interfaces and conduit walls are thinned
out. Shear stresses will intensify as the magmatic films
thin out and eventually lead to the tearing-off of small
droplets similar to gradual breakup of isolated bubbles
(Fig. 4B).

does not resolve the dynamic effect of a high phenocryst den-
sity on multibubble interactions or on coalescence/breakup
of individual bubbles, which might very well be substantial.

6.3. Non-dimensional conditions for stable slug rise

The CF model is based on a series of laboratory exper-
iments [Jaupart and Vergniolle, 1988, 1989] in which the
magma chamber is represented as a cylindrical tank and the
volcanic conduit as a narrow pipe located in the center of
the roof. Gas is introduced into the tank from below and
accumulates below the flat top, where it coalesces. Eventu-
ally the gas layer empties into the pipe. Depending on the
fluid properties in the tank and on the incoming gas flux,
three flow regimes are observed in the conduit: bubbly flow
(interpreted as the analogue of passive degassing), spheri-
cal bubbles with a characteristic spacing (analogue of nor-
mal Strombolian-type eruptions), and slug flow (analogue
of Hawaiian-type eruptions). The main assumptions of the
CF model are (1) coalescence occurs entirely in the magma
chamber (or, more generally, underneath a large roof area
in the conduit) and (2) gas slugs rise stably through the
conduit. Only the second assumption lends itself to evalua-
tion through our simulations. In section 5.3 we demonstrate
that slugs are prone to dynamic instabilities if they are char-
acterized by Re ∼ O(10) or larger (sec. 5.3). Vergniolle
and Brandeis [1996] suggest that the gas slugs causing nor-
mal activity at Stromboli are characterized by Re ≈ 80 .
Our simulations, however, indicate that a slug at Re ≈ 80
would break up catastrophically within seconds after forma-
tion (see Fig. 11C). The three key factors determining Re
are (1) the size of the slug, (2) the width of the conduit, and
(3) the magma viscosity. Additional considerations, not in-
cluded in our simulations, are deviations from the assumed
vertical conduit geometry (e.g. a local widening of the con-
duit) and velocity gradients in an ambient magmatic flow
field, both of which are expected to reduce slug stability. At
least the latter of these two aspects might be important to
consider, because acoustic pressure oscillations during the
eruption are thought to be related to vigorous vibrations of
the slug interface [Vergniolle and Brandeis, 1994].

In order to stabilize the ascent of a Strombolian slug from
the magma chamber to the free surface, we estimate that
magma viscosities above µf ≈ 5 × 104 Pa·s would be re-
quired throughout the entire conduit. This conflicts not only
with petrological observations indicating lower viscosities,
at least in the deep conduit [Misiti et al., 2009; Bertagnini
et al., 2003], but also with acoustic observations [Vergniolle
et al., 1996] and the presumed rise speed of a Strombolian
slug (e.g. Harris and Ripepe [2007]). Although the incom-
patibility of slug stability with the presumed low viscosities
in the deep conduit could be reconciled by slug formation
at shallow depth, for example in a dike located in the up-
per conduit [Menand and Phillips, 2007], the disagreement
with acoustic data and a presumed rise speed of 10-70 m/s
[Harris and Ripepe, 2007] remains.

Since the CF model [Jaupart and Vergniolle, 1988, 1989]
is based on fluid-dynamical experiments, it is valuable to
briefly assess the reasons why slug instability is not observed
in the experiments. We suggest that simulations and exper-
iments scale differently because of the small width w of the
laboratory conduit w ∼ O(cm) as compared to the size of
the Strombolian conduit w ∼ O(m). Therefore, the slugs
in the experiment fall well into the stable size range (see
Table 1 and Figure 2), but Strombolian slugs might not.
Also, Jaupart and Vergniolle [1989] investigated variations
in surface tension by a factor 3, but surface-tension forces
vary by a factor of about 104 for bubbles in the centimeter
as compared to the meter range (eq. 13).
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7. Conclusions

We investigate the interface dynamics of a segregated gas
phase in the context of basaltic volcanism. The two physi-
cal parameters of gas/basalt systems that may vary by sev-
eral orders of magnitude are bubble size and magma viscos-
ity. This variability in physical parameters translates into
a wide range of relevant non-dimensional regimes. The two
most important non-dimensional numbers to consider are
Re and Bo, based on which we identify three fluid dynam-
ical regimes (Fig. 1). Resolving the detailed bubble dy-
namics is not equally important in each of the three scaling
regimes. In fact, the bubble interactions may typically be
neglected in the first regime. However, once bubbles become
deformable (Bo > 1) the fluid dynamical interactions be-
tween the bubbles begin to play an important role. The ob-
servation that deformability enhances coalescence has been
investigated in detail in previous studies [Manga and Stone,
1993, 1994, 1995]. An important contribution of our study is
the observation that deformability not only enhances coales-
cence but also breakup (sec. 5.2). At finite Re, we observe
a balance of breakup and coalescence in our computations,
with coalescence dominating at low Re and breakup at large
Re.

Our simulations demonstrate that both bubbles and slugs
are prone to dynamic instabilities, even in the absence of in-
teractions with other bubbles/slugs. We observe two modes
of breakup, gradual and catastrophic. A typical breakup
sequence entails a small Rayleigh-Taylor instability forming
at the leading surface of the bubble or slug. Surface ten-
sion is insufficient to restore the surface if the radius of the
gas pocket exceeds acr (eq. 16). Viscous forces, however,
tend to stabilize the gas pocket through a combination of
damping and lateral transport of the perturbation towards
the periphery of the gas volume. The onset of breakup de-
pends on the relative dominance of these processes (sec. 3).
Interestingly, we find that while bubbles and slugs begin to
break apart gradually at approximately the same Re, catas-
trophic breakup is observed at lower Re for slugs than for
bubbles. We suggest that the difference is partly due to the
lower rise speed of large slugs as compared to bubbles of the
same size and partly due to the more intense shearing of the
slug surface near the conduit wall, which may give rise to
Kelvin-Helmholtz instabilities.

The breakup criteria provided in this paper are inevitably
underestimates, for the following two reasons: (1) All of
our computations are based on spherical initial conditions,
which are dynamically the most stable. However, bubbles
or slugs with radii representative of the third scaling regime
have probably formed through coalescence of smaller bub-
bles or breakup of an even larger bubble and will generally
not be spherical. The fact that we commonly observe com-
plex sequences of coalescence and breakup (Fig. 9) in the
third scaling regime attests to the additional complexity in-
troduced by distorted bubble shapes. We also note that we
observe dynamic instabilities even in the Stokes regime if the
initial condition of the bubble or slug is not spherical. (2)
We only discuss breakup in a stagnant fluid. Any additional
complexities in the flow field such as shearing or turbulence
will tend to aid breakup, because they facilitate the forma-
tion of destabilizing surface distortions [Clift et al., 2005].
For Stromboli in particular, the existence of vigorous and
possibly turbulent flow is not merely hypothetical [Misiti
et al., 2009; Bertagnini et al., 2003].

Applied to Stromboli, our simulations suggest that the
presence of large stable gas slugs in the conduit requires zero
or very low Re independent of whether the RSD or the CF
model is invoked to explain slug formation (sec. 5). Since
gas slugs at Stromboli are thought to represent gas volumes
of several meters in size, unusually high viscosities (i.e. well

above O(104) Pa·s) would be needed to stabilize the slugs.
While viscosities in this range are certainly possible [Mis-
iti et al., 2009], geophysical data indicates that Strombo-
lian slugs are characterized by rapid rise speeds (10-70 m/s)
[Harris and Ripepe, 2007] and surface oscillations [Vergniolle
and Brandeis, 1996; Vergniolle et al., 1996]. This evidence is
difficult to reconcile with zero Re. The apparent conflict be-
tween dynamic instability and finite-Re flow in Stromboli’s
plumbing system might be resolved in various ways includ-
ing: (1) The gas slugs causing normal Strombolian activity
might be significantly smaller than previously thought and
characterized by Re � 80. (2) Either the acoustic signal
and/or the eruption itself is caused by a mechanism other
than the viscous ascent and burst of a large gas slug. (3)
There might be a stabilizing mechanism not accounted for in
our computations such as Non-Newtonian rheology or sur-
factants.
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Text S1: Online supplement

This online supplement provides: (1) An abbreviated description of the projection method used to solve the
Navier-Stokes equation; (2) Additional analysis of the dependence of breakup time on bubble radii for large
bubbles; (3) A detailed discussion of resolution restrictions for simulating coalescence and breakup in three
dimensions; and (4) Convergence tests for bubble and slug breakup.

Projection Method

The basic idea of the projection method for solving the Navier-Stokes equation is to introduce a temporary
velocity field, v∗, representing the best initial prediction, which gets corrected in a subsequent step to ensure
incompressibility. Thus, the incompressible Navier-Stokes equation is discretized as a series of three equations
which are solved sequentially

v∗ − vn

∆t
+ (vn · ∇)vn =

1
ρ(φ)

∇ ·
[
µ(φ)(∇vn + (∇vn)T)

]
+ g (22)

∇ ·
[

1
ρ(φ)

∇pn+1

]
=

1
∆t
∇v∗ (23)

vn+1 − v∗

∆t
= − 1

ρ(φ)
∇pn+1 . (24)

Equation 21 is the initial prediction for the velocity field, which is stored as v∗. Clearly, the predicted velocity
field, v∗, will not generally fulfill the incompressibility constraint. This requirement is enforced through the
second equation (23), the pressure correction, which solves for the pressure field at the next time step pn+1 and
is derived from the incompressibility condition for the velocity field vn+1. In the last step (equation 24), the
pressure obtained from equation 23 is used to correct v∗, yielding the correct velocity field, vn+1.

Two aspects of the described three-step projection (eqs. 22-24) merit further discussion: (1) The jump condi-
tions (eq. 5) need to be accounted for in the discretization of the viscous term in 22, the solution of the Poisson
(eq. 23), and the application of the velocity correction (24). Please refer to the first paper in this paper series
[Suckale et al., 2010] or to Kang et al. [2000] and Liu et al. [2000] for a detailed description of the implementation
of the jump conditions. (2) The continuous spatial derivatives in eqs. 22-24 are computed as finite differences on a
staggered grid, yielding a second-order approximation. For the matrix inversions, we mostly use the Biconjugate
gradients stabilized method with an incomplete LU-decomposition as preconditioner. We note that, although the
matrix is symmetric, we observe that the Biconjugate gradients stabilized method yields robust convergence.

Dependence of breakup time on bubble radii for large bubbles

In section 5.1 we investigate the dynamic instability of isolated gas bubbles. Based on scaling arguments,
we expect that the breakup time, tB , scales with the radius of the bubbles as tB ∼ a3. While this behavior is
compatible with our numerical experiments for bubbles with barely unstable radii (Fig. 6), it no longer holds
at larger bubble radii. In fact, we observe that the breakup time decreases for very large bubbles, as shown in
Figure S1. We note that the range of bubble radii spans a wide range of Re and it is not unexpected that not the
entire range is adequately described by a scaling relationship as simple as eq. 20.

Resolution restriction for breakup induced by multibubble interactions

As discussed in section 5.2, it is challenging to reproduce the sequences of breakup and coalescence observed
in two dimensions (e.g. Fig. 9) in three dimensions. The key problem is that the mode of interaction (i.e.
coalescence, breakup or passing) depends sensitively on the fluid dynamics in the thin magmatic film separating
the two bubbles, which we cannot accurately resolve in three dimensions on a fixed grid. Figure S2 illustrates the
resolution requirements in two dimensions. It shows three computations which are identical in all non-dimensional
parameters except for the vertical separation distance which varies from Π3 = 1.3 (top), Π3 = 1.16 (middle), to
Π3 = 1.4 (bottom). Clearly, the mode of interaction depends very sensitively on the initial separation distance
of the bubbles Π3. In three dimensions and in the absence of an adaptive grid, it is challenging to resolve these
minimal variations in the initial separation distance. An additional concern is that we define coalescence to
occur if two bubbles approach each other by less than the grid size (sec. 4.1). For high enough resolutions in
two dimensions, a coalescence criterion of this type is warranted by observational data [Klug et al., 2002]. For
the lower resolution achievable in three dimensions, it might be more problematic. Therefore, we expect three
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Figure S 1. Dependence of the breakup time tB on
bubble radius a for large bubbles. In order to evaluate
the dependence of tB , the computation is dimensional
with the same parameters as in Fig. 6: ρf = 3500 kg/m3,
ρg = 1.226 kg/m3, g = 9.81 m/s2, σ = 0.3 N/m, µf = 10
Pa·s, and µg = 10−5 Pa·s. The breakup time is expressed
in percent of the initial breakup time at a = 5.4 cm.
The numerical data are no longer compatible with the
simple scaling relationship tB ∼ a3 (eq. 20), which is
not unexpected, given the wide fluid dynamical range it
spans.

dimensions computations to be more reliable in identifying if two bubbles do not coalesce and included only that
case in the paper (Fig. 8).

Convergence tests

We performed detailed convergence tests for the computations presented in this paper. The two dimensions
computations converge to the degree expected for interface problems at finite Re. This statement merits a brief
explanation: If the motion of the interface is driven by instabilities that evolve self-consistently at the interface
(e.g. a Rayleigh-Taylor or Kelvin-Helmholtz instability), computations with different grid spacings will inevitably
deviate over time. The primary reason is the dispersive nature of the growth rate of interface instabilities (Fig.
2) in combination with the fact that each computation will at best resolve wavelengths λ > 2∆x where ∆x
is the grid resolution because of aliasing. In the Stokes regime, this effect is less of a concern, because of the
quasi-stationarity of the flow field (i.e. the equations of motion are solved from scratch at each computational
time step). At finite Re, however, the flow field depends sensitively on its value during previous time steps and
thus deviations in the long-term evolution are expected. We note that this effect should be distinguished from
the accumulation of purely numerical error, which is, of course, an additional concern.

Our convergence tests demonstrate that:
1. The initial rise speed of the bubble prior to breakup is computed accurately even at comparatively low

resolution (Figs. S3, S4, S5, and S6). It deviates by less than 1% for grid resolutions larger than 80× 160.
2. The number and sizes of bubbles generated during catastrophic breakup depends sensitively on the resolution

afforded by a given computation (as should be expected based on the aliasing reasoning above), but the time at
which it occurs and the basic sequence are robust for resolutions above approximately 80× 160, as evident from
Figures S3 and S4.

3. The number and sizes of bubbles generated during gradual breakup depend less on grid resolution than in
the case of catastrophic breakup, probably because the surface instabilities relevant for gradual breakup span a
narrower range of wavelengths and are thus easier to resolve (see Figs. S5 and S6).

In three dimensions, we are unable to perform a similarly detailed convergence test due to limitations in avail-
able computational resources. The highest resolution reached in our three dimensions computations is comparable
to the lowest resolution included in the convergence test for two dimensions. This implies that the time until
catastrophic breakup and the size and number of bubbles generated during breakup might tend to be underesti-
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Figure S 2. Dependence of multibubble interactions on
the initial vertical separation distance. The three sim-
ulations show two bubbles passing (top), breaking up
(middle), and coalescing (bottom) as a consequence of in-
creasing the non-dimensional vertical distance Π3 = 1.16
(top), Π3 = 1.3 (middle), and Π3 = 1.4 (bottom). The
other non-dimensional numbers are identical for the three
simulations: Re ≈ 5, Fr ≈ 0.2, We ≈ 70, Π1 = 10−6,
Π2 = 1.43, and Π4 = 2. Snapshots are taken at non-
dimensional times t = 0, 1.5, 3.0, 4.5, and 6.0. All three
computations were performed with a grid resolution of
100× 200.
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Figure S 3. Convergence test for the catastrophic
breakup of an isolated gas bubble (compares to Fig.
4C). Shown are four computations at differing resolutions
40×80, 80×160, 160×320, and 320×640.

Figure S 4. Convergence test for the catastrophic
breakup of a conduit-filling gas slug (compares to Fig.
11C). Shown are four computations at differing resolu-
tions 40×80, 80×160, 160×320, and 320×640.

mated in three dimensions, because the surface instabilities causing the breakup are not resolved at a sufficiently
small spatial scale. In analogy to the two dimensions case, we expect gradual breakup sequences should be
more reliable, although we have not been able to verify this presumption quantitatively due to limitations in
computational resources.
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Figure S 5. Convergence test for the gradual breakup
of an isolated gas bubble (compares to Fig. 4B). Shown
are four computations at differing resolutions 40×80,
80×160, 160×320, and 320×640.

Figure S 6. Convergence test for the gradual breakup of
a conduit-filling gas slug (compares to Fig. 11A). Shown
are four computations at differing resolutions 40×80,
80×160, 160×320, and 320×640.
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