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Motivated by complex multi-fluid geometries currently being explored in fibre-device
manufacturing, we study capillary instabilities in concentric cylindrical flows of N
fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the
Stokes regime and for the full Navier–Stokes problem. Generalizing previous work by
Tomotika (N = 2), Stone & Brenner (N = 3, equal viscosities) and others, we present
a full linear stability analysis of the growth modes and rates, reducing the system to
a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate
by Plateau-style geometrical arguments that only axisymmetric instabilities need be
considered. We show that the N = 3 case is already sufficient to obtain several
interesting phenomena: limiting cases of thin shells or low shell viscosity that
reduce to N = 2 problems, and a system with competing breakup processes at very
different length scales. The latter is demonstrated with full three-dimensional Stokes-
flow simulations. Many N > 3 cases remain to be explored, and as a first step we
discuss two illustrative N→∞ cases, an alternating-layer structure and a geometry
with a continuously varying viscosity.
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1. Introduction
In this paper, we generalize previous linear stability analyses (Rayleigh 1879, 1892;

Tomotika 1935; Stone & Brenner 1996; Chauhan et al. 2000) of Plateau–Rayleigh
(capillary) instabilities in fluid cylinders to handle any number (N) of concentric
cylindrical fluid shells with arbitrary thicknesses, viscosities, densities, and surface
tensions. This analysis is motivated by the fact that experimental work is currently
studying increasingly complicated fluid systems for device-fabrication applications,
such as drawing of microstructured optical fibres with concentric shells of different
glasses/polymers (Hart et al. 2002; Kuriki et al. 2004; Pone et al. 2006; Abouraddy
et al. 2007; Sorin et al. 2007; Deng et al. 2008) or generating double emulsions
(Utada et al. 2005; Shah et al. 2008). Although real experimental geometries may
not be exactly concentric, we show that surface tension alone, in the absence of
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other forces, will tend to eliminate small deviations from concentricity. We show
that our solution reduces to known results in several limiting cases, and we also
validate it with full three-dimensional Stokes-flow simulations. In addition, we show
results for a number of situations that have not been previously studied. For the
limiting case of a thin shell, we show a connection to the classic single-cylinder and
flat-plane results, consistent with a similar result for air-clad two-fluid jets (Chauhan
et al. 2000). In a three-fluid system, we exhibit an interesting case in which two
growth modes at different wavelengths have the same effective growth rate, leading
to competing breakup processes that we demonstrate with full three-dimensional
Stokes-flow simulations. We also consider some many-layer cases, including a limiting
situation of a continuously varying viscosity. Using a simple geometrical argument,
we generalize previous results (Plateau 1873; Rayleigh 1879; Chandrasekhar 1961) to
show that only axial (not azimuthal) instabilities need be considered for cylindrical
shells. Numerically, we show that the stability analysis in the Stokes regime can
be reduced to a generalized eigenproblem whose solutions are the growth modes,
which is easily tractable even for large numbers of layers. Like several previous
authors (Tomotika 1935; Stone & Brenner 1996; Gunawan, Molenaar & van de Ven
2002; Gunawan, Molenaar & van de Ven 2004), we begin by considering the Stokes
(low-Reynolds) regime, which is consistent with the high viscosities found in drawn-
fibre devices (Abouraddy et al. 2007; Deng et al. 2008). In Appendix C, we generalize
the analysis to the full incompressible Navier–Stokes problem, which turns out to be
a relatively minor modification once the Stokes problem is understood, although it has
the complication of yielding an unavoidably nonlinear eigenproblem for the growth
modes. Semi-analytical methods are a crucial complement to large-scale Navier–Stokes
simulations (or experiments) in studying capillary instabilities, since the former allow
rapid exploration of wide parameter regimes (e.g. for materials design) as well as
rigorous asymptotic results, while the latter can capture the culmination of the breakup
process as it grows beyond the linear regime.

Capillary instability of liquid jets has been widely studied (Lin 2003; Eggers &
Villermaux 2008) since Plateau (1873) first showed that whenever a cylindrical jet’s
length exceeds its circumference, it is always unstable due to capillary forces (surface
tension). Plateau used simple geometrical arguments based on comparing surface
energies before and after small perturbations. Lord Rayleigh introduced the powerful
tool of linear stability analysis and reconsidered inviscid water jets (Rayleigh 1879)
and viscous liquid jets (Rayleigh 1892). In linear stability analysis, one expands the
radius R as a function of axial coordinate z in the form R(z) = R0 + δReikz−iωt, where
δR� R0, 2π/k is a wavelength of the instability, and σ = Imω is an exponential
growth rate. Given a geometry, one solves for the dispersion relation(s) ω(k) and
considers the most unstable growth mode with the growth rate σmax to determine the
time scale of the breakup process. The wavelength 2π/k corresponding to σmax has
been experimentally verified to match the disintegration size of liquid jets (Eggers &
Villermaux 2008). By considering the effect of the surrounding fluid, Tomotika (1935)
generalized this analysis to a cylindrical viscous liquid surrounded by another viscous
fluid, obtaining a 4 × 4 determinant equation for the dispersion relation. (Rayleigh’s
results are obtained in the limit of vanishing outer viscosity.) A few more limiting
solutions have been obtained (Meister & Scheele 1967; Kinoshita, Teng & Masutani
1994) by generalizing Tomotika’s approach to non-Stokes regimes. Beyond the regime
of a single cylindrical jet, Stone & Brenner (1996) analysed the three-fluid (N = 3)
Stokes cylinder problem, but only for equal viscosities. Chauhan et al. (2000) analysed
the N = 3 case where the inner two fluids have arbitrary viscosities and the outermost
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fluid is inviscid gas, taking into account the full Navier–Stokes equations. Gunawan
et al. (2002, 2004) considered an array of identical viscous cylinders (in a single row
or in a triangular configuration).

Much more complicated, multi-fluid geometries are now being considered in
experimental fabrication of various devices by a fibre-drawing process (Hart et al.
2002; Kuriki et al. 2004; Pone et al. 2006; Abouraddy et al. 2007; Sorin et al. 2007;
Deng et al. 2008). In fibre drawing, a scale model (preform) of the desired device is
heated to a viscous state and then pulled (drawn) to yield a long fibre with (ordinarily)
identical cross-section but much smaller diameter. For example, concentric layers of
different polymers and glasses can be drawn into a long fibre with submicron-scale
layers that act as optical devices for wavelengths on the same scale as the layer
thicknesses (Abouraddy et al. 2007). Other devices, such as photodetectors (Sorin et al.
2007), semiconductor filaments (Deng et al. 2008, 2010), and piezoelectric pressure
sensors (Egusa et al. 2010) have similarly been incorporated into microstructured fibre
devices. That work motivates greater theoretical investigation of multi-fluid geometries,
and in particular the stability (or instability time scale) of different geometries is
critical in order to predict whether they can be fabricated successfully. For example, an
interesting azimuthal breakup process was observed experimentally (Deng et al. 2008)
and has yet to be explained (Deng et al. 2011); however, we show in this paper that
azimuthal instability does not arise in purely cylindrical geometries and must stem
from the rapid taper of the fibre radius from centimetres to millimetres (the drawn-
down ‘neck’), or some other physical influence. For example, there may be elastic
effects (since fibres are drawn under tension), thermal gradients at longer length scales
in the fibre (although breakup occurs at small scales where temperatures are nearly
uniform), and long-range (e.g. van der Waals) interactions in submicron-scale films.
Aside from fibre drawing, recent authors have investigated multi-fluid microcapillary
devices, in which the instabilities are exploited to generate double emulsions, i.e.
droplets within droplets (Utada et al. 2005). Because the available theory was limited
to equal viscosities, the experimental researchers chose only fluids in that regime,
whereas our paper opens the possibilities of predictions for unequal viscosity and more
than three fluids.

We now formulate the mathematical problem that we solve, as depicted
schematically in figure 1. The total number of viscous fluids is N and the viscosity of
the nth (n = 1, 2, . . . ,N) fluid is µ(n). The surface-tension coefficient between the nth
and (n + 1)th fluid is denoted by γ (n). For the unperturbed steady state (figure 1b),
we assume that the nth fluid is in a cylindrical shell geometry with outer radius R(n)

and inner radius R(n−1) < R(n). The first (n= 1) fluid is the innermost core and the Nth
fluid is the outermost one (extending to infinity), so we set R(0) = 0 and R(N) = +∞.
To begin with, this system is analysed in the Stokes regime (low Reynolds number)
and we also neglect gravity (in the large Froude number limit, valid for fibre-drawing
Deng et al. 2011), so the fluid densities are irrelevant. In Appendix C, we extend
this analysis to the Navier–Stokes regime, including an inertia term for each layer
(with density ρ(n)). As noted above, linear stability analysis consists of perturbing
each interface R(n) by a small sinusoidal amount δR(n)eikz−iωt, to lowest order in δR(n).
Stokes’ equations are then solved in each layer in terms of Bessel functions, and
matching boundary conditions yields a set of equations relating ω and k. Although
these equations can be cast in the form of a polynomial root-finding problem, similar
to Tomotika (1935), such a formulation turns out to be ill-conditioned for large N,
and instead we formulate it in the Stokes regime as a generalized eigenproblem of the
form M2(k)ξ= iωM1(k)ξ, which is easily solved for the dispersion relations ω(k) (with
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Schematic of the
concentric-cylinder geometry considered in this paper. (a) Cross-section of N layers and
corresponding radii R(n), viscosities µ(n), and surface tensions γ (n). Starting with the perfect
cylindrical geometry (b), we then introduce small sinusoidal perturbations (c) and analyse
their growth with linear stability analysis.

the corresponding eigenvectors ξ yielding the relative amplitudes of each layer). In the
Navier–Stokes regime, this becomes a nonlinear eigenproblem.

2. Azimuthal stability
For any coupled-fluids system of the type described in figure 1, a natural question

to ask is whether that system is stable subject to a small perturbation. If an interface
with area S has surface energy γS , then a simple way to check stability is to
compare surface energies (areas) for an initial configuration and a slightly deformed
configuration with the same volume. In this way, it was shown that any azimuthal
deformation is stable for a single cylindrical jet (Rayleigh 1879; Chandrasekhar 1961).
Here, we employ a similar approach to demonstrate that the same property also holds
for multiple concentric cylindrical shells. Note that this analysis only indicates whether
a system is stable; in order to determine the time scale of an instability, we must use
linear stability analysis as described in subsequent sections.

For the unperturbed system, we define the level-set function φ̄(n) = r − R(n) · φ̄(n) = 0
defines the interface between the nth and (n + 1)th fluids. Similarly, we define the
level-set function for the perturbed interface (figure 1c) between the nth and (n + 1)th
fluids by

φ(n)(r, z, φ)= r − ζ (n)(z, φ). (2.1)

Following the method of normal modes (Drazin & Reid 2004), in the limit of small
perturbations, a disturbed interface ζ (n) can be chosen in the form

ζ (n)(z, φ)= R(n) + δR(n)ei(kz+mφ) + O[(δR(n))2]. (2.2)

Assuming incompressible fluids in each layer so that volume is conserved (and
assuming that the cylinder is much longer than its diameter so that any inflow/outflow
at the end facets is negligible), we obtain a relation between ζ (n) and R(n):

ζ (n)(z, φ)= R(n) + δR(n)ei(kz+mφ) − (δR
(n))2

4R(n)
+ O[(δR(n))3]. (2.3)

http://journals.cambridge.org/flm
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Let S (φ(n)) denote the surface area of φ(n)(r, z, φ)= 0 in one wavelength 2π/k. From
(2.1) and (2.2), S (φ(n)) can be expressed in cylindrical coordinates as

S (φ(n))=
∫ 2π/k

0

∫ 2π

0
ζ (n)(z, φ)

√
1+

(
∂ζ (n)

∂z

)2

+
(

1
ζ (n)

∂ζ (n)

∂φ

)2

dφ dz. (2.4)

Now we can compare the total interfacial energy between the unperturbed system
Ē =∑N−1

n=1 γ
(n)S (φ̄(n)) and the perturbed system E =∑N−1

n=1 γ
(n)S (φ(n)):

E − Ē =
N−1∑
n=1

γ (n)[S (φ(n))−S (φ̄(n))]

=
N−1∑
n=1

γ (n)(δR(n))2π2 (kR(n))2 + m2 − 1
kR(n)

+ O[(δR(n))3]. (2.5)

From the surface-energy point of view, small perturbations will grow only if E−Ē < 0.
Therefore, from (2.5), we can conclude that all the non-axisymmetric perturbations
(m 6= 0) will be stable. There is one special case that needs additional consideration: if
k = 0 and m = 1 in (2.5), the first term is zero, so one must consider the next-order
term in order to show that this case is indeed stable (i.e. elliptical perturbations
decay). Even more straightforwardly, however, k = 0 corresponds to a two-dimensional
problem, in which case it is well known that the minimal surface enclosing a given
area is a circle.

3. Linear stability analysis
In the previous section, we showed that only axisymmetric perturbations can lead to

instability of concentric cylinders. Now we will use linear stability analysis to find out
how fast the axisymmetric perturbations grow and estimate the breakup time scale for
a coupled N-layer system.

Here, we consider fluids in the low-Reynolds-number regime (valid for
fibre-drawing; Abouraddy et al. 2007; Deng et al. 2008) and thus the governing
equations of motion for each fluid are the Stokes equations (Ockendon &
Ockendon 1995). The full Navier–Stokes equations are considered in Appendix C.
For the axisymmetric flow, the velocity profile of the nth fluid is u(n) =
[u(n)r (r, z, t), u(n)z (r, z, t)], where u(n)r is the radial component of the velocity and u(n)z
is the axial component of the velocity. The dynamic pressure in the nth fluid is
denoted by p(n). The Stokes equations (Batchelor 1973) are

µ(n)
(
∂2u(n)r

∂r2
+ 1

r

∂u(n)r

∂r
− u(n)r

r2
+ ∂

2u(n)r

∂z2

)
= ∂p(n)

∂r
, (3.1a)

µ(n)
(
∂2u(n)z

∂r2
+ 1

r

∂u(n)z

∂r
+ ∂

2u(n)z

∂z2

)
= ∂p(n)

∂z
, (3.1b)

and the continuity equation (for incompressible fluids) is

∂u(n)r

∂r
+ u(n)r

r
+ ∂u(n)z

∂z
= 0. (3.2)
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3.1. Steady state

Because of the no-slip boundary conditions of viscous fluids, without loss of
generality, we can take the equilibrium state of the outermost fluid to be

ū(N)r = 0 ū(N)z = 0 p̄(N) = 0 (3.3)

for r > R(N−1), and of the nth (n< N) fluid to be

ū(n)r = 0 ū(n)z = 0 p̄(n) =
N−1∑
j=n

γ (j)

R(j)
(3.4)

for R(n−1) < r < R(n). (In Appendix C, we generalize this to non-zero initial relative
velocities for the case of inviscid fluids, where no-slip boundary conditions are not
applied.)

3.2. Perturbed state

The perturbed interface, corresponding to the level set φ(n) = r − ζ (n) = 0, with an
axisymmetric perturbation, takes the form

ζ (n)(z, t)= R(n) + δR(n)ei(kz−ωt) + O[(δR(n))2]. (3.5)

Similarly, the perturbed velocity and pressure are of the formu(n)r (r, z, t)
u(n)z (r, z, t)
p(n)(r, z, t)

=
ū(n)r

ū(n)z

p̄(n)

+
δu

(n)
r (r)

δu(n)z (r)
δp(n)(r)

 ei(kz−ωt). (3.6)

Note that the Stokes equations (3.1) and continuity equation (3.2) imply that

∂2p(n)

∂r2
+ 1

r

∂p(n)

∂r
+ ∂

2p(n)

∂z2
= 0. (3.7)

Substituting the third row of (3.6) into (3.7), we obtain an ordinary differential
equation for δp(n)(r): (

d2

dr2
+ 1

r

d
dr
− k2

)
δp(n)(r)= 0. (3.8)

Clearly, δp(n)(r) satisfies the modified Bessel equation of order zero in terms of kr.
Therefore, we have

δp(n)(r)= c(n)1 K0(kr)+ c(n)2 I0(kr), (3.9)

where K0(·) and I0(·) are modified Bessel functions of the first and second kind (K0 is
exponentially decreasing and singular at origin; I0 is exponentially growing), and c(n)1

and c(n)2 are constants to be determined. Inserting δp(n)(r) into (3.1) and solving two
inhomogeneous differential equations, we obtain the radial component of velocity

δu(n)r (r)= c(n)1

rK0(kr)

2µ(n)
+ c(n)2

rI0(kr)

2µ(n)
+ c(n)3

K1(kr)

2µ(n)k
+ c(n)4

I1(kr)

2µ(n)k
(3.10)
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and the axial component of velocity

δu(n)z (r)= c(n)1

[
iK0(kr)

µ(n)k
− irK1(kr)

2µ(n)

]
+ c(n)2

[
iI0(kr)

µ(n)k
+ irI1(kr)

2µ(n)

]
− c(n)3

iK0(kr)

2µ(n)k
+ c(n)4

iI0(kr)

2µ(n)k
, (3.11)

where c(n)3 and c(n)4 are constants to be determined. Imposing the conditions that the
velocity and pressure must be finite at r = 0 and r =+∞, we immediately have

c(1)1 = c(1)3 = c(N)2 = c(N)4 = 0. (3.12)

3.3. Boundary conditions

In order to determine the unknown constants c(n) = (c(n)1 , c(n)2 , c(n)3 , c(n)4 ) in each layer,
we close the system by imposing boundary conditions at each interface. Let n(n) be the
unit outward normal vector of interface r = ζ (n)(z, t) and t(n) be the unit tangent vector.
Formulae for n(n) and t(n) are given by equations (A 1) and (A 2) of Appendix A. First,
the normal component of the velocity is continuous at the interface, since there is no
mass transfer across the interface, and so

u(n)|r=ζ (n) ·n(n) = u(n+1)|r=ζ (n) ·n(n). (3.13)

For the at-rest steady state (3.3) and (3.4), this condition is equivalent (to first order)
to the continuity of radial velocity:

u(n)r (r, z, t)|r=ζ (n) = ur
(n+1)(r, z, t)|r=ζ (n) . (3.14)

Second, the no-slip boundary condition implies that the tangential component of the
velocity is continuous at the interface:

u(n)|r=ζ (n) · t(n) = u(n+1)|r=ζ (n) · t(n). (3.15)

(The generalization to inviscid fluids, where no-slip boundary conditions are not
applied, is considered in Appendix C.) For the at-rest steady state (3.3) and (3.4),
this is equivalent (to first order) to the continuity of axial velocity:

u(n)z (r, z, t)|r=ζ (n) = uz
(n+1)(r, z, t)|r=ζ (n) . (3.16)

Third, the tangential stress of the fluid is continuous at the interface. The stress tensor
of the nth fluid in cylindrical coordinates for axisymmetric flow (Kundu & Cohen
2007) can be expressed as

τ (n) =

 −p(n) + 2µ(n)
∂u(n)r

∂r
µ(n)

(
∂u(n)r

∂z
+ ∂u(n)z

∂r

)
µ(n)

(
∂u(n)r

∂z
+ ∂u(n)z

∂r

)
−p(n) + 2µ(n)

∂u(n)z

∂z

 . (3.17)

The continuity of the tangential stress at the interface implies that

n(n) · τ (n)|r=ζ (n) · t(n) = n(n) · τ (n+1)|r=ζ (n) · t(n). (3.18)

The leading term of (3.18) leads to

µ(n)
(
∂u(n)r

∂z
+ ∂u(n)z

∂r

)∣∣∣∣
r=ζ (n)

= µ(n+1)

(
∂un+1

r

∂z
+ ∂un+1

z

∂r

)∣∣∣∣
r=ζ (n)

. (3.19)
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Fourth, the jump of the normal stress across the interface must be balanced by the
surface-tension force per unit area. The equation for normal stress balance at the
interface is

n(n) · (τ (n+1) − τ (n))|r=ζ (n) ·n(n) = γ (n)κ (n), (3.20)

where κ (n)(r, z, t) is the mean curvature of the interface. The curvature can be
calculated directly from the unit outward normal vector of the interface by κ (n) =
∇ · n(n) (see Appendix A). Substituting (3.17), (A 1), and (A 5) into (3.20), we have
the following equation (accurate to first order in δR(n)) for the dynamic boundary
condition: [

−p(n+1) + 2µ(n+1) ∂u(n+1)

∂r
−
(
−p(n) + 2µ(n)

∂u(n)r

∂r

)]∣∣∣∣
r=ζ (n)

= γ (n)
[

1
R(n)
+ δu

(n)
r (R

(n))

−iω

(
k2 − 1

(R(n))2

)
ei(kz−ωt)

]
. (3.21)

3.4. Dispersion relation

Substituting (3.6) and (3.9)–(3.11) into the boundary conditions (3.14), (3.16), (3.19)
and (3.21) and keeping the leading terms, we obtain a linear system in terms of the
unknown constants c(n) = (c(n)1 , c(n)2 , c(n)3 , c(n)4 ). After some algebraic manipulation, these
equations can be put into matrix form,(

A(n,n) + 1
−iω

B(n)

)
c(n) − A(n,n+1)c(n+1) = 0, (3.22)

where A(n,n′) and B(n) are 4× 4 matrices given below:

A(n,n′) =



kR(n)K(n)
0

µ(n
′)

kR(n)I(n)0

µ(n
′)

K(n)
1

µ(n
′)

I(n)1

µ(n
′)

2K(n)
0 − kR(n)K(n)

1

µ(n
′)

2I(n)0 + kR(n)I(n)1

µ(n
′) −K(n)

0

µ(n
′)

I(n)0

µ(n
′)

kR(n)K(n)
0 − K(n)

1 kR(n)I(n)0 + I(n)1 K(n)
1 I(n)1

kR(n)K(n)
1 −kR(n)I(n)1 K(n)

0 +
K(n)

1

kR(n)
−I(n)0 +

I(n)1

kR(n)


,

(3.23)

B(n) =
−γ (n)k

(
1− 1

(kR(n))2

)
2µ(n)


0 0 0 0
0 0 0 0
0 0 0 0

kR(n)K(n)
0 kR(n)I(n)0 K(n)

1 I(n)1

 . (3.24)

Here, K(n)
0 ,K(n)

1 , I(n)0 and I(n)1 denote the corresponding modified Bessel functions
evaluated at kR(n).

Combining the boundary conditions from all N − 1 interfaces, we have the matrix
equation

M (N)ξ= 0 (3.25)
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for the undetermined constants ξ= (c(1)2 , c(1)4 , c
(2), c(3), . . . , c(N−1), c(N)1 , c(N)3 ), with

M (N) = M (N)
1 +

1
−iω

M (N)
2

=


Ã(1,1) −A(1,2)

A(2,2) −A(2,3)

. . .
. . .

A(N−2,N−2) −A(N−2,N−1)

A(N−1,N−1) −Ã(N−1,N)



+ 1
−iω


B̃(1) 0

B(2) 0
. . .

. . .

B(N−2) 0
B(N−1) 0

 , (3.26)

where Ã(1,1) and B̃(1) are the second and fourth columns of A(1,1) and B(1), and Ã(N−1,N)

is the first and third columns of A(N−1,N). To obtain a non-trivial solution of equation
(3.25), the coefficient matrix M (N) must be singular, namely

det(M (N))= 0. (3.27)

Since B(n) is zero except in its fourth row, ω only occurs in the 4th, 8th, . . . ,
4(N − 1)th rows of M (N). The Leibniz formula implies that equation (3.27) is a
polynomial in 1/ω with degree N − 1. Therefore, we could obtain the dispersion
relation ω = ω(k) by solving the polynomial equation (3.27). Instead, to counteract
roundoff-error problems, we solve the corresponding generalized eigenvalue problem
as described in § 4.

3.5. Eigen-amplitude and maximum growth rate

The N − 1 roots of (3.27) are denoted by ωj(k), where j = 1, 2, . . . ,N − 1. Since
M (N) is singular when ω = ωj, ξ can be determined by (3.25) up to a proportionality
constant. Therefore, for each ωj(k), the corresponding perturbed amplitude δR(n)j on the
nth interface can also be determined up to a proportionality constant by (3.10) and (A 4).
Let us call the vector δRj = (δR(1)j , δR

(2)
j , . . . , δR

(n)
j , . . . , δR

(N−1)
j ), where we normalize

‖ δRj‖1 = 1, the ‘eigen-amplitudes’ of frequency ωj. Any arbitrary initial perturbation
amplitudes A = (A(1),A(2), . . . ,A(N−1)) can be decomposed into a linear combination of
eigen-amplitudes, namely A =∑N−1

j=1 ajδRj for some aj. Since the whole coupled system

is linear, the small initial perturbation Aeikz will grow as
∑N−1

j=1 ajδRjei[kz−ωj(k)t].
The growth rate for a single mode is σj(k) = Imωj(k) since our time dependence is

e−iωjt. If σj > 0, then the mode is unstable. As described above, for an N-layer system,
we have N − 1 different growth rates for a single k, and we denote the largest growth
rate by σmax(k) = maxj[σj(k)]. Moreover, the maximum growth rate over all k is denoted
by σmax = maxk[σmax(k)] = maxj,k[σj(k)], and the corresponding eigen-amplitudes of this
most-unstable mode are denoted by δRmax; kmax denotes the corresponding wavenumber.
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4. Generalized eigenvalue problem
It is well known that finding the roots of a polynomial via its coefficients is badly

ill-conditioned (Trefethen & Bau 1997). Correspondingly, we find that solving the
determinant equation (3.27) directly, by treating it as a polynomial, is highly susceptible to
roundoff errors when N is not small. In particular, it is tempting to use the block structure
of M (N) to reduce (3.27) to a 4 × 4 determinant problem via a recurrence. However, the
entries of this 4 × 4 matrix are high-degree polynomials in ω whose coefficients thereby
introduce roundoff ill-conditioning. Instead, we can turn this ill-conditioned root-finding
problem into a generalized eigenvalue problem by exploiting the matrix-pencil structure
of M (N):

M (N)ξ= 0⇔ M (N)
2 (k)ξ= iωM (N)

1 (k)ξ . (4.1)

Thus, finding the dispersion relation ω(k) turns out to be a generalized eigenvalue
problem with matrices (M (N)

1 ,M (N)
2 ). Since M (N)

1 is non-singular, this (regular) generalized
eigenvalue problem is typically well-conditioned (Demmel & Kagstrom 1987) and can
be solved via available numerical methods (Anderson et al. 1999). In principle, further
efficiency gains could be obtained by exploiting the sparsity of this pencil, but dense
solvers are easily fast enough for N up to hundreds.

5. Validation of our formulation
As a validation check, our N-layer results can be checked against known analytical

results in various special cases. We can also compare to previous finite-element
calculations (Deng et al. 2011).

5.1. Tomotika’s case: N = 2
Tomotika (1935) discussed the instability of one viscous cylindrical thread surrounded by
another viscous fluid, which is equivalent to our model with N = 2. It is easy to verify
that det(M (2))= 0, where M (2) = [Ã(1) + (1/(−iω))B̃(1), D̃(1)], gives the same determinant
equation as (34) in Tomotika (1935).

In contrast with the Stokes equations approach, Tomotika began with the full
Navier–Stokes equations, treating the densities of the inner fluid ρ ′ and the outer fluid
ρ as small parameters and taking a limit to reach the Stokes regime. However, special
procedures must be taken in order to obtain a meaningful determinant equation in this limit,
because substituting ρ ′ = 0 and ρ = 0 directly would result in dependent columns in the
determinant. Tomotika proposed a procedure of expanding various functions in ascending
powers of ρ and ρ ′, subtracting the leading terms in dependent columns, dividing a
quantity proportional to ρρ ′, and finally taking a limit of ρ→ 0 and ρ ′→ 0. We generalize
this idea to the N-shell problem in Appendix C, but such procedures are unnecessary if the
Stokes equations are used from the beginning.

5.2. N = 3 with equal viscosities µ(1) = µ(2) = µ(3)
This equal-viscosity case was first discussed by Stone & Brenner (1996). Putting this
special case µ(1) = µ(2) = µ(3) into (3.27) and solving it with MATLAB’s Symbolic Math
Toolbox (MuPAD), we obtain the same solution as equation (8) in Stone & Brenner (1996).

5.3. Navier–Stokes and inviscid cases
In Appendix C, we validate the generalized form of our instability analysis against
previous results for inviscid and/or Navier–Stokes problems. For example, we find
identical results to Chauhan et al. (2000) for the N = 3 case of a two-fluid compound
jet surrounded by air (with negligible air density and viscosity).
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FIGURE 2. (Colour online) Comparison between linear stability analysis and numerical
experiments (data from Deng et al. 2011) for N = 3 cylindrical-shell model. The growth
rate σmax(k0) computed by Deng et al. (2011) numerically via the finite-element method
(blue circles) agrees well with the growth rate predicted by linear stability analysis
(dashed blue line), except for small discrepancies in the regime of large viscosity contrast
where accurate numerical simulation is difficult. The red line indicates the maximum
growth rate σmax obtained by linear stability analysis. In the inset, the red line shows the
wavenumbers kmax for various viscosity-ratio contrasts and the dashed blue line represents
the fixed k0 used in numerical simulations. Model parameters: R(1) = 60 µm, R(2) = 120 µm,
γ (1) = γ (2) = 0.6 N m−1, µ(2) = 105 Pa s, µ(1) = µ(3) = ηµ(2) (η = 10−4, 10−3, . . . , 103), and
k0 = 7.9× 103 m−1.

5.4. Comparison with numerical experiments

Deng et al. (2011) studied axisymmetric capillary instabilities of the concentric cylindrical
shell problem (N = 3) for various viscosity contrasts by solving the full Navier–Stokes
equation via finite-element methods. (The Stokes equation is a good approximation for
their model, in which the Reynolds number is extremely low (Re≈ 10−10).) In particular,
they input a fixed initial perturbation wavenumber k0, evolve the axisymmetric equations,
and fit the short-time behaviour to an exponential in order to obtain a growth rate. With
their parameters R(1) = 60 µm, R(2) = 120 µm, γ (1) = γ (2) = 0.6 N m−1, µ(2) = 105 Pa s,
and µ(1) = µ(3) = ηµ(2) (η = 10−4, 10−3, . . . , 103), we compute the maximum growth rate
σmax for each ratio η via the equation det(M (3)) = 0. For comparison, we also compute
the growth rate σmax(k0) for their fixed k0 = 7.9 × 103 m−1. (Because numerical noise
and boundary artifacts in the simulations will excite unstable modes at k 6= k0, it is
possible that σmax and not σmax(k0) will dominate in the simulations even at short times
if the former is much larger.) The inset of figure 2 plots the wavenumber kmax that
results in the maximum growth rate versus the viscosity ratio η (µ(1,3)/µ(2)). In figure 2,
we see that the growth rate obtained by Deng et al. (2011) (blue circles) agrees well
with the growth rate σmax(k0) predicted by linear stability analysis (blue line) except at
large viscosity contrasts (η � 1 or η � 1). These small discrepancies are due to the
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well-known numerical difficulties in accurately solving a problem with large
discontinuities.

6. Three-fluid examples
In this section, we study the three-fluid (N = 3) problem. Three or more concentric

layers are increasingly common in novel fibre-drawing processes (Hart et al. 2002; Kuriki
et al. 2004; Pone et al. 2006; Abouraddy et al. 2007; Deng et al. 2008). By exploring
a couple of interesting limiting cases, in terms of shell viscosity and shell thickness, we
reveal strong connections between the N = 3 case and the classic N = 2 problem.

6.1. Case N = 3 and µ(2)/µ(1,3)→ 0: shell viscosity � cladding viscosity

We first consider the limiting case in which the shell viscosity µ(2) is much smaller than
the cladding viscosities µ(1) and µ(3). Substituting µ(2)/µ(1) = 0 and µ(2)/µ(3) = 0 into
M (3), (3.27) gives simple formulae for the growth rates

σ1(k)= γ (1)

2µ(1)R(1)
(kR(1))2 − 1

1+ (kR(1))2 − (kR(1))2
I2

0(kR(1))

I2
1(kR(1))

(6.1)

and

σ2(k)= γ (2)

2µ(3)R(2)
1− (kR(2))2

1+ (kR(2))2 − (kR(2))2
K2

0(kR(2))

K2
1(kR(2))

. (6.2)

Note that σ1(k) is independent of γ (2), R(2), and µ(3), while σ2(k) is independent of γ (1),
R(1), and µ(1). In particular, these growth rates are exactly the single-cylinder results
predicted by Tomotika’s model, as if the inner and outer layers were entirely decoupled.
This result is not entirely obvious, because even if the shell viscosity can be neglected, it
is still incompressible and hence might be thought to couple the inner and outer interfaces.
(Deng et al. 2011 conjectured a similar decoupling, but only in the form of a dimensional
analysis.)

6.1.1. Case N = 3, µ(2)/µ(1,3)→ 0 and R(2)→∞⇐⇒ N = 2 and µout/µin→ 0
In the regime that the shell viscosity µ(2) is much smaller than the cladding viscosities

µ(1) and µ(3), we further consider the limit R(2)→∞. It corresponds to the case N = 2
with a high viscous fluid embedded in another low-viscosity fluid, which must of course
correspond exactly to Tomotika’s case. From the asymptotic formulae of modified Bessel
functions K0(z) and K1(z) for large arguments (Abramowitz & Stegun 1992), we obtain

σ2(k)≈−γ
(2)|k|

2µ(3)
< 0 as R(2)→+∞. (6.3)

Thus, the growth rate of possible unstable modes is given by σ1(k) in (6.1). Tomotika
discussed this limiting case (N = 2) and gave a formula (37) (Tomotika 1935), which is
exactly (6.1).

6.1.2. Case N = 3, µ(2)/µ(1,3)→ 0 and R(1)→ 0⇐⇒ N = 2 and µout/µin→∞
The limit R(1) → 0 is equivalent to N = 2 with a low-viscosity fluid embedded in a

high-viscosity fluid. For this case, it is easy to check that σ2(k) in (6.2) agrees with
formula (36) in Tomotika (1935). However, we still have another unstable mode with a
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FIGURE 3. (Colour online) (a) Sketch of a very thin shell in a three-layer structure with
radius R(2) = R(1)(1 + ε), surface-tension coefficients γ (1) and γ (2). (b) In the limit of
infinitesimal ε, we obtain an equivalent N = 2 geometry with a modified surface-tension
coefficient γ (1) + γ (2).

growth rate σ1(k). Using the asymptotic formulae for I0(z) and I1(z) with small arguments
(Abramowitz & Stegun 1992), we obtain

σ1(k)∼ γ (1)

6µ(1)R(1)
as R(1)→ 0. (6.4)

This extra unstable mode σ1(k) results from the instability of a viscous cylinder with
infinitesimally small radius R(1). In other words, (6.4) is the growth rate of a viscous
cylinder in the air with a tiny but non-zero radius, which is also given by equation (35)
of Rayleigh (1892).

6.2. Thin-shell case: R(2) = R(1)(1+ ε), ε→ 0

Next, we study a three-layer structure with a very thin middle shell; that is, R(2) =
R(1)(1 + ε) with ε → 0. A sketch of such a geometry is given in figure 3(a). This
is motivated by a number of experimental drawn-fibre devices, which use very thin
(sub-micron) layers in shells hundreds of microns in diameter in order to exploit optical
interference effects (Hart et al. 2002; Kuriki et al. 2004; Pone et al. 2006).

Considering ε as a small parameter, we expand the determinant equation (3.27) in
powers of ε. For a given wavenumber k, the two roots of this equation are σ+(k)= σ0(k)+
O(ε) and σ−(k)= O(ε2), where σ0(k) can be computed analytically by dropping the terms
of order O(ε2) in the determinant equation (3.27). After some algebraic manipulation, we
find that σ0(k) actually is the solution for the N = 2 structure (i.e. ignoring the thin shell)
with a modified surface-tension coefficient γ (1) + γ (2). It is also interesting to consider a
limit in which µ(2) grows as ε shrinks. In this case, we find the same asymptotic results as
long asµ(2)/µ(1,3) grows more slowly than 1/ε. Conversely, if it grows faster than 1/ε, then
the thin-shell fluid acts like a ‘hard wall’ and all growth rates vanish. Instead of presenting
a lengthy expression for σ+(k), we demonstrate a numerical verification in figure 4. As
indicated in figure 4(a), the growth rate σ+(k = 0.5) for N = 3 approaches the growth
rate of N = 2 with the summed surface-tension coefficients as ε→ 0. The parameters are
R(1) = 1, γ (1) = 1, γ (2) = 2, µ(1) = 1, µ(2) = 2 and µ(3) = 3. In figure 4(b), we show that
the growth rate σ−(k) decreases like ε2 as ε→ 0.

To better understand these two modes, we consider the eigen-amplitudes at the two
interfaces. For the mode with growth rate σ+(k), two interfaces are moving exactly in
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FIGURE 4. (Colour online) Two modes σ+ and σ− for thin-shell layer geometry, with
R(1) = 1, R(2) = R(1)(1 + ε), γ (1) = 1, γ (2) = 2, µ(1) = 1, µ(2) = 2, µ(3) = 3 and k = 0.5.
(a) In-phase mode σ+ illustrates that the growth rate of the in-phase mode σ+(k) for
N = 3 approaches the growth rate of the N = 2 structure with the summed surface-tension
coefficients as ε→ 0. (b) Out-of-phase mode σ− demonstrates that the out-of-phase growth
rate σ−(k) decreases like ε2 as ε→ 0.

phase. Since the thickness of this shell is so thin, it is not surprising that one can treat two
interfaces as one with a modified surface-tension coefficient γ (1) + γ (2) for this mode (see
figure 3b and the inset of figure 4a). The eigen-amplitude (defined in § 3.5) corresponding
to this in-phase mode is (1/2, 1/2), independent of γ (1) and γ (2). For the other mode, with
growth rate σ−(k), the two interfaces are moving out of phase (see the inset of figure 4b).
The eigen-amplitude for this out-of-phase mode is found to be (−γ (2), γ (1))/(γ (1) + γ (2)),
which means that the two interfaces are moving in opposite directions with amplitudes
inversely proportional to their surface tensions. Due to the tiny thickness of the shell
compared to its radius of curvature, this case approaches the case of a flat sheet, which



Stability analysis of concentric shells 15

is known to be always stable (Drazin & Reid 2004), as can be proved via a surface-energy
argument.

A related thin-shell problem was investigated by Chauhan et al. (2000) for the
Navier–Stokes equations with an inviscid (gaseous) outer fluid. Those authors also found
that the problem reduced to N = 2 instabilities (single fluid surrounded by gas) with a
summed surface tension.

7. Effective growth rate and competing modes
In previous work on linear stability analysis, most authors identified the maximum σ

with the dominant breakup process (Rayleigh 1879, 1892; Tomotika 1935). This exclusive
emphasis on the maximum σ was continued in recent studies of N = 3 systems (Stone &
Brenner 1996; Chauhan et al. 2000), but here we argue that the breakup process is more
complicated for N > 2. In a multi-layer situation, however, there is a geometric factor
that complicates this comparison: not only are there different growth rates σ , but there
are also different length scales R(n) over which breakup occurs. As a result, it is natural
to instead compare a breakup time scale given by a distance (R̃) divided by a velocity,
where R̃ is some average radius for a given growth mode (weighted by the unit-norm
eigen-amplitudes δR(n)). In our case, we find that a harmonic-mean radius R̃ is convenient,
and we define an effective growth rate (∼1/breakup time∼ velocity/R̃) by

σ
eff
j (k)= σj(k)

N−1∑
n=1

δR(n)j

R(n)
. (7.1)

Now, it is tempting to wonder what happens if two different wavenumbers k1 and k2 have
the same maximum effective growth rates, a question that does not seem to have been
considered in previous linear stability analyses. Let us consider a particular three-layer
structure with R(1) = 1,R(2) = 5, µ(1) = µ(2) = 1, and γ (1) = 1. The maximum effective
growth rates σ eff

max(k) = maxj[σ eff
j (k)] versus k are plotted in figure 5 for several values

of γ (2). For example, at γ (2) = 12.19, we find that σ eff
max(k1 ≈ 0.58) = σ eff

max(k2 ≈ 0.114),
so that there are two competing modes at very different length scales 2π/k1 = 10.83 and
2π/k2 = 55.12. In contrast, for γ (2) = 6 we see that the short length scale instability should
dominate, while at γ (2) = 25 the long length scale instability should dominate.

To test our predictions, we implemented a full three-dimensional Stokes-flow numerical
scheme to simulate the breakup process of this cylindrical-shell system. A brief description
of this hybrid scheme, a combined spectral and level-set method, is given in Appendix B.
We use initial white-noise perturbations on both interfaces R(1) and R(2) (see figure 6a).
The computational box is 16 × 16 × 108 with resolutions 160 × 160 × 480 pixels. As
predicted, γ (2) = 6 and γ (2) = 25 exhibit breakup initially via the short- and long-scale
modes, respectively (which are dominated by motion of the inner and outer cylinders,
respectively). It is interesting to estimate the intermediate γ (2) where the two breakup
processes occur simultaneously. Linear stability analysis predicts γ (2) ≈ 12.19, and
indeed we find numerically that near-simultaneous breakup occurs for γ (2) ≈ 15 (see
figure 6c). In contrast, simply looking at σmax rather than σ eff

max would lead one to predict
that simultaneous breakup occurs at γ (2) ≈ 4.15, in which case all three γ (2) values in
figure 6 would have looked like figure 6(d) (large-scale dominating). In the case of
near-simultaneous breakup time scales, the dominant breakup process may be strongly
influenced by the initial conditions (i.e. the initial amplitudes of the modes), which offers
the possibility of sensitive experimental tunability of the breakup process.
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FIGURE 5. (Colour online) Maximum effective growth rates versus wavenumber k. For a
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FIGURE 6. (Colour online) Numerical Stokes-flow simulations for three-layer systems
with different γ (2). (a) Initial white-noise perturbations of the interfaces. As predicted by
maximum effective growth rates, the systems with γ (2) = 6 (b) and γ (2) = 25 (d) exhibit
breakup initially via the short- and long-scale modes, respectively (which are dominated by
motion of the inner and outer cylinders, respectively). Near-simultaneous breakup occurs for
γ (2) = 15 (c).
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FIGURE 7. (Colour online) Radius of the fluid neck versus time during the final phase of the
breakup of the outermost interface, from the three-dimensional Stokes simulations of figure 6.
This breakup is asymptotically linear with time, similar to the predictions of the scaling
theory for N = 2 systems (Lister & Stone 1998; Cohen et al. 1999).

The final breakup of the fluid neck is described by a self-similar scaling theory for the
case of a single fluid jet (Eggers 1993), and so it is interesting to examine numerically to
what extent a similar description is possible for the N = 3 system. In particular, at the last
stage of a single-cylinder breakup process, a singularity develops at the point of breakup
which does not possess a characteristic scale, and hence a set of self-similar profiles can
be predicted (Eggers & Villermaux 2008). For both a viscous jet in gas (Eggers 1993)
and a viscous thread in another viscous fluid (N = 2) (Lister & Stone 1998; Cohen et al.
1999), these principles predict that the neck radius h(t) vanishes linearly with time as
h(t)µ/γ ∼ (t0 − t) where t0 is the breakup time. However, there is no available scaling
theory for N > 3 systems. Here, we simply use our numerical simulations above to study
the rate at which the neck radius vanishes in an N = 3 system. For all three cases with
different γ (2), the neck radius of the outer interface vanishes with time in an asymptotically
linear fashion as the breakup time is approached (see figure 7). This is not surprising in
the γ (2) = 6 case where the inner surface has already broken up – the breakup of the outer
surface reduces to an N = 2 problem when the neck becomes thin enough – and we find
that h(t)µ/γ (2) ≈ 0.024(t0 − t), in reasonable agreement with the 0.033 value predicted
analytically (Cohen et al. 1999) given the low spatial resolution with which we resolve
the breakup singularity (h/R(2) = 0.1 corresponds to 5 pixels). Moreover, we find that in
this equal-viscosity N = 3 system, all three γ (2) values yield slopes of h(t)µ/γ (2) that
are within 10 % of one another, indicating that the inner-surface tension γ (1) = 1 has a
relatively small impact on the outer-surface breakup.
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FIGURE 8. (Colour online) Growth rates of an ABABAB · · · alternating structure. Both σmax
(black line) and σ eff

max (red line) converge to finite asymptotic values as N→∞, although in
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are not always the same. The right inset shows the eigen-amplitudes δRmax (black dots) and
δReff

max (red circles) for N = 70, corresponding to σmax and σ eff
max respectively. The left inset

depicts the structure whose parameters are R(n) = 1+ 0.2(n− 1), γ (n) = 1, and µ(n) = 1 if n is
odd or µ(n) = 2 otherwise.

8. N-layer structures
Since all previous work has studied only N = 2 or N = 3, it is interesting to consider

the opposite limit of N →∞. We consider two examples: a repeating structure of two
alternating layers, and a structure with continuously varying viscosity, both of which are
approached as N →∞. In fact, concentric-shell structures with dozens of alternating
fluid layers have been used experimentally in optical fibres (Hart et al. 2002; Kuriki
et al. 2004). However, the motivation of this section is primarily exploratory, rather than
engineering – to begin to discover what new phenomena may arise for large N.

8.1. Alternating structure
First we consider an ABABAB . . . structure of two alternating, repeating layers A and B,

as shown schematically in the left inset of figure 8. We choose µ(n) = 1 if n is odd and
µ(n) = 2 otherwise. The other parameters are R(n) = 1+ 0.2(n− 1) and γ (n) = 1.

For this multilayer structure, we find that both the maximum growth rate σmax of the
fastest-growing mode and (7.1)’s maximum effective growth rate σ eff

max (corresponding to
the shortest breakup time scale) apparently converge to finite asymptotic values as N→∞
(figure 8). (We have checked that the absolute value of the slope of σmax is monotonically
decreasing for a broader range of N values up to N = 120, and the slope is ∼10−5 for
N = 120. A rigorous proof of convergence requires a more difficult analysis, however.)
The oscillations in figure 8 are due to the varying viscosity of the ambient fluid, which
depends on the parity of N. It is interesting to know whether the fastest-growing mode and
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FIGURE 9. (Colour online) Growth rates for a continuous N-layer structure. Both σmax and
σ eff

max approach constants as N→∞. The right inset plots the corresponding eigen-amplitudes
δRmax and δReff

max (for N = 70). The left inset sketches the N-layer structure: radius R(1) = Rin,
R(N−1) = Rout, R(n) = R(1)+((R(N−1)−R(1))/(N−2))(n−1), and viscosity µ(1) = µin, µ(N) = µout,
and µ(n) = µ(1) + (µ(N) − µ(1))/(N − 1)(n − 1), approximating a continuously and linearly
varying three-layer viscosity.

the mode with maximum effective growth are identical for a given N. To see this, we plot
the effective growth rate of the fastest-growing mode (σmax)

eff versus N and compare it with
σ eff

max versus N in figure 8. Note that (σmax)
eff = {maxj,k[σj(k)]}eff and σ eff

max =maxj,k[σ eff
j (k)].

From figure 8, we can see that (σmax)
eff and σ eff

max are different for large N, which implies
that the modes corresponding to σmax and σ eff

max are not always the same.
In the right inset of figure 8, we plot the eigen-amplitudes δRmax and δReff

max for N = 70,
corresponding to σmax and σ eff

max respectively. The mode σmax is mostly motion of outer
interfaces, while the mode σ eff

max is mostly motion of inner interfaces. The mostly outer-
interface motion for σmax explains why the value of σmax oscillates depending on the
ambient fluid. Physically, the association of σ eff

max with the inner interfaces makes sense
because, in our definition (7.1) of effective breakup rate, it is easier to break up at smaller
radii (a smaller distance to breakup). Alternatively, if we defined ‘breakup distance’ in
terms of the thickness of individual layers, then σmax would make more sense.

8.2. N -layer structure for a continuous model
In this subsection, we build an N-layer model to approximate a three-layer structure with a
continuous viscosity. The viscosity of intermediate layer µmid of this three-layer structure
is continuously varying from the viscosity of inner core µin to the viscosity of ambient
fluid µout. A simple example is the linearly varying µmid, namely, µmid(r)= µin+ ((µout−
µin)/(Rout−Rin))(r−Rin), where Rin < r < Rout. The N-layer structure (left inset of figure 9)
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with radius R(1) = Rin, R(N−1) = Rout, R(n) = R(1) + ((R(N−1) − R(1))/(N − 2))(n − 1), and
viscosityµ(1) = µin,µ(N) = µout, andµ(n) = µ(1)+((µ(N)−µ(1))/(N−1))(n−1) approaches
this continuous model for large N. In order to obtain a physically realistic continuous-
viscosity model with an energy that is both finite and extensive (proportional to volume),
we postulate a volume energy density ηcont analogous to surface energy. We approximate
this by an N-layer model constructed to have the same total interfacial energy:

ηcont

∫ Rout

Rin

2πr dr =
N−1∑
n=1

γ (n)2πR(n), (8.1)

where ηcont is an appropriate energy (per unit volume) of the inhomogeneity.
Corresponding to a uniform ηcont, the surface-tension coefficient in this N-layer structure
is same on all the interfaces: namely γ (n) = γ (N) for all n. From (8.1), we obtain the
equivalent surface tension γ (N) in an N-layer structure:

γ (N)=
ηcont

∫ Rout

Rin

r dr

N−1∑
n=1

[
Rin + Rout − Rin

N − 2
(n− 1)

] = O

(
1
N

)
. (8.2)

With the parameters described above, we compute the maximum growth rate σmax and the
maximum effective growth rate σ eff

max for this N-layer structure. As shown in figure 9, both
σmax and σ eff

max approach constants as N→∞, which should be the corresponding growth
rates of the continuous three-layer model. In this example, σ eff

max and (σmax)
eff are the same

for all N. The corresponding eigen-amplitudes δRmax and δReff
max (for N = 70) are plotted

in the right inset of figure 9.

9. Conclusions
In this paper, we presented a complete linear stability analysis of concentric cylindrical

shells in the Stokes regime (with the Navier–Stokes regime in Appendix C) and
considered a few interesting examples and limiting cases. Many possibilities present
themselves for future work. First, even in the cylindrical Stokes regime, only a
few combinations of thicknesses and material properties have been considered so
far – it seems quite possible that consideration of larger parameter spaces, perhaps
aided by computational optimization, could identify additional regimes for breakup
processes, such as competitions between additional length scales or ‘effective’ properties
in many-layer systems that differ substantially from the constituent materials. Second, one
could extend this work beyond the incompressible Navier–Stokes regime to include fluid
compressibility or even other physical phenomena such as viscoelasticity that may play
a role in experiments (for example, fibres are drawn under tension). Third, one could
consider non-cylindrical geometries. This seems especially important in light of the recent
experimental observations of azimuthal breakup in cylindrical thin-shell fibre structures
(Deng et al. 2008), since this paper points out that azimuthal breakup cannot arise in purely
cylindrical structures (at least, not from surface tension alone). Instead, one may need to
consider the ‘neck-down’ structure of the fibre-drawing process, in which a large preform
is pulled to a long strand with a much smaller diameter. More generally, such intriguing
experimental results indicate that a rich variety of new instability phenomena may arise
in emerging multi-fluid systems, with corresponding new opportunities for theoretical
analysis.
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Appendix A. Computations of the curvature

Here we derive the curvature terms in (3.20). The level-set function φ(n)(r, z, t) = 0
corresponds to the nth interface. The unit outward normal vector of this interface is

n(n) = (n(n)r , n(n)z )=
∇φ(n)
|∇φ(n)|

=

(
∂φ(n)

∂r
,
∂φ(n)

∂z

)
√(

∂φ(n)

∂r

)2

+
(
∂φ(n)

∂z

)2
= (1,−ikδR(n)ei(kz−ωt))√

1+ O[(δR(n))2] (A 1)

and the unit tangential vector is

t(n) = (n(n)z ,−n(n)r )=
(−ikδR(n)ei(kz−ωt),−1)√

1+ O[(δR(n))2] . (A 2)

The curvature κ (n) can now be computed as

κ (n) = ∇ ·n(n) = ∂n(n)r

∂r
+ n(n)r

r
+ ∂n(n)z

∂z

= 1√
1+ O[(δR(n))2]

1
R(n) + δR(n)ei(kz−ωt)

+ δR(n)k2ei(kz−ωt)

√
1+ O[(δR(n))2] + O[(δR(n))2]

= 1
R(n)
+ δR(n)

(
k2 − 1

(R(n))2

)
ei(kz−ωt) + O[(δR(n))2]. (A 3)

The normal velocity of the fluids on the interface must be equal to the normal velocity of
that interface, and thus ∂ζ (n)/∂t = u(n) · nn on the interface r = ζ (n)(z, t), where u(n) is the
velocity vector. For the at-rest steady state (3.3) and (3.4), to the lowest order in δR, this
gives

− iωδR(n) = δu(n)r (R
(n)). (A 4)

Note that (A 4) establishes the relation between the displacement amplitude δR(n) and
the interface velocity δu(n)r (R

(n)). Substituting (A 4) into (A 3), we obtain the lowest-order
curvature κ (n) in terms of the interface velocity δu(n)r (R

(n)):

κ (n) = 1
R(n)
+ δu

(n)
r (R

(n))

−iω

(
k2 − 1

(R(n))2

)
ei(kz−ωt). (A 5)
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Appendix B. Full three-dimensional Stokes-flow numerical simulation scheme
for coupled cylindrical-shell system

In this section, we briefly present the numerical scheme that we used in § 7 to simulate
the instabilities of coupled cylindrical-shell systems. We adopt a three-dimensional
Cartesian level-set approach. We use a separate level-set function φ(n) to denote each
interface, and generalize the formulation of Chang et al. (1996) to N fluids by using N− 1
level-set functions governed by the following equations:

−∇p+∇ · [µ(∇U +∇UT)] =
N−1∑
n=1

γ (n)δ(φ(n))κ(φ(n))
∇φ(n)
|∇φ(n)| , (B 1)

and

∂φ(n)

∂t
+ U ·∇φ(n) = 0, (B 2)

where U is velocity, p is pressure, φ(n) = 0 denotes the interface between the nth and
(n + 1)th layers, γ (n) is the surface-tension coefficient of the nth interface, δ(·) is a Dirac
delta function, κ is curvature, and µ is viscosity.

The viscosity µ, now defined in the whole coupled system, is

µ(x)= µ(1) +
N−1∑
n=1

(µ(n+1) − µ(n))H(φ(n)(x)), (B 3)

where H(·) is the Heaviside step function. The curvature κ(φ(n)) can be computed directly
by κ(φ(n)) = ∇ · ((∇φ(n))/|∇φ(n)|), since ((∇φ(n))/|∇φ(n)|) is the unit outward normal
vector of the nth interface.

Given the level-set function φ(n)(x, t) at time t, we first solve the steady Stokes equations
(B 1) to obtain the velocity U(x, t). With the known velocity U(x, t) at time t, the level-set
function φ(n)(x, t +1t) can be obtained by solving the convection equation (B 2).

In our implementation, the computation cell is a box with dimensions a × a × ` in
Cartesian coordinates, with periodic boundary conditions. We choose a and ` large enough
such that the periodicity does not substantially affect the breakup process. We solve (B 1)
by a spectral method: we represent U and p by Fourier series (discrete Fourier transforms).
For the constant µ case of § 7, (B 1) is diagonal in Fourier space and can be solved in
one step by fast Fourier transforms (FFTs). More generally, for variable viscosity, we
find that an iterative solver such as GMRES (generalized minimal residual method) or
BiCGSTAB (biconjugate gradient stabilized method) (Barrett et al. 1994) converges in a
few iterations with a constant µ preconditioner (i.e. block Jacobi) using the average µ.
The level-set functions are described on the same grid, but using finite differences:
WENO (weighted essentially non-oscillatory: Liu, Osher & Chan 1994) in space,
third order TVD (total variation diminishing) Runge–Kutta method in time (Shu & Osher
1989). The δ(·) function is smoothed over 3 pixels with a raised-cosine shape (Osher &
Fedkiw 2002). We use the reinitialization scheme of Sussman, Smereka & Osher (1994)
to preserve the signed distance-function property |∇φ(n)| = 1 of φ(n) after each time step.

Our simulation code is validated against a well-studied case: the evolution of a
two-dimensional elliptical blob (Kuiken 1990; Hopper 1991; Tanveer & Vasconcelos
1995; Crowdy 2002, 2003). It is known that the plane Stokes flow, initially bounded by
a simple smooth closed elliptic curve, will eventually become circular under the effect of
surface tension. Crowdy (2002) illustrated that the evolution via a series of ellipse shapes
is remarkably good approximation to the dynamics of a sintering ellipse (even though
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FIGURE 10. (Colour online) The aspect ratio of a two-dimensional elliptical blob versus
time, obtained by different methods and implementations. For the system initially bounded
by x2/4 + y2 = 1, with elliptical blob viscosity µin = 1, ambient fluid viscosity µout = 0 and
surface tension γ = 1, Buchak (2010) used the conformal mapping method via finite element
implementation, obtaining the black evolution curve. The evolution curves (green, blue and
red) given by our simulations converge to the black curve with the increasing resolutions and
as the ambient viscosity µ(2) goes to zero.

Hopper (1991) showed that the exact evolution shapes are not strictly elliptical). Suppose
the plane Stokes flow is bounded by the ellipse x2/4 + y2 = 1 at t = 0. The viscosity
of the elliptical blob µin = 1, the viscosity of ambient fluid µout = 0, and the surface
tension γ = 1. Buchak (2010) implemented the conformal mapping method (Tanveer &
Vasconcelos 1995; Crowdy 2002, 2003) and computed the evolution of the boundaries.
The aspect ratio (the major axis over the minor axis) of the ellipses versus time is plotted
(black curve) in figure 10. Since our simulation code only works for non-zero µ(n), the
evolution under µ(1) = 1 and µ(2)→ 0 is expected to converge to the black evolution curve
obtained by the conformal mapping. In figure 10, we also plotted the evolution curves
from our method with µ(2) = 0.1 and resolution 256× 256 (green curve), µ(2) = 0.01 and
resolution 256 × 256 (blue curve), and µ(2) = 0.01 and resolution 512 × 512 (red curve).
With high resolutions and smallµ(2), the evolution curves obtained by our simulation codes
converge to the one given by a different method with an independent implementation.

Appendix C. Linear stability analysis for concentric fluid shells governed by the
full Navier–Stokes equations

In this section, we extended our linear stability analysis to concentric cylindrical fluid
shells governed by the full Navier–Stokes equations. Let ρ(n) and µ(n) denote the density
and viscosity of the nth fluid; u(n)r (z) is the radial component of the velocity and u(n)z (z) is
the axial component of the velocity. Following a linear stability analysis similar to § 3.2,
we find that the pressure p(n)(z) in the nth fluid still satisfies Laplace’s equation (3.7).
Therefore, the perturbed pressure still satisfies the modified Bessel equation (3.8) and
the solution in (3.9) is still valid. The velocity is obtained by solving the linearized
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Navier–Stokes equations

−ρ(n) ∂u(n)r

∂t
+ µ(n)

(
∂2u(n)r

∂r2
+ 1

r

∂u(n)r

∂r
− u(n)r

r2
+ ∂

2u(n)r

∂z2

)
= ∂p(n)

∂r
(C 1)

and

−ρ(n) ∂u(n)z

∂t
+ µ(n)

(
∂2u(n)z

∂r2
+ 1

r

∂u(n)z

∂r
+ ∂

2u(n)z

∂z2

)
= ∂p(n)

∂z
. (C 2)

Note that the nonlinear convection terms do not appear in the linearized equations (C 1)
and (C 2) because the basic steady state (3.3)–(3.4) is at rest. Substituting the perturbed
pressure (3.9) into equations (C 1)–(C 2), we find that the radial component of the
perturbed velocity in (3.10) is replaced by

δu(n)r (r)= c(n)1

K1(kr)− K1(k(n)r)

−iωρ(n)/k
− c(n)2

I1(kr)− I1(k(n)r)

−iωρ(n)/k

+ c(n)3

K1(k(n)r)

2µ(n)k
+ c(n)4

I1(k(n)r)

2µ(n)k
(C 3)

and the axial component of the perturbed velocity in (3.11) now becomes

δu(n)z (r)= c(n)1

K0(kr)− λ(n)K0(k(n)r)

ρ(n)ω/k
+ c(n)2

I0(kr)− λ(n)I0(k(n)r)

ρ(n)ω/k

− c(n)3

iλ(n)K0(k(n)r)

2µ(n)k
+ c(n)4

iλ(n)I0(k(n)r)

2µ(n)k
, (C 4)

where

λ(n) =
√

1+ −iωρ(n)

µ(n)k2
and k(n) = λ(n)k. (C 5)

After matching boundary conditions (3.14), (3.16), (3.19) and (3.21), we can obtain the
dispersion relation by solving the same determinant equation (3.27), except that A(n,n′)

and B(n) from (3.23) and (3.24) are replaced by

A(n,n′)
ns =

K(n)
1 − K1[k(n′)R(n)]
ρ(n
′)/2k2

− I(n)1 − I1[k(n′)R(n)]
ρ(n
′)/2k2

K1[k(n′)R(n)]
µ(n
′)

I1[k(n′)R(n)]
µ(n
′)

K(n)
0 − λ(n′)K0[k(n′)R(n)]
−ρ(n′)/2k2

I(n)0 − λ(n′)I0[k(n′)R(n)]
−ρ(n′)/2k2

λ(n
′)K0[k(n′)R(n)]
−µ(n′)

λ(n
′)I0[k(n′)R(n)]
µ(n
′)

K(n)
1 − α(n′)K1[k(n′)R(n)]
ρ(n
′)/2µ(n′)k2

I(n)1 − α(n′)I1[k(n′)R(n)]
−ρ(n′)/2µ(n′)k2

α(n
′)K1[k(n′)R(n)] α(n

′)I1[k(n′)R(n)]
∆1 ∆2 ∆3 ∆4


,

(C 6)

where

α(n
′) = 1+ −iωρ(n

′)

2µ(n′)k2
, (C 7)

∆1 = α
(n′)K(n)

0 + K(n)
1 /kR(n)

ρ(n
′)/2µ(n′)k2

− λ
(n′)K0[k(n′)R(n)] + K1[k(n′)R(n)]/kR(n)

ρ(n
′)/2µ(n′)k2

, (C 8)
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∆2 = α
(n′)I(n)0 − I(n)1 /kR(n)

ρ(n
′)/2µ(n′)k2

+ −λ
(n′)I0[k(n′)R(n)] + I1[k(n′)R(n)]/kR(n)

ρ(n
′)/2µ(n′)k2

, (C 9)

∆3 = λ(n′)K0[k(n′)R(n)] + K1[k(n′)R(n)]/kR(n), (C 10)

∆4 =−λ(n′)I0[k(n′)R(n)] + I1[k(n′)R(n)]/kR(n), (C 11)

and

B(n)ns =
−γ (n)k

[
1− 1

(kR(n))2

]
2

×


0 0 0 0

0 0 0 0

0 0 0 0

K(n)1 − K1[k(n)R(n)]
ρ(n)/2k2 − I(n)1 − I1[k(n)R(n)]

ρ(n)/2k2
K1[k(n)R(n)]

µ(n)
I1[k(n)R(n)]

µ(n)

 .

(C 12)

Note that, because of the ω in λ(n) and k(n), the matrix M (N) becomes nonlinear in ω (or
1/ω), and can no longer be reduced to a generalized eigenproblem. Instead, one must solve
the nonlinear eigenproblem M (N)

2 (k, ω)ξ = iωM (N)
1 (k, ω)ξ. Numerous methods have been

developed for such problems (Andrew, Chu & Lancaster 1995; Guillaume 1999; Ruhe
2006; Voss 2007; Liao et al. 2010).

The formulae (3.23) and (3.24) of A(n,n′) and B(n) for Stokes flow can be obtained
directly from the formulae (C 6) and (C 12) of A(n,n′)

ns and B(n)
ns for general flow by taking

the limit ρ(n)→ 0. As mentioned in § 5.1, the most straightforward formulation of the
Navier–Stokes matrices yields dependent columns when ρ→ 0. Here, we have chosen an
appropriate linear combination of columns to avoid this difficulty, which is equivalent to
the procedure suggested by Tomotika (1935).

However, the corresponding formulae for inviscid fluids cannot be obtained by simply
taking the limit µ(n) → 0. For any small but non-zero µ(n), the current formulation
takes into account the boundary-layer effects (Batchelor 1973) by imposing a no-slip
condition. For inviscid flows, we cannot assume that the axial velocities are continuous
across the interfaces, since no-slip boundary conditions are not applied. Whenever the
no-slip boundary condition is not applied, one has an additional degree of freedom,
the equilibrium-state velocities ū(n)z of the layers. This is easily incorporated, because it
merely converts several ω expressions to ω − ū(n)z k. This happens in two places. First,
the velocity adds an additional inertial term −ρ(n)ū(n)z (∂u(n)r /∂z) to the left side of (C 1)
and −ρ(n)ū(n)z (∂u(n)z /∂z) to the left side of (C 2). Second, it adds a new first-order term to
equation (3.13) for continuity of normal velocity, since there is a term from ū(n)z multiplied
by the δR(n) in the numerator of (A 1) for the normal vector. These terms change ω to
ω − ū(n)z k in (C 5) for λ(n) and to ω − ū(n

′)
z k in (C 7) for α(n

′), and they also multiply
every B(n)

ns matrix (including B̃(1)
ns ) by ω/(ω− ū(n)z k) (cancelling the 1/ω factor multiplying

M (N)
2 in (3.26)); the A(n,n′)

ns and B(n)
ns matrices are otherwise unchanged, since ū(n)z must be

equal for adjacent viscous layers. If the nth fluid is inviscid while the (n − 1)th and/or
(n+1)th fluids are viscous, then A(n−1,n−1)

ns and B(n−1)
ns , and/or A(n,n+1)

ns , respectively, become
3 × 4 matrices that can be obtained from (C 6) and (C 12) by eliminating the second
row (corresponding to continuity of the tangential component of the velocity). If the nth
layer is inviscid, regardless of the adjacent layers, A(n′,n)

invsd and B(n)
invsd are 3× 2 matrices: not
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only has continuity of the tangential component of the velocity disappeared, but also the
∂/∂r derivatives of the velocities in the momentum equations (C 1) and (C 2) disappear
when µ(n) = 0, eliminating the c(n){3,4} degrees of freedom. (This eliminates the need for
the linear combinations of columns mentioned above, further simplifying these matrices.)
More explicitly, the A(n′,n)

invsd and B(n)
invsd matrices for an inviscid nth layer are obtained by

matching the boundary conditions (3.13), (3.19), and (3.21), giving

A(n′,n)
invsd =


ω − ū(n

′)
z k

ω − ū(n)z k

K(n′)
1

ρ(n)/2k2
−ω − ū(n

′)
z k

ω − ū(n)z k

I(n
′)

1

ρ(n)/2k2

0 0

−i(ω − ū(n)z k)K(n′)
0 −i(ω − ū(n)z k)I(n

′)
0

 (C 13)

B(n)
invsd =

ω

ω − ū(n)z k

−γ (n)k
[

1− 1
(kR(n))2

]
2


0 0
0 0

K(n)
1

ρ(n)/2k2
− I(n)1

ρ(n)/2k2

 . (C 14)

For the special case ū(n)z = 0 (at-rest steady state), the above formulae are equivalent to
the ones obtained by eliminating the second row, eliminating the third and fourth columns,
then taking the limit µ(n)→ 0 in the general formulae (C 6) and (C 12). More precisely,
for the viscosity term in (C 1) and (C 2) to be negligible, one must have µ(n)� ωρ(n)/k2.
(Note that this is length- and time-scale-dependent, so the validity of neglecting viscosity
terms depends on the ω and k of the dominant growth mode.) It is also interesting to
consider a Galilean transformation in which a constant v̄z is added to ū(n)z for all n, which
cannot change the physical results. Here, because all ω factors are accompanied by−ū(n)z k,
it is clear that such a transformation merely shifts all of the mode frequencies ωj(k) by v̄zk,
which does not change the growth rates (the imaginary part), while the shift in the real
frequency is simply due to the frequency-k spatial oscillations moving past any fixed z at
velocity v̄z.

As a validation check, we find that our formulation gives the same dispersion relations
for various Navier–Stokes cases discussed in the previous literature: e.g. a single inviscid
jet in air (ignoring the air density and viscosity) (Rayleigh 1879), a single viscous jet in
air (ignoring the air density and viscosity) (Rayleigh 1892), a single viscous jet with high
velocity in air (considering the air density but ignoring the viscosity) (Sterling & Sleicher
1975) and a compound jet in air (ignoring the air density and viscosity) (Chauhan et al.
2000).
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