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The reference map, defined as the inverse motion function, is utilized in an Eulerian-

frame representation of continuum solid mechanics, leading to a simple, explicit finite-

difference method for solids undergoing finite deformations. We investigate the

accuracy and applicability of the technique for a range of finite-strain elasticity laws

under various geometries and loadings. Capacity to model dynamic, static, and quasi-

static conditions is shown. Specifications of the approach are demonstrated for handling

irregularly shaped and/or moving boundaries, as well as shock solutions. The technique

is also integrated within a fluid–solid framework using a level-set to discern phases and

using a standard explicit fluid solver for the fluid phases. We employ a sharp-interface

method to institute the interfacial conditions, and the resulting scheme is shown to

efficiently capture fluid–solid interaction solutions in several examples.

Published by Elsevier Ltd.
1. Introduction

A classic dilemma in computational continuum mechanics is the choice of Lagrangian versus Eulerian frame techniques,
each having certain benefits depending on the material type and conditions. A key example is the solid/fluid dichotomy:
solids are typically simulated using Lagrangian methods with moving material nodes (e.g. finite-element methods,
material point methods Zienkiewicz and Taylor, 1967; Sulsky et al., 1994; Hoover, 2006; Belytschko et al., 2000) and fluids
using an Eulerian spatial grid (e.g. finite-difference/volume methods, level-set methods Chorin, 1967; Tannehill et al.,
1997; Versteeg and Malalasekera, 1995; Sethian, 1999; Hirt et al., 1974). This division is partially rooted in constitutive
response—solid stress depends on total deformation, computable from the relative positions of neighboring material
nodes, whereas fluid stress depends on the deformation rate, obtainable from the finite-difference of a velocity field on a
fixed-space mesh. Moreover, fluid flows often invoke mixing and in-flow/out-flow boundaries, which both point to
simulation on an Eulerian grid. On the other hand, solid deformation is more inherently Lagrangian, characterized by
smaller total strains and boundary conditions that generally move with the deforming boundary surface.

Fluid–structure interaction (FSI) is a prototypical example where the above dichotomy is problematic – the usual
paradigm for each phase would necessitate a non-trivial and costly computation at the interface to reinterpret Lagrangian
data into the fluid grid and vice versa. Methods that attempt to resolve this include the family of immersed methods,
Ltd.

chr@math.berkeley.edu (C.H. Rycroft), jcnave@math.mcgill.ca (J.-C. Nave).

www.elsevier.com/locate/jmps
www.elsevier.com/locate/jmps
dx.doi.org/10.1016/j.jmps.2012.06.003
dx.doi.org/10.1016/j.jmps.2012.06.003
dx.doi.org/10.1016/j.jmps.2012.06.003
mailto:kkamrin@mit.edu
mailto:chr@math.berkeley.edu
mailto:jcnave@math.mcgill.ca
dx.doi.org/10.1016/j.jmps.2012.06.003


K. Kamrin et al. / J. Mech. Phys. Solids 60 (2012) 1952–1969 1953
which maintain an ambient stationary Eulerian grid throughout as well as a moving collection of interacting material
points representing the solid structure (Peskin, 1977; Bathe, 2007; Wang, 2008). Another approach is to treat both phases
with Lagrangian finite-elements but use an Arbitrary Lagrangian–Eulerian (ALE) method to remap the fluid mesh to
prevent excessive distortion (Bathe, 2007; Wang, 2008; Rugonyi and Bathe, 2001). This approach is the more commonly
used, and can be coupled with the Volume-of-Fluid method (Hirt and Nichols, 1981) to permit mixed-phase elements.

We propose to address this challenge and more with an explicit finite-difference method called the reference map
technique (RMT) for finite-deformation solid laws. The idea was originally proposed by the author in Ken Kamrin (2008)
and independently put forward by a Joseph Fourier University applied mathematics group (Cottet et al., 2008; Maitre et al.,
2009) at around the same time. In both, it was emphasized for its potential use as part of a simple, fast, and generalizable
fluid–solid coupling algorithm performable on a single fixed grid. The method is based on storage of the reference map

vector field, which permits the construction of needed solid kinematic quantities, and which has been useful in several
other contexts (see Section 5).

In this paper, we focus on hyperelasticity and perform a number of investigations to validate the numerical
implementation of the basic method. We also describe and numerically validate specifications to handle an assortment
of common solid loading conditions. Once accuracy is demonstrated, we propose a sharp-interface method based on a
level-set formulation (Sethian, 1999; Osher and Sethian, 1988) to unite the RMT with an explicit fluid algorithm and
compute fully coupled fluid/soft-solid interactions. The sharp interface approach we use, which ensures that material
properties do not blur across the interface, is key to the stability and success of the method, and is based on an extension of
the Ghost Fluid Method (GFM) for fluid/fluid interaction (Fedkiw and Liu, 1998).

To maintain a clear presentation, several avenues of motivation are first provided. The needed calculus for the reference
map is described with emphasis on its relationship to the deformation gradient tensor, which leads to a presentation of the
basic RMT iteration. Using three examples, we demonstrate the method’s capacity to handle dynamic, static, and quasi-
static deformations, under both control-volume boundary conditions as well as Lagrangian displacement boundary
conditions. We extend the method to an FSI algorithm and demonstrate its efficacy with three different FSI examples,
each involving hyperelastic solids being deformed to large deformation against a flowing fluid. Lastly, we discuss
and implement the method in rudimentary conservative form, and show its ability to track the motion of a genuinely
non-linear one-dimensional shock.

2. Notation and kinematics

In Eulerian frame, the deformation of an isothermal material satisfies the conservation laws of mass and momentum
balance,

rtþr � ðrvÞ ¼ 0 ð1Þ

ðrvÞtþr � ðrv� v�TÞ ¼ rg ð2Þ

which can be expressed in strong form when deformations remain smooth:

rt ¼�v � rr�rr � v ð3Þ

vt ¼�v � rvþðr � TþrgÞ=r: ð4Þ

Here, the spatial velocity field is vðx,tÞ and the Cauchy stress tensor field is Tðx,tÞ. For most of this paper it is appropriate to
consider the strong form laws, though the conservative version is necessary in the presence of shocks.

To close the system, we now review the kinematics used to express finite-deformation solid constitutive relations.
Suppose, that a body of material is in a reference configuration B with reference coordinate X. The body then undergoes a
deformation process such that at time t later an element of material originally at X has been moved to x. The motion is
defined by x¼ vðX,tÞ, and the body at t is in the deformed configuration Bt. The motion defines the deformation gradient F,

FðX,tÞ ¼
@vðX,tÞ

@X
or Fij ¼

@wiðX,tÞ

@Xj
: ð5Þ

Note that we use r for gradients in x, and always write gradients in X in derivative form as above. The evolution of F can
be connected back to the velocity gradient via

_F ¼ ðrvÞF ð6Þ

where we use _ for material time derivatives. Since det F40 for any physical deformation, the deformation gradient admits
a polar decomposition F¼RU where R is a rotation, and U is a symmetric positive definite tensor obeying U2

¼ FT F� C
where C is the right Cauchy-Green tensor.

3. General finite-strain elasticity

To demonstrate the use and simplicity of the method, this paper shall focus on one broad class of materials: large-
strain, 3D, purely elastic solids at constant temperature. These materials are well-described, in a thermodynamically
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consistent fashion, by the theory of hyperelasticity. Though other elasticity formulations exist (e.g. hypoelasticity and
small-strain theory) the next section will recall how these are in fact specific limiting approximations to hyperelasticity. A
brief summary is provided next to establish notation and key results (see Gurtin et al., 2010 for details).

As a noncommittal 3D extension of spring mechanics, one first presumes that the Helmholtz free-energy per unit
(undeformed) volume c and Cauchy stress T both depend only on the total local deformation:

c¼ ĉðFÞ, T¼ T̂ðFÞ ð7Þ

where ^ is used to designate functions. It is also assumed that if no deformation has occurred (i.e. F¼ 1), then T¼ 0.
The form reduces greatly by requiring that the law obey frame-indifference and the second law of thermodynamics, which
we express by the dissipation inequality

r _c�T : Dr0 ð8Þ

for deformation rate D¼ ðrvþðrvÞT Þ=2. To uphold Eq. (8) under all imposable deformations, it follows that

T¼ 2J�1 F
@ĉðCÞ
@C

FT
ð9Þ

for J¼ det F. Likewise, C¼ 0 corresponds to a local minimum of c. Eq. (9) gives the (compressible) hyperelastic
constitutive law.
4. Other Eulerian approaches

To implement hyperelasticity and related thermodynamic solid models, the deformation gradient must be obtained.
In Lagrangian frame, each material point is identified by X, so F can be computed by numerically differentiating current
location against initial. In Eulerian frame the problem is more subtle, since it requires knowledge of past configurations.
Previous work on this front is summarized below. We restrict attention to ‘‘fully Eulerian’’ approaches, though this is not to
disregard partially Eulerian algorithms that iteratively remap Lagrangian deformation onto a fixed grid (Hirt et al., 1974;
Benson, 1995).

A common approach is to state the elasticity relation as a rate-form for T, which avoids having to directly store and
update F. The most well-known of such is the family of hypoelastic relations

T1¼ C : D ð10Þ

where C is a fourth-rank tensor of elastic moduli and T1 is an objective stress-rate, which is equal to _T plus additional terms
(generally functions of T and rv) that guarantee frame-indifference of the relation. Objective stress-rates are not unique
and many forms for T1 have been used (discussed in, for example, Meyers et al., 2006).

Expressing _T as Ttþv � rT, one can discretize Eq. (10) giving an Eulerian numerical scheme where the stress tensor and
the velocity vector fields are stored and updated. Hypoelasticity is simple to use and effective in certain simulations (as in
Tran and Udaykumar, 2004; Rycroft and Gibou, 2012), however it carries physical drawbacks that make it inappropriate
for our work here. In view of future intentions to simulate non-equilibrium or thermalized materials, the hypoelastic
framework is problematic as it lacks connection to a thermodynamic potential. As a consequence, certain processes can
cause hypoelastic laws to give pathological results, such as a non-zero stress at zero deformation after cyclic straining
(Kojic and Bathe, 1987). Although hypoelasticity can approximate isotropic hyperelastic behavior under small-stretch
conditions, it fails to do so for finite deformations.

A different Eulerian computational approach is to store F on the grid as a primitive variable and evolve it directly each
time-step. To update F, Eq. (6) must be expressed in Eulerian frame and discretized in space and time. Different Eulerian
representations of Eq. (6) have been proposed leading to numerical routines with certain features. Examples include

Plohr and Sharp ð1989Þ : ðrFT x̂ iÞtþr � ðrFT
ðx̂ i � v�1ðx̂ i � vÞÞÞ ¼ 0 fi¼ 1;2,3g ð11Þ

Trangenstein and Colella ð1991Þ : ðF�T
Þtþrðv � F

�T
Þ ¼ 0 ð12Þ

Liu and Walkington ð2001Þ : Ftþv � rF¼ ðrvÞF: ð13Þ

To ensure F remains a gradient quantity during numerical implementation, a gauge constraint must also be imposed
during the calculation process. Eqs. (11) and (12) have the benefit of being expressed in conservative form, which extends
their applicability to problems that lack a smooth solution. This feature has sparked interest in the approach and a number
of recent validations and high-order tests have been conducted (Barton et al. 2010; Miller and Colella, 2002; Gavrilyuk
et al., 2008).
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5. The reference map technique

The RMT is a different approach, which we shall now describe. Define the reference map nðx,tÞ as the inverse of the
motion function, i.e.

X¼ nðx,tÞ: ð14Þ

The map could be seen as a vector field in the deformed body that indicates the initial (or reference) location of
the material currently occupying the position x. Applying the chain rule to Eq. (14) at fixed t, we find dX¼rn dx. In view
of Eq. (5),

FðX,tÞ ¼ ðrnðx,tÞÞ�1: ð15Þ

Eq. (15) provides the underpinnings for the RMT approach. Rather than discretizing v in the reference space, as per
Lagrangian solid computation, we discretize the reference map in the deformed space. By Eq. (15), given the reference map
on a discrete set of Eulerian points, a consistent approximation for the F tensor is found by taking the finite-difference
gradient of n and inverting. This provides a straightforward Eulerian-frame calculation for F, and consequently a
mechanism for simulating thermodynamically compatible solid laws on a fixed grid. For example, hyperelastic stress is
simply

T¼ 2ðdet FÞ�1 F
@ĉðCÞ
@C

FT

�����
F ¼ ðrnÞ�1 , C ¼ ðrnÞ�T

ðrnÞ�1

ð16Þ

which maintains the connection between the stress and the strain-energy potential through n.
We must also write an Eulerian rule for updating n. This is inferred by observing that the reference map never changes

for a tracer particle—its reference location is always the same. Hence, _n ¼ 0. Switching perspective, we obtain the
evolution law

ntþv � rn¼ 0 ð17Þ

or in conservation form,

ðrnÞtþr � ðrn� vÞ ¼ 0: ð18Þ

If the initial configuration is undeformed (no pre-strain/stress) then we initialize nðx,t¼ 0Þ ¼ x¼X. Otherwise, we may
assign compatible pre-strain directly through Xpre ¼ nðx,t¼ 0Þ, as described in Section 6.2.1, and incompatible pre-strain by a
non-curl-free initial deformation gradient field Fpreðx,t¼ 0Þ. In the latter, the deformation gradient used in the constitutive law
becomes F¼ ðrnÞ�1Fpre. On moving material boundaries, n is obtained from the boundary displacement—that is, if a boundary
point originally at Xb is prescribed a displacement bringing it to xb at time t, then nðxb,tÞ ¼Xb (see Sections 6.2.1 and 6.2.2).
Along Eulerian in-flow/out-flow boundaries we obtain n from velocity conditions and Eq. (17) (see Sections 6.2.1 and 8.2); this
equips the method for problems where material may enter or leave the computational domain during deformation.

This approach has certain benefits within the realm of Eulerian solid methods. Since n relates directly to the motion
function, no gauge constraints are needed to enforce consistency in the deformation. The ease of implementing
displacement boundary conditions is another advantage; methods that store only the F tensor generally require global
invariants or indirect methods to implement displacement conditions on moving boundaries. In keeping the connection to
points in the reference configuration, we point out our method can lose accuracy in the presence of excessive mixing—methods
keeping F as the primitive variable are less affected by this problem. It might be possible to remedy the issue by enacting an
inverse analogy of Arbitrary Lagrangian–Eulerian, whereby after a critical distortion (say, at some time tc), the reference map is
reinitialized to n¼ x and the deformation gradient Ftc is stored, so that Fðt4tcÞ ¼ ðrnÞ�1Ftc ðnÞ. However, we also note
materials that can mix excessively are commonly of a fluid-like constitutive representation, whose stress can be expressed
accurately (regardless of mixing) using the gradient of v instead of n; Section 7 exploits this.

The notion of a map that records initial locations of material has been defined by others in various different contexts.
Koopman et al. (2008) use an ‘‘original coordinate’’ function akin to our reference map in defining a pseudo-concentration
method for flow fronts. In Pons et al. (2006), the map was used in conjunction with a level-set function for enhanced
processing of data along an interface. The inverse motion is also discussed in Belytschko et al. (2000) for use in Arbitrary
Lagrangian–Eulerian finite element analysis.

6. Implementation

6.1. Basic scheme—strong formulation

In this section we present the basic numerical scheme in its strong formulation, in the absence of boundaries. It is
therefore assumed that the dynamics remain smooth in the sense that solutions stay sufficiently regular up to the final
time. We define an Euler step, ðnnþ1,vnþ1Þ � Euðnn,vnÞ, of our method as per Table 1, which updates the fields one time-
step Dt. The entire solution scheme, corresponding to an Euler step is then embedded in the third order Runge–Kutta TVD



Table 1

The ‘‘basic’’ RMT routine; Euðnn ,vnÞ, strong formulation.

(All r operators discretize appropriately to centered or WENO finite-differences.)

Given: vn and nn

Goal: Calculate vnþ1 and nnþ1

Step 1: Construct F F¼ ðrnn
Þ
�1

Step 2: Compute r r¼ r0ðdet FÞ�1

Step 3: Compute T T¼ T̂ðFÞ
Step 4: Update v vnþ1�vn

Dt
þvn � rvn ¼

1

rr � Tþg

Step 5: Update n nnþ1
�nn

Dt
þvn � rnn

¼ 0

Fig. 1. Locations of various fields with respect to the grid.
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scheme (Shu and Osher, 1988),

ðnnþ1,vnþ1Þ ¼
1

3
Euðnn,vnÞþ

2

3
Eu

3

4
ðnn,vnÞþ

1

4
Eu½Euðnn,vnÞ�

� �
: ð19Þ

For now we study the scheme in two dimensions of space by utilizing plane-strain conditions. On a two-dimensional
grid (see Fig. 1), with grid spacing h, the velocity v and reference map n are located at corner points (i,j), while F and the
stress T are located at cell centers, ðiþ 1

2 ,jþ 1
2Þ. Thus, away from any boundary, we can compute @xn by finite-difference at

the mid-point of horizontal grid edges, and similarly, @yn on vertical grid edges, i.e.

@xnðiþ1=2,jÞ ¼ ðnðiþ1,jÞ�nði,jÞÞ=h: ð20Þ

We then obtain rn at cell centers by bilinear interpolation, which is used to compute the deformation gradient tensor F at
cell centers as per the first step on Table 1. With F computed, we now can define stress and density at cell centers using,
respectively, the hyperelasticity law and the relation r¼ r0ðdet FÞ�1. We compute @xT at the mid-point of vertical grid
edges, and similarly, @yT on horizontal grid edges, i.e.

@xT ði,jþ1=2Þ ¼ ðT ðiþ1=2,jþ1=2Þ�T ði�1=2,jþ1=2ÞÞ=h:

As a result, bilinear interpolation gives r � T at cell corners where v is stored.
Finally, in implementing the advection laws Eqs. (4) and (17) (the last two steps on Table 1), rv and rn are discretized

using a standard WENO scheme (Liu et al., 1994). The mass density in the velocity advection equation is the average value
from the four surrounding cell centers.

Example: Elastic wave in a periodic domain. To verify the method in smooth dynamic situations, we choose a problem
for which an exact elastodynamic solution exists, and then compare the exact results to the numerical. To this end,
consider a basic finite-strain elasticity law

T¼ kðV�1Þ ð21Þ
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for V�
ffiffiffiffiffiffiffiffi
FFT

p
the left stretch tensor. Let the material body be a rectangular slab constrained in plane-strain conditions.

The unstressed material density is uniform and has a value r0. Under these conditions, the following n and v fields are an
analytical solution for a rightward moving compression wave passing through the slab

x̂ � nðx,y,tÞ ¼ xþ1
2erfðx�ctÞ ð22Þ

x̂ � vðx,y,tÞ ¼ c 1�
1

1þ
1ffiffiffiffi
p
p e�ðx�ctÞ2

0
BB@

1
CCA: ð23Þ

Due to symmetry, the ŷ and ẑ components of both fields do not change from their initial, unstressed values. The constant
c¼

ffiffiffiffiffiffiffiffiffiffiffi
k=r0

p
is the wave speed. This solution invokes a large-strain deformation with compressive strain as high as

9x̂ � ðV�1Þx̂9� 36% at the center of the pulse. As a result, this example serves as a test of the ability for the present
approach to represent dynamic effects with large-strain deformation.

The Euler step is carried out as per the discretization presented above. The stability restriction of this fully explicit scheme is
Dtoa minðDx,DyÞ

ffiffiffiffiffiffiffiffiffiffiffi
k=r0

p
, for some small constant a. From this approach we expect second-order global convergence. In order

to verify the convergence rate, we set up a two-dimensional doubly-periodic domain O¼ ½�5;5� � ½�5;5�.
At t¼0, we use Eqs. (22) and (23), with c¼ k¼ r0 ¼ 1. The travelling wave solution should come back to its original shape
and location at t¼10. For a sequence of grids with h¼Dx¼Dy¼ f 2

40 , 2
20 , 2

10 ,25g, we set Dt using a¼ 1
10, and compute the L1 error

of n as

En
1ðhÞ ¼ sup

fx,yg2O
9x̂ � nðx,y,10Þ�x̂ � nðx,y,0Þ9:

We report in Fig. 2(a) second-order global convergence in n, as expected. The convergence rate between the two finest grids,
h¼ 2

10, and h¼ 2
5 is computed to be 1.97. Also illustrated is a second-order convergence in the compressive stress as computed

using the finite-difference of n.
In a similar manner, we compute and present convergence for x̂ � v. In Fig. 2(b) we report the expected second-order

global convergence for velocity. The convergence rate between the two finest grids, h¼ 2
10, and h¼ 2

5 is computed to be
1.99. Finally, Fig. 2(c) shows one-dimensional cross sections for x̂ � v at different times. The solid line represents the exact
Fig. 2. L1 and L2 norms of the error in x1 ¼ n � x̂ and T11 ¼ x̂ � Tx̂ , and in (b), the L1 error in v1 ¼ v � x̂ . We observe a second-order global rate of

convergence in all cases. (c) The velocity field x̂ � v through the cross-section y¼0 over one full period t ¼ ½0;10�. Comparison between analytical and

numerical solutions.
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solution computed from Eq. (23) at t¼0, which corresponds as well to t¼10, the time for which a wave has come back
fully to its original location. We see that the exact solution and numerical solution agree well for h¼ 2

10, a rather coarse
grid. We also plot the numerical solution at t¼2 for illustrative purposes.

6.2. Finite body—kinematic boundary conditions

In this section we describe the treatment of kinematic boundary conditions with examples of a static and quasi-static
problem, and demonstrate that the method converges to the correct solution, having a second-order rate of convergence.

6.2.1. Static case

Here, we assume that the reference map on the boundary, nB, is prescribed and fixed, and therefore the boundary
velocity is vB ¼ 0. Since we seek a static solution, a viscous term is added to the stress formula so that elastic waves are
damped and the static result emerges from relaxation. We also choose a pre-strained initial n field, which matches nB on
the boundary of the domain and maps bijectively between the reference and the deformed body—by starting with a
deformed ‘‘guess’’ for nðxÞ instead of initializing nðxÞ ¼ x we promote a faster convergence to the true static solution by
avoiding the need to model the boundary deformation process. This will be demonstrated best through a simple example
later. One way to generate such a guess if no obvious one can be found, is to construct harmonic fields for x1 and x2 that
satisfy the prescribed nB using a boundary integral method.

It is important to note that we can only use the discretization above provided we adapt it near boundaries. To identify
grid points outside the boundary and to locate where a boundary lies between grid points, we prescribe a level-set
function fðxÞ whose zero contour is consistent with the deformed boundary. When the boundary crosses any edge
between a given point ði,jÞ, and one of its eight neighbors, fi�1,i,iþ1g � fj�1,j,jþ1g\ði,jÞ, we use linear extrapolation to
provide a value to the point outside the boundary. The procedure is illustrated in Fig. 3(a). In this example, two points
(red circles) required to properly evaluate the stress fall outside the boundary. Along each dotted red line, we use the
values given at the location of the black squares to extrapolate linearly to the location of the red circles. Note that the
values of n and v on the boundary are given from the boundary conditions. Once all values of points falling outside
(red circles) the boundary have been updated, the algorithm described in the previous section can be applied without
modification to update the fields at the point ði,jÞ.

Example: Circular washer shear. To conduct a suitable test, we seek a problem having a known exact solution with
a non-trivial, inhomogeneous deformation that is non-conforming to the Cartesian grid. Such problems are difficult to
find, but one example is the Levinson–Burgess hyperelasticity law applied in a circular washer geometry for which
the outer wall is fixed and the inner wall is rotated over a large angle. Admittedly, this particular elasticity law is
somewhat esoteric, however it is adequate for the purposes of verifying the accuracy of the numerical method. The
Levinson–Burgess free-energy function, after application of Eq. (9), gives the following relation under plane-strain
conditions (Haughton, 1993):

T¼ f 1ðI3ÞBþ f 2ðI1,I3Þ1 ð24Þ

where B¼ FFT is the left Cauchy–Green tensor, I1 ¼ tr B, I3 ¼ det B are invariants of the B tensor, and f 1ðI3Þ ¼ Gð3þ1=I3Þ=

ð4
ffiffiffiffi
I3

p
Þ and f 2ðI1,I3Þ ¼ G

ffiffiffiffi
I3

p
ðk=G�1=6þð1�I1Þ=ð4I2

3ÞÞ�G=3�k. Under small strains, k and G represent the bulk and shear
moduli. Throughout, we use k¼ G.
Fig. 3. (a) Routine for handling irregular boundaries. Values are extrapolated to nearby grid-points beyond the material domain using known information

at the boundary. (b) Treatment of grid-points that enter the material domain during a time-step. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)



Fig. 4. (a) Scalar displacement field, as predicted by the method, for a static hyperelastic washer sheared by a finite rotation angle on its inner wall.

Performed on a 100�100 grid. (b) Corresponding angular displacement profile.
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Angular displacement boundary conditions Dyin ¼ p=6 and Dyout ¼ 0 are prescribed to the inner and outer walls of the
washer. We choose a simple, pre-strained initial n field for the simulation, corresponding to a purely angular displacement
that is linear in the radial coordinate and matches the prescribed boundary displacements.

The analytical solution for the static displacement field, under Levinson–Burgess hyperelasticity, is Dy¼ A�B=r2 and
Dr¼ 0 where A and B are used to fit the boundary conditions. The graph in Fig. 4(b), which is in consistent though arbitrary
length units, shows excellent agreement between our numerical solution (sampled along the central horizontal cross-
section) and the analytical despite the fact that the scheme is based on a cartesian mesh while the geometry is radially
symmetric. We have observed equally good agreement when the inner wall rotation angle is varied.

6.2.2. Quasi-static case

Here, we assume that the reference map and velocity on the boundary, nB and vB, are prescribed and time-dependent.
We include viscous damping, as before, so that the motion appears as a sequence of static states. This ensures we stay
within the dissipative regime in which the strong form of our algorithm is valid.

As before we utilize a level-set function f to distinguish the boundary, but now we let it be time-dependent in agreement
with the applied boundary motion. One must pay special attention when the boundary crosses a point within one time step Dt.
In this case, we provide n and v values to the new point (red dot in Fig. 3(b)) by interpolating values from the inside of the
domain and the boundary (black squares). The interpolation is linear, along a line normal to the boundary and going through
the point in question. This line crosses the boundary and a cell edge (black squares) where the fields can be evaluated. This
procedure is also applied to any grid point within the body that is very close to the boundary, and the size of the cut-cell is too
small to guarantee numerical stability. As a rule of thumb, we switch to this procedure when the cut-cell is smaller than Dx=10.

A simple benchmark property of the boundary routines we have just described is that all discretization error vanishes in the
case of a uniform body moving under constant velocity boundary conditions. This fact can be proven by noting that the exact
kinematic fields vary linearly in this case, which removes discretization error from the boundary and finite-difference
calculations. We have verified this as well with numerical tests, by simulating the movement of an elastic disk with an initially
uniform deformation F0, uniform initial velocity v0, and displacement boundary conditions for t40 consistent with a boundary
velocity of v0. Regardless of v0, F0, and the grid-spacing, we have verified that the F matrix at all locations and times is within
floating-point error of the exact solution F0. Likewise the Cauchy stress is equally accurate.

Example: Quasi-static flower deformation. Fig. 5 shows a sequence in time for the molding of a circular object into a
five-petal flower shape, using the hyperelasticity law from the prior section. The boundaries are defined by a level set
function on the regular 80�80 Cartesian grid. We choose this particular example because it has large deformation and
symmetry-breaking characteristics with respect to the Cartesian grid. The sequence shows relative density contours as the
object is deformed from its initial configuration to the final, static state. Additionally, we have performed a convergence
study of the present problem using a sequence of grids from 10�10 to 80�80 points. For each grid, after the time-
dependent boundary deformation has concluded, we hold the final boundary configuration in place to ensure a static
solution: Fig. 5 shows that the changes occurring after boundary deformation has ceased are quite miniscule, as desired of
a quasi-static process. The error in the L1 norm is then evaluated by comparing the final solution against the same solution
on a 160�160 grid. Fig. 6 shows the second-order convergence of n, as predicted by our analysis. In order to quantify the
accuracy of the Cauchy stress, we also perform a convergence study of rn, noting that T and rn must have the same order
of accuracy. The tensor rn is computed using standard centered finite-difference of the field n. Despite the second-order
convergence of n, we observe a first-order L1 convergence in rn. This is in contrast to the case of the elastic wave in the
periodic domain described previously for which second-order was observed for both n and its finite-difference derivative.
We expect such a difference here, since the introduction of internal boundaries as discretized above will disrupt the spatial



Fig. 5. A sequence of snapshots of contours of r=r0 ¼ ðdet FÞ�1 as a hyperelastic circular disk is quasi-statically molded into a five-petal flower over some

time tf. The first through fifth snapshots are equally spaced during the deformation and the last image is the result after holding the final boundary

configuration in place for an additional time tf, indicative of a fully-relaxed result.

Fig. 6. Convergence studies for the five-petal flower deformation test.
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smoothness of the truncation term in the Taylor series analysis causing a local accuracy drop in the finite-difference of n in
the direct neighborhood of the boundary. To verify that this is the case, Fig. 6 also presents the convergence in the L2 norm
for rn. We observe a second-order convergence in that norm, clearly indicating that the drop in order observed for L1 is
localized at the boundary and of minimal effect within the bulk. It is clear that on one hand, more work is required to
provide a boundary discretization that will guarantee second-order convergence in the L1 norm for the derivative of n. But,
on the other hand, the present boundary treatment is simple to implement and provides second-order accurate solutions
for the kinematic fields and, under the L2 norm, the stresses.
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7. Fluid–solid coupling

In the previous sections, the reference map technique has been introduced and compared against analytical results.
With the basic approach validated, we now proceed to demonstrate the ability of the method to simulate fluid–structure
interaction problems. For simplicity of presentation, we consider two-dimensional plane-strain examples as before, and
we make use of non-dimensional simulation units—converting the results to physical units can be carried out by
introducing a mass, length, and time scale.

In the examples presented here, a hyperelastic solid is coupled to a weakly compressible, athermal fluid phase with
velocity field vf and density rf . The fluid stress tensor satisfies

Tf ¼ Z
rvf þðrvf Þ

T

2
�lf

rf

rf 0

�1

 !
1 ð25Þ

where Z is a viscosity, lf is the fluid compressibility modulus, and rf 0 is the initial density. The velocity and density obey

rf

@vf

@t
þðvf � rÞvf

� �
¼r � Tf ð26Þ

@rf

@t
þr � ðrf vf Þ ¼ 0: ð27Þ

We consider a no-slip boundary condition in which vf ¼ vs on the fluid–solid interface. The components of stress in the
normal direction must match, so that if n is the normal vector, then Ts � n¼ Tf � n.

It is key to point out how little the algorithm changes to switch from simulating the solid to the fluid phase under the
RMT approach. When in fluid, the routine merely replaces Steps 2 and 3 from Table 1 with the equivalent stress and
density formulations for fluid, using a finite-difference of vf rather than n to compute the stress, and evolution of rf by
Eq. (27) rather than r¼ r0 ðdet FÞ�1.

7.1. Methods

The simulations are carried out on an m by n rectangular grid of square cells with side length h. The time-integrated
fields of vs, n, vf , rf are computed on the (mþ1) by (nþ1) staggered grid of cell corners, while the stress tensors Tf and Ts

are computed on cell centers. For time-stepping, a first-order forward Euler scheme is employed. The fluid–solid interface
is described by a level set function f held at cell corners, with solid grid points corresponding to fr0 and fluid grid points
corresponding to f40. The level set update is carried out using the hybrid approach described by Rycroft and Gibou
(2012) that makes use of the method described by Chopp (2001) to update points straddling the interface, coupled to a
second-order fast marching method to determine points that are further away.

As part of the simulation it is also necessary to characterize which phase the cell-centered grid points are within. If all
the four of a cell’s corners are in fluid, then the node is classed as ‘‘full fluid’’. If all four corners are solid, then the node is
classed as ‘‘full solid’’. Otherwise, a value fc is computed at the cell center as the average of f at the four corners. If fc r0,
the node is classed as ‘‘partial solid’’ and if fc 40, the node is classed as ‘‘partial fluid’’. The simulation method is not
sensitive to the distinction between partial fluid and partial solid, and other prescriptions such as those based on the
number of corners that are fluid or solid have achieved similar results.

The level set field can also be used to carry out linear field extrapolation using the equations described by Aslam (2004)
and the algorithms described by Rycroft and Gibou (2012); the routines can be applied in both directions, so that fluid
fields can be extrapolated to solid grid points and vice versa. In addition, a routine has been written to allow linear
extrapolation of the cell-centered stress fields using the corner-centered level set function. The routine can extrapolate a
field from full solid nodes to all partial nodes and all full fluid nodes, and vice versa.

Each test problem is initialized by specifying a level set function, and defining the field vf and rf at fluid grid points, and
the fields vs and n at solid grid points. Before starting the simulation the fields vs and n are extrapolated into the fluid
phase, and the fields vf and rf are extrapolated into the solid phase. To take a step forward in time, the following
procedure is applied, which is essentially an extension of the Ghost Fluid Method (Fedkiw and Liu, 1998) to the case of a
fluid–solid interface:
1.
 Calculate the update to the reference map n based on advection by vs, but do not apply immediately.

2.
 Compute the intermediate stresses Ts and Tf at the full solid and full fluid grid points respectively. Extrapolate both

stress tensors to all partial grid points.

3.
 Fix extrapolated velocity fields to match the no-slip boundary condition, and project the extrapolated n to maintain

consistency with the interface f¼ 0.

4.
 Fix the extrapolated stresses to ensure proper continuity of the stress.

5.
 Calculate the update to the velocities vf and vs, density rf but do not apply immediately.

6.
 Update the fields vs, vf , n, and rf .

7.
 Set any values of the fields vs, vf , n, and rf that are fixed according to boundary conditions.
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8.
Fig
sho
Extrapolate the fields vs, vf , n, and rf .

9.
 Move the level set according to the extrapolated solid velocity.

Additional computational details about steps 3 and 4 are provided in Appendix A.1. Snapshots of the simulation fields are
saved at periodic intervals.

The fluid has initial density rf 0 ¼ 1, viscosity Z¼ 0:12, and compressibility modulus lf ¼ 60. The solid phase is modeled
as a compressible neo-Hookean elastic solid, with small-strain bulk and shear moduli k¼ 50 and G¼10 respectively.
That is, for J¼ det F and 0 indicating the deviator,

c¼
G

2
ðJ�2=3trðBÞ�3Þþ

k
2
ðJ�1Þ2, Ts ¼ GJ�5=3B0 þkðJ�1Þ1: ð28Þ

A damping viscosity of 0.06 is also applied to the solid. The simulation is written in Cþþ, and for each of the test runs
described below, a running time on a 3.4 GHz Apple iMac system is reported.

7.2. Release of a pre-strained disk within fluid

The first test of the method is carried out in a square domain ½�2;2�2 with a grid of m¼n¼129. A disk of radius
4
5 is initially stretched so that its reference map is given by

ðx1,x2Þ ¼
8xþ5

10
þ

y

2
,y

� �
:

The boundary of the circle is initially given by

fðx,yÞ ¼ 9n9�4
5

and the solid and fluid are initially at rest. No slip boundary conditions are applied on all four edges of the domain. Fig. 7
shows a sequence of snapshots of the pressure from t¼0 to t¼5; simulating over this time interval took 22.7 s to carry out.
Since the body is initially stretched, its pressure is negative. As the simulation progresses, the circle undergoes several
oscillations that are slowly damped as energy is lost due to viscosity.

At t¼5 it can be seen that the circle has returned to its rest configuration. Even though the level set only defines the
position of the boundary implicitly, the continual projection of the reference map at the boundary ensures that the shape is
retained throughout the simulation, and numerical errors do not distort its shape over time. Since the circle was initially
. 7. Snapshots of pressure for the test problem in which an initially stretched disk is released within a fluid. The fine rectangular grid on the circle

ws the contours of the x1 and x2 components of the reference map. Arrows show the fluid velocity.



Fig. 8. Snapshots of pressure for the test problem in which an anchored flexible rod is deformed by a fluid flow. The fine rectangular grid on the rod

shows the contours of the x1 and x2 components of the reference map. Arrows show the fluid velocity.
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stretched and has now contracted, the average pressure in the fluid in the final configuration is negative due to
conservation of volume.
7.3. Body within a flow

In the second test simulation, a rod centered on (x,y)¼(0.5,0), with rounded ends, is initialized with the level set
function

fðx,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ0:5Þ2�ð9y9�1Þ2

q
�0:5 for 9y941

9xþ0:59�0:5 for 9y9r1

8<
: :

The rod is initially at rest so that n¼ x and vf ¼ 0. The rod is anchored, so that for the regionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ0:5Þ2þðy�1Þ2

q
o0:3

the velocity is constrained to be zero and the reference map is constrained to be equal to x. To investigate how the body
deforms in response to a fluid flow around it, a horizontal fluid velocity of vf ¼ ð0:12,0Þ is applied at x¼72. At y¼72,
perfect slip (shear-traction free) boundary conditions are employed.

Fig. 8 shows six snapshots of the fluid flow around the rod as it deforms. Initially the bottom of the rod is passively
transported with the fluid flow as can be seen in the snapshot at t¼1. Later, the rod begins to bend, and pressures build up
at (x,y)¼(0,0.8). A t¼10 the rod reaches maximum bending, before relaxing slightly into a stationary configuration at
t¼25.0. The simulation took 125 s to carry out.
7.4. Fluid spinning a flexible rotor

In the final example, a flexible rotor is introduced, whose shape is a combination of two of the rods from the previous
example, but with the internal corners rounded out. Initially the rotor and fluid are at rest, and the reference map is set to
that n¼ x.

The rotor is placed in flow by creating an inwards horizontal velocity of vf ¼ ð0:2,0Þ for the boundary x¼�2, yo0 and
an outwards vertical velocity of vf ¼ ð0,0:2Þ for the boundary y¼ 2, x40. All of the other boundaries have impermeable,
slip boundary conditions.



Fig. 9. Snapshots of pressure for the test problem in which a flexible rotor begins to rotate due to fluid flow. The fine rectangular grid on the rod shows

the contours of the x1 and x2 components of the reference map. The small white circle is a marker on one of the blades; by t¼20, the rotor has rotated

almost 901. Arrows show the fluid velocity, with the green strip highlighting the part of the boundary where fluid is injected and the cyan strip

highlighting the part of the boundary where fluid is removed. (For interpretation of the references to color in this figure caption, the reader is referred to

the web version of this article.)
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The rotor is anchored in the region 9x9o0:4 but is allowed to rotate freely. To do this, at each simulation step, the
variables o and y are fit by solving the least squares problems

vf 1

vf 2

 !
¼

0 �o
o 0

� �
x

y

 !
,

x1

x2

 !
¼

cos y �sin y
sin y cos y

� �
x

y

 !

for all gridpoints in the region 9x9o0:5. Once these variables have been found, then the above formulae can be used to set
vf and n in the anchored region so that they represent a rigidly rotating body. Snapshots of the pressure are shown in Fig. 9.
Initially the rotor is pushed diagonally upwards and rightwards, but as the simulation progresses the rotor begins to spin.
To simulate from t¼0 to t¼25 took 146 s to carry out.

8. Conservative form

Thus far, we have been dealing with the discretization generalized in Table 1. This scheme is not discretely
conservative, and is not intended for situations invoking discontinuous solutions. Here, we present two ways to rewrite
the system in a fashion that upholds discrete conservation.

8.1. Approach 1: independent density evolution

Our entire system can be recast in a divergence form of the type

Utþr � fðU,rUÞ ¼ sðUÞ: ð29Þ

Specifically,

@

@t

r
rv

rn

0
B@

1
CAþr �

rv

rv� v�T̂ððrnÞ�1
Þ

rn� v

0
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1
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0
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0

0
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1
CA: ð30Þ
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These equations have the benefit of being relatively straightforward to implement under a finite-volume discretization,
which by telescoping of the flux terms ensures discrete conservation. One potential drawback is that the density evolves
independently from the deformation gradient. While this is to no avail analytically, discretization error over time can
cause the density to differ from a discrete computation of r0ð det rnÞ.

In past studies, source terms have been used that penalize any such differences as in Miller and Colella (2001). Since n

and not F is our primitive variable here, it is unclear if a similar fix is available. But on the other hand, without F primitive,
it could be argued that this consistency condition is less crucial. Even so, we present a second way to rewrite and
implement the system conservatively, that guarantees kinematic consistency between the density r and the deformation
gradient.
8.2. Approach 2: density from deformation

To confront the previous issue, we describe a method that always defines density in terms of the motion, while
simultaneously maintaining discrete conservation. The general idea is to take advantage of the fact that n is already an
integrated quantity of the deformation, which can be used to relate boundary information directly to the total mass.
Let the unstressed reference body have some uniform density r0. After deformation, in the n-dimensional continuum limit,
the mass within an Eulerian domain O is equivalent to

MassO ¼

Z
O
r dV ¼

Z
O
r0detðrnÞ dV ¼ r0

Z
OR

dVR ¼

Z
@O

r0

n
detðrnÞðrnÞ�1n � dS ð31Þ

where the subscript R denotes reference space variables. The last integral reflects that knowledge of n along the boundary
of a domain is enough to correctly compute the mass contained within.

The integral form of conservation of mass can be rewritten using Eq. (31) in terms of a single boundary integral
involving n and its derivatives. To wit:

0¼
@

@t

Z
O
r dV

� �
þ

Z
@O
rv � dS

30¼

Z
@O
ðrnÞ�1r0detðrnÞðntþðrnÞvÞ � dS: ð32Þ

Observe that the term in big parentheses on the right of Eq. (32) is precisely the expression on the left side of Eq. (17). As a
consequence, we deduce that if rn and v exist on @O and the usual advection law for n is enforced along the boundary,
then the integrand above vanishes and mass conservation is automatically satisfied within O, regardless of the smoothness
properties within the interior of O.

Following the discretization in the Appendix, which includes a formal discrete conservation proof, we demonstrate the
technique using an elastic constitutive law permitting a direct analogy to the 1D isothermal Euler equations, so that
analytical shock solutions are readily available for the purposes of testing the method:

T̂ ðVÞ ¼ ar0ð1�V�1
Þ ¼ a2r0 ð1�@xxÞ: ð33Þ

A genuinely nonlinear, discontinuous solution satisfying the Rankine–Hugoniot and entropy conditions is the rightward
traveling shock

s¼ vL�a
ffiffiffiffiffiffiffiffiffiffiffi
1þb

p
ð34Þ

rðxost,tÞ ¼ rL, rðxZst,tÞ ¼ rLðbþ1Þ ¼ rR ð35Þ

vðxost,tÞ ¼ vL, vðxZst,tÞ ¼ ððvL�a
ffiffiffiffiffiffiffiffiffiffiffi
1þb

p
ÞbþvLÞ=ðbþ1Þ ¼ vR ð36Þ

for some 0oboðvL=aÞ2�1 and positive incoming velocity vL.
Letting vL ¼ rL ¼ 1 and b¼ 2, we presume a shock front initially at the origin of a material with a¼0.45 and r0 ¼ 1 within

the Eulerian domain x 2 ½�2:5,7:5�. The discontinuous initial compression is instituted through a kinked x field defined by
xðxo0;0Þ ¼ rLx and xðxZ0;0Þ ¼ rRx. The initial momentum density field is Mðxo0;0Þ ¼ rLvL and MðxZ0;0Þ ¼ rRvR.

These initial conditions are discretized and the numerical method is computed up to time tf ¼ 5=ð2sÞ permitting the
shock to travel half the length of the domain. A transparent left boundary condition is used throughout, and the routine is
tested on grids of size h¼10/2k for k¼4–10. Fig. 10 summarizes the findings. As expected from discrete conservation, plots
(a) and (b) show that at tf the discrete fields r and M possess a (blurred) shock front well-centered at the analytical
position of the moving discontinuity. The plot in (c) illustrates first-order L1 convergence, which is expected given the
order of the scheme and is indicative of the method’s ability to capture the shock speed. Due to numerical diffusion about
the jump, a standard concession in shock capturing schemes, higher Lp norms give a lower convergence rate for r and M;
namely 1/p-order convergence. However, x remains first-order accurate because it is continuous.



Fig. 10. Solutions at the instant the shock has travelled half the length of the domain. Numerical vs analytical solution for the (a) mass density and (b)

momentum density using a grid of 64 points. (c) Convergence plot of the various quantities illustrating first-order L1 convergence.
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9. Conclusion and future work

This work has demonstrated and tested the Reference Map Technique for use in simulating solid deformation under a
fully Eulerian, finite-difference framework, and extended the approach to a fast, simple fluid–solid interaction routine
generalizable to many situations. The current work has tested the technique under various conditions. For statics, the
solution it presents was compared against an analytical solution for the hyperelastic deformation of a washer, showing
that the method approaches the correct solution under inhomogeneous deformation. The approach was expanded to
quasi-static conditions, and the convergence properties were measured using a large-strain, grid-misaligned five-petal
deformation. To test dynamics, the case of smooth motion was validated against an analytical solution, and two different
approaches were proposed in the case of discontinuous dynamics. The preferred approach, which involves recovering the
density from the deformation, was tested using an introductory 1D example. We have also provided a number of
demonstrations of an extended routine to simulate sharp-interface fluid–structure interactions, including three examples
where fluids induce large elastic solid deformations and vice versa. The simplicity of the finite-difference framework
enables these simulations to run rather quickly.

There are several avenues of future investigation. We have begun to extend the approach to more solid behaviors, including
those with added state variables such as rate-dependent/rate-independent hyperplasticity, which utilize a tensorial state
variable Fp (Lee, 1969) and possible evolving hardening parameters. In the RMT framework, state variables are appended as
separate fields on the grid and evolved accordingly during the time step. Inclusion of thermal effects may also be handled this
way, i.e. by adding temperature as a grid variable. By inclusion of an Eulerian projection step (Chorin, 1967), it is also possible to
institute incompressible solid models. We also note that while we have primarily considered two-dimensional geometries for
simplicity, it is conceptually straightforward to apply the method in fully three-dimensional geometries and results on this
front are forthcoming. Regarding shock simulations, only a rudimentary first-order analysis has been provided herein, and it
would be important to create high-order versions of this technique especially with regard to satisfaction of the entropy
condition in more complex cases. A subroutine to institute traction boundary conditions is currently in the validation phase.
In it, stress fields are extrapolated beyond the solid body and the normal components are adjusted to ensure boundary
interpolation correctly represents the boundary traction. Details will be reported in a future work. As for the FSI routine, it
remains to include subroutines for other interaction laws such as perfect slip, and, as general RMT capabilities expand, to test
interactions between fluids and solids of various constitutive laws.
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Appendix A

A.1. Fluid/solid interfacial extrapolation

One of the key components of the fluid–solid coupling simulation presented in Section 7 is the extrapolation and
subsequent fixing of simulation fields in order to apply the boundary conditions between the fluid and solid phases.
The calculations presented in this section can be applied by considering the fields available at a single grid point. It is
assumed that by making use of existing extrapolation methods (Aslam, 2004; Rycroft and Gibou, 2012) that linear
extrapolations of all fields are available at the grid point – these are labeled with an ‘‘ex’’ superscript. In this appendix, the
procedures are described to make use of these fields to construct ghost field values, labeled with a ‘‘g’’ superscript, which
are then employed in the finite-difference update.

In step 3, the node-centered fields are considered. At fluid grid points, next to the solid body, the values of ng are
constructed by normally projecting the value of nex to be consistent with the level set function. The level set function f at
the grid point gives the distance that this grid point is away from the solid boundary, and the value of ng should be
projected to be consistent with this. For example, for the simulation involving the circle with radius 0.8, it should be the
case that at a fluid grid point, a distance f away from the boundary, then 9ng9¼ 0:8þf. The ghost value can therefore be
constructed according to

ng
¼

4

5
þf

� �
nex

9nex9
:

For the three simulations considered here, featuring objects comprised of arcs and lines, carrying out a normal projection
of this type can be easily done. For a more general object, a more complex procedure would have to be employed perhaps
based on the methods used in Pons et al. (2006).

To construct the ghost velocity, it is first necessary to construct a normalized tangential vector n? at the gridpoint.
This can be done by calculating the gradient of the level set field and normalizing it, and then rotating it by 90 1. After this,
the tangential components of the velocity can be constructed according to

vs,t ¼ vs � n?

vf ,t ¼ vf � n?:

After this, a ghost solid velocity can be constructed according to

vg
s ¼ vf þn?ðvs,t�vf ,tÞ

taking the real fluid velocity, and replacing the tangential component with the extrapolated solid velocity. Physically
speaking, both velocity components are continuous across a no-slip interface, but the replacement above, consistent in the
limit as Dx-0, improves the accuracy of the rv calculation (needed for velocity evolution) near the interface by using vt

information from the solid rather than differencing over the very large kink in vt at the interface. At the solid grid points
near the fluid, the ghost fluid velocity is taken to be the solid velocity, i.e. vg

f ¼ vs, unadjusted because the fluid stress must
arise from a strain-rate consistent with the no-slip condition.

In step 4, the cell-centered fields are considered. Consider a partial fluid gridpoint, where extrapolated stress tensors
Tex

s and Tex
f are available. In a similar manner to above, it is possible to construct a normalized tangential vector n?. After

that, the tangential–tangential components of the stress tensors can be evaluated as

sex
s,tt ¼ nT

? � T
ex
s n?

sex
f ,tt ¼ nT

? � T
ex
f n?:

In order to allow the tangential–tangential component of the ghost solid stress tensor to be free, but to fix the other
components to match across the boundary, the ghost solid stress tensor is constructed as

Tg
s ¼ Tex

f þn? � n?ðsex
s,tt�s

ex
f ,ttÞ

which replaces the tangential–tangential component of the fluid stress with the value from the solid stress. The same
procedure can be applied at partial solid gridpoints in order to construct Tg

f by making use of the extrapolated tangential–
tangential component of the fluid stress, with the normal–normal and normal–tangential components of the solid stress.

In principle, these procedures offer a very general approach for handling a variety of boundary conditions. Depending
on which fields are being set or being allowed to vary freely, different components of the fields can be replaced or fixed in
the extrapolated fields.
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A.2. Shock numerics

A conservative numerical scheme based on Eqs. (31), (17) and (2) is easiest to illustrate in one dimension. On an
Eulerian domain O¼ ½xL,xR�, the total mass and the law of mass conservation reduce to

MassO ¼ r0ðxðxRÞ�xðxLÞÞ ð37Þ

0¼ r0 xtþ
@x
@x

v

� �����
xR

�r0 xtþ
@x
@x

v

� �����
xL

: ð38Þ

To demonstrate formal discrete conservation, we suppose the following circumstances as per (LeVeque, 1992). For all
x 2 O, xðx,0Þ and v(x,0) are given analytically, and @xxðx,0Þ and v(x,0) are both constant in a set S¼ ½xL,xLþd� [ ½xR�d,xR� for
some d. Let Dx5d such that xR�xL ¼ KDx. At t¼0 we represent the field variables x and momentum density M� r0v@xx on
a grid of points x¼ xLþ iDx by assigning x0

i ¼ xðxLþ iDx,0Þ and letting M0
i be the average of M(x,0) over the interval

xLþ½i�1=2,iþ1=2�Dx. To determine Mi
j

and xj
i at later times t¼ jDt, we can use an explicit finite-difference scheme of the

form outlined below:

rj
i�1=2 ¼ r0ðx

j
i�x

j
i�1Þ=Dx ð39Þ

Tj
i�1=2 ¼ T̂ ðððxj

i�x
j
i�1Þ=DxÞ�1

Þ ð40Þ

Mjþ1
i ¼Mj

i�
Dt

Dx
ðfj

iþ1=2�f
j
i�1=2Þ ð41Þ

xjþ1
i ¼ xj

i�DtDj
iM

j
i ð42Þ

where the fields fj
iþ1=2 and Di

j
are computed from the discrete r, T, and x fields to give numerical approximations for

ðM2=r�TÞ and ð@xxÞ=r at locations xLþðiþ1=2ÞDx and xLþ iDx respectively. We require that the formulae for fj
iþ1=2 and Di

j

depend only on data points positioned closer than l away for some l5d. The formulae must also be consistent such that
the approximation error vanishes at a point x if @xx and M are both constant within ½x�l,xþ l�. For example, a simple
upwind formula for rightward motion would be

fn
iþ1=2 ¼ ðM

j
iÞ

2=rn
i�1=2�Tn

i�1=2 ð43Þ

Dn
i ¼ ððx

n
i �x

n
i�1Þ=DxÞ=rn

i�1=2 ¼ 1=r0: ð44Þ

The constraints above imply a finite domain of dependence. This combined with the fact that @xx and M begin constant
within d of the domain’s endpoints, means there exists some No ðd�lÞ=Dx such that for nrN, the numerical boundary
terms exactly match their analytical counterparts due to consistency; notably xn

0 ¼ xðxL,nDtÞ and xn
K ¼ xðxR,nDtÞ by

consistency between Eqs. (42) and (17), which in turn guarantees Eq. (38). For similar reasons, the numerical flux f also
remains exact at the endpoints up to time NDt. These results imply

MassOðt¼NDTÞ ¼

Z xR

xL

rðx,NDtÞ dx¼ r0ðxðxR,NDtÞ�xðxL,NDtÞÞ ¼ r0ðx
N
K�x

N
0 Þ ¼

XK

j ¼ 1

rN
j�1=2Dx ð45Þ

MomentumOðt¼NDTÞ ¼

Z xR�1=2

xL þ1=2
Mðx,NDtÞ dx¼

XK

j ¼ 0

MN
j Dx: ð46Þ

The last result applies a standard telescoping argument to the fluxes in Eq. (41) to establish equivalence to the integral.
Eqs. (45) and (46) mean that the discrete method is conservative as per the formal definition in LeVeque (1992), despite

the fact that the density is not updated in a ‘‘standard’’ divergence form. In the canonical case of no mass flux through the
system boundaries, then xðxL,tÞ and xðxR,tÞ remain fixed for all time and the computed mass per Eq. (45) is always
guaranteed to equal the initial.

The same reasoning applies in higher dimensions as long as the density formula is defined from the discrete n field in
terms of the equivalent volume enclosed in the reference space, as was done here. For example, a density formula in 2D
that would conserve mass as in Eq. (45), would be

rk
i�1=2,j�1=2 ¼

r0

2DxDy
ð9ðnk

i,j�nk
i�1,jÞ � ðn

k
i,j�nk

i,j�1Þ9þ9ðn
k
i�1,j�1�nk

i�1,jÞ � ðn
k
i�1,j�1�nk

i,j�1Þ9Þ: ð47Þ

The term in big parenthesis represents the area of the quadrilateral in the reference space associated to the Eulerian grid square
centered at ðxi�1=2,yj�1=2Þ. Under analogous conditions to the one-dimensional case, up to some finite time the sum of the
discrete density field times DxDy gives precisely r0 � freference area enclosedg, equivalent to the analytical total mass.

While our current interest is in athermal materials, we briefly note that the approach here could be augmented to handle
temperature shocks by direct inclusion of a separate internal energy field E obeying some constitutive equation of state.
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An explicit, conservative update law for E would follow from a divergence-form representation of energy conservation
implemented in a fashion analogous to Eq. (41) for momentum conservation.
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