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It takes three to tango: 1. Simulating buoyancy-driven flow in
the presence of large viscosity contrasts
Jenny Suckale
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Abstract. Buoyancy-driven flow is of fundamental importance for numerous geodynamic
phenomena. Since the equations of motion governing multi-phase flow are rarely amenable
to analytical solutions, numerical simulations provide a compelling alternative. They of-
fer the ability to carefully analyze flow phenomena under differing regimes, initial con-
ditions, and flow dynamics. The three key challenges in these computations are (1) the
accurate solution of the equations of motion in the presence of large viscosity contrasts,
(2) the representation of strongly deforming interfaces between different fluids and (3)
the accurate coupling of fluid- and interface solver. In three dimensions, these challenges
become even more intricate, and the appropriate choice of numerical scheme has a pro-
found influence on the tractability, accuracy, robustness, and efficiency of the compu-
tational simulation.

This is the first paper in a two-part series that examines numerical simulations of buoyancy-
driven flow in the presence of large viscosity contrasts. In this paper, we present our nu-
merical approach which tackles the above three main challenges through a combination
of three numerical methods, namely (1) an extended ghost fluid discretization which we
developed specifically for the Stokes regime, (2) the level set method, and (3) the ex-
tension velocity technique. We find that all three components are crucial to obtain a ver-
satile numerical tool for simulating complex structures in evolving flow. We validate our
code by reproducing four benchmark problems in two and three dimensions. We devote
special attention to comparing our method to other existing techniques, detailing the ad-
vantages of this approach. Finally, we highlight several types of geophysical flow prob-
lems for which we believe our method to be well suited.

1. Introduction

Numerical modeling is an indispensable tool for under-
standing geophysical processes and an important comple-
ment to analytical models, which are inevitably simplified
versions of the original problem. Although numerical mod-
els often approximate the original problem directly, each
specific method comes with its own limitations and advan-
tages. Thus, numerical benchmark studies are an important
tool to evaluate and compare the performance of various
approaches. The goal of this paper is to develop and test a
numerical tool that correctly captures the complex flow dy-
namics of systems with large viscosity contrasts and strongly
deforming interfaces.

The emphasis of this paper is on buoyancy-driven flow.
This exclusive focus on buoyancy is justified by the fact
that it is a common element in numerous geodynamical pro-
cesses including salt diapirs (e.g. Woidt [1978]; Schmeling
[1987]; Römer and Neugebauer [1991]; Ismail-Zadeh et al.
[2004]), lithospheric instabilities (e.g. Houseman et al.
[1981]; Fleitout and Froidevaux [1982]; Conrad and Mol-
nar [1997]; Schott et al. [2000]; Hoogenboom and Houseman
[2006]; Elkins-Tanton [2007]), interactions between compo-
sitional plumes (e.g. Schaeffer and Manga [2001]), trench
motion in the context of self-consistent subduction models
(e.g. Royden and Husson [2006]; Schmeling et al. [2008]),
magma mixing (e.g. Marsh [1988]; Bergantz and Ni [1999]),
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lava dome growth (e.g. Bourgouin et al. [2007]; Hale et al.
[2007]; Hale [2008]), and bubble dynamics in magmatic flow
(e.g. Manga and Stone [1995b]). Although temperature
plays an important role in many of these processes, isother-
mal models are valuable as long as the time scale of thermal
interaction is large compared to the time scale of buoyant
ascent.

From a numerical perspective, simulations of buoyancy-
driven flow pose three main challenges: (1) The computation
of the flow field is complicated by the jump conditions at
the interface. The material parameters (i.e., viscosity and
density) jump discontinuously across the interface. These
discontinuities in the coefficients of the equations of motion
are paralleled by jumps in their solution (i.e., pressure and
stresses). Since all of these jumps occur directly at the inter-
face, numerical errors associated with the jump computation
will translate quickly into less accurate interface dynamics.
(2) The time-evolution of the interface needs to be tracked
without restricting the deformability of the interface in the
flow field and without violating mass conservation in either
of the two fluids or affecting the discontinuous jumps in fluid
properties across the interface. (3) The two solvers, fluid
and interface solver, need to be fully and accurately coupled.
We stress that this requirement is of special significance for
buoyancy-driven flow in which motion is driven actively by
the interface as compared to, for example, passive advection
of an interface in a thermally-driven convection cell.

In this paper, we combine three tools, a ghost fluid type
approach [Fedkiw et al., 1999; Kang et al., 2000; Liu et al.,
2000], the level set method [Osher and Sethian, 1988], and
the extension velocity technique [Malladi et al., 1995; Adal-
steinsson and Sethian, 1999] to tackle each of the above
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three challenges. We deal with the first challenge, the in-
corporation of the jump conditions in a sharp manner, by
developing an extended discretization scheme for the multi-
phase Stokes equation based on a ghost fluid type approach.
Our implementation was inspired by Kang et al. [2000] and
Liu et al. [2000]. To our knowledge, it provides the first ap-
plication of ghost fluids to the Stokes equation. We address
the second challenge by representing the interface through a
level set function. The third challenge, the accurate coupling
of flow and interface solver, is tackled through the velocity-
extension procedure pioneered by Malladi et al. [1995] and
later improved upon by Adalsteinsson and Sethian [1999]
and Chopp [2001, 2009]. As discussed in detail elsewhere
[Sussman et al., 1998; Adalsteinsson and Sethian, 1999;
Chopp, 2009; Keck , 2007] the construction of extension ve-
locities ensures that our method is not prone to problems
such as mass loss and spurious interface repositioning, which
commonly plague codes relying on iterative re-initialization
[Sussman et al., 1994, 1998; Sussman and Fatemi , 1999].

Together, these three tools equip us with an accurate
method of simulating buoyancy-driven flow in the presence
of large viscosity contrasts. We have selected four bench-
mark problems to validate its different aspects and to com-
pare its performance to other approaches: (1) The pressure
jump due to surface tension at the interface of a spheri-
cal drop, (2) the jump in pressure and normal stresses at
the interface of a circular inclusion which is several or-
ders of magnitude less viscous than the surrounding rock
matrix [Schmid and Podladchikov , 2003; Deubelbeiss and
Kaus, 2008], (3) the isothermal Rayleigh-Taylor instability
as specified by Van Keken et al. [1997], and (4) a composi-
tional plume rising from a free-slip surface as investigated by
Manga et al. [1993]. The first two benchmark problems serve
as a verification for the accuracy of our multi-phase Stokes
solver and its ability to resolve the various types of jump
conditions that might arise in complex flow fields. The third
benchmark problem, the isothermal Rayleigh-Taylor insta-
bility specified by Van Keken et al. [1997], allows us to study
the relative advantages and disadvantages of our interface
tracking technique in comparison to four other approaches
for representing interfaces. Finally, we choose a compo-
sitional plume as our fourth and only three-dimensional
benchmark problem in order to validate our computations
with respect to experimental [Manga et al., 1993] and nu-
merical data [Manga et al., 1993; Schmalzl and Loddoch,
2003].

This paper is structured in the following way: Section
2 reviews both the equation of motion and the jump con-
ditions for buoyancy-driven flow. Section 3 discusses the
basic idea behind and the implementation of the three main
components of our code. Section 4 presents the four bench-
mark problems we have selected to verify our method, and
section 5 the computations for each of these. Section 6 dis-
cusses our results with particular emphasis on comparing
our approach to interface dynamics with previous methods,
i.e., the tracer, marker-chain, and field approaches. Finally,
section 7 briefly summarizes the main conclusions and iden-
tifies several geophysical problems for which we consider our
method to be particularly promising.

2. Governing equations

The dynamics of buoyancy-driven flow involving two in-
compressible fluids with zero chemical diffusivity and negli-
gible inertia are described by the Stokes equation

−∇p+∇ ·
(
µ(Γ)

(
∇v + (∇v)T

))
+ gρ(Γ) = 0, (1)

with the incompressibility constraint,

∇ · v = 0, (2)

and the advection equation for composition

∂Γ

∂t
+ (v · ∇)Γ = 0. (3)

In these equations p denotes the pressure, µ the viscosity,
ρ the density, v the velocity field, g the gravitational ac-
celeration and Γ the composition, which captures the spa-
tial dependence of ρ and µ in the presence of multiple fluid
phases.

Additionally, the jump conditions at the interface due to
the combined effect of surface tension and stresses need to
be fulfilled:  n

t1
t2

 (pI − τ)nT

 =

 σκ
0
0

 , (4)

where I is the identity matrix, σ the surface tension coeffi-
cient, τ the stress tensor, κ the curvature of the interface,
and n, t1, t2 the normal and two tangential vectors to the in-
terface. Note that we use square brackets to denote a jump
in a given quantity throughout the paper.

Instead of tracking the discontinuous composition func-
tion Γ, we introduce an auxiliary function called the level set
function φ. The level set function φ will be properly defined
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Figure 1. Comparison of the standard (top) and ghost
fluid (bottom) construction of finite-difference stencils for
computing the pressure gradient in the vicinity of the in-
terface. The interface between fluid 1 and 2 is located
between grid points (i, j) and (i + 1, j). If the exis-
tence of the interface is not taken into account (top), the
finite-difference approximation of the derivative ∂P/∂x ≈
(pi+1,j−pi,j)/∆x will only be O(1) accurate. Ghost fluid
methods fictitiously extend each fluid into the domain of
the other yielding two ’ghost’ phases (bottom). After this
extension, two values for pressure are associated with grid
point (i + 1, j), the physical pi+1,j and the ghost value
p+
i+1,j . The ghost phases fulfill the additional purpose of

enforcing the jump conditions at the interface. The jump
conditions [P ]i,j and [P ]i+1,j are computed on both sides
of the interface and then interpolated to reflect the sub-
grid position of the interface. This yields the jump at the
interface denoted as [P ]I,j . The resulting finite-difference

stencil ∂P/∂x ≈ (pi+1,j − p−i,j + [P ]I,j)/∆x is now order

O(∆x) accurate.
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in section 3.2. At this point, we simply note that the spatial
variation of material parameters can be written in the form
ρ(Γ) = ρ(φ) and µ(Γ) = µ(φ).

In the absence of surface tension, the dynamics of the sys-
tem are fully described by two non-dimensional numbers,

Π1 =
µ1

µ2
and (5)

Π2 =
gd3∆ρ2

µ2
ref

(6)

where ∆ρ represents the density difference between the two
fluid phases and either of the two viscosities can be cho-
sen for µref . Π2 represents the ratio of buoyancy forces to
viscous drag. Introducing the characteristic length d, we
substitute the following characteristic quantities x = d x′,
v = ∆ρgd2/µref v′, µ = µref µ

′, ρ = ∆ρ ρ′, and p =
µ2

ref/(∆ρd
2) p′ into eq. 1, drop the primes, and obtain the

non-dimensional Stokes equation

−∇p+ Π2∇ ·
(
µ(φ)(∇v + (∇v)T)

)
+ Π2 ρ(φ)ẑ = 0 , (7)

where ẑ is the unit vector in vertical direction and

ρ(φ) =

{
ρ1/∆ρ forφ < 0
ρ2/∆ρ forφ ≥ 0 ,

(8)

and

µ(φ) =

{
Π1 forφ < 0
1 forφ ≥ 0 .

(9)

In the presence of surface tension, we additionally intro-
duce the Bond number,

Π3 =
∆ρgd2

σ
(10)

which represents the ratio of buoyancy to surface tension
forces.

3. Numerical method
3.1. Ghost-fluid-type fluid solver
3.1.1. Ghost fluid methods

Considering only finite-difference approaches on struc-
tured grids, the different numerical strategies that exist for
capturing the jump conditions at dynamic interfaces can
be grouped into three categories [Chern and Shu, 2007]:
regularization (i.e., discontinuities in the coefficients and
in singular sources are smeared out over one or more grid
points), dimension-un-splitting (i.e., discontinuities are rep-
resented in a sharp manner based on a local Taylor-series
expansion in multiple dimensions), and dimension-splitting
techniques (i.e., discontinuities are represented in a sharp
manner based on multiple local Taylor-series in one dimen-
sion thus representing the original problem as a combina-
tion of one-dimensional problems). The disadvantages of
regularization approaches include artificial smearing of the
jump conditions, formation of spurious oscillations for large
jump magnitudes, and their limitation to first order accu-
racy in two or higher dimensions [Tornberg and Engquist ,
2003]. Discretizations based on dimension un-splitting, on
the other hand, typically match the jump conditions to
second order at the interface (e.g. the immersed-interface
method [Leveque and Li , 1994]). We note that an adap-
tation of the immersed-interface method to Stokes flow ex-
ists [Leveque and Li , 1997]. One drawback of dimension-
un-splitting is that the construction of the finite-difference
stencils is not a trivial undertaking, particularly in three
dimensions. Ghost-fluid methods are part of the third cat-
egory, dimension-splitting techniques. Since they rely on
a combination of local Taylor-series expansions in one di-
mension, stencils typically consist of only three points in

each dimension (e.g. Kang et al. [2000]; Liu et al. [2000])
instead of 3d grid points in d dimensions as required for
dimension-unsplitting. The main drawback is that the split-
ting of dimensions requires projecting the jump conditions
in the derivatives onto the direction normal to the interface.
As a consequence, the jumps in the normal derivative are
captured correctly and in a sharp manner, but those in the
tangential derivative are still smeared out (e.g. [Liu et al.,
2000; Chern and Shu, 2007]). However, since the tangential
component of the derivative jump condition typically con-
tributes little to the overall jump in buoyancy-driven flow,
we suggest that ghost fluid methods provide a reasonable
compromise between accuracy and computational effort for
this specific class of problems.

The key idea behind ghost-fluid techniques – and the ori-
gin of their name – is the fictitious extension of the physical
domain of each fluid into the physical domain of the other
fluid (e.g. Glimm et al. [1981]; Mayo [1984, 1985]; Fedkiw
et al. [1999]; Kang et al. [2000]; Liu et al. [2000]). We build
the ghost phases through linear extrapolation of the physi-
cal phase [Kang et al., 2000; Liu et al., 2000]. They fulfill
two purposes (see Figure 1): (1) They are used to construct
more accurate stencils in the vicinity of the interface, which
consist of a mixture of ghost and physical points. The gain
in accuracy is related to the fact that the interface was es-
sentially removed from the stencil by constructing the lin-
ear extension of the fluid. (2) They are used to enforce
the jump conditions at the interface, which are determined
by harmonic interpolation taking the subgrid location of the
interface into account. Thus, ghost-fluid methods locally de-
couple a single two-phase flow problem into two single-phase
flow problems that are then merged back together based on
the jump conditions at the interface.

Figure 1 illustrates the construction of finite-difference
stencils for the pressure gradient (eq. 7). Although the
strategy for building the stencils for the viscous term in
equation 7 is similar in essence, we use asymmetric stencils
for additional accuracy around the interface [Kang et al.,
2000; Liu et al., 2000]. Figure 2 explains the construction
of the asymmetric three-point stencils approximating the
second derivative of the velocity. The central point ui,j of
the standard symmetric stencil is shifted to coincide exactly
with the interface uI,j . The viscosity of the ’asymmetric’
stencil point uI,j is computed through harmonic interpola-
tion [Kang et al., 2000; Liu et al., 2000]

µ̂ =
µ1 µ2

µ2θ + µ1(1− θ) , (11)

where θ denotes the subgrid position of the interface.
3.1.2. Jump conditions

Evidently, the accuracy of ghost-fluid methods hinges
critically on the accuracy with which the jump conditions
are computed. Three types of jump conditions need to be
considered (eq. 4): (1) the jump in pressure due to surface
tension, (2) the jump in pressure due to viscous stresses, and
(3) the jump in stresses. As noted by Kang et al. [2000], the
pressure jump in equation 4 can be rephrased more simply
as

[p] = σκ+ 2[µ](∇u · n,∇v · n,∇w · n) · n . (12)

The first term in equation 12 is the surface-tension-related
contribution to the pressure jump and the second term rep-
resents the viscous contribution. In addition to the pressure,
stresses may also be discontinuous across the interface, im-
plying that jump conditions need to be considered when ap-
proximating the second derivative of the velocity field. The
computation of the stress jumps is based on the insight that
the discontinuity of normal stresses can be avoided through
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ui-1,j ui+1,jui,j uI,j

∆x

φ < 0, μ1 , ρ1 φ > 0, μ2 , ρ2

θ ∆θ

Figure 2. Illustration of the construction of the asym-
metric finite-difference stencil for the second derivative of
the velocity field in one dimension. Two neighboring grid
cells of size ∆x are shown. The two fluids are shaded in
grey and white, respectively, implying that the interface
crosses only the grid cell on the right. The symmetric
three-point stencil commonly used to compute the sec-
ond derivative of the velocity at point ui,j is indicated by
crosses. In order to take the subgrid position of the in-
terface explicitly into account, we shift the central point
in the symmetric stencil ui,j to coincide with the inter-
face uI,j . This leads to an asymmetric stencil indicated
by black dots and spanned by the points ui−1,j , uI,j and
ui+1,j .

a coordinate transform [Leveque and Li , 1994]. Hence, we
compute the stress jump in the coordinate system spanned
by the normal and the two tangential vectors at each point
of the interface, yielding a matrix of jump conditions that
is then rotated back into the computational domain. This
strategy leads to the following expression [Kang et al., 2000] [µux] [µuy] [µuz]

[µ vx] [µ vy] [µ vz]
[µwx] [µwx] [µwx]

 = [µ]

 ∇u∇v
∇w

 0
t1
t2

T 0
t1
t2


+ [µ] nTn

 ∇u∇v
∇w

nTn

− [µ]

 0
t1
t2

T 0
t1
t2

 ∇u∇v
∇w

T

nTn (13)

We note that contrary to the discontinuous derivatives on
the left, the derivatives on the right hand side of equation
13 are spatially continuous and thus amenable to a finite-
difference approximation [Kang et al., 2000]. For a detailed
derivation of equations 12 and 13, please refer to the on-
line supplement or to Kang et al. [2000]. As is evident from
equations 12 and 13, the jump conditions themselves depend
on the velocity field. Therefore, it is not obvious how to
compute the jump conditions without knowing the solution
to the equations of motion beforehand. In their ghost-fluid
method for solving the multi-phase Navier-Stokes equation,
Kang et al. [2000] suggest using the numerical estimate of
the velocity field from the previous time step to compute
the jump conditions at the current time step. This strategy
is not an option for the Stokes equation, because it conflicts
with the assumption of quasi-stationarity inherent to Stokes
flow. Instead, we solve for the jump conditions at each time
step as explained next.
3.1.3. Discretization of the multi-phase Stokes equa-
tion in a ghost framework

We use finite differences on a staggered grid in Cartesian
coordinates to approximate the non-dimensionalized multi-
phase Stokes equation (eq. 7). The coefficients of the Stokes
equation (i.e., density and viscosity) are assigned at each
time step based on the new position of the interface, which
yields a sharp representation of the discontinuity in mate-
rial properties without introducing artificial smearing (eqs.
8 and 9).

As discussed in section 3.1.1, the basic idea of ghost-fluid
methods is to locally decouple a single multi-phase flow com-
putation into multiple single-phase computations. One key
advantage of this strategy is that the incompressibility con-
straint (eq. 2) can be used to simplify the viscous term

∇ ·
(
µ(φ)(∇v + (∇v)T)

)
= µ(φ)∇2v (14)

which leads to a standard saddle-point problem(
−µ(φ)∇2 grad
−div 0

)(
v
p

)
=

(
gρ(φ)

0

)
(15)

when ignoring the jump conditions. The three jump con-
ditions, the pressure jump due to surface tension [p]st, the
viscous contribution to the pressure jump [p]v, and the jump
in the stresses [∇v], scale differently (see eqs. 12 and 13)

[p]st ∼ κ , (16)

[p]v ∼ ∇v , and (17)

[∇v] ∼ ∇v , (18)

where κ is the curvature of the interface. Since [p]st does
not depend on the velocity field, it can be incorporated into
the linear system 15 as a source term on the right hand side
[Kang et al., 2000; Liu et al., 2000]. The other two jumps,
[p]v and [∇v], however, need to be solved for at each time
step (sec. 3.1.2) yielding the linear system((
−µ(φ)∇2 grad
−div 0

)
+

(
[∇v] [p]v

0 0

))(
v
p

)
=(

gρ(φ)
0

)
−
(

[p]st
0

)
. (19)

It is worth mentioning that the three jump conditions are
not equally challenging to resolve numerically. The easiest
jump to compute is [p]st = σκ because it does not depend
on the velocity field and because the accurate computation
of the curvature κ is ensured by representing the interface
through a level set function (sec. 3.2). The viscous contri-
bution to the pressure jump

[p]v = 2[µ](∇u · n,∇v · n,∇w · n) · n , (20)

and the stress jumps [∇v] (eq. 13) are more challenging.
We note that in the presence of viscosity contrasts of sev-

eral orders of magnitudes and/or jump conditions of several
orders of magnitude, the condition number of the extended
Stokes matrix in the linear system (eq. 18) can become
a concern. Most computations in this paper are based ei-
ther on backslash or the direct solver PARDISO [Schenk and
Gärtner , 2004, 2006]. In terms of iterative solvers, GMRES
or stabilized BICG in combination with an incomplete-LU
preconditioner seem to be reliable alternatives.

3.2. Level-set-based Interface solver

Interface-tracking methods can be divided into two
classes, explicit and implicit. Before delving into the de-
tails, we attempt to offer an intuitive motivation for these
two types of approaches following Sethian [1997]: Suppose
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our task were to track the coastline of a lake that experiences
strong variations with water level. One possibility would be
to monitor the driftwood along the lake shore. However,
if water-level variations were large and rapid and the lake-
bed topography was rough, the driftwood would partly wash
ashore and a large amount of driftwood would be necessary
to obtain an accurate estimate of the coastline. The level set
method takes a different approach. Instead of tracking the
shore of the lake directly, we draw a topographic map of the
lake bed. We adjust the datum of this map such that the
coastline always corresponds exactly to the zero-elevation
contour. In order to find out the precise location of the in-
terface at a given time, we simply plot the zero contour of
the corresponding level set function.

This example illustrates that instead of finding an ex-
plicit representation of the interface (i.e., placing markers
along it), the level set method takes an implicit approach
and embeds the interface into a higher-dimensional func-
tion (i.e., the topographic map) such that it corresponds
to the zero-contour of that function. The main advantage
of this implicit formulation is that geometric complexities of
highly convoluted interfaces or topological changes resulting
from merging or ripping of interfaces can be captured easily.
Also, the approach generalizes in a straightforward manner
to higher dimensions, contrary to some explicit front repre-
sentations (e.g. marker chains) for which three dimensions
represent a substantial challenge.

In a static problem, the only property required for
the auxiliary higher-dimensional function is that its zero-
contour must correspond to the real interface. In a seminal
paper, Osher and Sethian [1988] developed a framework for
adding dynamics to implicit surfaces. Dynamics pose new
constraints on the auxiliary higher-dimensional function. In
particular, it turns out to be advantageous if the level set
function is constructed as a signed distance function. This
entails that it is negative in one fluid, positive in the other,
and zero exactly at the interface. Furthermore, its absolute
value at any point corresponds to the minimum distance of
that point to the interface. Functions that fulfill these prop-
erties will be referred to as level set functions denoted by φ.
From this definition it follows that a level set function φ is
normalized

|∇φ| = 1 . (21)

Examples of level set functions are plotted in the online sup-
plement.

Given a velocity field v, the propagation of the level set
function φ is described by the advection equation:

∂φ

∂t
+ v · ∇φ = 0, (22)

also referred to as the level set equation [Osher and Sethian,
1988]. Equation 22 shows that the level set method turns
a Lagrangian front propagation problem into an Eulerian
initial value partial differential equation. At this point we
have intentionally not specified the nature of the velocity
field v in equation 22. One of our goals will be to construct
an appropriate velocity field that maintains the signed dis-
tance property (eq. 21) as the level set function moves (sec.
3.3), while continuing to link the zero level set to the proper
interface motion.

The numerical solution of equation 22 requires high-order
schemes. For the spatial discretization we implement the
5th-order-accurate WENO scheme [Liu et al., 1994; Jiang
and Shu, 1996; Jiang and Peng , 2000] and for the tem-
poral discretization the 3rd-order-accurate, Total-Variation-
Diminishing (TVD) Runge-Kutta scheme [Shu and Osher ,
1988].

The time step used in the computation is restricted
through the Courant-Friedrichs-Lewy (CFL) criterion asso-
ciated with equation 22

∆t <
∆x

|v|max
, (23)

re
fl
e

c
ti
v
e

re
fl
e

c
ti
v
e

no slip

no slip

Figure 3. Initial and boundary conditions for the
Rayleigh-Taylor instability as specified by Van Keken
et al. [1997]. The fluids are characterized by different
densities ρi and viscosities µi. The level set function is
constructed such that it is negative within the buoyant
fluid and positive outside.

where ∆t and ∆x are the temporal and spatial grid spacing
and |v|max is the maximum velocity. In the computations
we typically use ∆t = 0.5 ∆x/|v|max unless convergence re-
quires higher temporal resolution.

3.3. Coupling of the two solvers

Both the fluid (sec. 3.1) and the interface (sec. 3.2) solver
are Eulerian and each is based on a Cartesian grid with the
same grid resolution ∆x. Thus, one might expect that the
coupling of the two solvers should be straight-forward, which
is only partially true. While the forward coupling of the new
interface position into the fluid solver works in the obvious
way (i.e. by updating eqs. 8 and 9), the coupling of the flow
field back to the interface solver requires more subtlety in the
context of level set methods. Let us return to the question of
which velocity field v to use in equation 22. Intuitively, the
most obvious choice might be the physical velocity field re-
sulting from the solution of the Stokes equation. However, as
pointed out by Sethian [1999a], using the fluid velocity itself
to update the level set function is often a poor choice, since
it necessarily creates shearing and distortion of the level set
function unless the strain tensor of the flow field vanishes.
While possible, continuous restoration of the level set func-
tion through an iterative re-initialization procedure such as
described by Sussman et al. [1994] leads to several numerical
problems such as spurious mass loss and artificial front repo-
sitioning [Adalsteinsson and Sethian, 1999; Sethian, 1999a;
Chopp, 2009; Keck , 2007]. A more detailed study of the po-
tential bias introduced through iterative re-initialization is
available in the online supplement.

The need to re-initialize the level set function is a con-
sequence of choosing the physical velocity field for solving
the level set equation 22, but this is certainly not the only
valid choice. In fact, the velocity field used to advect the
level set function need be that given by the physics of the
problem only for the zero contour – not for any other con-
tour. Thus, analogous to the procedure of embedding the
interface into the higher-dimensional level set function, we
are free to embed the velocity of the interface into a higher-
dimensional velocity function, called the extension velocity
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field. It is constructed based on two criteria [Adalsteinsson
and Sethian, 1999]: (1) The extension velocity at the zero
contour has to be identical to the physical velocity, and (2)
the extension velocity for all other points is chosen such that
it ensures maintenance of the normalization criterion (eq.
21). It is straight-forward to show (e.g. Sethian [1999a])
that the normalization condition will be maintained if

∇φ · ∇vext = 0 . (24)

Numerically, we compute the extension velocity function as
recommended by Adalsteinsson and Sethian [1999] through
the fast-marching method [Sethian, 1996, 1999b].

4. Benchmark problems
4.1. Pressure jump at the interface of a viscous drop

Surface tension causes pressure to jump at the interface
of a spherical drop as can be derived either from thermody-
namic free energy considerations or from the Young-Laplace
equation. For a static drop of radius a and surface tension
σ the pressure jump is given by

[p]st =
2σ

a
. (25)

This expression highlights that the effect of surface tension is
small for medium-sized drops, but may become substantial
as the drop radius decreases.

We investigate the pressure jump (eq. 25) both for the
case of a static drop and that of a dynamic drop rising under
its own buoyancy in a hydrostatic ambient pressure field. In
the first case, the pressure jump should be given by a dis-
continuous step function; in the second case, there will be
an additional contribution from the ambient pressure field.
We use ’periodic’ boundary conditions on the sides of the
computational domain and ’no slip’ on the top and bottom
walls. The viscosity contrast is set to Π1 = 10−6 and the
Bond number to Π3 = 10−3 to ensure sphericity.

4.2. Pressure jump for weak inclusions in pure shear

Schmid and Podladchikov [2003] derived analytical solu-
tions for the pressure and velocity fields of elliptical inclu-
sions that are subject to shearing. A viscosity contrast of
several orders of magnitude is assumed between the inclu-
sion and the surrounding rock matrix. The shear boundary
condition in combination with the viscosity contrast creates
a discontinuous jump in stresses [∇v] and pressure [p]v as
derived in eqs. 13 and 20.

We compute the pressure and velocity field around a cir-
cular inclusion of non-dimensional radius r = 0.1 inside a
1 × 1 computational domain. The boundary conditions in
the far-field are set to pure shear with a strain rate of ε̇ = 1.
The velocity at the four edges of the computational domain
is computed analytically based on equations 23-26 in Schmid
and Podladchikov [2003]. We investigate viscosity contrasts
of Π1 = 10−3 − 10−6, where the inclusions is assumed to
have the lower viscosity. The density is constant in both
domains. We compare our computations both to the ana-
lytical solution and to the numerical results by Deubelbeiss
and Kaus [2008].

4.3. Rayleigh-Taylor instability

Van Keken et al. [1997] performed a careful benchmark
study of the Rayleigh-Taylor instability. The dynamics are
specified through the two non-dimensional numbers Π1 and
Π2 derived in section 2. In this paper, we study both the
isoviscous case (Π1 = 1) and that of a viscosity contrast of
Π1 = 10. The dimensions of the computational domain are

[0, λ] × [0, 1] where λ = 0.9142 is chosen such that a har-
monic perturbation with wavelength 2λ yields the largest
growth rate. The thickness of the buoyant layer is d = 0.2
and the initial deflection of the interface between the two
layers is w = 0.02 cos(πx/λ). The boundary conditions of
the box are assumed to be ’no slip’ on the top and bottom
of the box and ’reflective’ on the side walls. These initial
and boundary conditions for the Rayleigh-Taylor instability
are illustrated in Figure 3.

Van Keken et al. [1997] defined four quantitative param-
eters characterizing the dynamics of the Rayleigh-Taylor in-
stability: (1) the initial growth rate γ, which is computed
based on the growth of the amplitude h of the interface

h(t) = h(0)eγt , (26)

evaluated at t ' 0, (2) the maximum of the root-mean-
square velocity

vrms =

√
1

V

∫
V

‖v‖2 , (27)

where V is the area of the computational domain, (3) the
time t(vmax) at which the maximum root-mean-square ve-
locity vrms is achieved, and (4) the relative entrainment e of
the source layer above a specified height d = 0.2

e =
1

λd

∫ 1

d

Γ dV . (28)

4.4. Compositional plume

Manga et al. [1993] studied the rise of a composi-
tional plume from a free-slip surface both experimen-
tally and through two-dimensional boundary-element simu-
lations. The experiments were performed with colored corn
syrup in colorless glycerine and are reported in terms of non-
dimensional times [Manga et al., 1993]. The initial condition
is a semi-spherical blob resting on the free-slip surface. In
addition to the experimental and numerical data by Manga
et al. [1993], Schmalzl and Loddoch [2003] presented a nu-
merical solution to this problem in three dimensions.

The computational domain in our simulation is a rectan-
gular box of non-dimensional size 4×4×5. The initial condi-
tion is a semi-spherical blob of radius 1 placed in the center
of the box. The density and viscosity contrasts between the
two fluids are set to 0.15 and 1, respectively. The boundary
conditions are ’periodic’ on all four sides of the box and ’free
slip’ on the top and bottom wall. The ’free-slip’ condition
is implemented as v · n = 0 and ∇v · t1 = ∇v · t2 = 0.

5. Results
5.1. Pressure jump at the interface of a viscous drop

The linear dependence of the pressure jump [p]st on drop
radius (eq. 25) is straight-forward to reproduce numerically.
Table 1 details a dimensional comparison of the analytical
pressure jump based on equation 25 and our numerical re-
sults. An example computation of a static drop with Bond
number Π3 = 10−3 and viscosity ratio Π1 = 10−6 in a con-
stant ambient pressure field is shown in Figure 4. Despite
the relatively low resolution of the computation (51 × 51),
the pressure jump is resolved as a sharp discontinuity with-
out artificial smearing or spurious oscillations. A more de-
tailed convergence test for this case is included in the online
supplement.
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Table 1. Analytical versus numerical results for the pressure
jump due to surface tension at the interface of a static drop.
This computation was done dimensionally with σ = 0.0728
kg/s2 – a representative value for the air/water interface.

r = 1dm r = 1cm r = 1mm r = 0.1mm
[p]st in Pa (analyt.) 1.456 14.56 145.6 1456
[p]st in Pa (numer.) 1.458 14.59 146.0 1462
Deviation < 1% < 1% < 1% < 1%

Figure 5 shows the equivalent computation for a dynamic
drop rising under its own buoyancy. The pressure field re-
flects the hydrostatic and dynamic contributions to pressure
as well as the effect of surface tension. Contrary to Figure
4, we now not only observe a jump in pressure itself, but
also a jump in the first derivative of pressure. We note that
the dynamic case is more challenging than the static case,
because it requires both approximating the static pressure
jump correctly and maintaining it as a sharp discontinuity
over time.

5.2. Pressure jump for weak inclusions in pure shear

Figure 6 shows the pressure field for a circular inclusion
with a viscosity contrast of Π1 = 10−3 compared to the
surrounding rock matrix. The left panel represents the nu-
merical solution and the middle panel the analytical solu-
tion by Schmid and Podladchikov [2003]. Visually, there
is no discernable difference between the numerical and the
analytical solution. The right panel in Figure 6 shows the
percentage error of the numerical with respect to the ana-
lytical solution. Not surprisingly, the highest error occurs
at the interface, more specifically at finite inclinations with
respect to the axes x = 0 and y = 0. This error is not un-
expected given that the tangential component of the stress

y

x

P

Figure 4. Computation of the pressure jump inside a
static drop as a consequence of surface tension (bench-
mark problem 1). The Bond number (eq. 10) is set to
Π3 = 10−3 to ensure sphericity of the drop. The viscos-
ity contrast is Π1 = 10−6. The point-wise visualization
of the pressure field illustrates the original resolution of
the simulation (51 × 51). The computational domain is
a square box of aspect ratio 1.

jump is not captured in a sharp manner, but instead smeared
over the length of a grid cell (see section 6.1). At the given
grid resolution of 280 × 280, the percentage error drops to
below 1% in locations where only the normal component
contributes to the stress jump as compared to a maximum
percentage error of 3.7 % where the tangential component
contributes significantly. The average percentage error in
the computational domain is < 1%. In comparison to a pre-
vious study of the inclusion problem [Deubelbeiss and Kaus,
2008], three aspects of our numerical solution merit atten-
tion: (1) Contrary to Deubelbeiss and Kaus [2008], there are
no spurious pressure oscillations at the interface of the inclu-
sion, not even at minimal resolution (see online appendix).
This aspect is of greatest importance for dynamic problems
as spurious oscillations tend to build up over time. (2) We
are able to reproduce a sharp transition from a highly vari-
able pressure field in the matrix to a constant pressure field
inside the inclusion. We do not observe any artificial distor-
tions to the constant pressure field inside the inclusion as
is the case in Deubelbeiss and Kaus [2008]. (3) The overall
error is lower in our computation implying that less resolu-
tion is required to accurately resolve the pressure field. In
fact, a grid resolution of 80 × 80 is sufficient to achieve a
lower overall L2-error than the best performing method by
Deubelbeiss and Kaus [2008] at a grid resolution of 280×280.

In comparison to benchmark problem 1 (sec. 5.1), our
simulations confirm that the jump conditions [p]v and [∇v]
are more challenging to resolve than [p]st (sec. 3.1.2). As
detailed in the online appendix, the additional challenge lies
in computing the local magnitude of the jump along the
interface correctly.

5.3. Rayleigh-Taylor instability

We were able to reproduce the evolution of the Rayleigh-
Taylor instability as specified by Van Keken et al. [1997] to
high precision. Figure 7 shows a comparison of the isoviscous

P

x
y

Figure 5. Computation of the pressure field associated
with a dynamic drop rising under its own buoyancy. The
Bond number (eq. 10) is set to Π3 = 10−3 to ensure
sphericity of the drop. The point-wise visualization of
the pressure field highlights the original resolution of the
simulation (81 × 121). The computational domain is a
rectangular box of aspect ratio 2×3. The pressure field is
a combination of the discontinuous jump at the interface
and the hydrostatic and dynamic contributions outside.
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Numerical solution Analytical solution Percentage error

Figure 6. Comparison of the pressure field obtained numerically (left), computed analytically (middle)
and the percentage error of the numerical solution (right) for benchmark problem 2. The average per-
centage error is < 1%, the maximum is 3.76 %. For easier comparison with Deubelbeiss and Kaus [2008],
the grid resolution in the computation is set to 280 × 280 and the viscosity contrast between inclusion
µin and surrounding matrix µm to Π1 = µin/µm = 10−3.

Rayleigh-Taylor instability computed by five different codes.
The top plot is the level-set-based code presented in this
paper at a grid resolution of 300×330. A detailed conver-
gence study is available in the online supplement. The other
four plots are reconstructed based on the work published in
Van Keken et al. [1997]. The authors kindly made the data
available online. We observe the closest agreement of our
results with those computed by the marker-chain method.
A detailed comparison of the two interfaces is given in Fig-
ure 8. The temporal evolution of the root-mean-velocity
vrms and the entrainment e (Figs. 9 and 10) confirms the
visual impression that the two methods match well. Table
2 provides an overview of the quantitative parameters char-
acterizing the evolution of the instability, i.e. initial growth
rate γ, maximum root-mean-square velocity, and the time
t(vmax) at which it is achieved. The cited values are from
Table 1 in Van Keken et al. [1997].

The long-term evolution of the isothermal Rayleigh-
Taylor instability in the non-isoviscous case is more challeng-
ing to resolve, not so much because of the viscosity contrast
itself, but rather because of the fact that the interface thins
out rapidly. Simulations of buoyancy-driven flow require a
full two-way coupling of fluid and interface solver, implying
that the minimal resolution required is determined by the
thickness of the fluid film. Thus, the computational expense
scales inversely with the minimal thickness of the fluid film.
For additional details, please refer to the online appendix.

5.4. Compositional plume

Figure 11 gives snapshots of our three-dimensional sim-
ulation of an initially semi-spherical compositional plume
rising from a free-slip surface. The computation was per-
formed on a 40 × 40 × 50 grid. The experimental results
by Manga et al. [1993] are included for comparison purposes
in the background. Qualitatively, experimental and numer-
ical results match well, with the possible exception of the
initial condition. This slight deviation resulting from non-
zero surface tension in the experiment has little consequence
for the long-term evolution of the instability [Manga et al.,
1993]. Our computations also agree well with prior numeri-
cal results by Manga et al. [1993] and Schmalzl and Loddoch
[2003].

6. Discussion
6.1. Evaluation of the fluid solver

To our knowledge, the extended ghost-fluid-type dis-
cretization of the multi-phase Stokes equation presented in

this paper provides the first adaptation of a ghost-fluid-
type scheme to the multi-phase Stokes equation. Benchmark
problem 1 (sec. 4.1 and 5.1) demonstrates that our method
is able to resolve the pressure jump resulting from surface
tension acting at the interface of a spherical drop in both a
static (Fig. 4) and a dynamic (Fig. 5) setting even at low
grid resolutions (see online supplement).

Benchmark problem 2 (sec. 4.2 and 5.2) establishes the
ability of our ghost-fluid-type fluid solver to resolve a pres-
sure jump of multiple orders of magnitude at the interface of
a circular inclusion. Contrary to previous methods [Deubel-
beiss and Kaus, 2008], our numerical solution does not suf-
fer from spurious pressure oscillations and introduces neither
smearing in the pressure jump nor erroneous deviations from
the constant pressure field inside the inclusion. In addition,
the overall numerical error is lower implying that less reso-
lution is required to obtain a satisfactory level of accuracy.

Another important difference between the regularization-
type methods discussed by Deubelbeiss and Kaus [2008] and
the ghost-fluid-type method developed in this paper is how
error scales with increasing viscosity contrast. While the
accuracy of regularization methods typically decreases with
increasing viscosity contrast, ghost fluid methods can han-
dle viscosity contrasts of numerous orders of magnitude.
The reason for this favourable scaling lies in the discretiza-
tion of the jump conditions (eqs. 13 and 12): In both of
these equations, the viscosity jump [µ] is separated out from
the velocity-dependent contribution to the jump. Since the
velocity-dependent contribution is not discontinuous at the
interface, it can be approximated through finite differences
and a larger viscosity contrast will not affect the accuracy
with which this term is resolved. Consequently, the max-
imum percentage error of the computed pressure field is
largely independent of the viscosity contrast so long as the
condition number of the associated linear system (eq. 18)
does not render it un-solvable (please refer to the online ap-
pendix for more details).

The absence of any signs of numerical diffusion and/or
spurious oscillations is notable in Figure 5, Figure 6 and also
in benchmark problems 3 and 4. The absence of numerical
diffusion is largely related to the level set representation of
the interface and will be discussed in that context (sec. 6.2).
The formation and possible build-up of spurious oscillations
as a consequence of dispersive errors is avoided through a
combination of three tools: (1) the construction of more ac-
curate, ghost-fluid-based stencils in the immediate vicinity
of the interface (sec. 3.1.1), which reduce dispersive error
and implicitly enforce the jump conditions in the flow field,
(2) the level set representation of the interface in
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Level set method

Figure 7. The Rayleigh-Taylor instability at t = 1500 computed by the level set method on a 300×330
grid compared to the best results of the four codes compared in Van Keken et al. [1997].
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Figure 8. Detailed comparison of the level set (thin
black line) and the marker chain approach (thick grey
line) for the isothermal and isoviscous Rayleigh-Taylor
instability at nondimensional time t = 1500. The plotted
interfaces represent a zoom onto the instability descend-
ing from the top downwards in the middle of the box.
The two methods yield an almost identical interface.
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Figure 9. Evolution of the entrainment of the buoyant
fluid over time as computed by the five different codes.
The level set computation was done on a 160 × 176 grid.

combination with the extension-velocity-based ad-
vection of the level set function (sec. 6.2 for more de-
tails) and (3) the usage of Total-Variations-Diminishing
(TVD) discretization schemes for the level set advection
(eq. 22).

Overall, we conclude that our extended ghost-fluid-
type method is a useful new tool for geodynamics,
specifically for problems involving large viscosity con-
trasts and interfaces at which pressure and stresses may
jump discontinuously. We note that the tangential com-
ponent in the stress jump is not resolved equally well as

the normal component, but the error introduced by that
inaccuracy is typically small to negligible, particularly
in the context of buoyancy-driven flow.
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Figure 10. Evolution of the root mean square velocity
of the interface over time as computed by the five differ-
ent codes. The level set computation was done on a 160
× 176 grid.

6.2. Evaluation of the interface solver

The appeal of benchmark problem 3, the isothermal
Rayleigh-Taylor instability by Van Keken et al. [1997]
(sec. 4.3 and 5.3), is that it allows for a direct compar-
ison of the various strategies for representing interfaces
(sec. 3.2). Out of the four other approaches, we find the
poorest agreement with the results obtained by the field
approach (Fig. 7). The field method works by tracking
a characteristic function Γ, usually referred to as the
composition function, which is zero on one side of the
interface and one on the other. The advective-transport
equation is solved for the time evolution of this com-
position function. This is a straightforward method,
in part because it is naturally adaptive – the front is
defined on the same Eulerian mesh used in the com-
putation – and also because it easily extends to three
dimensions. However, the advective update of a discon-
tinuous function can be problematic since considerable
artificial smoothing can occur due to numerical diffusion
in the composition function update (e.g. the supposedly
sharp interface has spread out into a fictitiously contin-
uous transition between the two fluid phases in Fig. 7).
Furthermore, the advection of a discontinuous function
is prone to dispersive errors, which result in spurious os-
cillations. Consequently, most implementations smear
out the interface over several grid cells, thereby compro-
mising the accuracy with which the fluid dynamics in
the vicinity of the interface are resolved. Thus, one is of-
ten led to a higher grid resolution than desired in order
to ameliorate the smoothing. Nonetheless, dispersive
errors commonly prevail even for smeared interfaces



SUCKALE ET AL.: BUOYANCY-DRIVEN FLOW AT LARGE VISCOSITY CONTRASTS B07409 - 11

Figure 11. Three-dimensional benchmark computation for problem 3, a compositional plume rising
from a free-slip surface. The grid resolution is 40× 40× 50. The six snapshots of the dynamic evolution
of the plume are shown for non-dimensional times 0, 8.4, 16.8, 25.2, 33.6, and 42. The experimental
results by Manga et al. [1993] are included as black and white reproduction in the background .

(e.g. Christensen [1992], Van Keken [1993]). While
remedies correcting the consequences of numerical dif-
fusion (e.g. Alley and Parmentier [1998]) and disper-
sion exist (e.g. Lenardic and Kaula [1993]), we choose
to focus on and construct numerical approaches which
keep the interface sharp, thus avoiding both the smear-
ing and artificial attempts to ’re-sharpen’ it. The level
set method (sec. 3.2) avoids numerical diffusion of dis-
continuities, because it supersedes the advection of a
discontinuous function. Instead, the advection equa-
tion (eq. 22) is solved for the higher-dimensional level
set function, which will not result in numerical diffusion
because the level set function has slope one by construc-
tion (eq. 21).

The evaluation of the differences between the inter-
face as computed through level sets and that obtained

from the two particle or tracer methods (see Fig. 7)
is subtle. Tracer approaches differentiate between two
fluids by placing a large number of Lagrangian particles
in one or both of the phases (e.g. Moresi et al. [2003];
Gerya and Yuen [2003, 2007]). While this Lagrangian
representation of compositional differences is attractive

Table 2. Comparison of the quantitative parameters char-
acterizing the dynamics of the isoviscous Rayleigh-Taylor in-
stability.

Code Grid Growth Rate t(max v) max v
Level sets 120x132 0.01252 211.2 0.00301
Marker chains 80x80 0.01225 207.05 0.00309
Marker chains 80x80 0.01207 210.75 0.00305
Tracers HS 81x81 0.01118 208.99 0.00309
Tracers CND 48x48 0.01106 208.5 0.00309
Field SK 160x160 0.01179 207.84 0.00289
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Figure 12. Three-dimensional benchmark computation for problem 3, a compositional plume rising
from a free-slip surface. The grid resolution is 40× 40× 50. The six snapshots of the dynamic evolution
of the plume are shown for non-dimensional times 0, 8.4, 16.8, 25.2, 33.6, and 42. The experimental
results by Manga et al. [1993] are included as black and white reproduction in the background.

for its avoidance of the numerical-diffusion problems
of field approaches and its maintenance of mass conser-
vation, the tracer method is prone to ’sampling errors’:
Although the fluid velocity is typically computed on
an underlying mesh, evolving marker particles can cre-
ate unreal and non-physical subgrid results, far below
the actual accuracy of the computation, and these can
create misleading and non-existent fingering, as well as
thin, sub-cell structures. These structures result from
the use of interpolation functions to move the sub-grid

markers. An additional difficulty is that there is no
natural adaptivity to this approach. Particles must be
added and subtracted as the interface stretches, shrinks,
and contorts. Finally, three-dimensional implementa-
tions become computationally very expensive, because
a large number of particles is required to obtain suf-
ficient accuracy. For example, Schmalzl and Loddoch
[2003] estimated that an increase of tracer particles on
the order of 103 is necessary when adding another di-
mension to a previously two-dimensional problem. As
a remedy to this problem, Tackley and King [2003] sug-
gested using a so-called ’tracer ratio’ method, but com-



SUCKALE ET AL.: BUOYANCY-DRIVEN FLOW AT LARGE VISCOSITY CONTRASTS B07409 - 13

Figure 13. Zoom onto the isothermal and isoviscous
Rayleigh-Taylor instability specified by Van Keken et al.
[1997] at time t = 1500. In this computation, the inter-
face is tracked simultaneously by a level set function (in
grey/white) and by tracers (black line). We only plot the
tracers for the lower segment of the interface to highlight
the difference between the two interface-representation
techniques. In the tracer-based computation, we ob-
serve the formation of a thin, elongated peak, reminiscent
of the tentacles observed at the edges of the collapsing
square in Fig. 12.

putational efficiency remains a concern even then [Lin
and van Keken, 2006].

It is often regarded as one of the advantages of par-
ticle approaches that they can provide sub-grid reso-
lution. After all, both implementations of the particle
method presented in Van Keken et al. [1997] find an
elongated fine-scale structure accompanying the insta-
bility sinking in the center of the computational domain.
However, there is also ample fine-scale structure that
differs for the two approaches (see Fig. 7). An example
illustrating how tracer-based interface tracking can lead
to the formation of spurious fine-scale structures at the
interface is shown in Figure 12. A collapsing square is
tracked simultaneously through a level set function (dis-
played in grey/white) and 10 000 tracers located on the
initial interface (Fig. 12, top). While the level set func-
tion yields a correct approximate solution, the tracers
have formed long tentacles at the edges of the square
(Fig. 12, bottom). This well-known behavior of tracer
approaches is related to the fact that tracers move with
the local velocity while imbedded surfaces (e.g. fluid
interfaces) move with the local fluid velocity in the nor-
mal direction. Despite the tracer method’s appeal to
indicate possible fine-scale structures, subgrid resolu-
tion comes at the risk of not being able to distinguish
a geophysical structure from a numerical artifact. Fig-

ure 13 highlights the challenges associated with tracking
deforming interfaces accurately. It shows a computa-
tion in which we track the evolution of the isoviscous
Rayleigh-Taylor instability [Van Keken et al., 1997] si-
multaneously via level sets and tracers. In order to high-
light the part of the interface where the two solutions
differ, we only plot the tracers on the lower segment
of the interface. Although the underlying resolution at
which the equations of motion are solved is identical
by construction, the tracer-based interface shows a thin
tentacle, while the same structure on the level-set-based
interface remains much less elongated. For a more de-
tailed discussion of subgrid structures, please refer to
the online supplement.

Finally, marker-chain approaches track the interface
by linking together a chain of particles. Contrary to the
tracer method, these particles are only placed directly
on the interface. This reduces computational cost, while
keeping the advantage of the tracer method, namely its
relative non-diffusivity. We note that the marker-chain
solution to benchmark problem 3 is almost identical to
our level-set-based results (Figs. 7 and 8) and that
the thin tentacle accompanying the center instability is
smaller than for both tracer approaches. The main chal-
lenges of the marker-chain method are the geometric
intricacies related to its three-dimensional implementa-
tion, in which one is required to track an evolving two-
dimensional mesh of linked fluid particles. While pos-
sible, adaptive algorithms for grid refinement and sim-
plifications are required [Schmalzl and Loddoch, 2003].

φ < 0

φi,j > 0

φi,j+1 > 0 φi+1,j+1 > 0

φi+1,j > 0

Figure 14. Illustration of the mass loss problem asso-
ciated with interfaces that are entirely below grid reso-
lution. Shown is a single computational cell spanned by
the four grid points at the corners. One fluid (shaded in
grey) is surrounded by the other fluid (white) such that
the interface crosses the cell without interacting with the
grid points. Because the level set function is positive at
all grid points, the piece of grey fluid will be added to
the white phase in the next computational step, leading
to mass loss in the grey phase.
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Overall, we conclude that the three main advantages of
an interface solver based on the level set method are
that: (1) It is naturally adaptive and able to handle
strongly deforming interfaces and topological changes in
the interface (i.e. rupturing or merging) without com-
promising accuracy or increasing computational cost.
(2) It is computationally efficient and maintains this ef-
ficiency even for very complex interfaces and in three
dimensions (Fig. 11). In the computations for bench-
mark problems 3 and 4, only about 5% of the computa-
tional time at each time step is spent on advecting the
interface. Since less computational effort is required for
the interface solver, more resources are available for the
more accurate solution of the equations of motion. (3)
Level sets propagate like surfaces with the local fluid
velocity normal to the interface and avoid many prob-
lems commonly encountered in explicit approaches as
illustrated in Figure 12.

6.3. Coupling of the solvers

The level set method avoids many problems com-
monly associated with tracking dynamic interfaces (sec.
6.2) as long as the normalization of the level set function
(eq. 21) is maintained throughout the computation. In
our implementation, the coupling between fluid and in-
terface solver is facilitated by the fact that both solvers
are based on the same grid. As a consequence, we will
not resolve any subgrid features in our computations.
In fact, if one of the fluids is thinned out to below grid
resolution, mass loss will occur. This is illustrated in
Figure 14. It shows a single computational cell spanned
by four grid points located in the corners. In this con-
stellation the level set function is positive φ > 0 at all
grid points. Thus, the piece of grey fluid shown will
be added to the white fluid in the next computational
step, resulting in mass loss in the grey phase. We stress
that this mass loss is an indication of insufficient reso-
lution in the computation. In fact, mass loss is closely
related to the accumulation of numerical error and can
thus be used to evaluate numerical error over the course
of the simulation. We monitor mass balance through-
out our computations. For an example of the evolution
of the mass balance over time, please refer to the on-
line supplement. We note that the level set method
has been extended for problems in which the passive
tracking of subgrid features might be desirable [Enright
et al., 2002, 2005], but since these are not relevant for
buoyancy-driven problems, we will not discuss them fur-
ther.

7. Conclusion

The combination of three complementary methods,
the ghost-fluid, level set, and extension velocity meth-
ods yields a versatile and accurate method for simulat-
ing buoyancy-driven flow in the presence of large vis-
cosity contrasts. Each of the three components targets
one of the main challenges associated with the numer-

ical description of complex flows, namely (1) the so-
lution of the multi-phase Stokes equation in the pres-
ence of discontinuities in the coefficients, solution, and
source terms, (2) the accurate advection of a dynam-
ically deforming interface such that no restrictions on
interface geometry are imposed, and (3) the full and
accurate coupling of fluid and interface solver while en-
suring that discontinuities remain sharp over time and
that mass is conserved in both phases. We validate
our approach through four carefully selected benchmark
problems in both two and three dimensions. We find
excellent agreement in all four cases. Deviations from
results obtained with different interface-representation
techniques, as for the isothermal Rayleigh-Taylor insta-
bility by Van Keken et al. [1997], are not unexpected
and explained by methodological differences.

Based on its methodology and performance for the
selected benchmarks, we argue that our method is par-
ticularly interesting for the following types of geody-
namical problems: (1) Problems that are characterized
by sharp discontinuities in material parameters, pres-
sure, stresses, or a source term. An example could
be compositional plumes impinging on the lithosphere
or a compositional discontinuity in the Earth’s man-
tle. (2) Flow for which surface tension needs to be
taken into account, such as magma bubbles (e.g. Manga
and Stone [1993, 1995a]). (3) Problems with strongly
and/or rapidly deforming interfaces such as multiple
plume overturn in the Earth’s mantle or lava-dome for-
mation [Bourgouin et al., 2007].

Acknowledgments. This work was supported by the Di-
rector, Office of Science, Computational and Technology Re-
search, U.S. Department of Energy under Contract No. DE-
AC02-05CH11231 and by Leigh Royden through the NSF-grant
on Continental Dynamics EAR-0409373. Partial support for J.-
C. Nave was provided through NSF grant DMS-0813648. We
are indebted to James Sethian for generous advice on the im-
plementation of extension velocities and to Benjamin Seibold for
his interest and helpful comments. We thank Peter van Keken
and Yolanda Deubelbeiss for sharing their numerical results from
previous benchmark studies and Michael Manga for his consent
to use photos from Manga et al. [1993] in Fig. 11. Finally, we
would like to acknowledge Taras Gerya, Peter van Keken, Linda
Elkins-Tanton, and James Sethian for their instructive reviews of
this manuscript.

References

Adalsteinsson, D., and J. A. Sethian (1995), A Fast Level Set
Method for Propagating Interfaces, J. Comput. Phys., 118 (2),
269–277.

Adalsteinsson, D., and J. A. Sethian (1999), The Fast Construc-
tion of Extension Velocities in Level Set Methods, J. Comput.
Phys., 148 (1), 2–22.

Alley, K. M., and E. M. Parmentier (1998), Numerical experi-
ments on thermal convection in a chemically stratified viscous
fluid heated from below: implications for a model of lunar
evolution, Phys. Earth Planet. Int., 108 (1), 15–32.

Bergantz, G. W., and J. Ni (1999), A numerical study of sed-
imentation by dripping instabilities in viscous fluids, Int. J.
Multiphase Flow, 25 (2), 307–320.

Bourgouin, L., H. B. Mülhaus, A. J. Hale, and A. Arsac (2007),
Studying the influence of a solid shell on lava dome growth and
evolution using the level set method, Geophys. J. Int., 170 (3),
1431–1438.



SUCKALE ET AL.: BUOYANCY-DRIVEN FLOW AT LARGE VISCOSITY CONTRASTS B07409 - 15

Chern, I. L., and Y. C. Shu (2007), A coupling interface method
for elliptic interface problems, J. Comput. Phys., 225 (2),
2138–2174.

Chopp, D. L. (1993), Computing Minimal Surfaces via Level Set
Curvature Flow, J. Comput. Phys., 106 (1), 77–91.

Chopp, D. L. (2001), Some Improvements of the Fast Marching
Method, SIAM J. Sci. Stat. Comput., 23 (1), 230–244.

Chopp, D. L. (2009), Another look at velocity extensions in the
level set method, SIAM J. Sci. Comput., to appear, 31 (5),
3255–3273.

Christensen, U. R. (1992), An Eulerian technique for thermome-
chanical modeling of lithospheric extension, J. Geophys. Res.,
97 (B2), 2015–2036.

Conrad, C. P., and P. Molnar (1997), The growth of Rayleigh-
Taylor-type instabilities in the lithosphere for various rheolog-
ical and density structures, Geophys. J. Int., 129 (1), 95–112.

Deubelbeiss, Y., and B. J. P. Kaus (2008), Comparison of Eule-
rian and Lagrangian numerical techniques for the Stokes equa-
tions in the presence of strongly varying viscosity, Phys. Earth
Planet. Int., 171 (1–4), 92–111.

Elkins-Tanton, L. T. (2007), Continental magmatism, volatile re-
cycling, and a heterogeneous mantle caused by lithospheric
gravitational instabilities, J. Geophys. Res, 112 (B3), B03,405.

Enright, D., R. Fedkiw, J. Ferziger, and I. Mitchell (2002), A
Hybrid Particle Level Set Method for Improved Interface Cap-
turing, J. Comput. Phys., 183 (1), 83–116.

Enright, D., F. Losasso, and R. Fedkiw (2005), A fast and ac-
curate semi-Lagrangian particle level set method, Comput.
Struct., 83 (6-7), 479–490.

Fedkiw, R. P., T. Aslam, B. Merriman, and S. Osher (1999),
A Non-oscillatory Eulerian Approach to Interfaces in Multi-
material Flows (the Ghost Fluid Method), J. Comput. Phys.,
152 (2), 457–492.

Fleitout, L., and C. Froidevaux (1982), Tectonics and topography
for a lithosphere containing density heterogeneities, Tectonics,
1 (1), 21–56.

Gerya, T. V., and D. A. Yuen (2003), Characteristics-based
marker-in-cell method with conservative finite-differences
schemes for modeling geological flows with strongly variable
transport properties, Phys. Earth Planet. Int., 140 (4), 293–
318.

Gerya, T. V., and D. A. Yuen (2007), Robust characteristics
method for modelling multiphase visco-elasto-plastic thermo-
mechanical problems, Phys. Earth Planet. Int., 163 (1-4), 83–
105.

Glimm, J., D. Marchesin, and O. McBryan (1981), A numeri-
cal method for two phase flow with an unstable interface, J.
Comput. Phys, 39 (1), 179–200.

Gross, L., L. Bourgouin, A. J. Hale, and H. B. Mühlhaus (2007),
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Text S1: Online supplement

This online supplement provides: (1) An abbreviated derivation of the jump conditions (eqs. 12 and 13)
following Kang et al. [2000]; (2) Examples of the level set function for the initial conditions of benchmark problems
1 and 3; (3) Additional results for benchmark problem 2 for viscosity contrasts of several orders of magnitude;
(4) Additional results for the non-isovisous Rayleigh-Taylor instability (sec. 5.3); (5) The convergence tests for
benchmark problems 1, 2, and 3 including a detailed plot of mass fluctuations for the isoviscous Rayleigh-Taylor
instability as specified by Van Keken et al. [1997]; (6) An example computation highlighting possible biases related
to the usage of iterative reinitialization (e.g. Sussman et al. [1994]); (7) A more detailed discussion of what we
mean by subgrid features in the context of benchmark problem 3; and (8) some background on the efficiency of
the level set method and how to optimize it.

Abbreviated derivation of the jump conditions

In this section we summarize the derivation of the jump conditions for pressure (eq. 12) and stresses (eq. 13)
closely following the discussion in Kang et al. [2000].

As discussed in section 2, the jump conditions of an interface moving with the local fluid velocity are given by n
t1
t2

 (pI − τ)nT

 =

 σκ
0
0

 , (29)

where the square brackets denote the jump across the interface. Using the definition of the stress tensor

τ = µ

 ∇u∇v
∇w

+ µ

 ∇u∇v
∇w

T

(30)

in eq. 29 yields p
0
0

− µ
 n

t1
t2

 ∇u · n∇v · n
∇w · n

− µ
 ∇u · n ∇v · n ∇w · n
∇u · t1 ∇v · t1 ∇w · t1
∇u · t2 ∇v · t2 ∇w · t2

 · n
 =

 σκ
0
0

 . (31)

Evidently, eq. 31 can also be written as three separate jump conditions:

[p− 2µ(∇u · n,∇v · n,∇w · n) · n] = σκ (32)[
µ(∇u · n,∇v · n,∇w · n) · t1 + µ(∇u · t1,∇v · t1,∇w · t1) · n

]
= 0 (33)

[µ(∇u · n,∇v · n,∇w · n) · t2 + µ(∇u · t2,∇v · t2,∇w · t2) · n] = 0. (34)

In viscous flows, the velocities across fluid interfaces are continuous

[u] = [v] = [w] = 0. (35)

Furthermore, fluid interfaces cannot support shear stresses implying that the tangential velocity derivatives are
continuous as well

[∇u · t1] = [∇v · t1] = [∇w · t1] = 0 (36)
[∇u · t2] = [∇v · t2] = [∇w · t2] = 0. (37)

Rewriting the incompressibility condition ∇ · v = 0 as

(∇u · n,∇v · n,∇w · n) · n + (∇u · t1,∇v · t1,∇w · t1) · t1 (38)
+(∇u · t2,∇v · t2,∇w · t2) · t2 = ∇ · v = 0, (39)

it follows from eqs. 36 and 37 that
[(∇u · n,∇v · n,∇w · n) · n] = 0. (40)
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Figure S 1. Plot of the level set function represent-
ing a spherical drop, benchmark problem 1. The level
set function φ is plotted on the vertical axis. The level
set function intersects with the physical domain only at
φ = 0. The x- and y-axis of the physical domain are
displayed at the φ = 0-level to highlight this fact. The
interface between the viscous drop and the surrounding
fluid coincides with the zero level set and is highlighted
in red. The two fluids inside and outside the drop are
indicated in blue and grey, respectively. Note that the
blue phase corresponds to the domain for which φ < 0
and the grey phase to the domain for which φ > 0.

Thus, from combining eqs. 40 and 32 we obtain

[p] = σκ+ 2[µ](∇u · n,∇v · n,∇w · n) · n , (41)

which is the jump condition for pressure (eq. 12) discussed in section 3.1.2 in the paper. For the derivation of
the jump in normal-stresses, eqs. 33, 33, 36, 37, and 40 can be compiled to obtain n

t1
t2

 [µ∇u]
[µ∇v]
[µ∇w]

 n
t1
t2

T

= [µ]

 n
t1
t2

 ∇u∇v
∇w

 0
t1
t2

T

+ [µ]

 n
0
0

 ∇u∇v
∇w

 n
0
0

T

− [µ]

 0
t1
t2

 ∇u∇v
∇w

 n
0
0

T

, (42)

which can be rewritten to yield the expression for the stress-jump used in the paper (eq. 13, sec. 3.1.2): [µux] [µuy] [µuz]
[µ vx] [µ vy] [µ vz]
[µwx] [µwx] [µwx]

 = [µ]

 ∇u∇v
∇w

 0
t1
t2

T 0
t1
t2

+ [µ] nTn

 ∇u∇v
∇w

nTn

− [µ]

 0
t1
t2

T 0
t1
t2

 ∇u∇v
∇w

T

nTn . (43)
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Figure S 2. Illustration of the connection between the
physical domain and the level set function for the initial
condition of the isothermal Rayleigh Taylor instability,
benchmark problem 3 (sec. 4.3). The level set function
φ is plotted on the vertical axis. It intersects with the
physical domain only at φ = 0. The x- and y-axis of
the physical domain are displayed at the φ = 0-level to
highlight this fact. Note that the interface in the physical
domain coincides with the zero level set. The two fluid
phases are shown in blue and grey, respectively. The blue
phase is represented by the domain φ < 0 and the grey
phase by the domain φ > 0.

Recasting the jump conditions in this way (eq. 43) has the advantage that the jumps in the stresses (left hand side
of eq. 43) are reduced to the jump in the viscosity combined with various components of the velocity derivatives
which are continuous and can be approximated through finite differences (right hand side of eq. 43).

Level-set functions for problems 1 and 3

Instead of tracking specific coordinates on the interface (typically stored in a vector, a 1D object), level set
methods work by placing a grid on the interface and defining an auxiliary function everywhere on that grid
(typically stored as a matrix, a two-dimensional object). This leads to the common notion that level set methods
add an additional dimension to the problem. The auxiliary function, or level set function, is constructed such
that it has negative values for grid points located in fluid phase 1, positive values for grid points located in fluid
phase 2, and zero values directly at the interface, allowing for an easy identification of which phase a grid point
is located in. In a dynamic setting, it turns out to be advantageous to construct the level set function as a signed
distance function (sec. 3.2), meaning that for each grid point the shortest distance to the interface is assigned as
the function value. The sign is determined based on the fluid phase the grid point is located in. Examples of the
level set functions representing the initial conditions for both benchmark problems 1 and 3 are shown in Figures
S1 and S2.

Pressure jump for weak inclusions at extremely large viscosity contrasts

When presenting our results for benchmark problem 2 (see sec. 5.2), the viscosity contrast is set to Π1 = 10−3

to allow for an easy comparison with previous numerical results by Deubelbeiss and Kaus [2008]. Our ghost-fluid-
type method can also handle viscosity contrasts of numerous orders of magnitude as illustrated in Figure S3 for
Π1 = 10−6 and Π1 = 10−10. Note that the percentage error in these computations is approximately the same
despite the higher viscosity contrast. The reason is the discretization of the jump conditions (see eqs. 4 and 13),
where the viscosity jump multiplies the viscous contribution to the jump which is not discontinuous and can thus
be discretized without difficulties. In all of these computations, the grid resolution is set to 150× 150 to highlight
that the treatment of larger viscosity contrasts does not require higher grid resolutions.

3



Figure S 3. Numerical (left) and analytical (middle)
solution for the pressure field for benchmark problem 2.
The viscosity contrast between inclusion and surround-
ing matrix is 6 (top row) and 10 (bottom row) orders of
magnitude. The right panels shows the percentage error
for both computations. The grid resolution is 150 × 150
in both cases.
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Figure S 4. The isothermal Rayleigh-Taylor instability
with viscosity contrast Π2 = 10 at non-dimensional time
t=500. The computation was done with a grid resolution
of 250× 275.

Non-isovisous Rayleigh-Taylor instability

We compute the evolution of the Rayleigh-Taylor instability characterized by Π2 = 1 and a viscosity ratio
Π1 = 10 until non-dimensional time step t = 500. Similar to the isoviscous case, we observe a very close
correspondence between the level-set-based computation and the marker-chain simulations by Van Keken et al.
[1997] (see Fig. S4). The initial growth rate of the instability is γ ≈ 0.04809 compared to the marker-chain value
of 0.04815. It is difficult to evaluate which one of these two values is more accurate, since the growth rate is known
analytically only for infinitesimal initial perturbations of the interface. We note that the deviation between the
two values is comparable to the deviation of growth rates observed in the isoviscous case (see Table 2).

Convergence tests for benchmark problems 1, 2, and 3

Benchmark problem 1 is targeted specifically at verifying whether the jump conditions at the interface are
resolved accurately and at identifying the minimum grid resolution required for that purpose. Although only
three points are necessary to build ghost-fluid-type stencils (sec. 3.1.1), this does not guarantee convergence. We

21 x 21 41 x 41

y y
x x

P

31 x 31

y
x

P P

Figure S 5. Convergence test for benchmark problem 3.
Shown are the numerical solutions for the pressure jump
due to surface tension at the interface between a viscous
drop and the surrounding fluid at grid resolutions 21×21
(left), 31 × 31 (center), and 41 × 41 (right). Each dot
represents one grid point. Although the jump as such
is resolved sharply without artificial smoothing at all of
these resolutions, a minimum of ≈ 15 grid points in both
the x- and y-direction are required inside of the drop to
resolve its spherical shape.
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Figure S 6. Convergence test for benchmark problem
2. The viscosity contrast is Π1 = 10−3 as discussed
in the paper, sec. 5.2. The shown grid resolutions are
20 × 20 (top) and 80 × 80 (bottom). In both cases, we
contrast numerical (left) and analytical solution (right).
The comparison shows that the additional challenge of
benchmark problem 2 as compared to benchmark prob-
lem 1 lies in fully resolve the magnitude of the pressure
jump, for which high resolution is required.

note that a convergence proof for ghost-fluid methods exists [Liu and Sideris, 2003], but for practical purposes
it is often a concern whether the required resolution can be reached given available computational resources.
Figure S5 shows that although the magnitude of the jump is approximated correctly at all grid sizes, resolving
the circular shape of the bubble requires a minimum of ≈ 15 grid points in both x- and y-direction inside of
the bubble. This is an encouraging result, since resolutions in this range are feasible even in three dimensions.
Although the jump conditions in benchmark problem 2 are more challenging to resolve numerically than the
surface-tension-related jump in pressure in benchmark problem 1, we observe that the pressure jump is captured
sharply and without spurious oscillations even at very low resolution (see Fig. S6). The additional challenge as
compared to benchmark problem 1, is to accurately resolve the magnitude of the jump which could be computed
accurately even at minimal grid resolutions for benchmark problem 1. Figure S6 shows two example computations
at a grid resolution of 20× 20 and 80× 80. The percentage error in estimating the maximum pressure jump is 19
% and 8%, respectively.

The dynamics of benchmark problem 3 are not dominated by the jump conditions. Thus, it serves primarily
as a verification for the computation of the rise speed of the instability and the advection of the interface. In
addition to the convergence test for grid resolution (Fig. S7), we also performed a convergence test for the
required temporal resolution (Fig. S8). We observe that the calculation is well converged for grid sizes exceeding
100×110 and incremental time steps of ∆t ≤ 25∆x. In order to quantify the accumulation of numerical error –
an important concern in dynamic problems – we plot the mass fluctuations in the buoyant phase in Figure S9.
Although we observe notable fluctuations, particularly towards the end of the computation, these fluctuations
remain < 1% error, indicating that the numerical solution is still reliable.
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Figure S 7. Convergence test for the isothermal and iso-
viscous Rayleigh-Taylor instability, benchmark problem
3. A lack of convergence is easiest to identify during the
phases of rapid rise of an instability. We illustrate this
for the rise of the secondary instability on the right side
of the box at time t=1000 and four different grid sizes:
60×66, 80×88, 100×110, and 120×132. We observe con-
vergence for grid sizes above 100×110.
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Figure S 8. Convergence test for the isothermal and
isoviscous Rayleigh-Taylor instability, benchmark prob-
lem 3. Analogous to Fig. S7, we illustrate this conver-
gence test for the rise of the secondary instability at time
t=1000. The four interfaces were computed based on
the time steps: ∆t = 180∆x, ∆t = 90∆x, ∆t = 45∆x,
and ∆t = 25∆x. We observe convergence for time steps
∆t ≤ 25∆x.
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Figure S 9. Illustration of the accumulation of numer-
ical error over time reflected in mass fluctuations. The
plot shows the mass of the buoyant phase as a percentage
of its initial mass. This plot compares to a similar plot
presented by Schmalzl and Loddoch, [2003]. We note that
fluctuations < 1% are not unexpected in complex fluid
dynamical simulations. Overall, the mass conservation is
satisfactory.

Possible biases related to iterative reinitialization techniques

Iterative reinitialization relies on a fundamentally different approach to coupling the fluid and the interface
solver than the one adopted in our method (sec. 3.3). Instead of constructing an extension velocity function, the
physical velocity field is used to advect the level set function (eq. 22). As a consequence, the normalization of
the level set function needs to be restored continuously - a procedure known as re-initialization. The need to re-
initialize was first noted by Chopp [1993]. The approach most commonly used to accomplish re-initialization was
developed by Sussman et al. [1994] drawing on prior work by Rouy and Tourin [1992]. The idea is to iteratively
find a solution to the so-called re-initialization equation

∂φ

∂τ
+ sign(φ0)(1− |∇φ|) = 0 , (44)

where τ is the pseudo-time and sign(φ0) the signum function referring to φ0 = φ(τ = 0). We refer to τ as a
pseudo-time scale, because it does not correspond to an actual time scale in the physical problem.

Unfortunately, the iterative solution to the re-initialization is known to be prone to spurious mass loss and
artificial front repositioning (e.g. Adalsteinsson and Sethian [1999], Sethian [1999a], Sussman et al. [1998], Chopp
[2009], Keck [2007]). We implemented the iterative re-initialization procedure by Sussman et al. [1994] to test
its performance for the isothermal Rayleigh-Taylor instability (benchmark problem 3) and indeed observed both
substantial mass loss and significant variations in the final position of the interface. Figure S10 illustrates our
findings. The instability on the left (Fig. S10 A) is computed based on the extension velocity approach adopted
in this paper. The other two (Fig. S10 B and C) are both based on the iterative reinitialization by Sussman et al.
[1994], but reinitialize more (C) or less (B) frequently and use different iterative parameters to solve equation 44.
This comparison highlights that while it is certainly possible to obtain the ’correct’ interface based on iterative
reinitialization (Fig. S10 B), the accuracy of the solution depends sensitively on the details of the reinitialization
procedure and the resulting biases can be substantial. Since iterative reinitialization is still commonly used (e.g.
Gross et al. [2007]; Bourgouin et al. [2007], it is important to be aware of these potential problems.

Subgrid features

In section 6.2, we discuss the role of subgrid features in the context of comparing the level set method to
tracer approaches. We consider a certain feature of the interface to be subgrid, if the length scale associated
with it is smaller than the resolution afforded by the fluid solver. An example is shown in Figure S11. Plotted
is the numerical solution of the isothermal and isoviscous Rayleigh-Taylor instability at t=1500 computed by the
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Figure S 10. Illustration of the potential bias in-
troduced through an iterative reinitialization procedure.
The left figure (A) shows the isothermal and isoviscous
Rayleigh-Taylor instability at t=1500 computed with ex-
tension velocities. The other two figures (B) and (C)
are based on an iterative reinitialization procedure, but
different parameters are used in the iteration. For case
(B) a single reinitialization iteration is performed at each
computational time step ∆t and ∆τ = 0.9∆x is used in
the numerical solution of equation 44. For case (C) 20
iterative reinitialization steps were taken at each physi-
cal time step ∆t with ∆τ = 0.9∆x/20. All computations
were performed on a 120×132 grid.

tracer-based finite-difference method by Schmeling. For the numerical details please refer to Van Keken et al.
[1997]. The descending instability in the center is accompanied by a thin tentacle, which is observed to various
degrees in all of the explicit interface representation techniques (i.e. both tracer computations and, to a much
smaller degree, also for the marker chains). In the computation shown in Figure S11, the Stokes equation is solved
on a structured finite-difference grid of size 81 × 81. To visualize the resolution afforded by this choice of grid
size, we overlay the thin tentacles located to the right of the descending instability on a grid of approximately
that size. The length scale at which the Stokes equation is approximated numerically is given by the size of these
grid cells. Evidently, the thickness of the tentacle falls well below the resolution limit of the fluid solver. In this
case, it becomes a non-trivial challenge to accurately solve the equations of motion.

Efficiency considerations for the level set method

The most substantial gain in efficiency from using a level set representation of a dynamic interface instead of
an explicit method (sec. 3.2) will occur in flow problems with strongly deforming interfaces such as benchmark
problem 3. The level set method is based on an implicit view of the interface, which means that the compu-
tational effort required to represent it is essentially independent of its complexity. However, the details of the
level set implementation also affect efficiency sensitively and special techniques have been developed to optimize
the method, most notably the narrow-band method [Adalsteinsson and Sethian, 1995]. We also note that the
computation of extension velocities based on the fast-marching method is computationally more efficient than the
iterative reinitialization approach [Adalsteinsson and Sethian, 1999].
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Figure S 11. The Rayleigh-Taylor instability as com-
puted by the HS-tracer method at time t=1500. The
equations of motion for this simulation were solved on
an 81×81 grid. The right panel is a zoom onto the peak
located left of the descending instability. Each blue dot
represents one particle and the grid represents a rough
estimate of the scale at which the flow field is approxi-
mated correctly.
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