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Les écoulements polyphasiques jouent un rôle central dans les problèmes liés à l'environnement et à l'industrie. Les
traits communs, mais significatifs, de tels problèmes sont des géométries et une topographie complexes, des processus
de transfert à travers des frontières de phase, et des interfaces internes qui fusionnent, déferlent, et se déforment. Les
conditions pour prévoir le mouvement des liquides dans de telles conditions représentent des défis importants pour la
dynamique des fluides numérique, en particulier pour la simulation directe des écoulements impliquant des interfaces
internes. Dans cet article, nous nous concentrerons sur deux modèles qui capturent le mouvement des interfaces
internes implicitement et peuvent résoudre des écoulements complexes jusqu’à la taille de la grille informatique. Les
méthodes sont basées sur l'approche des champs de phase — qui sont également appliquées dans la forme générale à
des systèmes polymères viscoélastiques et avec séparation de phase — dans ce dernier cas en utilisant une approche
théorique de champ auto-consistant. Pour des processus de très petites échelles de longueur, e.g. nucléation et
croissance, de tels calculs conduisent à des interfaces d'épaisseur finies et avec la physique adéquate. Pour les struc-
tures polyphasiques de plus grande dimension-, l'interface devient une discontinuité de contact, et la méthode tend
doucement vers une formulation semblable à des ensembles des niveaux. Cependant, dans cette deuxième forme l’inter-
face raide est difficile à traiter par le calcul. Une variation de la méthode du fluide fantôme dans laquelle des inter-
faces raides peuvent être capturées sera présentée. Des applications seront données aux deux extrémités des échelles,
incluant les premiers stades de nucléation, de croissance et de mélange de structures polyphasiques, aussi bien que des
écoulements macroscopiques dans lesquels les échelles de longueur et les vitesses sont grands.
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I ■ INTRODUCTION

With the advent of increasingly powerful computers, the
direct simulation of multiphase flows has become possible.
The work is still limited to laminar systems, as simultaneous
resolution of turbulence is still too onerous for existing capa-
bilities. Nonetheless, much has been learned about multi-
phase systems, particularly those at micro- or sub-micro sca-
les, where fluid turbulence is not a problem. In direct
simulations, all scales of motion and all interfacial configura-
tions are resolved. This is possible in a variety of simple pro-
blems, from which physical insight as to the interfacial trans-
port processes can be derived. For larger-scale applications, a
form of super-grid resolution of interfaces may be attempted,
and the procedure is sketched in figure 1. Here, the subgrid
scales, which may involve small bubbles or drops, are trea-
ted by something like the multifield model discussed in
Part I. However, supergrid scales are fully resolved. This
approach is somewhere in between direct simulations and the
interpenetrating continua approach, as models and closure
relationships are only necessary for the finely-dispersed pha-
ses of sub-grid scale, which can often be treated with homo-
geneous equilibrium or other simple approximations.

In this paper, we will not discuss this approach further
here. Suffice it to say that it has great promise for applica-
tion to practical problems, as it is the closure relationships
for the large-scale structures that are most difficult to obtain
in the framework of the multifield model (interpenetrating
continua model).

To proceed, several methods are available for resolving
interfaces directly and satisfying all boundary conditions at
them for multiphase systems. These are: VOF, Direct Inter-
face Tracking, Level Sets, and Phase Field.

We will concentrate here on the level-set, also in a form
that captures sharp interfaces, and phase-field methods. In
addition, we will also discuss, in brief, generalizations of the
phase-field method, which allow complex fluid formulations
to be treated, such as within the framework of two-fluid and
self-consistent field theoretic models. The two-fluid model
allows treatment of viscoelastic fluids that are important in a
variety of situations, and the model and its applications will
be described, as will the field theoretic approach. The last is
important in computations of self-assembling multiphase
systems, which are of great interest in many industrial appli-
cations.

To take an example, consider figure 2, which shows a
self-assembled polymer template made by IBM, where the
structures are of 10 nm in diameter. Such structures are
much smaller than the wavelength of light, which is cur-
rently used to etch tiny subcircuinotry on chips. However,
such self-assembled structures can act as part of devices that
form a type of flash memory, which in turn retains recent

information when an electronic gadget is turned off. IBM
notes that such self-assembled structures can also be used to
do nanoscale lithography on specially prepared wafers. In
any case, self-consistent field-theoretic methods can be used
to predict such multiphase structures, which may take the
form of cylinders, lamellae, gyroids, and the like, depending
on various processing conditions.

Other applications of such direct simulation techniques are
for complex fluid product formulation, such as cosmetics,
paints, polymeric alloys, and a variety of pharmaceutical and
personal care products. Such computational approaches can
be used to rapidly screen product formulations and reduce
the time taken in trial-and-error experimentation that cur-
rently is used. Figure 3 shows a variety of typical products
in which property is affected by the micro/nano structures
and where computer models may prove useful in exploring
the parameter space, leading to marketable formulations and
prediction of physical properties. These fluids are complex
in the sense that that they are heterogeneous, have multiple
phases and, often, non-Newtonian rheology.

Of course, there are more process-oriented applications of
such direct simulation technology in equipment, such as con-
densers, evaporators, crystalizers, bubble columns, and the
like. However, since many of these operate at fairly high
Reynolds numbers, the simulations have to accommodate some
form of turbulence model at the present time. With regard to
the various techniques for direct simulation available, refe-
rence should be made to the papers by Laufaurie et al., 1994
(for early treatment of the volume of fluid (VOF method),
Unverdi and Tryggvason, 1992 (for interface tracking), and to
Osher and Sethian 1988, Sussman et al. 1994, Beux and
Banerjee (1997), and Takahira et al. 2004 (for level-set
methods). For phase-field methods, an excellent review of the
model is available in Bray 1994, and simulation methodology
in Badalassi et al. 2003. As mentioned earlier, the focus in this
paper will be on the last two methods. To proceed, we will ini-
tiate the discussion by considering level sets.

Figure 1: Schematic of computational grid with 
a supergrid structure, shown as a slug, and subgrid 

structures, shown as drops or bubbles.

Figure 2: A template proposed by IBM 
for nanolithography of flash memories. The template 

is made from a self-assembled polymeric system.
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II ■ THE LEVEL-SET METHOD

The essence of the method is the solution of the following
field-equation for the level-set function, φ, which has the
sense of a distance function (Sethian and Osher (1988)),
from the interface at φ = 0.

(1)

where
S = 0 if there is mean transfer due to phase change across the
interfaces

 where  is the mass flux of a phase at the
interface divided by its density.

The density and molecular viscosity (or turbulent visco-
sity) are then

(2)

(3)

where  and . The Heaviside function,
H, may be written in many ways, in a form that we will
briefly discuss later even as a discontinuous function. For
the present we will use,

(4)

ε is a thickness of the interface and is some constant, β, into
the spatial discretization scale, ∆, i.e.

ε = βδ (5)

The governing equations to be solved (with µ potentially taking
into account the molecular and turbulent viscous effects) are:

(6)

where 

and the curvature is
 with 

Here σ is the surface tension, δ a delta function, and K(φ)
the curvature.

● II.1 Reinitialization

If the equation system (1) to (6) is solved, as discussed in
the next section, the contours of φ, around φ = 0, deform as
the phases move. This is illustrated for a bubble in a shear
flow field in figure 4. When the contours in the vicinity of
φ = 0  are no longer parallel to φ = 0, then the distance over
which density and viscosity change, and surface tension for-
ces are distributed, become nonuniform, i.e., different at dif-
ferent interface locations. Hence, it is desirable to reinitialize
the contours in the vicinity of φ = 0 so that

(7)

This assures the contours are parallel and the Heaviside and
δ functions are approximated over uniform thickness in the
vicinity of the interface. Since the level set equation is
hyperbolic, there is no problem associated with reinitializing
the initial value problem at every time step, if necessary.

Figure 3: Typical products involving complex fluids. 
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Figure 4: Schematic diagram of the experimental 
apparatus (Misawa, et al., 1996).
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The reinitialization may be accomplished by maintaining
the φ = 0 contour and also satisfying (7) by solving

(8)

where φ0 is the distribution to be reinitialized, S(φ0) is a sign
function, and λi, j, k is a constant for each cell with

(9)

and

(10)

where Ωi, j, k denotes the grid cell and τ is a “pseudo” time step.
As we will see in discussing results, this procedure leads to

φ contours that are parallel to the φ = 0 contour in its vicinity.

● II.2  Solution. Procedure

Many different methods may be used and we briefly consi-
der here those used by Takahira et al. (2004). They used a non-
staggered grid to discretize the governing equations. As is well
known, solution methods for the incompressible N-S equations
based on a traditional non-staggered grid, in which all the
variables are defined only at the cell center, produce spurious
oscillations n the pressure field, i.e., “checker-board” patterns
(Patankar, 1980). One of the fundamental causes is that, in a
traditional non-staggered grid, a straightforward discretization
of the continuity equation does not enforce mass conservation
in the cell and causes decoupling of the pressure field. To pre-
vent decoupling, Takahira et al. (2004) used a non-staggered
grid proposed by Zang et al. (1994) and Zang and Street (1995)
in which the volume flux is defined on its corresponding face
of the cell, in addition to the Cartesian velocity components at
the cell center. Although the non-staggered grid was useful in
analysis using curvilinear coordinates with high accuracy and a
small amount of computer memory, some remedies were nee-
ded to apply the non-staggered grid to gas-liquid two-phase
flows due to the numerical instability near the interface
(Takahira et al., 2004). In the present work, since the applica-
tion of curvilinear coordinates is not expected, we use a stagge-

red grid for the discretizaiton. We use a semi-implicit time-
advancement scheme with the Adams-Bashforth method for
the explicit terms and the Crank-Nicholson scheme for the
implicit terms. A fractional step method (Projection Method) is
used to solve the N-S equations, which involves solution of a
pressure Poisson equation. This may be solved using the pre-
conditioned BiCGSTAB (BiConjugate Gradient Stabilized)
method (Van der Vorst, 1992, Fujino and Zhang, 1996). ILU
decompositions (L is lower triangular and U is upper triangu-
lar) were used for the preconditioning. The level-set equation
may be solved with the Adams-Bashforth method. The convec-
tion terms are discretized with the second-order ENO scheme.

● II.3  Results: Smeared Interface Level Set

Some typical results are shown for level-set simulations of
a problem for which there are some experimental results by
Misawa et al. 1996. The schematic of the experiment is
shown in figure 4. A shear flow of silicon oil is established,
as shown in the figure, and air is injected through the
1.7 mm orifice at the bottom to form bubbles. The problem
is quite complex in that the bubble size depends on proces-
ses that occur in the work through which the air is injected.
Level-set-based simulations have been performed by
Takahira et al. (2004) for the experimental conditions both
at normal gravity (1 g) and the microgravity (0.01 g).

The results indicate that the bubbles start to form necks
near the exit of the orifice, as shown in figure 5, which also
indicates the velocity vectors. This eventually leads to bub-
ble detachment, as shown in the sequences in figure 6 and 7,
which are shown for 0.01 and 1 g conditions, respectively.
Note that gravity acts normal to the wall and assists in deta-
chment, leading to smaller detached bubbles. This is shown
clearly in figures 8 and 9, which also slow in comparison
with Misawa et al.’s experiments. Table 1 summarizes the
Eotvos numbers calculated from the experiments and from
the computations where the Eotvos number, E0, is given by

with the characteristic length D being the equivalent bubble
diameter at detachment.
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Figure 5: Velocity distribution near an opening when uw = 0.828 m/s.
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Table 1 : Eotvos number of experiments and simulations.

Gravity acceleration 0.01 g 0.1 g 0.5 g 1 g

Exp. 0.148 – – 10.147

Cal.
1st 0.154 1.438 6.001 10.136

2nd – – – 9.957

Figure 6: 3D evolution of a bubble injected from an opening when uw = 0.828 m/s and the gravity acceleration is 0.01 g.

Figure 7: 3D evolution of a bubble injected from an opening when uw = 0.828 m/s and the gravity acceleration is 1 g.

E0
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These results illustrate the remarkable potential of such
direct simulation methods for multiphase flows, in particular
simulation of the delicate instability problem that occurs at
the orifice exit and leads to bubble detachment. If this effect
is improperly modeled, the bubbles in the simulations turn
out to be much larger than in the experiments.

● II.4 Sharp Interface. Method and Results

The previous calculations smear the interface over several
grid points and result in inaccuracies for problems where
length resolution of the interfacial region is desirable. To
handle such problems, the fluid density and viscosity is con-
sidered to undergo a sudden jump at the interface, requiring
the following treatment.

A staggered grid formulation is used to discretize the
basic equations where  if  and 
for . Velocity components are defined on cell faces,
while the pressure, and level-set function are defined at the
center of the control volume. The solver for the Navier-Stokes
equation is an evolution of the scheme of Kang et al. (2000).
We used a semi-implicit time advancement method scheme
with Adams-Bashforth method for the explicit terms and a
maximization scheme for the implicit terms. A fractional
step method (projection method) is used to solve the Navier-
Stokes equation. The variable density and viscosity are trea-
ted “sharply” and jump conditions are computed using sub-
grid linear interpolation based on the level-set function φ. The
discretized equations for conservation of momentum are,

(11)

(12)

Where  and .
Using the projection method, we define the following

fractional steps,

Figure 8: Experimental results on the bubble detachment in a shear flow 
by Misawa et al. (1996). Velocity of moving belt at the top is 0.828 m/s.

Figure 9: Bubble shape simulated for the experiments by Misawa et al. (1996).
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(13)

(14)

Assuming that the velocity field at time level (n + 1) is
divergence-free (9), we derive the variable density pressure
Poisson equation,

(15)

For the example shown, no penetration and no slip condi-
tions at solid wall boundaries, respectively, i.e., ,
and . The velocity and normal to the interface is

now denoted by  and , rather than  and  to distin-
guish them from the level-set calculations with smeared
interfaces. This is straightforward to modify for a porous
wall by allowing a pressure difference related wall-normal
velocity. The pressure boundary conditions at solid wall
boundaries are Neumann, .

In the sharp interface or ghost fluid method (GFM), the
treatment of property discontinuities at the interface gives
rise to the specification of jump conditions for the diffusion
term in the momentum equation (13), and in the Poisson
equation (15). Following the notation in Kang et al. (2000)
we denote the jump across the interface by [.], we compute
the matrix of derivative jumps due to the discontinuity in
viscosity,

(16)

where , and  are the orthogonal and bi-orthogonal
directions to the normal vector . By knowing the value of
the jumps across the interface, we can evaluate smoothly the
individual derivative to the left and right of the interface.
More details on the derivation and discretization of the vis-
cous term are available in Nave (2004).

The momentum equation can then be solved using an
approximate factorization technique. We use standard central
difference for the Laplacian terms in Eq. (10), WENO
5th order for the convection term, and the technique develo-
ped in Kang. et al. (2000) and Liu et al. (1998) for the dis-
cretization of the divergence of the rate of strain tensor, τ.
For the solution of , we solve three tri-diagonal linear
systems, one per dimension. As a result, the implicit treat-
ment of the viscous term by the maximization technique lifts
the  stability restriction on the time step ∆t.

The presence of surface tension in the problem is incorpo-
rated into the equation as a jump in pressure across the inter-
face. Thus, the jump condition for the pressure is,

(17)

where σ is the surface tension, a constant.
Equation (17) is related to the CSF model in which sur-

face tension is incorporated in the momentum equation
through the addition of a constant surface force,

(18)

One can show that (17) is consistent with (18) by assu-

ming the level set function is linear around , and kee-

ping the leading order term in the expansion about  of

, the source term in the Poisson equation

for pressure.

The interface is tracked using the level-set equation,

(19)

with WENO 5th order being used to discretize .
The variable coefficient Poisson equation (15) is solved

with the interface jump condition defined by (17). The dis-
cretization closely follows that described in Liu et al.
(1998). In order to compute curvature around the interface,
we use subgrid linear interpolation,

(20)

Where θ is the cut cell size,

(21)

This discretization produces a linear system Ax = b to be
solved. Since the matrix A is poorly conditioned, solving for
pressure requires roughly 80% of the computational time. As
a result, the solution method needs to be complemented by a
preconditioner in order to limit the number of iterations
required.

We use the BiCG-Stab iterative method from Van der
Vorst (1992) along with an Incomplete Upper-Lower (ILU)
preconditioner, Axelsson (1994). Boundary conditions for
most problem of interest here have solid walls in x and z
directions and air inflow/outflow or in some cases periodic
in the y-direction.

The entire solution scheme (tab. 2), corresponding to an
Euler step, with the exception of the reinitialization is then
embedded in the 3rd order Runge-Kutta TVD scheme (See
Nave (2004) for details) from Shu et al. (1988),
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(22)
We will now illustrate the typical results of the GFM calcula-

tions outlined above to scalar transfer to a liquid film falling
under normal gravity. First, we illustrate in figure 10 the wave
structure at Re = 69, where Re is the film Reynolds number based
on average film thickness and velocity. In figure 11a we show the
flow patterns (streamlines) moving with the wave. The recircula-
tion within the wave creates stagnation points which are conver-
gent (A) and divergent (B). This recirculation pattern considera-
bly enhances mass and heat transfer at the gas-liquid interface.

Table 2: Solution scheme for 1 Euler step, E(V).

Solve (11) for 
Solve (13) for 
Solve (12) for 
Solve (17) for 

Vn 1+ 1
3
--- Vn 2

3
--- E

3
4
--- Vn 1

4
--- E E Vn( )( )+⎝ ⎠

⎛ ⎞+=

V*

Pn 1+

Vn 1+

φn 1+

Figure 10: Interfacial wave structure for a gravity-driven water film at Re = 69. 
There is a recirculation pattern in the wave, shown in Fig.2, which gives rise to the AS 
and B stagnation points. The vertical axis is enlarged in comparison to the horizontal 

to illustrate the wave structure clearly.

Figure 11a: Streamlines for one wave in the frame moving with the wave celerity at Re = 69.
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In figure 11b, we compare scalar transfer rates to the
results of Emmert and Pigford (1954). The upper limit of the
transfer rates can also be roughly estimated based on a
“renewal” time based on the time a particle emerging from
the divergent stagnation point B takes to get to the conver-
gent stagnation point, A. Clearly this rough estimate, which
is based on penetration theory, is not as accurate as the full
solution of the coupled concentration equations.

We now consider briefly calculations of free-surface inte-
ractions with wall turbulence. The physical situation is one in
which a liquid film flows rapidly at supercritical conditions,
along a flat plate. Ultimately, this film will slow down due to
friction to velocities equal to that of the gravity wave and
undergo a hydraulic jump, but the conditions considered are in

advance of such a jump, so the film is rather smooth and there
is intense turbulence generation at the bottom wall. Such pro-
blems, for example, are encountered in dam sleuces. In any
case, figure 12 shows the interfacial configuration due to tur-
bulent structures impinging on the free surface from the bot-
tom. The bumps are clearly discernible, and in figure 13 the
underlying turbulence structures are visualized by using vor-
tex markers. It is clear that the quasi streamwise vortices,
which are seen in wall turbulence, are also discernible here.
However, they give rise to bursts and ejections, which then
impinge on the interface and cause the bumps shown in
figure 12. The vertical scale is enlarged in these visualizations
in order that the structures can be clearly seen, and for this
reason they are somewhat distorted in the vertical direction.

Figure 11b: Comparison of computation and experiments of Emmert and Pigford (1954) 

for the average mass transfer coefficient vs. .Re D– 1.95 10 9– m2

s
-------⋅=

Figure 12: Direct numerical simulation 
of a supercritical liquid film using 
the level-set/ghost-fluid method. 

The free surface shows bumps developing 
from impinging turbulence structures, 

which are shown as the vortical elements 
below the surface. The vortical elements 

are identified by various techniques, 
including isopressure surfaces. 

The vertical coordinate is enlarged to show 
the subsurface structures.
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III ■ PHASE FIELD METHODS

An alternative to considering the interface between phases
as a contact discontinuity is to actually model it based on con-
sideration of interfacial forces. Many excellent reviews of the
subject are available (see Bray (1994) and Langer (1992)).
The main applications have been to systems where convective
effects are unimportant, e.g. quenching from a disordered
phase to an ordered phase. The ordered region length scales
grow with time, and a network of domains of the equilibrium
phases develops. An example is the spinodal decomposition of
binary alloys or phase separation of simple fluids quenched
below the mixture critical point. In principle, a wide variety of
problems can be addressed, including the behavior of emul-
sions, polymer melts, coalescence, wetting, nucleation, etc.
Problems in which convective effects are important, e.g. spi-
nodal decomposition in shear fields, have received very little
attention — perhaps because of the difficulty of solving the
coupled phase-field and fluid motion equations. Some early
results are discussed here, as such methods are at the most
interesting edge of multiphase systems research today.

The early work grew out of magnetization of the Ising
model, and the terminology derives from this, but one should
not be put off by jargon! The continuum description proceeds
in terms of the coarse-grained “order-parameter” field (e.g.
the magnetization density, concentration or some such),

. We take this to be a scalar field, but in fact it does

not have to be. For example, nematic liquid crystals can be
described by tensor order parameters that are invariant under a
certain local transformation. In any case, for scalar order para-
meters we may define a Landau free-energy function A[C] as

(23)

where the potential χ(C) is the homogeneous free energy
which is often described by a double well potential, as
shown in figure 14. For example, we could put

(24)

with minima occurring at C = ±1. The two minima corres-
pond to the two equilibrium states. The  term is called
the gradient free energy and associates an energy cost where
C changes rapidly, i.e. at the interface between the phases.
The parameters, α and β can be scaled out using “surface
tension”, σ, and “interface thickness”, ξ, where

 and (25)

When time variation is absent, i.e. at equilibrium, A[C]
should be a minimum with regard to variations of C, i.e.

(26)

Figure 13: The same flow as in Figure 12 
but with the vertical dimensions of the correct 

proportion. The vortical structures shown 
are similar to those found in wall turbulence, 

i.e., quasi-streamwise vortices.

C x t,( )

A C[ ]  βχ C( ) 1/2α ∇C 2+{ }
Ω
∫=

χ C( ) 1 C2–( )2=

∇C 2

σ αβ∝ ξ α/β∝

Figure 14: Schematic picture of the homogeneous specific free energy Ψ as a function of C(left) 
and the equilibrium interface profile (right).

δA
δC
------- βχ′ C( ) α∇2C– 0= =
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If the order parameter is not conserved, then time evolu-
tion is

(27)

called the Landau-Ginzburg model.
There is significance to this model for the Ising model and

alloys that go through order-disorder transitions rather than
phase separating.

When the order parameter is conserved, we get

(28)

The divergence assures conservation. M is related to a
“mobility” or diffusion. The quantity in square brackets is
the chemical potential . This is the Cahn-Hilliard
equation, and combined with the Navier-Stokes system, cal-
led Model H (see Bray).

For convective systems, the order parameter is transported
by fluid motion, so we have (for constant M)

(29)

and

(30)

where η− viscosity and ρ is density. If ρ = ρ(C), then

(31)

i.e., the velocity field is not divergence free in the interface
region. Note that the surface tension effect is captured by the

 term in the momentum equation.
We turn now to some applications of the Cahn-Hilliard

equation, compared to the level-set equations, it assumes
conservation of the order-parameter (mass, if C is concentra-
tion). The equation can be used in several different ways.
The first is to simply use C as a marker function. This is
much like the level-set method, but with the added benefit
that mass is conserved. The interface can be made as sharp
as desired, or can be tolerated by the numerical procedures.

To proceed, we show in figure 15 calculations for
splashing of a liquid drop into a deep pool of water and a
Rayleigh-Taylor instability. The thickness of the interface
remains relatively constant, and the results are very similar
to what would be obtained with level-set calculations.

The second area of application is to problems where the
physics of the interfacial processes is of importance.
Figure 16 shows one such problem in which drops are coales-
cing. Figure 17 shows phase separation of a binary mixture
under shear, and figure 18 the same problem in 3D. The
string-like structures have been seen by Hashimoto et al.
(1995). Note that the 2D calculations show “plate” formation,
whereas the 3D calculations show string formation. These
results are of great interest for separation of binary mixtures.

C∂
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------  k βχ′ α∇2C–[ ]–=

C∂
δt
------ ∇ M∇ δA
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-------⎝ ⎠
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Figure 15a: Splashing of a water drop in a deep water pool. 
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Figure 15b: 

Figure 15c: A Rayleigh-Taylor instability.
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Figure 16: Coalescence of drops ripening.

Figure 17: 2D phase separation under shear from homogeneous initial conditions.
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IV ■ TWO-FLUID VISCOELASTIC MODELS

● IV.1 Introduction

Descriptions of phase separation are usually classified into
a solid diffusional model (called Model B) and a fluid model
(Model H). In the former, diffusion is the only transport pro-
cess whereas in the latter, material is transported by both dif-
fusion and hydrodynamic flow. Recently, quite unusual phase
separation was found in polymer systems having intrinsic
dynamic asymmetry between the components i.e. composed
of fast and slow components. This “dynamic asymmetry” can
be induced by either the large size difference or a difference
in the glass-transition temperature between the components of
a mixture. The former can often exists in complex fluids such
as polymer solutions, micellar solutions, colloidal suspen-
sions, emulsions and protein solutions. The latter can exist in
any mixture in principle. The effect of the asymmetry is to
cause a strong kinetic coupling between the stress field and
the concentration fluctuation. So this new type of phase sepa-
ration is called “viscoelastic phase separation” since viscoe-
lastic effects play an important role.

● IV.2 Model

Consider a fluid mixture of Components 1 and 2. Compo-
nent 1 is the “hard” component, and component 2 is the
“soft” one. The former would correspond to the polymer
component in the case of a polymer solution and the latter to
the solvent. Let v1(r,t) and v2(r,t) be their respective average
velocities and (r,t) be the volume fraction of the
component 1 at point r and time t. The two components are
assumed to have the same density — for simplicity.

Then, the conservation law gives

(32)

The volume-averaged velocity v is taken to be divergence
free and is given by

(33)

The free energy of the system Fmix is given by

(34)

Defining the osmotic stress tensor π as

(35)

From the component momentum equations and (2), the
conservation law for the average velocity v is

(36)

where  is the stress tensor for the hard component, and ηS

the solvent viscosity. Here the advective term has been drop-
ped as inertial terms do not become important until very late
stages. The temporal term is also dropped during numerical
implementations for the same reason.

Also under the quasi-stationary approximation,

(37)

Here ς is a friction coefficient.

Figure 18: 3D phase 
separation under shear.
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For stress, the equation is modeled based on Maxwell’s
stress equation.

(38)

where (39)

The velocity dependence is only on component 1 since the
stresses are assumed to be generated only in the hard com-
ponent. GS and GB are material functions, and are called the
shear and bulk relaxation moduli, respectively.

The effect of elastic stresses on the soft component can
also be incorporated in a similar manner by using separate
stress equations for it.

It is interesting to note that the simple fluid model
(Model H) can be recovered from this “general” approach by
putting the stresses equal to zero.

● IV.3 Evolution

Viscoelastic phase separation is characterized by unusual
phase-separation behaviors. They include the moving droplet
phase, which coarsens unusually slowly, and the phase-

inversion phenomena in the late-stage of phase separation.
Such behaviors are never observed in conventional phase
separation. In particular, network-like phase separation is
interesting since a minority phase can transiently form a
continuous phase here. The phenomenon has a technological
importance, since it enables us to intentionally form the con-
tinuous network-like structure of a minority phase.

It proceeds as follows:
Just after a temperature quench, a transient gel is formed.
The polymer rich phase, which is thermodynamically a majo-

rity phase, is selectively nucleated after some incubation time.
The polymer rich phase shrinks as chemical gel shrinks.
In the final stage, the network-like structure of the poly-

mer rich phase I transiently formed.
In the final stages, the network-like structure relaxes to

circularly isolated domains.
In this way, phase inversion takes place in this phase separa-

tion. It is obvious that there is no self-similarity and no dynamic
scaling for the pattern evolution of viscoelastic phase separation.

The bulk stress in equation (39) is introduced to express the
formation of a transient gel right after the initiation of phase
separation in the “dynamically asymmetric” mixture and sup-
presses concentration fluctuations in the polymer rich phase
selectively. It is known to be important in the volume shrinking
behavior of gels that is observed during such phase separation.

σi j dt′ GS t t′–( )κij t′( ) GB t t′–( ) ∇.v1 t′( )( )δij+[ ]

∞–

t

∫=

κij
v1

j∂
xi∂

--------
v1

i∂
xj∂

--------
2
d
--- ∇.v1( )δij–+=

Figure 19: Comparison of time evolutions for the simple fluid model and the viscoelastic model 
(with and without bulk moduli) for a 50:50 mixture.
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Figure 19 shows a comparison of time evolutions for the
simple fluid model and viscoelastic model (with and without
bulk moduli). The formation of solvent droplets followed by
a network-like structure of the polymer rich phase is obser-
ved only in the viscoelastic case with bulk moduli. Since this
is a 50:50 case, phase inversion occurs at very late stages
and so is not observed in this simulation. The case ofollis-

coelastic phase separation without the bulk moduli is similar
to the simple fluid model but has slower dynamics.

Figure 20 shows phase inversion for a 30:70 case. Solvent
droplets form initially, followed by a transient network that
breaks up to form polymer droplets.

Figures 21 and 22 show the effect of shear on the case
from figure 19. For the lower shear rate 0.01, the early sta-
ges are not significantly affected by the applied shear. At

Figure 21: Comparison of phase separation for the 50:50 case under shear (shear rate 0.01).

Figure 20: Phase inversion in the 30:70 case for Viscoelastic phase separation.
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late stages there is an underlying tendency of the domains to
align in the direction of the shear. Network formation of the
polymer rich phase is still observed in the viscoelastic case
with bulk moduli. For the higher shear rate 0.1 in figure 22,
shear effects dominate the internal dynamics and the
domains align to form stringy patterns in this case. For the
simple fluid case, this process is fast whereas for the viscoe-
lastic case the intermediate case is characterized by chaotic
motion of the domains. The width of the lamellae at the last
stage is found to be larger for the viscoelastic case.

V ■ SELF-CONSISTENT FIELD 
THEORETIC METHODS

● V.1 Theoretical Aspects

We follow here the methodology for constructing statisti-
cal field theory models of inhomogeneous polymeric fluids
described by Ganesan and Frederickson (2001), and Fre-
drickson (2002). In the present work, we will restrict our

attention to melts of flexible polymers that are composed of
two chemically distinct types of monomers, denoted A and
B. Polymers are described by space curves , where

 is a chain contour parameter and N denotes the
total contour length of the polymer. As shown in figure 23
for an AB diblock copolymer,  with  descri-
bes the positions of the type A monomers, while  with

 describes the positions of the monomers on the
type B block. f f denotes the fraction of type A monomers on
the copolymer, i.e. its composition.

Figure 22: Comparison of phase separation for the 50:50 case under shear (shear rate 0.1)

R s( )
s 0 N,( )∈

R s( ) 0 s f N< <
R s( )

f N s N< <

Figure 23: Schematic showing AB copolymer chain 
and notation.
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From the instantaneous configurations of a collection of
n block copolymers, we can define “microscopic” density
and elastic stress operators, e.g. for species A

 (40)

(41)

where b is the statistical segment length (typical monomer
size). The microscopic density  is a scalar field, while
the microscopic elastic stress  is a symmetric second-
rank tensor field. Similar expressions hold for the density
and stress fields of the B monomer species.

 (42)

Next, we turn to consider the potential energy model. The
intramolecular potential energy of a collection of n polymers
can be written as in (42).

If the A and B monomers have comparable sizes, then this
formula holds regardless of the specific polymer architecture
(i.e. diblock, triblock, or pentablock). The simplest model of
intermolecular interactions in an A-B melt enforces incom-
pressibility with a local constraint

,  (43)

where ρ0 is the total (constant) monomer density. Dissimilar
monomer contacts are penalized by means of a potential
energy contribution

,  (44)

where  is the “Flory chi parameter”, which describes the
strength of A-B monomer repulsions. Increasing χ can thus
drive a local phase separation between A and B segments. The
connectivity of the A and B blocks prevents a macro-phase
separation of A and B — such phase separation would require
significant chain deformation and the decreased configuratio-
nal entropy of the polymers would produce a large
“elastic energy” contribution that would be manifest in the
value of U0. Instead, phase separation takes place to create
composition patterns with 1-100 nm domains, which at equi-
librium reflect a balance between the competing tendencies
for minimal chain stretching and minimal A-B contacts, while
maintaining overall melt incompressibility.

As described by Fredrickson [2002], the configurational

partition function ,

where  denotes n path integrals over the polymer con-

figurations, can be converted exactly into a statistical field
theory. In this theory, the polymer coordinates are integrated
out, leaving functional integrals over fluctuating density

fields,  and  and two conjugate fluctuating chemical

potential fields  and . The incompressibility constraint

can be used to eliminate  in favor of , resulting in three

independent fields: , , and , the

volume fraction of type A segments. An extended version of

the theory [5] retains also fluctuating elastic stress,  and

, and conjugate elastic strain fields,  and . Here we

present only the simplest version without the elastic fields.
The transformed partition function can be written

, where

the effective Hamiltonian is given by

(45)

The functional Q is the partition function of one block
copolymer experiencing inhomogeneous chemical potential
fields µA and µB that exert forces on the A and B blocks,
respectively. Q can be computed deterministically by means
of the formula:

, (46)

q(r, s) appearing in this equation is a propagator describing
the statistical weight that a piece of chain with contour length
s has its end at position r. This object can be computed by a
Feynman-Kac formula for the copolymer path integral

(47)

subject to the initial condition q(r, 0) = 1 and suitable boun-
dary conditions. The function µ(r, s) is a contour-related che-
mical potential field that depends on copolymer architecture.
For example, in the case of diblock copolymers, it is given by:

(48)

Thermodynamic forces, i.e. first derivatives of H with res-
pect to the three independent fields, must also be computed.
These are given by

, (49)

(50)
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(51)

The functionals  and  are “auxiliary volume fraction
fields” and can be computed (for diblock copolymers) accor-
ding to:

, (52)

(53)

The propagator  describes the statistical wei-
ght of a conjugate piece of copolymer and satisfies a slightly
modified version of Eq (47).

● V.2  Dynamics

Models for the dynamics and rheology of inhomogeneous
polymer melts can be constructed by embedding the above
field theory into the formalism of irreversible thermodyna-
mics. The “two-fluid model” is particularly convenient for
this purpose. As discussed by Fredrickson (2002), it is possi-
ble to retain elastic stress and strain as dynamical variables in
addition to the reduced density and chemical potential fields
discussed above. Such a formulation would describe inhomo-
geneous, multiphase, viscoelastic flow. Ultimately, we hope
to tackle such descriptions, but will begin by assuming that
the elastic stress and strain variables are at local equilibrium,
so that the viscoelastic stresses reduce to purely viscous
stresses. This assumption is appropriate for flows that are
slow on timescale of the stress relaxation time of the fluid. A
second assumption is that the conjugate chemical potential
fields, which reflect polymer degrees of freedom not contai-

ned in the conserved order parameter φA, relax faster than φA
and the conserved momentum density of the fluid.

With the above assumptions, the two-fluid model reduces
to the following set of equations for the coupled fields:

(54)

(55)

 (56)

 (57)

In the above equations, ρ is the density, u(r, t) is the velo-
city field of the medium,  is a diffusion coefficient,

 is a shear viscosity coefficient, and P(r, t) is a dynamic
pressure field that is used as a Lagrange multiplier to enforce
the incompressibility condition. The notation D/Dt denotes the
usual convective derivative. Equations (18) can be viewed as
equations of state that express µA and µB as explicit functio-
nals of φA. These can be used to eliminate µA and µB expres-
sing the thermodynamic force solely as a functional of φA.

This rich set of equations has not been employed before to
study the coupled flow (u) and nanostructure (φA) of block
copolymer melts subjected to shear and other types of flows.
We believe that this is an excellent framework from which
to launch numerical simulations of these phenomena.

● V.3  Results

The methodology outlined above has been applied to the
study of phase diagrams for diblock copolymer systems,
and the expected phase diagram is shown in figure 24,
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Figure 24: Phase diagram for a diblock polymer system. The ordinate is related to an inverse temperature and the abcissa 
is the concentration of one of the blocks. C stands for cylindrical structures, H for hexagonally-packed cylinders, 

G for gyroidal structures, and L for lamellae.
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Figure 25: FCFT calculations of equilibrium structure for the conditions in Figure 24, i.e., for a diblock system. 
The left column denotes an early time in the self-assembly process for the structures, and the right column 

close to the equilibrium state. Each row refers to a particular on the phase diagram.

Row B: Lamellae

Row C: Hexagonally packed

Row A: Hexagonally packed

Row D: Gyroidal. The gyroidal state cannot be shown well in two dimensions.
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Matsen and Schick (1996). The parameter in the ordinate is
a sort of inverse temperature, and the abscissa is the con-
centration of AMB-block in the copolymer. C denotes
cylindrical structures, H hexagonally-packed cylindrical
structures, G gyroidal structures, and L lamellar structures.
The SCFT calculations obtained in two dimensions for the
regions shown by stars are given in figure 25. As can be
seen, except for the gyroidal structures, which are not pos-
sible to display in two dimensions, the field theoretic cal-
culations are accurate. In three dimensions, especially with
confinement, more complex structures emerge, many of
which are of interest to optical materials. These are shown
in figure 26. Finally, we show the effect of shear on such
structures as in figure 27, where it is clear that they are
lamellar. An interesting aspect related to such lamellar
structures is that they can go through a flipping, as illustra-

ted in figure 28, as an oscillatory shear rate is increased
(see Koppi et al. (1992) and Hermel et al. (2002)). As
these materials are of great interest as optical polymers,
such flipping has profound implications. However, it is
clear that to capture such behavior, the simple model,
which is discussed here, has to be made more complex to
include viscoelastic effects of the two-fluid type described
earlier, and noise, which is associated with fluctuations
near the order/disorder transition.

Figure 26: 3D calculations of diblock systems for various positions on the phase diagram.  
The numbers in parentheses in each panel denote: on the left-hand side, the polymer concentration; 

on the right-hand side, the inverse temperature.  
Note the complexity of the structures, which in this case are calculated assuming confinement 

and Neumann boundary conditions in the vertical direction.
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Figure 27: The effect of shear on a diblock system, shown at different times. Initially, the system wants to form 
a self-assembled cylindrical structure, but shear deforms these structures into lamellae. The panels are taken 

at different times, moving a) at an early time, to c) near equilibrium conditions under shear.
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● V.4  Conclusions

In this paper we have outlined methods for directly resol-
ving interfaces, first when they appear as contact disconti-
nuities, which can be done using level-set and level-set/ghost
fluid methods. The major problem with the methodology is
to ensure conservation of mass (or volume) during events
such as bubble mergers and break-ups. Progress has been
made in this direction, and hybrid techniques such as parti-
cle/level-set combinations have been proposed, as well as
variants on existing reinitialization procedures, such as sug-
gested by Takahira et al. 2004. Level sets have been incor-
porated in commercial codes, and this methodology is there-
fore generally available for a variety of problems. 

If one desires to resolve microscale structures, as they are
important in many product formulations and multiphase
materials such as homes, then phase-field/SCFT methods are
of interest. Phase-field methods do not take molecular struc-
ture into account, and therefore they can be used to study
phase separation in systems where universal classes of beha-
vior emerge, i.e., simple fluids. For more complex molecu-
les, such as multiblock polymers, the structures can self
assemble into three-dimensional configurations that are defi-
ned by a minimum free energy. Such combined statistical
mechanics/fluid mechanics models provide a framework that
can capture structural features of many complex fluid formu-
lations, and calculational methods are being intensely to
solve such models. These are very rich free energy landsca-
pes, and notable success has been obtained using the techni-

ques outlined here. The interest is for mesoscale structures,
which cannot be easily resolved by molecular dynamics or
Monte Carlo techniques, which nonetheless can be used to
generate the free-energy landscapes, which are then used in
the field theoretic framework. There is great interest in such
methods, as structural features crucially affect desirable pro-
perties of many materials.
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