GEOMETRIC SELF-ASSEMBLY OF RIGID SHAPES: A SIMPLE
VORONOI APPROACH
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Abstract. Self-assembly of shapes from spheres to non-smooth and possibly non-convex shapes,
are pervasive throughout the sciences. These arrangements arise in biology for animal flocking and
herding, in condensed matter physics with molecular and nano self assembly, and in control theory for
coordinated motion problems. While idealizing these often non-convex objects as points or spheres
aids in analysis, the effects of shape curvature and convexity are often dramatic, especially for short-
range interactions. In this paper, we develop a general purpose model for arranging rigid shapes in
Euclidean domains and on flat tori. The shapes are arranged optimally with respect to minimization
of a geometric Voronoi-based cost function which generalizes the notion of a centroidal Voronoi
tessellation from point sources to general rigid shapes. Building upon our previous work in [44], we
present an efficient and fast algorithm for the minimization of this nonlocal, albeit finite-dimensional
variational problem. The algorithm applies in any space dimension and can be used to generate self-
assemblies of any collection of non convex, piecewise smooth shapes. We also provide an approximate
result for the minimizers of this cost function which supports the intuition that self-assembled shapes
should be centered in and aligned with their Voronoi regions.
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lation (CVT), distance functions, energy minimization, L-BFGS quasi-Newton method, Wasserstein
distance, generalized Lloyd’s method.
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1. Introduction. Self-assembly, a process whereby a disordered system of com-
ponents forms an organized, structured pattern solely as a consequence of component
interactions, is both ubiquitous in nature and important for the synthesis of many
designer materials. Self-assembly of structures appears throughout the entire spec-
trum of length scales [67], from the microscopic to the macroscopic. Examples include
molecular self-assembly [68], self-assemblies of nano particles [32, 31] (in particular,
block copolymers [5, 28]), animal flocking, swarming and herding [16, 17], and prob-
lems concerning the control of coordinated motion [2]. Models for such self-assembly
can be based on molecular dynamics [63]; statistical physics [37]; or variational prob-
lems involving long-range interactions [56, 6].

Many of these models highlight a general theme that self-assembly is often dic-
tated by a competition of short and long-range interactions amongst the particle ele-
ments. If one fixes the geometry of the component structures, the effective unit of the
assembly, a common theme associated with long-range interactions is the propensity
for structures to spread apart from each other subject to the confinements of the phys-
ical domain. In this article we focus entirely on this separation effect, and consider a
simple, purely geometric variational model which can be conveniently posed in terms
of distance functions and Voronoi regions. Precisely, the self-assembly phenomenon
we address is the following simple paradigm. Suppose we are given a finite collection
of shapes S; in a convex, bounded domain 2 C R¥ which can be moved either by
translation or rotation. These shapes can be thought of as compact sub-manifolds of
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codimension 1,...,N. It is then natural to ask:

« How do these shapes arrange or self-assemble to “best spread out” in 7

. What are the optimal arrangements and is there a way of quantifying which
are better?

. Can we create a fast and efficient algorithm to self-assemble rigid particles
into an optimal arrangement?

Fig. 1.1: Left: Initial configuration of circles. Right: An “optimal” arrangement where
the circles are “spread out” or “separated.” The distance to the closest circle is shown
in gray.

Figure 1.1 illustrates an initial configuration of different circular shapes in a square
and an “optimal” arrangement where the circles are “spread out” or “separated”. The
goal of this paper is to give precise meaning to an optimal arrangement and address
these questions by providing a simple variational model together with an efficient
algorithm for its minimization. The model we focus on is a natural extension of a
standard variational approach to centroidal Voronoi tessellations (CVT) for points
that applies in any space dimension (cf. [23, 24]). We will show that this general-
ization of CVT provides a flexible, geometric optimization algorithm which can be
applied to assemble a collection of arbitrary shapes, even for highly overlapping ini-
tial arrangements. These shapes may be non-convex with non-smooth boundaries.
Previous work on this generalization of CVT has been done for line segments and
other simple shapes [35, 48, 57]. Ours is the first to consider the variational problem
for general shapes in arbitrary dimensions, and show how its structure is amenable to
a flexible, fast algorithm for direct energy minimization.

2. The Model. Consider arranging n shapes in a bounded, N-dimensional con-
vex domain 2. We assume that there is some continuous probability density function
over our domain, p € L'(Q). Areas of high density will cause shapes to cluster. We
will denote the shapes by Sy, ...,S,. Although many of the concepts presented here
are well-defined for general subsets of 2, we will assume throughout that the shapes
S; are piecewise-smooth compact manifolds embedded in 2 of codimension between 1
and N, inclusive. For instance, in R2, the shapes can be points and curves, and in R3,
they can be points, curves and surfaces. The Voronoi (or generalized Voronoi)
region corresponding to shape S; is the region of () that is closer to shape S; than
to any other shape. In order to achieve disjoint regions which partition €2, we need a
tie-breaking rule for points which are equidistant to two or more generators. Hence



define
Vi = {x €N ‘ d(x,S;) < d(x,S;)Vj #z} U {x €N ‘ d(x,S;) = d(x,S5;) 1 <j}.

where

d(X7S’i) = ylgfg |X_y|a

the Euclidean distance from x to the closest point in the set .S;.

To model the rigid motion of the shapes, we parametrize each shape by its cen-
troid and angles of rotation. We can then define our cost function in terms of this
parametrization, and study how it behaves under translations and rotations. Let x; be
the N x 1-dimensional vector describing the centroid of shape .S;, and «; the (g ) x 1-
dimensional vector of angles that describe the rotation of S; about its center of mass.

Moreover, let X denote the vector of stacked center locations for all n shapes, and «
(k)

the vector of stacked angles, while z;"’ denotes the k'™ component of the translation

(

vector for S; and similarly for aik). We denote the associated placement of shape S;

in space is given by S;(x;, o).

We can now define the cost function that takes low values when the shapes
are “well-centered” within their Voronoi regions: Given a fixed integer p > 1 and
(X, ) = (X1,.-.,Xpn,Q1,...,05) be such that each S;(x;, ;) C , we define the
Arrangement Energy (or Cost) of Sy,...,S, by

F(X,a) = Z/V (v, Si(xi, @) ply) dy. (2.1)

Note here that each V; depends on the the parameters x; and «; but also the pa-
rameters of all neighboring Voronoi regions, x; and ;. This energy can be written
without explicit mention of the Voronoi regions as

FX,a) = /Q dP (y, CJ Si (x4, ai))p(y) dy.

We choose the form (2.1) as it both provides the right motivation and interpretation
of the energy, and moreover, it is directly linked to the analysis and computation of
the associated variational problem (2.2).

When the shapes S; are simply points and p is taken to be 2, criticality of the
energy with respect to perturbations of X leads to the following geometric criteria:
The points should be at the centroids of the Voronoi regions they generate ([23]).
Such a critical collection of points gives rise to what is known as as a centroidal
Voronoi tessellation (CVT) of the domain Q (illustrated in Figure 2.1). This geo-
metric characterization of critical points of the energy gives rise to a simple iterative
algorithm for computing minimizers known as Lloyd’s method [47, 23]. It is based
upon a simple iterated step: project each point to the center of mass of its Voronoi
region and then recompute the Voronoi regions for the new point set. The optimal
arrangement is obtained at a fixed point of this projection. The globally optimal point
configuration in R? gives rise to regular hexagonal Voronoi regions [27, 53]; in R?, the
dual of the body-centered cubic lattice has been shown numerically to give the lowest



4 L.J. LARSSON R. CHOKSI J.-C. NAVE

Fig. 2.1: Left: The Voronoi diagram (or Voronoi tessellation) associated with a collec-
tion of points. Right: An arrangement of points which generated a centroidal Voronoi
tessellation.

arrangement cost [25].
We now postulate a self-assembly of shapes S; in 2 by minimizing F' over all
(X, ) such that S;(x;, ;) CQ,i=1...n. We call

S1(X1, al)a ey Sn(xna an)

an optimal assembly (or arrangement) if the parametrization (X, a) lies at a
critical point of the arrangement cost F. It is a ground state assembly (or ar-
rangement) if the arrangement cost F is at its global minimum. Such a minimizer
exists due to the continuity of the cost function F', see Appendix A.

For any fixed collection of shapes S;, the variational problem

in F(X 2.2
(i (X, o), (2.2)

is finite-dimensional. Two central issues prevail:

1. To treat this energy either analytically or numerically, we must integrate
over the a priori unknown Voronoi regions V;. Unlike with the case of point
generators, the Voronoi regions V; and the associated generalized Voronoi
diagram

Uiz (ViNVj) = Uiz (OV; N OV})

are not simple polygons. Here V; and dV; denote the closure and boundary of
the set V;, respectively. These regions neither have to be convex nor simply
connected. Numerically finding these regions explicitly, and then integrating
over them is computationally costly (cf. [44]). On the other hand, simple
geometric algorithms like Lloyd’s method for points ([23]) do not directly
carry over for general shapes.

2. Even with the simple case of points, and after modding-out symmetries, the
energy landscape of F' is highly non-convex with many local minimizers. This
leads to the important question of how one accesses low energy self-assemblies,
bypassing energy barriers.

To address 1, we make the key observation that in order to pursue gradient



descent or quasi-Newton iteration for the minimization of F', one does not need to
find (resolve) the Voronoi regions V; explicitly but rather simply evaluate integrals
of certain functions over the V;. In our previous paper [44], we presented an indirect
fast iterative integration algorithm to evaluate such integrals over the Voronoi regions
which bypasses the explicit calculation of the Voronoi regions. Rather, it relied on
the iteration of a Markov kernel operator until the input density is accumulated in a
neighborhood of the generators. This approach transforms the problem completely:
instead of integrating a density over a priori unknown regions, we evolve the input
density to be able to integrate over known regions. As we show in Section 4, this crucial
step will enable us to produce an efficient and fast algorithm to simulate optimal
arrangements via the minimization of F'. Although algorithms exist for certain shape
ansatzes, for example [35], as far as we know this is the first work to present and
implement an efficient algorithm to generate optimal arrangements of general shapes
in two and three space dimensions.

In Section 6, we use the model to address the analogue of Lloyd’s method for
shapes by incorporating higher order moments of the generalized Voronoi regions. In
Section 7.2, we note how the model can be conveniently rephrased in terms of the
Wasserstein distance from Optimal Transport. We discuss some applications of the
model and our algorithm in Section 8.

3. The Arrangement Energy and its Derivatives. When the shape S; un-
dergoes a translation or rotation, its Voronoi region will change. In this way, the
arrangement cost function is a nonlinear function of the parametrization, as both the
integrand and the domain of integration depend on (X, ). Rigidly perturbing S; will
not only change the Voronoi region V;, in fact, it will change all neighboring Voronoi
regions as well.

First we note that the energy F' is a continuous function of its arguments (X, a) €
RY™ x RN™™ where N* = (g) = N(N#_l) (see Appendix A). Hence a minimum
of F—the ground state self-assembly—must exist. Specifically, the continuity of F'
immediately implies

THEOREM 3.1. Given

1. Q C RV, either a bounded convex domain or a flat compact torus;
2. generators St, ..., Sp, n < 0o, parametrized by X and o;
3. a density p € L' ().
Then a minimizer (X*, a*) of the energy F' over all (X, ar) such that
Si(xi, o) CQ, i =1,...n exists.

Our approach to the minimization of F' will be based upon gradient decent. In this
section, we compute the necessary partial derivatives of the energy. It is convenient
here to make some assumptions on the generating shapes S;. Let us assume that the
S; are boundaries of simply connected domains in 2 which are Lipschitz and in fact
piecewise C'. It is not hard to see the boundaries of the Voronoi regions V; will then
also be Lipschitz and piecewise C'. Indeed, the boundary of each V; consists of a
finite number of pieces which are the zero level set of the difference of two distance
functions: ¢;, the distance to S; and ¢;, the distance to some neighbouring generator
S;.

To compute partial derivatives of the energy,

FX,a) = Z/V d*(y, Si(X, a))p(y) dy,



6 L.J. LARSSON R. CHOKSI J.-C. NAVE

let us focus on the partial derivative with respect to xgk), where k = 1,..., N denotes
the k-th component of z;. Note that with the other x; (j # i) fixed, the only
dependence of F' on xgk) comes from the integrals over V; and the neighbouring Voronoi
regions. Let N; denote the indices of the shapes that are neighbors to S;. Note that
the dependence on ng) in the integral over V; comes in the integrand and the region
of integration, while for the neighbouring V;,j € N, it is only through the regions
of integration. In the Appendix, we show that we have sufficient regularity to invoke

the Reynold’s Transport Theorem (Theorem A.4). In doing so, we find

OF / oy
= ?(y,S) | —— n ds 3.1
22~ o, (y, Si) ( PRO) ) p(y) (3.1)

/V
+

(k) dp(yy S?) p(Y) dy
i fEi

D dy
+ Z /avmvjd (¥, 55) (axgk)'(—n)> p(y) dS, (3.2)

JEN;

where n denotes the outer normal to V; and dS denotes the surface measure. By
definition, d(y,S;) = d(y, S;) for y € 9V, N9V}, and Ujen, (OV; N IV;) = 9V;, so the
boundary terms (3.1) and (3.2) are equal and opposite. Thus we have

oF o
e ® /v de(Ya S;) p(y) dy. (3.3)

On the other hand, it is useful to have expressions for both n and the derivatives

%. To this end, note that any point along dV; N dV; belongs to the set
Ty

and hence the unit outward normal to V; for y € 0V; N dV; can be expressed as

n

For any y € 0V; N AV}, using implicit differentiation direct calculation shows that

0
dy ay(k)d(y’ Si)

020~ Vd(y,8;) = Vdly, S;)’

O]

The derivative of ' with respect to «; ' is computed as

OF B
PNOE /V O d"(y, Si)p(y) dy. (3.4)

i

In these first derivative calculations the flux (boundary) terms vanished. Hence
they consist only of bulk integrals over the Voronoi regions which can be efficiently
computed via an indirect kernel iteration method which was presented in [44] and
discussed in Section 4.2. However, the second derivative calculations do involve non-
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vanishing flux integrals which are not taken over the full boundary of the Voronoi
regions. Indeed, we have

0’F 0 dy 0?
e _____qP . Y . I / 2 .
O = b 5 S) ( e n) P S + [ iy, 50 o)

%

and for j € Ny,

0*F b dy

S — _Y p ) )

azMagd /()Vnav- 8x(k)d . 5 (8:5(,5) n) p(y)dS. (3.5)
? J ° J A ]

All other entries of the Hessian are zero. By replacing x; with «; and x; with «;
above, the Hessian entries for a can be computed. Simplified formulas in the case
where the S; are points can be found in [36, 46].

To finish calculating the energy derivatives (3.3)-(3.4), it only remains to calculate
the derivatives of the function dP(y, S;). In some cases, this distance function can be
written down and the derivatives explicitly computed. This is the case, for example,
when dealing with lines, spheres, ellipsoids, and points. For all other shapes, however,
the distance function d(y,S;) is not explicitly available. We next describe how the
derivative of the squared distance can be computed in terms of the solution of an
Eikonal equation. The Eikonal equation is a nonlinear boundary value problem that
solves for the distance from a given zero level set. In particular, given a shape S;, we
solve for ¢:

{|V¢| =1 inQ\S;, 36)

o(S;) =0.

The solution of this boundary value problem gives the minimum distance! to S; from
any point in €, that is d(y, S;) = ¢(y). Using this equality, and noting that rotations
and translations are isometries, we are able to finish calculating the gradient of the cost
function. In RY, the derivatives of the squared distance with respect to translation
can be formulated in terms of the eikonal solution as follows:

adr(y, S;) —
Tu = o) (5,090))- (3.7)

To evaluate the Hessian, the following second derivatives would be necessary:

0 - 98(y)\ (900(y) - Po(y)
8x§k)a$§l)dp(y’ SZ) =p (pfl) ¢p 2(Y) (6y(k) ) ( 8y(l) ) +p ¢p l(y) <8y(’f)6y(l))

In R2, the derivative with respect to rotation is:

%‘Z;Sﬁ —p oy (Voty) (_?/;20 ). (3.8)

Similarly, the derivatives of the squared distance with respect to rotations in R? are

n the literature, often the signed distance function is considered. Note that the solution to
(3.6) gives the unsigned distance function.
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given by:
0 _y(3) y(2)
odP (y, S; _
% =po)’ [ ¥y 0~y ) Ve(y). (3.9)
«; _y(2) y(l) 0

4. Direct Energy Minimization. For the case of points, there is a simple
geometric consequence of criticality of the energy, which leads to Lloyd’s method.
For general shapes, such a characterization is not so straightforward (cf. Section 6).
Moreover, Lloyd-type algorithms converge only linearly. Hence in this section, we
proceed with direct energy minimization via a quasi-Newton method. While at first
sight this might seem straightforward for this finite-dimensional problem, it presents
certain challenges.

« We must compute the level set (distance) function for the generators if an
explicit formula does not exist.

. The integrals associated with these gradients are defined over a priori un-
known sets (Voronoi regions). Regardless of an explicit or numerically gener-
ated computation of the integrands in the first-order gradients, these integrals
are defined over a priori unknown sets. To first resolve these regions at every
step and then integrate is computationally intensive. Luckily, these a priori
unknown sets do not need to be computed explicitly: rather, one only needs
a quick and efficient way of computing integrals over the Voronoi regions and
such a method is center piece of our earlier work [44]. For completeness, we
describe this method below in Section 4.2.

o While our indirect integration algorithm will allow us to quickly compute
gradients, the second derivatives include flux integrals over certain parts of
the boundary of the Voronoi regions. Hessian calculations are thus costly and
quasi-Newton methods are preferable over direct Newton methods. To this
end, we invoke the limited memory BFGS method (L-BFGS) described below
in Section 4.3.

The first step of our direct energy minimization algorithm is the computation of
the distance functions in cases where an explicit formula is not available.

4.1. Computation of the Distance Function. The integrands of the arrange-
ment cost derivatives 9F/9z{*) and 9F/9a" are given in terms of the distance func-
tion d(y, S;) and its derivatives (see (3.3)-(3.4) and (3.7)-(3.9)). The minimal distance
function to a shape is only given explicitly in very special cases. Computationally, the
function d(y, S;) can be obtained as the solution of the eikonal equation (3.6). To ob-
tain d(y, U, S;), the distance from any point y in the domain £ to the closest point
on any shape, one can simply solve the eikonal equation with boundary condition
P(UiL,5:) = 0.

To solve the eikonal equation numerically, a Fast Marching Method (FMM) [61,
58] or a Fast Sweeping Method (FSM) [69, 64] can be used. For both algorithms,
the boundary condition ¢(U}_;S;) = 0 must be initialized on the computational grid.
The remaining grid points are initialized to some very large positive constant. For
the FMM, the grid points comprising the zero contour are labeled as Fized, the grid
points adjacent to the zero contour are labeled as in the Narrow Band, and all other
grid points are labeled Far Away. An upwind finite difference scheme is then applied
to update the solution for all points in the Narrow Band, and the minimal value is
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relabelled Fized. Then all neighbors of this newly Fized point that were previously
Far Away are added to the Narrow Band. When all points have been labeled Fized,
iteration terminates. Given a computational grid with m grid points, the complexity of
this algorithm is O(mlog(m)) as all grid points must be visited, and a heap structure
is used to sort the candidate solution values for points in the Narrow Band.

Whereas the FMM uses the characteristics of the nonlinear eikonal equation ex-
plicitly, the Fast Sweeping Method leverages the fact that the upwind finite difference
scheme ensures information propagates correctly along characteristics to obtain a
slightly better overall complexity. A FSM iterates through all the grid points in alter-
nating directions, updating the solution at each point as the minimum of the current
and previous solution values. After a number of these “sweeps,” a stable solution is
obtained. The complexity of this algorithm given m grid points is O(m). For the
numerical results generated in this paper, a first-order FSM was used.

The gradient of the solution to the eikonal equation can be computed using upwind
finite differences, and one-sided finite differences at the boundary of the domain. To
ensure the correct derivative is taken near the shocks (the non-smooth points of the
distance function), we take the largest of the two possible one-sided differences (in
absolute value).

4.2. Integration Over Voronoi Regions: The Indirect Iterative Ap-
proach. Obtaining an optimal placement of shapes reduces to efficient and accurate
integration over generalized Voronoi regions. As we mentioned in [44] this problem is
non-trivial, and a direct approach whereby one first computes the Voronoi regions is
computationally costly. Rather in [44], we present and analyze and algorithm to inte-
grate directly, without explicitly calculating the generalized Voronoi diagram. Let us
recap the essential features and order of our algorithm. Given a collections of shapes
S; which are distributed in €2 (we suppress here the argument (x;, ;) for S;) and
some function f(y) defined on €, our goal is to compute the integral

/ f(y)dy, (4.1)
Vi

without first computing V;, the Voronoi region of S;. The algorithm is based upon
the following four steps:

(i) Using a Fast Sweeping Method [69], solve the eikonal equation for ¢ : Q@ — R,
with boundary condition ¢(U",S;) = 0 (see (3.6)).

(if) With the eikonal solution ¢, construct a kernel k(x,y) and an operator:

P(f](x) = / k(x.y)f(y) dy.

The operator P moves “mass” (given by f) towards the closest shape. To
obtain the kernel k, first compute

k(x,y) = {é¢<x> o i)ft}l:rv;ge‘.g '

Then k is the normalization of k such that k integrates to one in x. This
normalization preserves the L' norm of f: [, P[f](x)dx = [, f(y)dy. See
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[44] for details.

(iii) Then, iterate the operator until the support of P™[f](x) is concentrated in
an h-neighborhood of each shape, and integrate over these (a priori known)
regions to obtain solutions to (4.1) for i = 1,...,n.

(iv) Numerically, a finite volume method is used to discretize the operator P based
upon a spatial discretization of size h, and a summation along the grid points
closest to each shape S; will yield the solution to (4.1).

This algorithm is a discrete-space analog of evolving f in the direction of the negative
eikonal gradient. In [44], we analyzed the theoretical and numerical properties of this
algorithm: in particular, we proved the algorithm was first order in h and presented
several convergence results.

4.3. Quasi Newton Methods for CVT Energy Minimization. To compute
the critical points of the arrangement cost (2.1), we will use nonlinear solvers that find
(X*, a*) where the energy gradients are zero. For simplicity, we will use X to denote
the parameter vector (which contains X and «, stacked) in this section. Three natural
algorithms to find these critical points are gradient descent, Newton’s method, and
quasi-Newton algorithms. Starting at some initial condition X(?), gradient descent
takes steps in the direction of the negative gradient and terminates when the norm of
the gradient is sufficiently small. The descent step is

KO+ = X0 _ Ay (X0,

where v > 0 is a step length chosen using line search algorithms such as the one
proposed in [52]. The advantage of using this method is that it is straightforward to
implement, the disadvantage being that it converges linearly to a critical point.

To achieve quadratic convergence to a critical point, Newton’s method is used.
This method requires not only gradient information but also Hessian information, as
it relies on a locally quadratic approximation to the objective function to find a search
direction. The Newton update is

~ ~ ~ —1 ~
X+ — X0 _ (VQF(X(’“))) VFEX®),

where v € (0,1) is a step length parameter chosen via a line search algorithm. In the
current optimization problem, we can efficiently compute the cost gradient, but not
the Hessian. The Hessian terms contain surface integrals over the generalized Voronoi
regions, which are costly to compute. Moreover, the Hessian has many non-zero
elements, which can be inefficient to populate.

To obtain superlinear convergence to a critical point while only using gradient
information, quasi-Newton methods have been developed. Quasi-Newton methods use
a secant approximation of the Hessian, which requires only gradient information at

each step. Under the original BFGS method, an initial guess, H(®) ~ (V2F()~((O))>

of the inverse Hessian of the objective function is specified, and subsequent iterations
update the inverse Hessian using the inverse BFGS formula [54, 55]. The BFGS
formula for the inverse Hessian is:

H® _ (U(k—n)T HE-DYk-1) 4 p-1)gk-D) (S<k—1>>T 7
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where

gk—1) . xx(k) _ 5((1«—1)7 y(k—l) = qk _ G(k—l),
p(kfl) =1/ <<y(k1)>Ts(k1)) , Uk .—1_ p(kq)y(kﬂ) (s(’“l))T

such that G = VF ()NC) is the gradient of the arrangement cost, k is the index the
iteration of the algorithm, and I denotes the identity matrix of dimension n(N + N*).
A limited memory version of BFGS (L-BFGS) [55] was developed for large-scale
problems that only uses gradient information from M previous steps to calculate the
approximate inverse Hessian. Typically, M is set between 3 and 20 [45]. In the
supplementary videos, gradient descent with a small step size was used to illustrate
the gradient flow of the arrangement energy. To obtain efficient optimal arrangements,
the L-BFGS algorithm was used with the Moré-Thuente line search algorithm [52].

4.4. The Full Algorithm. To conclude, the energy derivatives from Section
3 can be computed using a combination of the Fast Sweeping Method [69] and a
generalized Voronoi integration algorithm [44]. These derivatives are used by L-BFGS
to iteratively compute search directions that efficiently locate optimal arrangements.
We present the full algorithm in Appendix B.

5. Results for Shapes in 2D and 3D. Here we present some results of our
algorithm for certain rigid shapes in 2D and 3D. In all cases the density p is taken
to be constant. We choose to focus on the case p = 2 for direct comparison with ex-
isting results on CVTs. L-BFGS was run with parameter M = 6, stopping criterion
|[VF| <5 x 107* and the Moré-Thuente line search [52]. As we shall see, this stop-
ping criterion is readily achieved with only a few quasi-Newton iterations, typically
anywhere between 10 and 30. In each iteration, the energy and energy derivatives
were calculated using the integration algorithm in Section 4.2 with uniform grid size,
typically h = Fll for 2D. We present examples for shapes with explicit distance func-
tions (line segments, circles, spheres). Then we present examples of general shapes for
which a distance function must be computed via the solution to the eikonal equation
(3.6). In all the 2D depictions, the minimum distance function to the shapes is shown
in grayscale in the background to illustrate the Voronoi regions. We start with a
simple test simulation for points.

5.1. A Test Case: CVT of Points. For point generators, an optimal self-
assembly corresponds to a centroidal Voronoi tessellation (CVT). In this case, it is
straightforward to generate the polygonal Voronoi regions (the Voronoi tessellation)
and there are many algorithms? to compute CVTs. Whereas the computational frame-
work (the eikonal solver of Section 4.1 and the integration algorithm of Section 4.2)
is not needed for point generators, this setting provides for a good test case of our
method. In Figure 5.1, we run our algorithm on an initial configuration of points in
the unit square and present our resulting self-assembled configuration together with
the centroids of their associated Voronoi regions. The overlap is certainly convinc-
ing and indeed the average distance of these points from the associated centroids is
6.50 x 10~* with a standard deviation of 2.73 x 1074,

2These range from direct quasi-Newton minimization of the arrangement energy (there called the
CVT energy), the elegant Lloyd’s method (discussed and generalized in Section 6), to probabilistic
algorithms, such as MacQueen’s sampling method [49], and later accelerated and parallel versions
[38]. See also [19, 21, 26, 40, 41, 46, 60, 65].
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0.25

0.1

Fig. 5.1: Left: Initial configuration of points. Right: Comparison of the final converged
self-assembly of point generators after 16 L-BFGS iterations (black dots) with the
centroids of the associated Voronoi regions (gray crosses). Note the picture shows a
close match.
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Fig. 5.2: Left: Initial configuration for 18 circles of different radii. Right: The con-
verged state.

5.2. Circles, Lines and Spheres. In this section, results for generators that
have explicit distance functions are presented in R? and R3. These include lines,
circles, ellipses, spheres and ellipsoids. See [43] for exact forms of the respective
distance functions and their partial derivatives with respect to position and rotation.
Circles of different size in a square are presented in Figure 5.2 with the initial and the
final converged configuration subject to a stopping criterion. It is natural to ask as to
the stability of the final configuration in order to verify that it does indeed represent
a local minimizer. Whereas the Hessian involves boundary integral over parts of the
Voronoi diagram which our method does not seek to resolve, one can approximate
it with finite differences of gradients (the basis for the BFGS method). To this end,
we computed the smallest and largest eigenvalues of the Hessian to be 0.0028 and
0.0871, respectively. In principle this computation can be done for any self-assembled
arrangement of any shapes to gain numerical support that one has achieved a local
minimizer of (2.1).

Figures 5.3 and 5.4 show a self-assembly for an initial configuration of line seg-
ments and spheres (see the captions for details).
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Fig. 5.3: Left two: Initialization of line segments in R® and its resulting optimal
self-assembly. Right two: Initialization of 18 spheres in R? and its resulting optimal
self-assembly.

Fig. 5.4: Left: The initialization of spheres in R®. Middle: A constrained optimal
self-assembly wherein the large center sphere is fixed at (0.5,0.5,0.5). Right: The
unconstrained optimal self-assembly.

5.3. General Shapes. We present the results of several runs using leaves and
animal cartoons of different sizes in 2D followed by two 3D examples. These shapes
were chosen as simple and readily available, in terms of their level sets, examples of
non-convex shapes. Our first example in Figure 5.5 shows an initial configuration
of 18 leaves of various sizes and the final converged self-assembly. A plot of the
energy and the energy gradient per iteration is included. Note here that energy
minimization does not prevent shapes from overlapping, and converged assemblies
can include nested shapes. Our second example in Figure 5.6 shows an three different
initial configurations for a mixture of leaves and giraffes and the respective final
converged self-assemblies. Our third example in Figure 5.7 shows initial configurations
for 60 mixed shapes and the final converged self-assemblies.

Two 3D examples are presented in Figures 5.8 and 5.9: the first example shows
nine rabbit-shaped objects that are the same size in the unit cube, while the second
shows nine rabbit-shaped objects of different scales. Videos of these initializations and
assemblies are provided in the supplementary material to visualize these assemblies
from various angles.

We make a few concluding remarks concerning these and many other simulations
which were performed using our algorithm (cf. the thesis of Larsson [43]).

« The algorithm converges quickly (with respect to the number of quasi-Newton
iterations) for any collection of shapes. Initial configurations can include
overlapping shapes. Self-assembled configurations can include nested shapes
when sufficient empty space in 2 is lacking.
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|VEnergy |

......

4 6 8 4 6 8
LM-BFGS lIteration LM-BFGS lteration

Fig. 5.5: Top: The initial configuration and the third, fifth, and seventh iterations.
Bottom: The ninth and twelfth iterations, the energy per iteration, and |VEnergy|
per iteration (note the vertical axis has been appropriately scaled).

Fig. 5.6: Mixtures of shapes. Top: Three different initializations. Bottom: The
respective converged self-assembly (directly below).

« There is strong evidence that the converged configuration is close to an opti-
mal arrangement and in fact a local minimizer of the energy. See Section 8.1
for a discussion on the energy landscape.

« Not surprisingly there are many optimal arrangements depending on the ini-
tial configuration of the shapes, and energy barrier are abundant particularly
with respect to rotations. The closer the shapes are, the less they tend to
rotate with each quasi-Newton iteration.

« Optimal arrangements tend to lead to shapes which are both well-centered
and well-oriented in their Voronoi regions. We explore this tendency in Sec-
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Fig. 5.7: A mixture of 60 shapes. Left: Initialization. Right: Converged self-assembly
after 40 L-BFGS iterations.

Fig. 5.8: Left: Initialization of 9 equal-sized bunnies in 3D. Right: Assembly of 9
equal-sized bunnies.

tion 6.2.
6. A Generalized Lloyds Approach.

6.1. Lloyds Method for Point Generators. The geometric characterization
of critical points of the energy for the case of p = 2 leads to an elegant and simple
fixed point algorithm to compute optimal arrangements of points. Recall that the
generators X give rise to a CVT when they are at the centers of mass of the Voronoi
regions they generate and for the case of p = 2, this is equivalent to being a critical
point of the energy F'. Lloyd’s method is a fixed point iteration used to arrive at a
CVT that successively projects the generators to the centers of mass of the Voronoi
cells, then re-computes the Voronoi regions. More precisely, Lloyd’s method is a
simple iterative method to compute a fixed point of the following map:

(k)
Ti (xg@) - M, fork=1,.,N, i=1,...n. (6.1)
Jy, ply) dy

So in the case p = 2 where the shapes are all points, the energy F' is minimized
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Fig. 5.9: Left: Initialization of 9 bunnies of various sizes in 3D. Right: Assembly of
bunnies.

when the points are at the centroids of their Voronoi regions. Moreover, this is the
geometric criteria that inspired us to use this notion of arrangement energy as the
basis for self-assembly of shapes. Hence it is interesting to ask whether a similar
geometric intuition holds for optimal self-assemblies of shapes. The answer is yes.

6.2. A Generalized Lloyds Method for Shapes. Because the distance to
a general shape is not a polynomial expression, the arrangement cost function does
not immediately lead to a geometric characterization of the minimizer, as was the
case for points. However, one can approximate the squared geometric distance to a
shape with an appropriate second order polynomial function which takes into account
rotations of the generators. In principle, a whole family of methods can be derived
using higher order polynomials. For second order polynomials the natural geometric
object to work with is an ellipsoid. To this end, let r;, b;, ¢; be positive constants for
i =1,..,n. Define A; = diag(1, ;*) in R? and A; = diag(1, 3-, 7*) in R3. In RV,
A, is a N x N diagonal matrix, with positive diagonal entries. The equation of an
ellipsoid centered at the origin and aligned with the axes is

{y eRN | E(y) =0} where E(y) == (A;y) (Ayy) —r?.

So for example, if N = 2,r; = 2,b; = 1, then E(y) = y§ + 4y5 — 4. These ellipses
approximate the shapes S;. Given a placement (X, ) = (ml, B s S DR ozn) of
the S;, the approximating ellipsoids are given by

{y eRY| E(R; ' (y —x;)) = 0},

where R; denotes the rotation matrix parametrized by a;. Let the algebraic dis-
tance, d,(y, S;), be defined by

da(y,Si) = |B(R; (y — xi))l. (6.2)

Note that the algebraic distance is defined explicitly in terms of the parameters x;
and «; of the shape S; and is different from the geometric distance. Indeed, even
in the case where the shapes S; are ellipses, the algebraic distance differs from the
geometric.
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Using this algebraic distance, leads to the following approximating cost function:
GX.a) = 3 [ iy Son(y) dy. (63)
i=1"Va.i

As the ellipsoid tends to a point, d2(y, S;) — |y —x;|?, and the arrangement cost func-
tion is recovered. Note that the Voronoi regions V, ; in (6.3) are computed based on
the algebraic distance (6.2). For the approximate energy (6.3), we have the following
result.

PRrROPOSITION 6.1. Assume that the ellipsoidal approrimations to the shapes
S1,...,Sn are disjoint. Let X be in Q C RN and for simplicity, let p(y) be con-
stant. Let R be a d-dimensional rotation matriz parametrized by o. If the following
conditions hold at (X, a);

(k) _ fVM y(k)p(Y) dy

z;) = and R;=U]  fork=1,..,N,
Sy, p(y)dy

where U; is the matriz of eigenvectors of the moment matrix M; = (mj,k)é\,fk:p given
by

Mgk = / 9 — D) y® — 2P p(y) dy, (6.4)
V.

a,i

then (X, @) is a critical point of (6.3).

The first condition on the centroids is also a necessary condition for criticality.
Our proof shows that the second moment condition is also necessary for criticality in
N = 2. We expect that it is also a necessary condition for higher space dimensions as
well but our proof yields only the sufficiency.

Proof. Define E; := {y | E(R; '(y — x;)) < 0} which are simply the interiors of
the ellipsoids which by assumption, are non-overlapping. Hence we note that

GX.a) =Y [ Ry —x)oly)dy.

~GX.0) =23 [ BR = x)oly) dy

=:Kp

Since by assumption, p is constant, the interior integrals over E; are independent
of (X, ) and hence G(X, a) and G(X, ) differ by a constant K. Therefore, it is
sufficient to consider the minimizers of G.

For the proof, we will relax the slaving of the tessellation {V,;}; to (X, a) and
consider the criticality conditions with respect to X and « at an arbitrary tessellation
V = {V;}, of Q into n regions. These will suffice as fixing (X, &) and minimizing
with respect to all tessellations will yield the criticality condition V = {V, ;}7_;. This
step is identical to the case of point generators and was proven in [23]. Thus we
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consider the energy
HX.av) =3 [ BR = x)oly) dy.
i=17Vi

which coincides with G(X, &) when V = {V,;}™,.

First fix o and V, and for simplicity denote H(X, o, V)|a,y = H(X). Let € > 0
and choose v = (v, ..., (™)) T such that x;+ev remains in the interior of 2. Denote
by e, the vector in RV™ that is all zeros except in the k" entry. The first variation
is then

—O.

lim H(X+52k 0 eN-— potNT k) Z (k)aH

e—0 e

(k)

The first variation is zero if all partial derivatives are zero which in matrix form means

OH(X
0x;

_2/ RiA] AR] (x; —y)p(y)dy = 0.

To show that [5 (x; —y)p(y) dy = 0, it suffices to show that the matrix R} A A;R;
is invertible. Observe:

det(R;A; A;R]) = det(R;) det(A]) det(A;)det(RT) >0
e e e P

=1 >0 >0 =1

Therefore the kernel of R;A A; R is empty, and the location vectors are minimized
when placed at the center of mass of the regions V;.

Now fix each x; at the centroids of the region ‘Z for i = 1,...,n; keep the tessel-

lation V fixed as well. For ease of notation denote H (X, e, V)|x,v = H(cx). The first

variation with respect to the angle constrains that for all [, dH((?)‘) = 0. Each partial

derivative is:

T
aaHT(((lX)) - /‘7 ((y B Xl) R; AT ZR(Z) ( Xi) + (y - Xi)T aR i A R ( ))p(y) dy,
OR T

=2 [ (v =x) RAT AT 5 = x)p(y) dy.
V; Oé

i

The expression g (l) denotes the component-wise partial derivative of the matrix R, .

The trace functlon can be applied to the scalar a;{((ff), and the cyclic property of the
Rt

trace can be applied to find

-
a;i(g) — tr (2/v(y —x))TR;AT A; ZR()( x;)p(y) dy> (6.5)

(2

OR;
= 2/0 tr ((y -x;) RiA] A, o ()( Xi)) p(y) dy (6.6)

i
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:
( Ry )y - x»T) oy)dy  (67)

i

ZQ/V»

i

aRT
=2tr (R W0 /A (y —xi)(y —x:) " o(y) dY> (6.8)
Oéi i
T
=2tr | R;AT A, OF; — L M; (6.9)
v dav (l)
=21tr | A] A, 2RZ R,R] M; R;|, (6.10)
=U]AU;
aRT T 7T T
w_/ =:B
=:S

In equation (6.6), the linearity of the trace and the integral are used to take the trace
inside. In equation (6.7), the cyclic property of the trace is used to move the first
vector to the end. Then, in equation (6.8), the linearity of the trace and integral
are used again to take the integral inside. In equation (6.9), the integral is denoted
by M;. As this second moment matrix is positive semi-definite, it is diagonalized as
U,/ AU;, for U; orthogonal and A diagonal. This decomposition is used in equation
(6.11). In equation (6.10), the cyclic property of the trace is used to move the first
matrix R; to the end of the expression, and the term RZ-RZT is added, as this is just
the identity (rotation matrices are orthogonal). In the last line, equation (6.11),

AR/ . . . . .
S = B—&)Ri is a skew-symmetric matrix. Observe: Because rotation matrices are

orthogonal, R/ R, = I. Then, by the product rule, (l)R + R (;91?0 = 0, and
rearranging, S = —S'. Since the trace of the product of a skew-symmetric matrix

(S)and a symmetric matrix (B) is zero, setting R; = U, implies that (6.11) is 0.
Finally, as we have mentioned, holding X and a fixed and minimizing with respect
to the tessellation regions V yields V = {V, ;}7; (cf. [23]). O

Proposition 6.1 recovers the geometric intuition that in order to form an optimal
arrangement, the shapes should be both “well-centered” and “well-oriented” within
their Voronoi regions. For example, in R? the condition on the rotation matrix R;
reduces to the following formula for the shape rotation angle:

1 2m172
o; = —arctan | —— | .
2 Moo — M1,1

This angle is known as the moment of inertia of the algebraic Voronoi region. This
means that the principal axis of the shape should be aligned with the principal axis
of its algebraic Voronoi region. In higher dimensions, the principal axis of the shape
should always be aligned with the eigenvector corresponding to the largest eigenvalue
of U;'. Thus assuming we can compute the parameters of the approximating ellipsoids
needed for the approximate energy (6.3), we can formulate a generalized Lloyd’s
Method in RY as follows: First, project x; to the center of mass of V. ;, i =1,...,n
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Then, project R;, the N-dimensional rotation matrix to U/, the transpose of the
eigenvector matrix of the second moments M;, i = 1, ...,n. Repeat until a fixed point
is obtained.

However, note that the parameters of the approximating ellipsoids (for example,
i, bi, ¢; in R?) do not appear in these moment conditions but they are required
to compute the algebraic Voronoi regions. This suggest a simplified generalized
Lloyd’s Method for which these parameters need not be estimated: use the original
geometric Voronoi region V; instead of the algebraic Voronoi region V, ; to compute
these moments. Specifically, given a collection of shapes S; and an initial placement
(X, &) with R being the d-dimensional rotation matrix parametrized by o:

« Compute the centroids of V;, i = 1,...,n, and project x; to the respective
centroids.

« Compute U;r , the transpose of the eigenvector matrix of the second moments
M;, i = 1,...,n given by (6.4) (based on geometric V;), and project R; to U, .

« Recompute the Voronoi Regions and repeat until a fixed point is obtained.

In R? this algorithm was already proposed by [35], and results were presented with
application to non-photorealistic rendering. The present work extends that algorithm
to RY and gives an energetic interpretation of the results. It is important to note
that the only basis for presenting these two generalized Lloyd’s algorithms was the
motivation provided by Proposition 6.1. These algorithms warrant both numerical
experimentation and a contraction/convergence study. Indeed, convergence of the
regular Lloyd’s algorithm is non trivial (see for example [22]), and hence convergence
of these more complicated geometric integration schemes is far from obvious.

7. Two Remarks.

7.1. Adaption to Flat Tori - Periodic Boundary Conditions. The model
and numerical method can readily accommodate periodic boundary conditions. To
generate results with periodic boundary conditions, one generator is fixed to break
symmetry. To compute the energy gradient, a distance function with periodic bound-
ary conditions was also obtained using the FSM. This can be done by updating bound-
ary points in a periodic way and does not increase the complexity of the algorithm.
Then the same first derivatives and optimization algorithms presented in Section 4
can be applied. See Figure 7.1 for one example of a periodic optimal arrangement.

Fig. 7.1: Periodic boundary conditions. Left: An initial configuration of ellipses on
the torus. Right: The self-assembled arrangement.
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7.2. A Relation to Optimal Transport. Many readers will have noticed the
similarity between the structure of our arrangement cost (2.1) and notions from the
active mathematical field of Optimal Transport [66]. Here we make the simple remark
that the energy for p = 2 can be written in terms of the Wasserstein-2 distance. In
doing so, we provide an elementary illustration of aspects of Brenier’s theorem [9].

The field of optimal transport arose as a way to solve the problem of minimizing
the transport cost to haul ore from a set of mines to a collection of factories [66]. This
engineering problem was later reformulated and rediscovered in many contexts. Let
i be a probability measure on 2 C RY that is absolutely continuous with respect to
Lebesgue measure; where applicable, denote its density by p. Let v be a any Borel
probability measure. Define measures on the product space €2 x €2 as follows:

M(p,v) = {All Borel measures 7 : QxQ — [0,1] | 7(y,Q) = pu(y) and 7(Q,z) = v(z)}.

That is, we consider product measures whose projections in each component are the
respective, given marginal.

Kantorovich’s formulation of optimal transportation for Euclidean cost is given
as

S ./\/l(,u,u)}, (7.1)

Wie) =it { [ |y~ odn(y.2)
” Qx0

where Wa(u,v) is called the Wasserstein-2 distance between the measures p and v.
This modern formulation of the problem is useful because M is always non-empty; it
contains the product measure p X v [66]. In particular, this guarantees a minimizer
always exists. The minimizing measure on the product space, m, is called a transport
plan. A more classical formulation of the problem which goes back to Monge is via a
transport map ¢ : supp(p) — supp(v). Given a Borel probability measure p and a
Borel map ¢ : RV — RY | we define the push forward probability measure g4 u by

(g 1)(A) = p(g " (A)), vV Borel — measurable subsets A C RY.

Denoting % (y) = (y,q(y)), the transport plan 7 can be recovered as 7 = po~!
[42]. In these cases, one can formulate the Wasserstein-2 distance (7.1) in the more
classical way:

W3 (u,v) = inf { /Q ly — a(y)PPdu(y) | v =gz u}- (7.2)

Brenier’s Theorem and its extensions ([50, 9]) proves that the formulations (7.1) and
(7.2) are equivalent, and in fact a unique transport map ¢ exists that minimizes (7.2),
and is, up to sets of measure zero, the gradient of a convex function.

Now let us make a simple connection with the arrangement energy (2.1). For
simplicity of notation, let us assume |Q] = 1 and take the density p = 1. Let pu be
given by N-dimensional Lebesgue measure dy. To define the singular measure v, let
S; be a fixed collection of shapes which are compact subsets of Q of codimension
in {1,2,...,N}. For any set T = {T;},i = 1,...,n of affine isometries such that
T;(S;) C Q, we define the singular measure vy supported on |J_, T;(S;) as follows®:

3For non-convex generators S, ..., Sp, the definition of v requires a tie-breaking rule for points
that are equidistant to two or more points along some S;.
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For any Borel-measurable set A C Q:

Hz € Q|d(z, Ui, T;(S;)) = |z —y| for somey € AﬂTi(Si)H

vr(4) = ]

(7.3)

In words, v (A) is the percent of volume of the Voronoi regions which are associated
with the part of the generators |J;_, T;(S;) which lie in A. For example, if the S;
were points and T was represented by their positions x = {z;}, then

vp = Zmidggi, where m; = |V}| (Z m; = |Q] = 1) .
i=1 i=1

This point case has been studied within the framework of optimal transport in [51, 7,
8].

For target measures given by (7.3), Monge’s formulation (7.2) is rather simple as
the unique optimal push forward is, up to a set of measure 0, simply a projection onto
the closest point in [J!; T;(S;), that is,

a.(y) = y—d(y, U T,(5)) va(y, U T(S)-

Moreover in this case, if we parametrize the family of isometries T' by the respective
position and angle vectors (X, a), we find

W) =int { [ Iy - a)Pdy, poq = vr}
q Q

:/Qlyfq*(Y)IQdy
:/Q d2<Y>CJTi(Si))dy

= Z/V d*(y, T;(S:))dy
= Fj(X,a).

Thus our optimal arrangement problem of finding (X, «) that minimizes the ar-
rangement energy F'(X, a) given by (2.1) is equivalent to finding T that minimizes
W22 (.ua VT) .

8. A Few Applications.

8.1. Empirically Explorations of Ground States and the Energy Land-
scape. We have defined an optimal assembly as a critical point of the arrangement
cost function (2.1) and presented an algorithm which arrives at a critical point of F.
However even after modding out by domain symmetry effects, the energy landscape of
the arrangement function F' is highly non convex with many local minimizers. Ques-
tions as to the nature of ground state arrangements, a global minimum for (2.1), and
characterizations of the stability of optimal arrangements are most natural but, from
a purely analytical point of view, very difficult.
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Even for the cases of points, where optimal arrangements directly correspond to
CVTs, questions as to the nature of the ground state remain open. Gersho’s conjec-
ture [29] was originally stated for optimal vector quantizers used in data compression
and transmission. In essence, the conjecture asserts that asymptotically as the num-
ber of generators gets larger, the ground state CVT is a periodic tessellation based
upon a single polytope (cell) dictated by the space dimension. The basic Voronoi cell
of the ground state CVT was shown to be the regular hexagon in two dimensions
[27] (see also [53] for a simple proof). For the three-dimensional space with a con-
stant density function, it was proved that among all lattice-based CVTs, the CVT
corresponding to the body-centered cubic lattice (BCC) is the optimal one [4]. While
numerical simulations suggest the optimality of BCC with respect to general CVTs,
the conjecture remains open [25].

While the case of general shapes will naturally be far more complex, our method
does allow for empirical study of ground states and the overall energy landscape of
(2.1). We present two simple illustrations.

(i) A Phase Transition with Circles of Equal Radii: We consider five circles
of the same radius. This case is particularly simple since as long as the circles do
not overlap, the Voronoi regions generated by the circles coincide with the Voronoi
regions generated by the center points of the circles. Here we show that as the radii
increase there is a critical value at which there is a phase transition in the morphology
of the global minimizer. To this end, we let Q = [0, 1]? with uniform density, and S;,
1 =1...5 be circular generators of radius r. The gradient flow for the centers is given
by the following 10-dimensional coupled dynamical system: For i = 1,..., 5,

Xi "
88{ = =V I = -2 /V.(Xi -y) (1 - |X_y|> p(y) dy,
xi(0) = x;.

Many runs were performed with the initial condition x;(0) taken from a uniform
distribution, and the converged state with the lowest energy (candidate for the global
minimizer) is recorded. For r = 0, the global minimizer of the CVT energy is a 4 + 1
configuration, with four points in each corner, and one point in the center of the unit
square. This configuration is displayed in the first configuration of the top of Figure
8.1. Another critical point for the » = 0 case is shown? in the first configuration of
the bottom of Figure 8.1. Figure 8.1 also displays the analogous critical points for
r = 0.05, 0.09, and 0.14, with the corresponding energy values, F' listed in the caption.
Because the Voronoi regions are polygonal, one can compute the critical centers and
corresponding energies analytically and to machine precision (cf. [43]). In doing so,
one finds a phase transition wherein the bottom configuration represents the global
minimizer at around r = 0.134.

(ii) Energy Histogram. Another application is to generate energy histograms by:
uniformly sampling initial centers and rotation angles; applying our algorithm to
convergence; recording the final arrangement energy; and plotting the histogram. We
give one such example in Figure 8.2. Here we also plot a sample of the lowest energy
arrangement - a good candidate for a ground state. Note that the smaller oscillations
(bumps) in the energy distribution of Figure 8.2 right should be ignored as they are

4Because of the symmetries of the domain, there are three other critical points with the same
energy under the rotations 6 = 7 /2, 7, and 37/2.
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Fig. 8.1: Two critical points for the arrangement energy (2.1) with five circles of equal
radius; r = 0, 0.05, 0.09, and 0.14 from left to right. The top geometry has the lowest
energy until r = 0.134, after which the bottom geometry is optimal.
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most probably numerical effects: the energies differences are sufficiently small with
respect to the tolerance of the method.
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Fig. 8.2: Energy distribution for 1000 runs of 18 shapes with M = 6 in L-BFGS. On
the left is an example of a configuration with the lowest energy. On the right is an
approximate energy histogram.

8.2. Packing of Shapes. The self-assembly algorithm we have outlined here
offers a natural way to spread shapes out in a domain. It is natural, then, to ask
whether by shrinking the domain or growing the shapes, a packing can be obtained,
whereby the volume outside the shapes is minimized. Obtaining optimal packing
densities for circles has been well-studied (see for example the monograph [14]. In
R?, the optimal packing lattice for circles is the hexagonal lattice, and this has ap-
plications to the packing of cylinders. In R3, the optimal packing lattice for spheres
is the body-centered cubic. Few theoretical results are known for packing spheres in
high dimension [13]. For ellipsoids, it has been shown numerically that non-lattice
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packings lead to better packing densities [20]. Recently, algorithms for tetrahedral
packings have been considered [33]. Algorithms for packing shapes typically use hard
constraints for enforcing no overlap: at each iteration, it must be checked whether
any shape intersects another shape.

To obtain a packing using our self-assembly algorithm, a natural approach is to
begin with small particles and grow them until a packing is obtained. Then, there
are two things to consider: first, an appropriate rate of growth must be chosen, and
second, a stopping criterion must be set so that the algorithm terminates when a
packing is obtained. Here, we sketch these two steps.

Starting with a collection of small shapes (relative to the domain volume), obtain
a self-assembly. Then, alternate between growing the shapes and translating and
rotating the shapes as to minimize the assembly energy. If the rate of growth is too
fast, the shapes may not be able to spread out quickly enough, leading to suboptimal
results. We propose to grow the generators at a rate that is based on the assembly
energy. Previously, energy derivatives were calculated for rotations and translations
of the shapes; to choose the growth rate, we will use the derivative of the energy with
respect to scaling the shapes. For example in the case of spherical generators, the
scale of the shape is given by the radius parameter, and so

= (}_; /(i) o) o) dy) =2 [ (dtyx) - r)oty) dy

For points y € V; outside the sphere, the integrand d(y,x;) — r; is the distance to
the sphere. For points y € V; interior to the sphere, the integrand is the negative
distance. Therefore, when the energy inside and outside of the sphere is equal, this
partial derivative will be zero. If this derivative is negative, there is a surplus of space
around the sphere, and the radius should increase. If the derivative is positive, then
there is more energy inside the sphere, and the radius should shrink. To consider only
the energy outside of the spheres, one can use

oF

where I'; is the disk with boundary S;. We then calculate g—TF for each 7 and choose

the smallest derivative as the growth rate. As the shapes éet closer together, the
growth rate will naturally slow, allowing for more translation and rotation so that the

shapes can pack well.

The second consideration is the stopping criterion. Whereas previous methods
use hard constraints to avoid overlap, we propose a soft constraint. Instead of directly
assessing whether shapes are overlapping, we suggest adjusting the arrangement en-
ergy directly to penalize overlap. This involves changing the energy interior to each
shape. Currently, powers of the distance function are used. However, the signed
distance function would assign negative energy to the interior of the shape (for odd
powers). Then overlap would increase the energy, so minimizing the energy would
promote non-overlapping shapes.

The novelty of trying to adapt the current algorithm to packing is that the class
of shapes it can accommodate is large: any piecewise-smooth generators of variable
sizes will work. Moreover, one can scale the shapes and choose a stopping criterion
based on the energy itself, as discussed above. Using soft constraints on overlap could
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be a computational advantage.

8.3. Energy-driven Pattern Formation. The fact that pattern formation of
modulated phases can often be explained via minimization of energy functionals in-
volving competing short and long-range interactions is well-known [62]. The subject
has proven to be a driving force for much research in the modern calculus of vari-
ations [39]. A good case in point is the Ohta-Kawasaki functional ([56, 12]) which
provides one of the simplest models for self-assembly of diblock copolymers. Here the
ubiquitous Ginzburg-Landau free energy is augmented with long-range interactions
of Coulombic-type, presenting a rich set of mathematical problems as to the nature
of global and local minimizers (see for example [10, 59] and the references therein).
In the regime of small volume fraction, wherein small spherical phases are present,
there are two temporal regimes in the gradient flow dynamics [34, 30]; the forma-
tion of the spherical structures and their coarsening until a intrinsic length scale is
reached, followed by pattern formation of the spheres dictated by the long range in-
teractions. These dynamic regimes are directly connected to the first few terms in the
Gamma-limit expansion of the free energy [11]. The problem considered in this article
addresses the later stage of pattern formation due to long-range interactions. While
for Ohta-Kawasaki, these interactions are of Coulombic-type, here the interactions
involve Wasserstein distances (cf. Section 7.2).

Recently Bourne et al. [7, 8] considered a simplified model in the dilute phase
limit based upon Wasserstein norms. This results in a variational problem defined
over sums of weighted delta functions with support in Q C R,

n n
v = Zmiém, with Zmi =10l =1,
i=1 i=1

which takes the form

E(w) =AY (m) ™ + Widy.v),

i=1

where dy denotes N-dimensional Lebesgue measure on €2, and W5 is the Wasserstein
distance defined in Section 7.2. Minimization is made computationally tractable by
setting the problem in the framework of CVT, and adopting the simple approach of
Lloyd’s algorithm ([7]). It would be interesting to adopt the methods contained here
to explore shape and orientation effects in, for example, in related simplified models
for hard ellipses/ellipsoids.

8.4. Constrained Optimal Transport. For the rigid CVT problem, the op-
timal transportation problem becomes computationally tractable by relying on the
tools of computational geometry: generalized Voronoi regions and eikonal distances.
However, there is a large body of work for point generators on the constrained CVT
problem: how can one minimize the average squared distance to the closest post of-
fice while ensuring the number of people serviced by each post office is equal? The
constraint is that the measure of each Voronoi region with respect to a density, p, is
equal. Some work on efficient algorithms to compute constrained CVTs is contained
in [1, 3, 18, 51, 70]. Efficient computation in the constrained case relies on a charac-
terization of the optimal transport plan in terms of power Voronoi diagrams [1, 51].
Accommodating constraints could also be pursued in the case of general shapes.
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Appendix A. Regularity of Voronoi Regions and the Energy. In this
part of the appendix, we address the regularity of the energy and the application of
a Reynold’s Transport Theorem for the calculation of its derivatives.

A.1. Continuity of the Energy. Here we note that the arrangement energy
defined by is continuous in its arguments.

LEMMA A.1. For any subset T C RN, x — d(x,T') is 1-Lipschitz.
Proof. By the triangle inequality, for any x’ € 2, the minimum distance to I" has
the property:

d(x,T) =inf{|x —y|,y e '}
—inf{jx —x' +% —yl,y €T}
<inf{jx —x'|+|x' —y|,y €T}

|x — x| +d(x/,T).

Similarly, d(x’,T") < |x — x| + d(x,T'). Therefore, |d(x,T") — d(x',T)| < |x — x'| and
the distance to one generator is 1-Lipschitz. O
LEMMA A.2. Let (Ty) be a continuously parametrized family of isometries of

RY. Then the map 6 — d(x,T1J---UTo(Ts) UTiz1---UTw) is continuous for each
x € RV,
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Proof. Tt suffices to prove that |d(x,Ty(I")) — d(x,Tp/(I"))| tends to 0 as §' — 6.
By Lemma A.1 and using that Ty is an isometry,

|d(x, Tp(T)) — d(x, To:(T))| = [d(T, ' (x),T) — d(T,, " (x),T)]
< Ty (%) = T, ' ()
= [Ty o Ty H(x) — x|
— |x—x|=0, for 0 — 6.

THEOREM A.3. F(X, ) is continuous in (X, a).
Proof. Write

Q=1 ,n

FX, a) Z/de(%UFi(Xi,ai))p(y)dy = [ min d(y,Ti(xi o6))p(y)dy.

The function f(X,a;y) = ‘_I}ﬁn dP(y,Ti(x;, @;)) is continuous in (X, ) due to

Lemma A.2 and the fact that the minimum of finitely many continuous functions is
continuous. It is also bounded across those (X, ) for which all T';(x;, «;) lie in Q.
Since p € L1(2), the result follows from the Dominated Convergence Theorem. O

A.2. Smoothness of the V; and the Energy. Here we include a discussion
of the smoothness of the energy. In doing so, we mention smoothness of V; with
respect to position and angle which allows us to invoke a general Reynold’s Transport
Theorem.

THEOREM A.4 (Reynold’s Transport Theorem). Let V = V(t) be a region
that depends smoothly on t € R with piecewise smooth boundary. If

dF of Jy
F(t) = fty)dy then*=/ fdy+/ f(y) (= n)dy, (A1
( ) V(t) ( ) dt V(t) ot oV (t) ( ) (6t ) ( )
9y

where n is the unit outward normal and denotes the derivative of the boundary

ot

points.

For spherical generators, the Voronoi regions will be star-shaped, for which a spe-
cialized Transport theorem was developed [15]. More generally, assume that each
shape T'q,...,T, C R? traces the boundary of a convex set, with an associated
parametrization 7;(s),s € [0,27). The parametrization will vary smoothly with re-
spect to rigid translations and rotations. Moreover, assume that the sets I'y,..., T,
are non-overlapping. Then, the Voronoi regions V1,...,V,, can be computed explicitly
with, for example the direct method from [44]. For each point ¢ € 9V}, associate a
point v;(s) € T; by vi(s) = ¢ — ¢:(q)V¢i(q). That is, starting at the point along the
Voronoi region, g, move down the distance function following the direction of steepest
descent (—V¢;). Once the distance ¢;(g) has been traveled, a point along I'; is found.
Then the point ¢ € 9V; may be denoted ¢(s) and a parametrization of the boundary
AV is q(s) = vi(s) + ¢i(q(s))Vi(q(s)). As previously noted, v;(s) depends smoothly
on elements of (X, ). Moreover, since I'y,...,T, are non-overlapping, then ¢(s) is
away from the generator I';, and so ¢;(¢(s)) and each component of V¢;(¢(s)) depends
smoothly on elements of (X, ). Therefore the Voronoi regions depend smoothly on
X, ).
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Appendix B. Summary of Optimal Arrangement Algorithm.

Algorithm 1 Optimal Arrangement Algorithm

Main Algorithm:

Given S = (S1,...,5n)
Given p € L'(Q) a density
Initialize X, «

Set diff large

Set stopping criteria tol

while diff > tol do
Compute energy and energy gradient:
[F, VF] = Integrate(S, p)

Find L-BFGS search step:
[dX,da] = LBFGS(F,VF, S, p, X, o, Integrate).
Update:
X =X +dX.
a=a+da.
diff = |VF|.
end while

Returns (X, «), an assembly.

Subroutines:
(i) [F, VF] = Integrate(S,p)
Purpose: Integration over generalized Voronoi regions (cf. Section 4.2 based upon [44]):

Input: generators S
Obtain distance function, gradient: [¢, V@] = FSM(S)

Computes energy F =" | [, ¢P(x) p(z) de.
Computes energy gradient VF as integrals of the form

| #(@). Vo) pla) da.
Returns the energy F' and energy gradient, VF'.
(i) [p, V¢] = FSM(S)

Purpose: Compute distance functions via the Fast Sweeping Method [69] (cf. Section 4.1)

Takes generators S as input.
Returns ¢, the distance function to S.
Returns gradient of distance function V.

(iii) [dX,da] = LBFGS(F, VF, S, p, X, o, Integrate)
Purpose: Obtain quasi-Newton step via L-BFGS algorithm (cf. Section 4.3)

Computes Quasi-Newton step using strong Wolfe line search.
Returns the steps dX, da.




