
J Sci Comput
DOI 10.1007/s10915-016-0231-8

A Low Complexity Algorithm for Non-Monotonically
Evolving Fronts

Alexandra Tcheng1 · Jean-Christophe Nave1

Received: 27 September 2015 / Revised: 15 May 2016 / Accepted: 25 May 2016
© Springer Science+Business Media New York 2016

Abstract A new algorithm is proposed to describe the propagation of fronts advected in the
normal direction with prescribed speed function F . The assumptions on F are that it does
not depend on the front itself, but can depend on space and time. Moreover, it can vanish
and change sign. The novelty of our method is that its overall computational complexity is
predicted to be comparable to that of the Fast Marching Method (Sethian in Proceedings
of the National Academy Sciences 93:1591–1595, 1996); (Vladimirsky in Interfaces Free
Bound 8(3):281–300, 2006) in most instances. This latter algorithm is O(Nn log Nn) if
the computational domain comprises Nn points. We use it in regions where the speed is
bounded away from zero—and switch to a different formalism when F ≈ 0. To this end, a
collection of so-called sideways partial differential equations is introduced. Their solutions
locally describe the evolving front and depend on both space and time. The well-posedness
and geometric properties of those equations are addressed. We then propose a convergent
and stable discretization of the PDEs. The resulting algorithm is presented together with a
thorough discussion of its features. The accuracy of the scheme is tested when F depends on
both space and time. Each example yields an O(1/N) global truncation error. We conclude
with a discussion of the advantages and limitations of our method.

Keywords Front propagation · Hamilton-Jacobi equations · Fast marching method ·
Level-set method · Viscosity solutions

The first author acknowledges the support of the Schulich Graduate Fellowship. This research was partly
supported through the NSERC Discovery and Discovery Accelerator Supplement grants of the second author.

B Alexandra Tcheng
alexandra.tcheng@mail.mcgill.ca

Jean-Christophe Nave
jcnave@math.mcgill.ca

1 Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. W, Montreal,
QC H3A 0B9, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-016-0231-8&domain=pdf

J Sci Comput

1 Introduction

The design of robust numerical schemes describing front propagation has been a subject of
active research for several decades. The need for such schemes is felt across many areas
of applied sciences: geometric optics [32], optimal control [19,50], lithography [2], shape
recognition [24,27], dendritic growth [21,42], gas and fluid dynamics [28,30,49], combus-
tion [56], etc. Depending on the problem at hand, various issues may arise. Consider the
following two interface propagation phenomena: a fire propagating through a forest, and a
large evolving population of bacteria in a Petri dish. In either case, space can be divided
into distinct regions: burnt versusunburnt, and populated versusunpopulated. The bound-
aries between those regions form fronts that evolve in time. Those examples differ from one
another in that a fire front can only propagate monotonically, whereas bacteria may advance
or recede within their environment. This distinction led to different modelling approaches.
Monotone propagation can be recast into a ‘static’ problem, as opposed to non-monotone
evolution, which is instrinsically time-dependent. As a result, efficient single-pass algo-
rithms for monotone propagation have been developed. In contrast, accurate algorithms for
non-monotonically evolving fronts require a larger number of computations. In this paper,
we propose a model that reconciles the advantages of previous methods—We accurately
describe non-monotone front evolution with an algorithm that performs a low number of
operations.

The Level-Set Method (LSM) developed by Osher and Sethian [34] accurately propagates
fronts. This implicit approach embeds the front as the zero-level-set of an auxiliary func-
tion φ. E.g., φ is negative in regions occupied by bacteria, and positive in other regions.
Each contour of φ is then evolved under the speed function F which may vanish and
change sign. The first order discretization of this problem is both simple and robust. How-
ever, describing the evolution of an (n − 1)-dimensional front in R

n requires solving for
a function of n + 1 variables, since φ depends on space as well as time. Moreover, for
accuracy reasons it is often desirable in applications to enforce the signed distance prop-
erty |∇φ| ≈ 1 in a neighborhood of the front. There exists a vast literature on lowering the
computational complexity of the LSM [1,33,36,41], and on maintaining the accuracy of the
solution [9,10,36,37,48], but those features are incorporated at the expense of simplicity and
efficiency.

The Fast MarchingMethod (FMM) developed by Sethian [39] and Tsitsiklis [52] requires
the speed function to be independent of time, and bounded away from zero. The FMM builds
the ‘first arrival time’ function ψ such that to every point x in space is associated the value
t = ψ(x) at which the front reaches x [38–41] e.g., ψ records the time at which the parcel of
land burnt. The use of a Dijkstra-like data structure [17] renders this scheme very efficient:
When the computational domain comprises Nn points, it runs in time O(Nn log Nn). In
[7], Falcone et al. proposed a Generalized FMM (GFMM) that accurately propagates fronts
subject to a wide range of speed functions, including those that vanish and change sign.
However, when F depends on time, the complexity of the GFMM may revert to that of the
LSM.

The present work proposes an algorithm able to handle speed functions that change sign,
while retaining the efficiency of the FMM. In general, a point x in space may be reached
by the front several times, and the arrival time cannot be described as a function of space.
However, consider the set M := {(x, t) : x belongs to the front at time t}. The set M
consists of the surface traced out by the fronts as they evolve through space and time. If
M embeds as a Ck-manifold of dimension n in R

n × (0, T), then each point (x, t) ∈ M

123

J Sci Comput

belongs to a neighbourhood that is locally the image of a Ck-function of n variables. Under
mild assumptions,M is a compact subset of Rn × (0, T), implying that we only need a finite
number of functions to parametrize M. Those local representations of the set M are the
images of functions that possibly depend on time as well as space. Our approachmakes use of
those other representationswhenever the purely spatial one is not available—e.g., when n = 2
andM cannot be locally described by the standard first arrival time function {t = ψ(x, y)},
we may describe it as {x = ψ̃(y, t)} or {y = ψ̄(x, t)}. To this end, we introduce sideways
PDEs solved by those Ck-functions. We illustrate how they relate to previous work, argue
that they are well-posed, and show that their solution provides a local description of M.
Moreover, we describe a scheme to discretize them, prove that it converges to the correct
viscosity solution, and show that it is stable.

In practice, the algorithmamounts to augmenting theFMMtodescribeMnear those points
(x, t) where F(x, t) = 0. The different representations of M that result are woven together
along their overlapping parts using interpolation. To illustrate the method, examples are
presented where anO(1/N) global truncation error is achieved. Those tests all feature speed
functions that vanish, and possibly depend on time. Since the algorithm always approximates
a function of n-variables, the dimensionality of the problem is never raised, unlike what
happens in the LSM. As a result, the computational complexity is expected to be comparable
to that of the FMM. Tests reveal that our method has lower complexity than a local LSM.

Outline of the articleWe provide further motivation in Sect. 2. The case where |F | ≥ δ > 0
depends on time is addressed in Sect. 3. The sideways PDEs used when F ≈ 0 are introduced
in Sect. 4. A discussion of their properties is provided along with a convergent and stable
scheme to discretize them. Pseudo-codes are given and discussed in Sect. 5. We predict and
illustrate the complexity and accuracy of the method in Sects. 6 and 7. The advantages and
weaknesses of our approach are discussed in Sect. 8, where an additional example addresses
the limitations of the method.

2 Preliminaries

2.1 Problem Statement and Assumptions

Let a subset C0 ⊂ R
n be closed with no boundary. Assume it is an orientable manifold of

codimension one, with a well defined unique outer normal n̂0(x). Suppose C0 is advected
in time, and denote the resulting subset of Rn at time t by Ct . We want to describe Ct for
0 < t < T in the case where each point x ∈ Ct is advected under the velocity

v = v(x, t) = F(x, t)n̂(x, t) (1)

i.e., with the prescribed speed function F = F(x, t), in the direction of the outward normal
to Ct , n̂ = n̂(x, t).

We assume that the initial set C0 is known exactly and is C2 in the sense that if it is given
as the image of a map, e.g., γ : Sn−1 −→ R

n , then γ ∈ C2(Sn−1). The speed F = F(x, t) is
known exactly for all (x, t) and does not depend on the curve itself, or any of its derivatives.
For simplicity,we alsomake the following strong assumption: themap F : Rn×(0, T) −→ R

is analytic. In particular, this implies that the subset defined as F := {(x, t) : F(x, t) = 0} is
closed and has codimension one in R

n × [0, T]. Together, those assumptions guarantee that
for any given t ∈ (0, T), there exists a well defined normal n̂ = n̂(x, t) almost everywhere
along Ct .

123

J Sci Comput

2.2 Applications

An important application of the problem just described is robot-path planning. In [25] for
example, the authors use the LSM to compute the time-optimal paths of ocean vehicles in
dynamic continuous flows. In this context, the speed F is the sum of the speed of the vehicle
and a time-dependent external velocity field modelling the ocean currents. An additional
linear term may be considered to account for motions that are tangent to the external velocity
field. See also [29].

The problem we are concerned with may also be regarded as a toy model. This is the
approach taken by Carlini et al. in [6] which presents an early version of the GFMM. Their
work is motivated by its applicability to dislocation dynamics where F is the convolution of
a function of space with the level-set function. Going further along this line of thoughts, one
may consider applying our toy model to a variety of problems, such as mean curvature flow
or fluid dynamics. In [20], the authors apply the GFMM to image segmentation.

2.3 Previous Work

The Level-Set Method This approach embeds the curve Ct as the zero-level-set of a function
φ : Rn ×[0, T] → R, i.e., Ct = {x : φ(x, t) = 0}. The level-set function φ is shown to solve
the following Initial Value Problem (IVP):

{
φt + F |∇φ| = 0 on R

n × (0, T)

φ(x, 0) = φ0(x) on R
n × {0} (2)

where φ0(x) is such that {x : φ0(x) = 0} = C0. One of the most prominent feature of the
LSM is that topological changes are accurately handled, and do not require special treatment.
The Fast Marching Method The FMM requires that F = F(x) ≥ δ > 0 on R

n . Suppose the
set Rn\Ct consists of two connected components, and define At to be the bounded one. The
FMM solves the Eikonal equation

{ |∇ψ | = 1
F on Ac

0\C0
ψ(x) = 0 on C0

(3)

whose unknown is the time ψ : R
n �→ R at which each point is reached by the curve.

The FMM makes use of a Narrow Band to advance the front in a manner that enforces the
characteristic structure of the PDE into the solution—See [19,38–41]. Recent improvements
include on the one hand the work of Zhao [54], who further lowered the complexity of the
algorithm to develop the Fast Sweeping Method. On the other hand, Vladimirsky allowed
the speed to be time-dependent. We discuss this latter method in Sect. 3.

2.4 Motivation

We present a simple example to motivate the need for an augmented FMM. Let the initial
curve C0 be a circle of radius r0 centered at the origin of R2, and the time-dependent speed
be F(t) = 1 − ct where c > 0. The evolution of the curve occurs in two phases: (1) For
t ∈ [0, 1

c], the circle expands until it reaches a maximal radius R. (2) For t ∈ (1c , T], the
circle contracts until it collapses to the point (0, 0) at time T .

Consider the following atlasA to describe the resultingC0-manifoldM featured onFig. 1.
Define U := R × [0, T]. Then A = ∪3

i=1{(ψi,±,Wi,±)} where the real-valued functions
ψi,± are defined as:

123

J Sci Comput

F
ig
.1

C
ha
rt
de
co
m
po

si
tio

n
of

M
w
he
n
c
=

2
an
d
r 0

=
0.
25

.a
M

an
d
C 0

.8
3
.b

M
,a
lo
ng

w
ith

W
1,
−
an
d
W

1,
+
in

gr
ee
n.

c
M

,a
lo
ng

w
ith

W
2,
−
an
d
W

2,
+
in

bl
ue
.d

M
,

al
on
g
w
ith

W
3,
−
an
d
W

3,
+
in

re
d
(C

ol
or

fig
ur
e
on

lin
e)

123

J Sci Comput

ψ1,− : U −→ [−R, 0] ψ1,+ : U −→ [0, R]
ψ2,− : U −→ [−R, 0] ψ2,+ : U −→ [0, R]
ψ3,− : R2 −→ [0, 1

c) ψ3,+ : R2 −→ (1c , T]
(4)

and

ψ1,±(y, t) = ±
√(

r0 − c t2/2+ t
)2 − y2 (5)

ψ2,±(x, t) = ±
√(

r0 − c t2/2+ t
)2 − x2 (6)

ψ3,±(x, y) = 1

c

(
1±

√
1− 2c

(√
x2 + y2 − r0

))
(7)

We also define the setsWi,± as the real part of the image of the functionsψi,±. The functions
ψ3,± can be verified to be the unique classical solutions to:{

|∇ψ3,−(x)| = 1
F(ψ3,−(x)) on U3,−

ψ3,−(x) = 0 on C0
(8)

{
|∇ψ3,+(x)| = − 1

F(ψ3,+(x)) on U3,+
ψ3,+(x) = 1

c on C1/c
(9)

where U3,− = {x : r0 < r(x) < R} and U3,+ = {x : 0 ≤ r(x) < R}. Together, the graphs
of ψ3,− and ψ3,+ describe all ofM but the circle of radius R reached at time t = 1

c . On the
other hand this circle lies in the union of the images of ψ1,± and ψ2,±. The functions ψ1,±
are the unique classical solutions to⎧⎨

⎩
∓(ψ1,±)t + F(t)

√
1+ (ψ1,±)2y = 0 on R× (0, T]

ψ1,±(y, 0) = ±
√
r20 − y2 on R× {0}

(10)

and similarly for ψ2,±. This suggests the following procedure to build M:
(1) Solve for ψ3,−.
(Intermediate step) Solve for ψ1,± and ψ2,± restricted to [−R, R] × [1c − ε, 1

c + ε] for
some ε > 0.

(2) Solve for ψ3,+.
Some questions immediately come tomind. Criteria to decidewhen tomove from (1) to the

intermediate step must be chosen. Knowing which equation to solve within the intermediate
step is also a concern. The practical aspects of how to reconcile the results of those steps
need to be addressed carefully. We discuss all of these issues, and turn the above formal idea
into an efficient algorithm that constructs M.

2.5 Notation

To lighten the notation, wewill nowwork in the setting where n = 2. All the results discussed
extend to arbitrary n.
Continuous settingThe letterψ denotes functionswhose image locally describesM. Suppose
ψ : U �→ R with ψ : (y, t) �→ ψ(y, t) = x . We define:

Γt := {(x, y) ∈ R
2 : ψ(y, t) = x, (y, t) ∈ U} (11)

We distinguish between n̂(x, t) the two-dimensional outward normal to Ct at x; and ν̂(x, t)
the three-dimensional outward normal to M at (x, t).

123

J Sci Comput

Discrete setting The spatial grids have fixed meshsize Δx = Δy =: h. We use

xi = i · h y j = j · h tk = k · Δt (i, j, k) ∈ Z× Z× {N ∪ {0}} (12)

We make no distinction between the continuous functions ψ and their discrete approxi-
mations, except in Sect. 4. Indices are used consistently, so that ψi j can be understood as
ψ(xi , y j) and ψk

i as ψ(xi , tk). Consequently, a point p ∈ M may be described by one or
more of the following three expressions:

pkj = (ψk
j , y j , t

k) pki = (xi , ψ
k
i , tk) pi j = (xi , y j , ψi j) (13)

3 A FMM for Time-Dependent Speeds: The t-FMM

We first address the problem stated in Sect. 2.1 under the following restriction:

F = F(x, t) ≥ δ > 0 ∀ (x, t) ∈ R
2 × [0, T] (14)

Allowing the speed to depend on time yields a non-autonomous control problem studied in
[53]. In our context, the main result may be formulated as follows: ψ satisfies the following
Hamilton-Jacobi-Bellman equation:

H(∇ψ,ψ, x) := ||∇ψ(x)||F (x, ψ(x)) = 1 (15)

The implementation of the resulting boundary-value problem:
{ ||∇ψ(x)|| = 1

F(x,ψ(x)) ≤ 1
δ

on Ac
0\C0

ψ(x) = 0 on C0
(16)

is the same as the classical FMM except when a tentative value is assigned to a point in the
Narrow Band. Following [53] this step is adjusted as follows. Let xi j = (xi , y j) and assume
that xi−1, j and xi, j+1 are Accepted neighbours of xi j—see Fig. 2. Then: x̃ = ξxi−1, j + (1−
ξ)xi, j+1 for some ξ ∈ [0, 1]. Letting v = xi j − x̃, we get |v| = √

ξ2 + (1− ξ)2 h. Associate
the following value to Quadrant II:

ψII = min
ξ∈[0,1]

{
ψ(x̃) +

√
ξ2 + (1− ξ)2

h

F(xi j , ψ(x̃))

}
(17)

Proceeding similarly in the other quadrants yields the values ψI, ψIII and ψIV. The tentative
value assigned to ψi j is then ψi j = min{ψI, ψII, ψIII, ψIV}. Note that in two dimensions
the minimization problem (17) may be solved using a direct method; see “Appendix 1”.

Fig. 2 If the characteristic
comes from Quadrant II

123

J Sci Comput

This method converges to the correct viscosity solution, and is globally first order accurate
[43,44,53]. Its complexity is O(Nn log Nn). We will refer to this modified FMM as the ‘t-
FMM’. The results presented in this section yield Algorithm 2 given in Sect. 5. In the general
case |F | ≥ δ > 0, the PDE becomes ||∇ψ(x)|| |F (x, ψ(x)) | = 1.

4 The Sideways Representation

An option to study the evolution of propagating curves or surfaces is to represent the front
as a function that depends on time, e.g., y = Y (x, t) [40]. Although this approach fails to
capture the global properties of the front, we use it near regions where F vanishes.

4.1 Smooth Setting

Consider the solution φ to the IVP (2). Suppose φ ∈ C1(x0, t0) and φ(x0, t0) = 0. Assume
furthermore that φx (x0, t0)
= 0, so that the mapping is locally invertible. From the Implicit
Function Theorem there exist open neighbourhoods (x0, t0) ∈ V and U ⊂ R × [0, T], as
well as a function ψ ∈ C1(U) satisfying

ψ : U −→ R , ψ : (y, t) �→ x = ψ(y, t) , (ψ(y, t), y, t) ∈ V (18)

and φ(ψ(y, t), y, t) = 0 ∀ (y, t) ∈ U . Taking full derivatives of φ with respect to y and t ,
and using the fact that in V , φ satisfies the LSE pointwise gives:

(−φxψt) + F
√

φ2
x + (−φxψy)2 = 0 ⇐⇒ −ψt ± F

√
1+ ψ2

y = 0 (19)

where φx and F are evaluated at (x, y, t) = (ψ(y, t), y, t). The sign used in the last equation
depends on φx = ±√

φ2
x . We let a := −sign(φx (x0, t0)).

Now, let ψ satisfy the following IVP:{
ψt + aF(ψ, y, t)

√
1+ ψ2

y = 0 on U ∩ (R× (t0, T))

ψ(y, t0) = ψ0(y) on U ∩ (R× {t0})
(20)

where ψ0 is chosen such that φ(ψ0(y), y, t0) = 0. Then for all t ∈ (t0, T) the set Γt locally
describes the curve at time t , i.e., Γt = Ct ∩ V . We now investigate the case where M is
merely C0. For simplicity, we work with t0 = 0.

4.2 Vanishing Viscosity Setting

Equation (20) is a Cauchy problem of the form{
ψt + H(y, t, ψ,ψy) = 0 on U ∩ (R× (0, T))

ψ(y, 0) = ψ0(y) on U ∩ (R× {0}) (21)

where the Hamiltonian H : R1 × (0, T) × R × R
1 → R is defined as H(y, t, ψ,ψy) =

aF(ψ, y, t)
√
1+ ψ2

y . The function ψ0 is defined such that for all y ∈ U ∩ (R× {0}) we
have (ψ0(y), y) ∈ C0. We resort to the rich theory of viscosity solutions of Hamilton-Jacobi
equations to study various properties of this problem [4,5,12–14,18,23,46,47]. We first
address the well-posedness of (21).

Theorem 1 (Existence and Uniqueness) There exists a unique viscosity solution ψ to prob-
lem (21).

123

J Sci Comput

Proof The assumptions on H required to apply Theorem 1.1 in [45] can be verified to hold in
our context, with the exception of (H3) in [45]. However, it may be modified to get γR,P ∈ R

if p ∈ BN (0, P) for some P > 0. ��
Next, we verify that (21) enjoys the geometric property advertised in Sect. 4.1.

Theorem 2 (Γt locally describes Ct) The set Γt satisfies Γt = Ct ∩ V .

Proof Consider the IVP (2) again:{
φt + F |∇φ| = 0 on R

2 × (0, T)

φ(x, 0) = φ0(x) on R
2 × {0} (22)

Since it is known that x ∈ Ct ∩ V if and only if φ(x, t) = 0, we may prove the theorem by
showing that: x ∈ Γt if and only if φ(x, t) = 0.

�⇒ We argue by contradiction. Suppose the set T = {T > t > 0 : ∃x ∈
Γt s.t. φ(x, t)
= 0} is not empty and define t∗ = inf T . Since φ is continuous, T is open
and t∗ /∈ T . Therefore, for all x∗ ∈ Γt∗ , φ(x∗, t∗) = 0, but for any ε > 0 sufficiently small,
there exists xε ∈ Γt+ε such that φ(xε, t + ε)
= 0. If M is differentiable at (x∗, t∗), this
contradicts the argument presented in Sect. 4.1: The Implicit Function Theorem guarantees
that the set V is open. IfM is not differentiable at (x∗, t∗), then fix ε and for δ > 0 consider
x0 ∈ Γt∗+ε such that ‖xε − x0‖ ≤ δ and M is differentiable at (x0, t∗ + ε). For any δ, such
a point can be found since for any T > t∗ + ε > 0 the singularities of Γt∗+ε are subsets
of measure 0.1 Again, the Implicit Function Theorem guarantees that there is a neighbour-
hood Ṽ of (x0, t∗ + ε) where φ(x, t) = 0 for any x ∈ Γt ∩ Ṽ . Considering the sequence
δn = { 1n : n ∈ N} and the corresponding sequence {xn}∞n=1, we arrive at the conclusion that
φ(xε, t∗ + ε)
= 0 contradicts the continuity of φ.

⇐� Assume that there exists (x, t) ∈ V such that φ(x, t) = 0, but there is no y
such that x = (ψ(y), y) ∈ Γt . We re-use the arguments given in the proof of �⇒ : IfM is
differentiable at (x, t) then this contradicts the argument in Sect. 4.1. IfM is not differentiable
at (x, t), then we can find a sequence xn ∈ Γt converging to x such that φ(xn, t) = 0, and
obtain the contradiction that ψ is not continuous. ��

Letting φy(x0, t0)
= 0 in Sect. 4.1 and following a similar reasoning, we get that ψ :
(x, t) �→ y = ψ(x, t) with (x, ψ(x, t), t) ∈ V satisfies:{

ψt + aF(x, ψ, t)
√

ψ2
x + 1 = 0 on U ∩ (R× (0, T))

ψ(x, 0) = ψ0(x) on U ∩ (R× {0}) (23)

in the viscosity sense. In subsequent sections, we will refer to Problems (20) and (23) as the
yt- and xt-representations of M. Those problems provide sideways representations of the
evolving front.

4.3 Discretization

Finite-differences schemes for problems such as (21) have been discussed [15,16,45]. Based
on these works, we propose the following discretization for Equation (20). In this subsection
only, we will distinguish between the continuous function ψ , and its discrete approximation
χ . The spatial derivative χy must be computed in an upwind fashion. We define

1 This follows directly from the fact that (21) is a first order Hamilton-Jacobi equation.

123

J Sci Comput

D+
l χr := χr

l+1 − χr
l

h
D−
l χr := χr

l − χr
l−1

h
(24)

and suggest:

χr+1
l = χr

l − a · Δt · F(χr
l , yl , t

r) · √1+ upw(χr , l, r, α) (25)

where

upw(χr , l, n, α) := max{α, 0}
(
min

{
D+
l χr , 0

}2 +max
{
D−
l χr , 0

}2)

−min{0, α}
(
max

{
D+
l χr , 0

}2 +min
{
D−
l χr , 0

}2)
(26)

The constant α acts as a switch and is defined as α = sign
(
aF(χr

l , yl , tr)
)
.

Proposition 1 (Convergence.) Let M be defined as the local bound on F, i.e., Mr
l =

sup(x,y,t)∈B(prl ,2h){|F(x, y, t)|}, where prl = (χr
l , yl , tr). Assume that max{|D+

l χr |,
|D−

l χr |} ≤ P for all l ∈ L and 0 ≤ r ≤ R. Suppose Δt satisfies

Mr
l · Δt ≤ h

2P
(27)

Then the above scheme is such that χ → ψ as h and Δt → 0, with rate

‖χ − ψ‖∞ ≤ c
√

Δt (28)

for all l, where the constant c depends on ‖ψ0‖, ‖Dψ0‖, the numerical Hamiltonian g, and
RΔt where 0 ≤ r ≤ R.

Proof We proceed by showing that the scheme is monotone and consistent in the sense
of [45]. The results then follow from Theorem 3.1 of that same paper. The scheme can be
rewritten as

χr+1
l = χr

l − Δt · g (
yl , t

r , χr
l , D+

l χr , D−
l χr) (29)

where the numerical Hamiltonian g is verified to be consistent, i.e.,

g (y, t, s, δ, δ) = H(y, t, s, δ) ∀(y, t) ∈ U, s ∈ R, |δ| < P (30)

except near extrema of χ , where we may have g (y, t, s, δ, δ) = H(y, t, s, 2δ). However, as
argued by Sethian (cf. [34,39,40]), the upwind discretization of the gradient still guarantees
convergence. We verify monotonicity by showing

G(χr
l−1, χ

r
l , χr

l+1) = χr
l − a · Δt · F(u, yl , t

r) · √1+ upw(χr , l, r, α) (31)

is a non-decreasing function of each of its argument, for fixed u, yl and tr . We only treat the
case α > 0, since the other case is symmetric. Writing F = F(u, yl , tr) for short gives

G(b, c, d) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c − aΔt F
√
1+ (d−c

h

)2
if d − c < 0, c − b < 0

c − aΔt F
√
1+ (c−b

h

)2
if d − c > 0, c − b > 0

c − aΔt F
√
1+ (d−c

h

)2 + (c−b
h

)2
if d − c < 0, c − b > 0

c − aΔt F if d − c > 0, c − b < 0

(32)

123

J Sci Comput

For the first case: Gb, Gd ≥ 0 are trivial to check while Gc ≥ 0 only if

1 ≥
(
F2

(
Δt

h

)2

− 1

)(
−d − c

h

)2

⇐�
√
1+ P2

P
≥ Mr

l
Δt

h
(33)

Case 2 yields the same condition, whereas Case 3 gives the more restrictive one present in
the assumption of the claim. Case 4 is trivial. ��
Proposition 2 (Stability.) The above scheme is stable, provided that

Δt < min

{
h

2PMr
l

,
P − 2

K P
√
1+ 2P2

,
2

Pδ

}
(34)

for some δ > 0. The constant P is such that max
{|D+

l χr |, |D−
l χr |} ≤ P for all l ∈ L and

0 ≤ r ≤ R. K is the Lipschitz constant of F.

Proof Applying Theorem 7 of [31] to our scheme, it is possible to show that for h small
enough, the explicit Euler map defined as

SlΔt (χ) = χl − aΔt · F(χl , yl , t)
√
1+ upw(χr , l, r, α) (35)

is a strict contraction in
∞. Bounding SlΔt (χ)− SlΔt (τ) from below (resp. above) yields the
2nd (resp. 3rd) bound in (34). ��

When defining ‘upw’, we implicitly assumed that both χr
l+1 and χr

l−1 were known. In the

instance where one of those values is not known, we set χr+1
l to +∞. Indeed, no value can

be assigned to χr+1
l since it is not possible to infer where the characteristic going through

the point prl = (χr
l , yl , tr) comes from.

Remark 1 Assuming P = O(1/h), we revisit the bounds on Δt given in (34). The first one
is not very restrictive since F ≈ 0 implies that Mr

l is be small. The others are O(h) as is
usual for the CFL condition of an advection problem.

5 Algorithms and Discussion

The algorithms make use of four lists. The ‘accepted’ list A and ‘narrow band’ list N are
lists of triplets, e.g., pi j = (xi , y j , ψi j). The ‘pile’ list P and ‘far away’ list Fa are lists of
coordinates, e.g., (xi , y j).

5.1 Algorithm 1, Main Loop

The main loop is such that if F = F(x, y) ≥ δ > 0, ∀(x, y) ∈ R
2, it reduces to the classical

FMM. Indeed, the sideways formulations are only used when F ≈ 0. Let the point accepted
during the first steps of the main loop be labelled as pαβ = (xα, yβ, ψαβ).

Update Pile: Lines 7–17 This is only performed if ψαβ is below a certain predefined time
T , which is in contrast with the standard FMM, where the size of the computational domain
determines T . In order to decide whether a nearest neighbour (xa, yb) of pαβ should be put in
P , three criteria are used: position, status and orientation. To clarify what is meant by line 9,
consider the following situation: If F(pαβ) > 0 (whichmeans the curve is locally expanding)
and (xa, yb) lies inside the curve Cψαβ , then (xa, yb) is not added to P since it is not likely to

123

J Sci Comput

Algorithm 1Main Loop
1: while N do
= ∅
2: Find the point pαβ inN with the smallest time value.
3: Remove [pαβ ; ν̂(pαβ)] fromN and add it to A.
4: if (xα, yβ) ∈ Fa then
5: remove (xα, yβ) from Fa.
6: end if

7: if ψαβ < T then
8: for all neighbours (xa , yb) of (xα, yβ) do
9: if (xa , yb) could be traversed by the curve then
10: if (xa , yb) ∈ Fa then
11: add (xa , yb) to P
12: else
13: depending on the orientation of the points inA with spatial coord. (xa , yb), add (xa , yb)

to P . (See discussion.)
14: end if
15: end if
16: end for
17: end if

18: for all (xi , y j) ∈ P do
19: Compute ψi j and ν̂i j using Algorithm 2 and let pi j ← (xi , y j , ψi j).
20: Remove (xi , y j) from P .
21: if pi j fails the Sign Test then
22: proceed to Algorithm 3.
23: end if
24: if ψi j < +∞ then
25: if ∃ qi j ∈ Nwith the same spatial coord. as pi j then
26: remove [qi j ; ν̂(qi j)] fromN .
27: end if
28: add [pi j ; ν̂(pi j)] toN
29: end if
30: end for

31: end while

be traversed by the curve within a short time. Next, if the pair (xa, yb) was traversed by the
curve in the past, Line 13 picks, out of all the points in A with spatial coordinates (xa, yb),
the point with the largest time value (i.e., the one that was most recently traversed by the
front), and calls it pab. Suppose that ν̂(pab) > 0, which means F(pab) < 0 and the front
was contracting at pab. If F(pαβ) > 0, then (xa, yb) is added to P .
Update the Narrow Band: Lines 18–30 This procedure assigns tentative values to the points
in P using either the standard or the t-FMM. Since those algorithms are only valid in regions
where |F | ≥ δ > 0, they only involve points that lie in one such region. In Lines 4–5 of
Algorithm 2: an accepted neighbour is ’compatible’ if its ν̂3 component has the same sign as
ν̂3(pαβ). Lines 21–23 represent the main modification to the standard FMM algorithm. The
Sign Test (described below) is performed to check if the value returned by Algorithm 2 is
valid. If the value is not valid, Algorithm 3 attempts to return a new tentative point using a
sideways representation. If Algorithm 3 fails, no new point is added toN . Else, the updating
procedure of N is identical to the standard FMM (Lines 25–28).

The Sign Test When (xi , y j) is assigned a value ψi j using the (t-)FMM, the Sign Test
is performed as follows. Suppose the point pi−1, j = (xi−1, y j , ψi−1, j) was used in the

123

J Sci Comput

Algorithm 2 Solve |∇ψ | = 1/F
1: if F = F(x) then
2: use the standard FMM procedure.
3: else if F = F(t) or F = F(x, t) then
4: u± ← ψi±1 j if defined and compatible, or +∞ otherwise.
5: v± ← ψi j±1 if defined and compatible, or +∞ otherwise.
6: � ← [0, 0, 0, 0]
7: for Quadrant = 1…4 do
8: if Quadrant == 1 then
9: ψv ← v+, ψu ← u+, τv ← h

|F(xi ,y j+1,ψv)| , τu ← h
|F(xi+1,y j ,ψu)| ,

10: end if
11: (and similarly for other quadrants)
12: if (ψv = +∞) and (ψu = +∞) then
13: θ ← +∞,
14: else
15: θ ← minξ∈[0,1]{ξψv + (1− ξ)ψu +

√
ξ2 + (1− ξ)2 (ξτv + (1− ξ)τu)}

16: (see “Appendix 1” for details)
17: end if
18: �(Quadrant)← θ ,
19: end for
20: ψi j ← min(�)

21: end if

computation of ψi j . Considering the line in xyt-space from pi−1, j to pi j , we check the
number of times d the speed changes sign along this line. If d = 0, the algorithm can keep
running the (t-)FMM. If d = 1, pi j fails the Sign Test. If d > 1, the grid has to be refined.
Remark that the parameter δ is not actually used to switch representation.

5.2 Algorithm 3, Sideways Representation

This algorithm is called by the main loop when the speed F is close to 0.
In order to work locally, the first step defines a square of side length at most 2sh as the

new computational grid. The parameter s ∈ N is chosen as large as possible, but subject to
the restriction that the inner product between any two normals n̂ at the accepted points of the
subgrid is positive. The representation is chosen based on the length of the components of
the normal at pαβ , e.g., if |ν̂1| > |ν̂2| then the yt-representation is used.

Then data are converted according to the procedure illustrated on Fig. 3, which is now
detailed. The algorithm must switch from the xy- to the yt-representation; i.e.,M is locally
sampled by points of the form plm = (xl , ym, t) (as on Fig. 3a), and the yt-representation
requires points of the form prm = (x, ym, tr). Points that do not have an orientation compatible
with the current representation are discarded, e.g., if ν̂1(pαβ) > 0, then all the points with
ν̂1 ≤ 0 are discarded; see Fig. 3b. Note that pαβ is represented exactly on both the xy- and
the yt-grid. One-dimensional interpolation is then used line by line to populate the sideways
grid; see Fig. 3c.

The sideways PDE can now be solved. As mentioned in Sect. 4.3, if either ψr−1
l−1 or ψr−1

l+1
are set to +∞, then Algorithm 4 sets ψr

l to +∞. As depicted on Fig. 3d, this has the effect
of shrinking the size of the set where the PDE is solved: At most s time steps can be taken
before all the boundary information available has been used up. The time step is restricted
by Proposition 2.

Using one-dimensional interpolation again, a value is assigned to the point (xi , y j) in P .
This is the situation illustrated on Fig. 3e, f. If (xi , y j) is not traversed, then a value is assigned
to (xα, yβ)—recall that the point that has just been accepted is pαβ = (xα, yβ, ψαβ). If this

123

J Sci Comput

cannot be done either, then this representation failed. The algorithm then attempts using the
other representation; e.g., the xt-representation. If both representations fail, then Algorithm
3 fails entirely. Note that this is expected to happen if (xi , y j) and (xα, yβ) /∈ Ct for any t in
the interval (pαβ, T). See Example 2 in Sect. 7. In such cases, no point is added to N .

Remark 2 It may not be necessary to solve for ψr
l until all the information has been used up.

As soon as a value can be assigned to either (xi , y j) or (xα, yβ), the scheme can stop calling
Algorithm 4 and switch from sideways back to xy-representation.

Algorithm 3 Sideways representation
1: Consider the square of 2s × 2s points centered at (xi , y j).
2: Based on ν̂(pαβ) pick a representation. Suppose it is the yt-representation.
3: a ← −sign(ν̂1(pαβ))

4: Using the procedure illustrated on Fig. 3a–c, populate the sideways grid with boundary data. Those points
that cannot be assigned any value get +∞.

5: Compute ψr
l = ψ(x, yl , t

r) using Algorithm 4 and moving forward in time. (Fig. 3d)

6: Using one-dimensional interpolation, verify whether (xi , y j) or (xα, yβ) has been traversed by the curve.
7: if (xi , y j) or (xα, yβ) is traversed by the curve then
8: the corresponding point and normal [pi j ; ν̂(pi j)] or [pαβ ; ν̂(pαβ)] is returned.
9: else
10: this sideways representation failed. Go back to line 2 and try xt-rep.
11: end if
12: if both sideways representations failed then
13: Algorithm 3 has failed. Return [(∞,∞,∞); (∞,∞,∞)].
14: end if

Algorithm 4 Solve ψt + aF(ψ, y, t)
√
1+ ψ2

y = 0

if (ψr−1
l−1 < +∞) & (ψr−1

l+1 < +∞) then

α ← sign(aF(ψr−1
l , yl , t

r−1))

ψr
l ← ψr−1

l − a · Δt · F(ψr−1
l , yl , t

r−1) · √1+ upw(ψr−1, l, r, α)

else
ψr
l ← +∞

end if

5.3 General Remarks

When the code ends,N is empty whereas Fa may still contain points. The setA provides a
discrete sampling ofM. It may contain multiple triplets sharing the same spatial coordinates.
Using this point cloud, and possibly ν̂, a continuous representation ofM can be obtained—
See [3,8,22,26,35,55]. Given a time t ∈ (0, T), a contouring algorithm can then be used
to find Ct (see [26]). By construction, M is expected to be undersampled in regions where
F ≈ 0, unless the points computed in the sideways representations are also recorded.

In summaryTheMain Loop (Algorithm 1) is similar to the main loop of the classical FMM—
and can be verified to be identical to it when |F | ≥ δ > 0. Depending on the domain of

123

J Sci Comput

Fig. 3 Converting the data using interpolation. Note that the domain shrinks by two points every time step.
a Some data in the xy-representation. The point pαβ appears in red. bOnly keep those points with a compatible
orientation to perform interpolation. c One-dimensional interpolation yields the green square data in the yt-
representation. d Solving the sideways PDE yields the dark blue squares. e One-dimensional interpolation is
used to assign a value to (xi , y j). f A new point of the form (xi , y j , ψi j) has been computed (Color figure
online)

123

J Sci Comput

F , the Eikonal equation |∇ψ | = 1/F is either solved using the classical FMM solver
or the t-FMM (Algorithm 2). In those regions of space-time where the xy-representation
fails, the algorithm switches to a sideways representation (Algorithm 3). The corresponding
sideways equation is solved (Algorithm 4) either until a point in the xy-plane is traversed
by the curve or until the code can no longer proceed. The method then reverts back to
xy-representation.

6 Complexity of the Method

We derive some estimates for the computational time of the method. Consider a spatial grid
of N 2 points with meshsize h. Let Δt ∼ h, and define N∗ to be the number of gridpoints
traversed by Ct when 0 < t < T . (i.e., if a given gridpoint (xi , y j) is traversed at times
t1 and t2 where 0 < t1 < t2 < T , then this contributes +2 to N∗.) By construction, the
computational time depends on the size of the set FM := F ∩ M. Indeed, Algorithm 3 is
only called when Algorithm 1 fails, which occurs whenever an accepted point computed by
Algorithm 1 is within a spatial distance h of FM. Let the number of points computed by
Algorithm 3 be Ñ . Since the complexity of Algorithm 1 is well-known [39], we focus on the
complexity of a single call to Algorithm 3.

On the square of side 2s, the narrow band forms a one-dimensional subset. Using interpo-
lation therefore takes O(s) operations. Algorithm 4 performs at most s2 operations, at most
twice (one for each attempted representation). However, by Remark 2, and the fact that as N
increases, the number of attempts taken by Algorithm 3 tends to one for almost all points,
the complexity tends to O(s) for large N .

Given the assumption that F is analytic, we expect N∗ − Ñ = O(N 2) and Ñ = O(N). In
practice, the number of points in the local grid s can be chosen as kN for k � 1. The overall
complexity can therefore be estimated as:

O(N 2 log(N 2)) +O(N) ×O(kN) = O(N 2 log(N 2))︸ ︷︷ ︸
(t)−FMM

+ O(kN 2)︸ ︷︷ ︸
augmented part

(36)

Note that if F = ∅, we recover the usual complexity of the FMM.

7 Numerical Tests

In this section, we illustrate how themethodworkswith a variety of examples.Wefirst discuss
the methodology used to assess the convergence of the algorithms, and briefly summarize
which features and results are expected. We then present the examples. More details are
provided in “Appendix 2”.

7.1 Error Measurement

The error associated to each point pi j is computed using Method 1 for all examples, except
Example 4 when F < 0 where Method 2 is used.

Method 1: Ei j We define Ei j = |φ(pi j)|, where φ(x, y, t) is the distance function to Ct for
all t , and pi j = (xi , y j , ψi j).

123

J Sci Comput

Fig. 4 Legend for the figures featuring A

Method 2: Gi j The IVP (2) is solved on a very fine grid using second order stencils in space,
and Runge-Kutta 2 in time. At each time step, the zero-contour of φ is found and sampled.
The resulting list of pointsB provides a very accurate discrete approximation ofM. The error
associated to pi j is defined as the smallest three-dimensional distance to this exact cloud of
points, i.e., Gi j = minq∈B{|pi j − q|}.
7.2 Tests Performed

Accuracy of Algorithm 4 To verify the accuracy of the sideways method, we pick a domain U ,
initialize say x = ψ(ym, t0) with exact data for some initial time t0, and run Algorithm 4 for
different gridsizes. The result is a subset ofM, encoded as a list of points of the form prm =
(ψr

m, ym, tr). An error is associated to each point prm such thatψr
m < ∞ using either Method

1 or 2, i.e., Er
m = |ψexact(ym, tr) − ψr

m | or Gr
m = minq∈B{|prm − q|}. A two-dimensional

L1 norm is then used to report the results in Fig. 5, e.g., L1 = h2 · ∑m∈M
∑

r∈R Er
m .

Accuracy of the full scheme When testing the accuracy of the full scheme, we distinguish
between different regions of the resulting set A. In regions computed by the (t-)FMM, a
two-dimensional L1 norm is used: L1 = h2 ·∑i∈I

∑
j∈J Ei j . The sideways representations

form one-dimensional sets ofR2×[0, T]. Consequently, a one-dimensional L1 norm is used
to study those points: L1 = h · ∑

i∈I
∑

j∈J Ei j . The global error (computed using all the
points in A) is a two-dimensional L1 norm.

7.3 Expectations

As h → 0, the first order (t-)FMM scheme is used almost everywhere. The global error
should therefore be first order. We expect the call to Algorithm 3 to increase the constant of
convergence. The behaviour of the scheme in the presence of singularities is investigated in
Example 4, as well as in Sect. 8.

In all examples but the fourth one, the initial curve C0 is a circle of radius r0 = 1/4
centred at the origin. All tests are initialized with exact values. The legend used for the
figures featuring the set A is presented on Fig. 4. To reconstruct the curves Ct , Delaunay
triangulations are used.2

7.4 Example 1:F = F(t) = 1− e10t−1

The example illustrates the basic ideas of the method. The speed is such that the circle
expands up to time t = 0.1 and then contracts until it collapses to the origin of R2. The
results reported on Fig. 5 clearly indicate that the accuracy of the sideways representation
is O(h). This is higher than the O(h1/2) rate predicted in Sect. 4.3. When the entire code is
run, the setA is presented on Fig. 6a, b. One-dimensional optimization (i.e., The solution of
Eq. (17) occurs when ξ ∈ {0, 1}) is used for those points traversed by a characteristic that
aligns with a spatial axis. We note that the sideways points are computed in the yt- (resp. xt-
)representation when n̂ aligns better with the x- (resp. y-)axis. As expected, the sampling of

2 TriScatteredInterp MatLab function

123

J Sci Comput

Fig. 5 Convergence results for the sideways scheme. aMethod 1, Ei j . bMethod 2, Gi j

Fig. 6 Example 1. a The set A. b The set A. c The reconstructed curves Ct at various times, first quadrant.
d Convergence results

the surface is sparser near the plane t = 0.1. The global convergence results are presented in
Fig. 6d. We distinguish between the bottom part of the surface, the top part, and those points
computed using the sideways representation. The results pertaining to the bottom and the top
parts show that the t-FMM has O(h) accuracy, as predicted in Sect. 3. However, the results

123

J Sci Comput

Fig. 7 Example 2. a The set A. b Convergence results

for the top part converge with a larger constant. We conclude that changing representation
does deteriorate the accuracy of the sampling but only to a mild extent.

Further investigations reveal that those points computed using one-dimensional optimiza-
tion in the t-FMM, just after t = 0.1 bear the largest errors. This slightly affects the accuracy
of the reconstructed curve, as can be seen from Fig. 6c, however a simple remedy would be to
get rid of those outliers via some post-processing of the data. Two reasons can explain these
larger errors: One-dimensional optimization is less accurate than two-dimensional optimiza-
tion, and the constant of convergence of the t-FMMseems to depend on δ where |F | ≥ δ > 0.

7.5 Example 2: F = F(x) = x

The given speed is such that the curve remains a circle whose radius grows while its center
shifts to the right. Our method adequately handles this case as a single problem, although the
speed changes sign across the y-axis. As expected, Algorithm 3 fails near the points (0, 0.25)
and (0,−0.25), as shown on Fig. 7a. The sideways scheme is first order both in the xt- and
the yt-charts (Fig. 5). Note however that it is not called by the main loop. The results for the
full scheme show that it converges with O(h) accuracy everywhere (Fig. 7b). Remark that a
bi-directional FMM was proposed in [11] to solve a related problem.

7.6 Example 3: F = F(x, y, t)

This example differs from the previous ones in that the set F is not confined to a single
temporal plane, or specific spatial locations (see “Appendix 2”). Thus it illustrates themethod
in its full generality. The exact solution Ct is a circle that only grows at first, and then starts
moving in the positive x-direction, as shown on Fig. 8c. Our method is observed to perform
very well; We present the resulting surface and the first order convergence results on Figs. 5
and 8.
Complexity Figure 9 compares our method against the PDE-based fast local LSM presented
in [36]. Both the original method (as described in the paper) and a vectorized version are run.
It is clear from the results that although the trend is the same, our method is faster than the
local LSM: It differs from the original version by one order of magnitude.

123

J Sci Comput

Fig. 8 Example 3. a The set A. b Convergence results. c The reconstructed curves Ct at various times

Fig. 9 CPU times of our method and the PDE-based local level-set method [36], when running Example 3

123

J Sci Comput

Fig. 10 Example 4. a The set A. b Convergence results. c The reconstructed curves Ct at various times
t < 0.5. d The reconstructed curves Ct at various times t > 0.5

7.7 Example 4: Two Merging Circles

This example tests the ability of the scheme to capture topological changes. The initial
codimension-one manifold consists of two disjoint circles of radius r0 = 1/4, with centres at
(−.3, 0) and (.3, 0). The speed is such that the circles first expand, until they touch andmerge.
Then the speed changes sign, which makes the curve shrink until it pinches off and splits into
two distinct curves. The setA is presented in Fig. 10a. The accuracy of the sideways scheme
is investigated on a domain that comprises the shock when F > 0, and the rarefaction when
F < 0. First order convergence is obtained in each case (Fig. 5). The full scheme also shows
first order convergence (Fig. 10b). The convergence of the sideways points and the top part is
a little shy of first order, but this can be attributed to the measurement method. Those results
demonstrate how robust the overall scheme is. Note that a similar example was tackled in
[7], with a speed F that depended linearly on time. The reconstructed curves can be seen on
Fig. 10c, d.

8 Discussion

We illustrate a limitation of the scheme with an ultimate example. The speed is such that the
initial circle immediately develops a kink along the x-axis at time t = 0. Ct is shaped like
an almond, turning in the counterclockwise direction while expanding. Then, the sign of the
speed changes, forcing the curve to contract while retaining its slanted shape. See “Appendix
2” for details and Fig. 11 for an illustration. As far as the authors know, this is the first example
in the literature of a curve evolution featuring a singularity whose location changes with time,
for which an exact solution is known. Some results are presented on Fig. 12. The singularity

123

J Sci Comput

Fig. 11 M for the almond example. The shock appears as a red plain line (Color figure online)

is clearly visible, and has the expected figure-eight shape. Nevertheless some points ‘escape’
through the shock when the speed changes sign, and start out two new fronts that keep on
expanding. This results from our usage of the outward normal to distinguish between the
outside and the inside of the curve: Discontinuities in ν̂ result in mistagging of points. Note
however that the speed F does not satisfy the assumptions of this paper, since it is a C0

function of R2 × [0, T].
A weakness of the method is that it is fairly sensitive to the accuracy of the normal,

which is used to ‘glue’ representations. Moreover, as it stands, Algorithm 3 may fail even
though (xi , y j) or (xα, yβ) belongs to Ct for some t ∈ (0, T). Two situations make such a
scenario possible: (1) the time steps taken are too small, or (2) too little information obtained
from interpolation is available. These problems could be resolved by making the parameters
(e.g., h and s) depend on the Lipschitz constants of F and its derivatives, as well as the local
curvatures of Γt . Doing so properly still requires investigation.

An obvious benefit of building the method on the standard FMM is that the sideways
representations need only be used to compute a small number of points. As a result, the
numerical complexity of the method competes with a local LSM.

Conclusion Our aim was to devise an algorithm with low complexity able to describe the
non-linear evolution of codimension one manifolds subject to a space- and time-dependent
speed function that changes sign. We illustrated how pre-existing methods can be combined
to achieve this goal. The fact that we always dealt with explicit representations of themanifold
implied that the dimensionality of the problem was never raised. The resulting algorithm was
found to have a global truncation error of O(h). We tested it against a number of examples,
some of which do not appear in the current literature.

Overall, the present work thoroughly introduces a new algorithm, along with proofs of
convergence and stability, as well as sturdy numerical results. We believe that the main idea
on which it relies—i.e., to change representation based on the speed function F—may be
extended and improved in many ways that shall be explored.

123

J Sci Comput

F
ig
.1
2

A
lm

on
d
ex
am

pl
e:
T
he

se
tA

123

J Sci Comput

Acknowledgments The authors wish to thank Prof. A.Oberman for helpful discussions. The second author
would like to thank the organizers of the 2011 BIRS workshop “Advancing numerical methods for viscosity
solutions and applications”, Profs. Falcone, Ferretti, Mitchell, and Zhao for stimulating discussions which
eventually lead to this work

Appendix 1: Direct Method to Compute ψII in the t-FMM, in 2D

Weprovide a direct method for solving theminimization problem appearing in Equation (17),
in two dimensions. Introducing τ(y) = h/|F(xi j , ψ(y))|, we first use linear interpolation to
simplify the quantity we wish to minimize:

ψ(x̃) +
√

ξ2 + (1− ξ)2
h

|F(xi j , ψ(x̃))| = ψ(x̃) +
√

ξ2 + (1− ξ)2 τ(x̃)

≈ ξψ(xi−1, j) + (1− ξ)ψ(xi, j+1)

+
√

ξ2 + (1− ξ)2

× (
ξτ(xi−1, j) + (1− ξ)τ (xi, j+1)

)
=: f (ξ) (37)

Minimizing f over ξ ∈ (0, 1) amounts tofinding the roots of 0 = c4λ4+c3λ3+c2λ2+c1λ+c0
where λ ∈ (0, 1) is such that f ′(λ) = 0. This quartic can be solved either directly with
closed formulas, or with Newton’s method—we use the latter. For each root ri ∈ (0, 1) the
corresponding value of ψ is computed as ψII,ri = f (ri). If ψII,ri < ψ(xi−1, j) or ψII,ri <

ψ(xi, j+1), then ψII,ri is discarded. Values arising from minimization in one dimension are
also computed as ψII,0 = ψ(xi, j+1) + τ(xi, j+1) and ψII,1 = ψ(xi−1, j) + τ(xi−1, j). The
global minimum is found by comparing all those values.

Appendix 2: Implementation Details for the Examples

We give some details about the examples presented in Sect. 7. All tests were performed using
Matlab� [51]. In particular, finding the minimum value in N is done using min.
Computing the outward normal In regions where the level-set function φ is C1, we have
ν̂ = (φx , φy, φt)/|(φx , φy, φt)|. We use the Implicit Function Theorem: e.g., If ψ(y, t) = x
satisfies φ(ψ(y, t), y, t) = 0, then φy = −φxψy and φt = −φxψt . Since φx
= 0, we
set ν = (+sign(φx), ψy, ψt) and ν̂ = ν/|ν|. In the (t-)FMM as well as in the sideways
representations, the points used to approximate the derivatives using finite-differences are
the ones involved in the computation of the new point. E.g., In the t-FMM, if two-dimensional
optimization was used in Quadrant III to obtain ψi j , then ν̂(pi j) = ν/|ν| where

ν = ((
ψi j − ψi−1, j

)
/h ,

(
ψi j − ψi, j−1

)
/h , −sign(ν̂3(pi j−1))

)
(38)

Choice of parameters In all examples, the number of points in each dimension is N + 1, and
the spatial grid spacings are even: h = dx = dy. The size of the local grid in Algorithm 3 is
s = N

3 !. When F depends on time, we use adaptive time-stepping. Before the time where
F = 0, we set Δt = r1h. Passed that time, we let Δt = r2h. To assess the convergence of
the sideways methods, a yt-grid with spacings h and Δt = h/2 is built. The exact normal ν̂
is assigned to the points as they are accepted in all the examples, except Example 1 where it
is computed as explained in the above paragraph.

123

J Sci Comput

Example 1 The exact solution to the Level-Set Equation is φ(x, y, t) = √
x2 + y2 − R(t)

where R(t) =
(
r0 − e10t−1

10e + t
)
. Domain: [−.321, .319]2. TF = 0.3. xt- and yt-rep.:

r1 = 1/3, r2 = 2. Skewed rep.: r1 = r2 = 1. Domain for convergence of Algorithm 4:
(y, t) ∈ [−0.25, 0.25] × [0, 0.3].
Example 2 The signed distance function to Ct is given as φ(x, y, t) = √

(x − xc(t))2 + y2−
r(t) where xc(t) = r0 sinh t and r(t) = r0 cosh t . Note that φ does not solve the Level-Set
Equation. Domain: [−1.01, 0.99]2. TF = 1. xt- and yt-rep.: r1 = 1/3, r2 = 2. Skewed rep.:
r1 = 1/3, r2 = 5. Domain for convergence of Algorithm 4: (y, t) ∈ [−0.25, 0.25] × [0, 1]
and (x, t) ∈ [−0.25, 0.25] × [0, 1].
Example 3 The exact solution to the Level-Set Equation is φ(x, y, t) = √

(x − gt)2 + y2−
(r0 + ct) where b = 10, c = 1/2 and g(t) = arctan (b(t − 0.5)) + π

2 . The speed is

F = (x − gt)(g′t + g)√
(x − gt)2 + y2

+ c �⇒ F ≈
{
c for t small

(x−π t)π√
(x−π t)2+y2

+ c for t large (39)

We expect the circle to first expand (when t is small), and then expand while moving to the
right with speed π (when t is large). Domain: [−1.51,+1.49]2. TF = 0.5. xt- and yt-rep.:
r1 = 1/3, r2 = 2. Skewed rep.: r1 = 1/3, r2 = 5. Domain for convergence of Algorithm 4:
(y, t) ∈ [−0.25, 0.25] × [0, 0.5].
Example 4 The set C0 consists of two disjoint circles of radius r0 = 0.25, with centres at
(−0.3, 0) and (0.3, 0). The speed is F = 1 − e2t−1. The circles touch along the y-axis
when t ≈ 0.08. When t < 0.5 the exact solution to the Level-Set Equation is φ(x, y, t) =
min

{√
(x + 0.3)2 + y2 −R(t),

√
(x − 0.3)2 + y2 − R(t)

}
where R(t) = r0 − e2t−1

2e + t .

Domain: [−1.5+0.01e,+1.5+0.01e]2. TF = 1.2. xt- and yt-rep.: r1 = 1/3, r2 = 2. Skewed
rep.: r1 = 1/3, r2 = 5. Domain for convergence of Algorithm 4: (y, t) ∈ [−0.5, 0.5] ×
[0.2, 0.5] and (y, t) ∈ [−0.5, 0.5] × [0.5, .52].
The Almond example The exact solution to the Level-Set Equation is

φ(x, y, t) =
(√

x2 + y2 − r0 + ect − 1

ce
− t (1+ C)

)
+ t |xt − y|√

1+ t2
(40)

The constants are set to be: r0 = 1/4, c = 1, and C = .65. The function φ is made up
of two parts: The first one in brackets is qualitatively the same as in Example 1. Domain:
[−0.5, 0.5]2. TF = 1.9. xt- and yt-rep.: r1 = 1/3, r2 = 2. Skewed rep.: r1 = 1/2, r2 = 6.

References

1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys.
118(2), 269–277 (1995)

2. Adalsteinsson, D., Sethian, J.A.: A level set approach to a unified model for etching, deposition, and
lithography. I. Algorithms and two-dimensional simulations. J. Comput. Phys. 120(1), 128–144 (1995)

3. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Pro-
ceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’98, pp. 415–421. ACM, New York, NY, USA (1998)

4. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman
Equations. Modern Birkhäuser Classics. Birkhäuser, Boston (2008)

5. Barles, G.: Existence results for first order Hamilton Jacobi equations. Ann. Inst. H. Poincaré Anal. Non
Linéaire 1(5), 325–340 (1984)

123

J Sci Comput

6. Carlini, E., Cristiani, E., Forcadel, N.: A non-monotone fast marching scheme for a Hamilton-Jacobi
equation modeling dislocation dynamics. ENUMATH 2005, Santiago de Compostela (Spain) (2007)

7. Carlini, E., Falcone, M., Forcadel, N., Monneau, R.: Convergence of a generalized fast-marching method
for an eikonal equation with a velocity-changing sign. SIAM J. Numer. Anal. 46(6), 2920–2952 (2008)

8. Chazal, F., Cohen-Steiner,D.,Mérigot, Q.:Geometric inference for probabilitymeasures. Found.Comput.
Math. 11(6), 733–751 (2011)

9. Cheng, L.T., Tsai, Y.H.: Redistancing by flow of time dependent eikonal equation. J. Comput. Phys.
227(8), 4002–4017 (2008)

10. Chopp, D.L.: Some improvements of the fast marching method. SIAM J. Sci. Comput. 23(1), 230–244
(2001)

11. Chopp, D.L.: Another look at velocity extensions in the level set method. SIAM J. Sci. Comput. 31(5),
3255–3273 (2009)

12. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton-Jacobi
equations. Trans. Amer. Math. Soc. 282(2), 487–502 (1984)

13. Crandall,M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential
equations. Bull. Amer. Math. Soc. (N.S.) 27(1), 1–67 (1992)

14. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc.
277(1), 1–42 (1983)

15. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Com-
put. 43(167), 1–19 (1984)

16. Crandall, M.G., Tartar, L.: Some relations between nonexpansive and order preserving mappings. Proc.
Am. Math. Soc. 78(3), 385–390 (1980)

17. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271
(1959)

18. Evans, L.: Partial Differential Equations. Graduate studies inMathematics. AmericanMathematical Soci-
ety, Providence (2010)

19. Falcone, M.: The minimum time problem and its applications to front propagation. In: Visintin, A.,
Buttazzo, G. (eds.) Motion by Mean Curvature and Related Topics, pp. 70–88. De Gruyter verlag, Berlin
(1994)

20. Forcadel, N., Le Guyader, C., Gout, C.: Generalized fast marching method: applications to image seg-
mentation. Numer. Algorithms 48(1–3), 189–211 (2008)

21. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of
dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003). Special issue in honor of the sixtieth birthday
of Stanley Osher

22. Hoppe,H.,DeRose,T.,Duchamp,T.,McDonald, J., Stuetzle,W.: Surface reconstruction fromunorganized
points. SIGGRAPH Comput. Graph. 26(2), 71–78 (1992)

23. Koike, S.: A Beginner’s Guide to the Theory of Viscosity Solutions. MSJMemoirs. Mathematical Society
of Japan, Tokyo (2004)

24. Lions, P.L., Rouy, E., Tourin, A.: Shape-from-shading, viscosity solutions and edges. Numerische Math-
ematik 64(1), 323–353 (1993)

25. Lolla, T., Ueckermann, M., Yigit, K., Haley, P., Lermusiaux, P.: Path planning in time dependent flow
fields using level set methods. In: 2012 IEEE International Conference on Robotics and Automation
(ICRA), pp. 166–173. River Centre, Saint Paul, Minnesota, USA (2012)

26. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIG-
GRAPH Comput. Graph. 21(4), 163–169 (1987)

27. Malladi, R., Sethian, J.A., Vemuri, B.C.: A fast level set based algorithm for topology-independent shape
modeling. J. Math. Imaging Vision 6(2–3), 269–289 (1996)

28. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple functions: a level set approach. J. Comput.
Phys. 112(2), 334–363 (1994)

29. Mitchell, I.: Dynamic programming algorithms for planning and robotics in continuous domains and the
Hamilton-Jacobi equation (Slides presented for IROSmeeting in France). http://www.cs.ubc.ca/mitchell/
Talks/mitchellIROS.pdf (2008)

30. Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J.
Comput. Phys. 100(2), 209–228 (1992)

31. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations:
Hamilton-Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006).
(electronic)

32. Osher, S., Cheng, L.T., Kang, M., Shim, H., Tsai, Y.H.: Geometric optics in a phase-space-based level
set and eulerian framework. J. Comput. Phys. 179(2), 622–648 (2002)

123

http://www.cs.ubc.ca/mitchell/Talks/mitchellIROS.pdf
http://www.cs.ubc.ca/mitchell/Talks/mitchellIROS.pdf

J Sci Comput

33. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences,
vol. 153. Springer, New York (2003)

34. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-
Jacobi formulations. J. Comp. Phys. 79, 12–49 (1988)

35. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings of
the Conference on Visualization ’02. VIS ’02, pp. 163–170. IEEE Computer Society, Washington, DC,
USA (2002)

36. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J.
Comput. Phys. 155(2), 410–438 (1999)

37. Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67
(2000)

38. Sethian, J.: Numerical methods for propagating fronts. In: Concus, P., Finn, R. (eds.) Variational Methods
for Free Surface Interfaces, pp. 155–164. Springer, New York (1987)

39. Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci.
93, 1591–1595 (1996)

40. Sethian, J.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)
41. Sethian, J.: Level Set Methods and Fast MarchingMethods: Evolving Interfaces in Computational Geom-

etry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, Cambridge (1999)

42. Sethian, J.A., Strain, J.: Crystal growth and dendritic solidification. J. Comput. Phys. 98(2), 231–253
(1992)

43. Sethian, J.A., Vladimirsky, A.: Ordered upwindmethods for static Hamilton-Jacobi equations. Proc. Natl.
Acad. Sci. USA 98(20), 11069–11074 (2001)

44. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: theory and
algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)

45. Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differ.
Equ. 59(1), 1–43 (1985)

46. Souganidis, P.E.: Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differ. Equ. 56(3),
345–390 (1985)

47. Subbotin, A.: Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective.
Systems & Control. Birkhäuser, Boston (1994)

48. Sussman,M., Fatemi, E.:An efficient, interface-preserving level set redistancing algorithmand its applica-
tion to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999). (electronic)

49. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible
two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

50. Takei, R., Tsai, R.: Optimal trajectories of curvature constrained motion in hamilton-jacobi formulation
(to appear). J. Sci. Comput. 54(2), 622–644 (2013)

51. The MathWorks Inc., N.M.U.S.: MatLab and Statistics Toolbox Release 2010b, Version 7.11.0.584. The
Mathworks, Inc., Natick, Massachusetts, United States. (2010)

52. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEETrans. Automat. Control 40(9),
1528–1538 (1995)

53. Vladimirsky, A.: Static PDEs for time-dependent control problems. Interfaces Free Bound 8(3), 281–300
(2006)

54. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)
55. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings

IEEE Workshop on Variational and Level Set Methods in Computer Vision, 2001. pp. 194–201 (2001)
56. Zhu, J., Ronney, P.: Simulation of front propagation at large non-dimensional flow disturbance intensities.

Combust. Sci. Technol. 100(1–6), 183–201 (1994)

123

	A Low Complexity Algorithm for Non-Monotonically Evolving Fronts
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement and Assumptions
	2.2 Applications
	2.3 Previous Work
	2.4 Motivation
	2.5 Notation

	3 A FMM for Time-Dependent Speeds: The t-FMM
	4 The Sideways Representation
	4.1 Smooth Setting
	4.2 Vanishing Viscosity Setting
	4.3 Discretization

	5 Algorithms and Discussion
	5.1 Algorithm 1, Main Loop
	5.2 Algorithm 3, Sideways Representation
	5.3 General Remarks

	6 Complexity of the Method
	7 Numerical Tests
	7.1 Error Measurement
	7.2 Tests Performed
	7.3 Expectations
	7.4 Example 1:F=F(t)= 1-e10t-1
	7.5 Example 2: F=F(x)=x
	7.6 Example 3: F=F(x,y,t)
	7.7 Example 4: Two Merging Circles

	8 Discussion
	Acknowledgments
	Appendix 1: Direct Method to Compute ψII in the t-FMM, in 2D
	Appendix 2: Implementation Details for the Examples
	References

