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approach that augments the level set function values by gradient information, and evolves
both quantities in a fully coupled fashion. This maintains the coherence between function
values and derivatives, while exploiting the extra information carried by the derivatives.
The method is of comparable quality to WENO schemes, but with optimally local stencils
(performing updates in time by using information from only a single adjacent grid cell). In
addition, structures smaller than the grid size can be located and tracked, and the extra
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CIR method derivative information can be employed to obtain simple and accurate approximations
Cubic to the curvature. We analyze the accuracy and the stability of the new scheme, and
Curvature perform benchmark tests.
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1. Introduction

Level set methods represent a surface as the zero contour of a level set function [1], which can be numerically defined on a
regular Eulerian grid. The advection of the surface translates then into an appropriate advection of the level set function.
Derivative quantities, such as normal vectors and curvature, can be computed from the level set function without explicitly
representing the surface. Commonly used level set approaches encounter problems or inconveniences in the following as-
pects: the representation of small structures, the approximation of derivative quantities (such as curvature), and the large
size of the stencils required by high order finite difference schemes.

We investigate the extent to which these problems can be remedied, if the level set function is augmented by gradient
information. In this case, the surface can be represented by an appropriate interpolation that incorporates the additional
information. In this paper, we consider a bi-/tri-cubic Hermite interpolation to define the surface in each cell. This yields
a certain level of “subgrid” resolution, i.e. structures smaller than the grid resolution can be represented. In addition, the Her-
mite bi-/tri-cubic interpolant provides a simple and accurate approximation to the normals and the curvature anywhere in
the computational domain. In the context of level set methods, the use of a bicubic interpolation to construct second order
approximations to interfaces was proposed by Chopp [2], but without any tracking of gradient information.

The idea of using gradient information to improve the accuracy of numerical methods for hyperbolic conservation laws
was introduced by van Leer [3-7]. In particular, his MUSCL (“Monotonic Upstream-centered Scheme for Conservation Laws”)
scheme and the PPM (“Piecewise Parabolic Method”) by Colella and Woodward [8] use gradient information. While in those
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methods, gradient values are reconstructed from function values, the CIP method of Takewaki, Nishiguchi, and Yabe
[9,10] stores gradients as an independent quantity to solve hyperbolic conservation laws. In the context of level set methods,
Raessi, Mostaghimi, and Bussmann present an approach that advects normal vectors independent of, but in an analogous
fashion to, the level set function values [11].

In this paper, we present an approach that advects function values and gradients as independent quantities, but in a fully
coupled fashion. The approach is based on a generalization of the CIR method [12], and uses the Hermite cubic interpolant
mentioned above in a natural way. Characteristic curves are tracked backwards, and function values and gradients are ob-
tained from the interpolation. The resulting advection scheme is globally third order accurate, with stencils that can be cho-
sen no wider than a single cell.

In Section 2, we provide a brief overview of the classical level set method, introduce the idea of gradient-augmented ap-
proaches, and present a Hermite cubic interpolation that will be the basis for the new method. Three fundamental problems
with classical level set methods are outlined in Section 3, with focus on how the incorporation of gradients is beneficial. The
precise numerical scheme is given in Section 4. Its accuracy and stability are analyzed theoretically in Section 5, for a simple
case. In Section 6, we numerically investigate the accuracy of the new approach, and test its performance on various bench-
mark tests. Finally, in Section 7, we outline various questions to be investigated in future work.

2. Level set approaches without and with gradients
2.1. (lassical level set method

Many applications, such as the simulation of two-phase flows in RP require the representation and advection of a man-
ifold of codimension 1, which in the following we call a surface. Level set methods [1] represent the surface as the zero con-
tour of a level set function ¢ : R — R. In the domain enclosed by the surface, one has ¢ < 0, while outside ¢ > 0. Geometric
quantities, such as normal vectors and curvature, can be obtained from the level set function: i = %, and x = V - fi. In order
to move the surface with a velocity field 7 = (u, »,w)", the level set function is advected according to the partial differential
equation

¢ +0-Vo=0. (1)

The level set function can be defined on a regular grid. High order ENO [13] or WENO [14] schemes are commonly used to
approximate the advection Eq. (1).

Gradients and curvatures can be approximated by finite differences. For an accurate and stable approximation, it is ben-
eficial if ¢ is a signed distance function

Vo) = 1. (2)

Even if ¢ is a distance function initially, it typically ceases to be so due to deformations induced by the velocity field. One
remedy to this problem is to recover (2) by solving the reinitialization equation

br = sign(o)(1 = [Vl), 3)

where ¢, is the level set function at time t, in pseudo-time 7 [15], or by solving the stationary Eikonal Eq. (2) using a fast
marching method [16]. Another approach is to solve (1) with a modified velocity field, so that (2) is preserved. This modified
field is constructed by extending the original velocity field away from the surface [17].

The actual surface is obtained from the level set function ¢ using contouring algorithms [18]. These approaches are typ-
ically based on a bi-/tri-linear interpolation inside a grid cell. The linear interpolant along cell edges locates intersections of
the surface with the grid edges. These intersection points are subsequently connected to form surface patches in each cell.
Ambiguous connection cases are decided based on the full bi-/tri-linear interpolant inside the cell. In many applications, it is
sufficient to know the location of the surface on the grid edges, for instance in the ghost fluid method [19].

2.2. Gradient-augmented level set method

We consider a generalized level set approach. The level set function ¢ is augmented by gradient information = V¢,
which is defined on the same grid as ¢. The surface is defined using both independent quantities ¢ and y. This approach
has various advantages in the context of level set methods. Raessi et al. show that under some circumstances, curvature
can be computed more accurately if gradients are accessible [11]. In addition, as we show in the following, with gradi-
ents, subgrid structures can be represented, and a high order advection scheme with optimally local stencils can be
formulated.

Evolving the implicitly defined surface with a velocity field 7 translates to Eq. (1) for ¢, and equation

G+ V(D-§)=0 (4)

for . Eq. (4) is obtained by applying the gradient operator to (1). A straightforward approach is to approximate each Eqgs. (1)
and (4) using a high order finite difference scheme. Raessi et al. apply this approach [11], introducing only a weak coupling
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through an extension velocity field [17]. While such decoupled (or weakly coupled) approaches can improve the classical
level set approach, the full potential of a coupled approach is not used. In contrast, here we present an approach that evolves
the level set function and its gradients in a coherent and fully coupled fashion. The precise methodology is presented in
Section 4.

2.3. Cell-based Hermite interpolant

In the gradient-augmented level set method, every grid point carries a function value and a gradient vector. Thus, in p
space dimensions, every grid cell has p 4 1 pieces of information on each of the 2” cell corner points. As we show, this allows
the definition of a cell-based Hermite interpolant, i.e. a function ¢(X) that is C* inside each cell, and that matches the func-
tion values and gradients at all cell corner points. In this paper, we consider a p-cubic Hermite interpolant, i.e. a cubicin 1D, a
bi-cubic in 2D, a tri-cubic in 3D, etc. It is a natural generalization of the bi-/tri-linear interpolation used in classical level set
approaches. The interpolant is simple to construct, using a tensor product approach.

In the following, we use the classical multi-index notation. For vectors ¥ € R and d € (No)?, one defines |d| = 37 ,a;, and
X =17x", and 0" = 87 ,..., 0%, where & = (;’X For convenience, we formulate some results for cubes, for which h denotes
the edge length h = Ax = Ay = Az. However, the results apply to rectangular cells of arbitrary edge lengths as well. In this
case, the estimates are valid with respect to the scaling parameter h = max{Ax, Ay, Az}.

Definition 1. A p-cubic polynomial is a polynomial H = H(X) in RP, of degree < 3 in each of the variables. Hence, it has an
expression of the form

H()z) = Z C&X‘&,
3e{0,1,2,3}?

involving 4° parameters c;.
Definition 2. A p-rectangle (or simply “cell”) is a set [a1,b;] x ... x [ap, by] C RP, where a; < b;. If a; = 0, b; = hVi, we speak of
a p-cube (of size h), denoted by Cy. The p-cube C; is called unit p-cube.

Let the 2P vertices in a cell be indexed by a vector 7 < {0,1}?, i.e. the vertex of index 7 is at position
X3 = (a1 + (b —a)vn,...,a, + (b, — ap)vp). In particular, for Cp, we have X; = ho.

Definition 3. Let C be a p-rectangle, and let ¢ be a sufficiently smooth function defined on an open set in RP that includes C.
The data for ¢ on C is the set of 4° scalars given by

¢5 = " d(%),
where both 7,4 € {0,1}".
Lemma 1. Two p-cubic polynomials with the same data on some p-rectangle, must be equal.

Proof. WLOG assume that the p-rectangle is the unit p-cube C;. Let  be the difference between the two polynomials — with
zero data on C;. We show now that H = 0.

1. If p=1,H is a cubic polynomial in one variable, with double zeros at x = 0,1. Hence H = 0.

2. If p =2, the p = 1 result yields H(x1,0) = Hy, (x1,0) = H(x1,1) = Hy, (%1,1) =0 V0 < %1 < 1. Hence, the same argument as
in p =1 yields: H(x1,x2) =0V0 <x; < 1.

3. If p =3, the p = 2 result yields H(x1,X2,0) = Hy, (X1,X2,0) = H(X1,X2,1) = Hy, (X1,%2,1) = 0V0 < x1,%, < 1. As before, it
follows that from the p = 1 result that H(x;,X2,x3) =0V0 < x3 < 1.

From the above, it should now be obvious how to complete the proof using induction on p. O

Theorem 2. For any arbitrary data set on some p-rectangle, there exists exactly one p-cubic polynomial which corresponds to the
data.

Proof. Lemma 1 shows that there exists at most one such polynomial. Here we construct one. WLOG assume that the
p-rectangle is the unit p-cube C;. For each vertex of C;, indexed by #, and each derivative & € {0,1}, one can construct
Lagrange basis polynomials W, i.e. p-cubic polynomials that satisfy

P PR)WS = 6,360 VEW e {0,1).

Here 635 = [t 64,w, where § is Kronecker's delta. Hence, each of the 2”7 - 2P = 4” basis polynomials equals 1 on exactly one
vertex and for exactly one type of derivative, and equals O for any other vertex or derivative.
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The basis polynomials can be constructed as tensor products of the form
o P
WE ) = [[wi x),
i1

where each of the w; is a 1-cubic polynomial

fx) if v=0,0=0,
oo Jfa-x  ife=10=0,
wy(X) = g(x) if v=0,00=1, (5)

-g(1-x) ifv=1a=1,
where f(x) =1 — 3x% + 2x3 and g(x) = x(1 — x)°.
A p-cubic that corresponds to the data, is then defined by a linear combination of the basis functions
HE®) = Y $iW;®. O (6)
,5e{0,1}?

We now investigate how well the p-cubic (6) approximates a smooth function, when interpolating it on the vertices of a
cell. We are interested in its accuracy, as the cell size approaches zero. While the following analysis also holds for p-rectan-
gles, for simplicity (and WLOG), we provide the expressions for p-cubes only.

Definition 4. Consider a (sufficiently smooth) scalar function ¢(X), defined in an open neighborhood Q of the origin in RP. Let
0 < h < 1 be small enough so that the p-cube C;, is included in Q. The p-cubic Hermite interpolant to ¢ in Cy is the p-cubic
polynomial H = H(X), such that ¢ and H have the same data on Cj,.

Using the notation of Definition 3, and Eq. (6), it is easy to see that the p-cubic Hermite interpolant in Definition 4 can be
written in the form

no - Y oinwi(y). @)
5501}

This expression is straightforward to differentiate analytically: derivatives of the 1-cubic basis functions (5), and powers of
1/h, appear.

Example 1 (1D Hermite cubic interpolant). On a 1D cell [x;,X;,1] of size h, with grid values denoted by ¢, and derivatives by
¢, the Hermite cubic interpolant is defined by

Hx) = (&) + ¢ f(1 - &)+ h(#ig(8) - ¢} 8(1 - ), ®)
and its derivative is

H(x) = %((b‘f’(é) —¢MN A=) + B O+ 1g (1 -, (9)

X—X;

where we use the relative coordinate ¢ =*;

Remark 1. The 1D Hermite cubic (8) is the unique minimizer of the functional I(u) = [;*"' u2,dx under the constraints that

the function values and derivatives are matched at x; and x;,. This is a standard probleml in calculus of variations. The cubic
(8) is a minimizer, since it solves the corresponding Euler-Lagrange equation u,, = 0. It is the unique minimizer, since I is
convex, and the domain for the minimization problem is also convex. Thus, the 1D Hermite cubic minimizes the L?> norm of
the second derivative.

Lemma 3. Let the data determining the p-cubic Hermite interpolant H in Definition 4 be known only up to some error. Then Eq.
(7) yields the interpolation error

P 3 (XN L5« L5
HE = Y. W (E) h"s¢2,
7,5€{0,1}P
where we use the notation du to indicate the error in some quantity u. In particular, if the data d)§ are known with O(h‘H&‘) accu-
racy, then 5(0*H) = O(h*™™).
Theorem 4. Let ¢ and H be as in Definition 4. Then, for any point in C,, we have
H = P+ O(h*™), (10)

where the coefficients in the error terms O(h") can be bounded by some constant multiple of the norm |D*¢||_, in Ch.
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Proof. Let G = G(X) be the degree three polynomial obtained by using a Taylor expansion for ¢, centered at some point in Cj,.
Then, by construction, G satisfies (10) above. In particular, the data for G on Cj, is related to the data for H (same as the data
for ¢) in the manner specified in Lemma 3. Hence (10) follows. O

Lemma 3 and Theorem 4 imply that the p-cubic interpolant is fourth order accurate, if any required derivative BR)
is known with O(h*™™) accuracy on the cell vertices. Since in a gradient-augmented method, we only assume that the
function values (|| = 0) and the gradients (|6i| = 1) are given, we need to construct any required cross derivatives
(|6i| = 2) with accuracy O(h‘H&‘), from the given data. Interestingly, this means that one can set to zero all the deriv-
atives of order higher than 3, without affecting the interpolant’s accuracy. Unfortunately, this convenience does not
come into play for dimensions p < 3.

The cross derivatives required by (7) can be constructed to the appropriate order from the function values and the deriv-
atives at the grid points. Two possible approaches are:

(A) Central differencing. Second order cross derivatives can be approximated by central differences of neighboring points,
such as (here written for p = 3 on a cell of size Ax x Ay x Az, all proportional to h)

i+1jk _ gi-1jk
ij.k y y 2
W o= oA O
By construction, these approximations are second order accurate. The third order cross derivative can be approxi-
mated by

G _ i1k _ gtk | gio1io1k
Z

ijk z z z 2

by = 4AxAy +O0(h").

This approach defines one unique value for each required cross derivative at each grid point. Hence, the thus defined

p-cubic interpolant is C' across cell edges. A technical disadvantage is that the optimal locality is to a certain extent

lost: The interpolation in a cell uses information from adjacent cells corner points.

Cell-based approach. In 2D, a second order accurate approximation to the second order cross derivatives at the vertices

of a cell can be obtained from the gradient values at the vertices in the same cell, using finite differences and inter-

polation/extrapolation: R

(1)  The central differences % y“’x oy o b % approximate ¢,, at the cell edge centers.

(2) Weighted averages of these values yleld approx1mat10ns to ¢,, at the cell vertices. The weights follow
from bilinear interpolation, and are 3 for the two nearby edge centers, and —1 for the two opposing

4
edge centers.
To obtain the cross derivatives in 3D, the formulas above are applied in a facet of the 3D cell.

A first order accurate approximation to the third cross derivative is given by

=

i+1j+1k _ ij+1k i+1.jk+¢uk

ijk _ ¥z z z
Xyz AXAy (h)

This approach is purely cell-based, and the interpolation can be implemented as a single black-box routine. A technical
disadvantage of this approach is that one and the same grid point is assigned different cross derivative values, depend-
ing on which cell it is a vertex of. Since the approximations are second order accurate, the various cross derivatives at a
grid point differ by O(hz). Consequently, the resulting p-cubic interpolant is continuous, but the gradient jumps across
cell edges, with discontinuities of size O(h?).

In practice, both approaches perform well. Note that above approximations are just one possible way to approximate the
cross derivatives. The final method proves rather robust with respect to the actual approximation chosen. In fact, even if an
O(1) error is done in the cross derivatives (e.g. by setting them equal to zero), the method remains convergent, though with a
lower order of accuracy.

3. Benefits of incorporating gradient information

While the classical level set method, outlined in Section 2.1, is a powerful tool in representing and advecting surfaces, it
suffers from some problems and inconveniences. In this paper, we address three fundamental aspects, and show how a gra-
dient-augmented approach, as outlined in Section 2.2, can ameliorate them:

o Small structures are lost once below the grid resolution. Gradients yield a certain level of subgrid resolution (Section 3.1).

e An accurate approximation of the curvature involves difficulties. With gradients, surface normals and curvature can be
easily obtained from the p-cubic Hermite interpolation (Section 3.2).

e Accurate schemes for the advection Eq. (1) involve large stencils. With gradients, a third order accurate scheme can be
formulated, with optimally local stencils (Section 3.3).
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3.1. Representation of structures of subgrid size

Structures that are at least a few cells wide are represented well by the classical level set method. However, smaller struc-
tures are only represented if they contain grid points. This leads to the inconsistency that one and the same small structure
can be present (if a grid point happens to fall into it) or be missing (if it happens to fall in between grid points). Furthermore,
even if initially present, small structures may vanish over the course of a computation due to approximation errors in the
numerical scheme, such as numerical diffusion or dispersion. Small drops, jets or films (see Fig. 1) may be lost during a com-
putation, resulting in a “loss of volume”. Other difficulties are the numerical coalescence of nearby structures, or a numerical
pinch-off in a thinning process. In practice, the loss of small structures can be prevented using adaptive mesh refinement
(AMR) techniques [20,21], which add a significant level of complexity, especially when high order approximations need
to be preserved across multiple levels of refinement. The problem of volume loss can be addressed by enforcing conservation
of volume, as proposed by Sussman and Fatemi [22]. Such methods guarantee conservation of volume (up to a small approx-
imation error), but may yield incorrect topologies. An alternative approach is to augment the level set function by Lagrangian
particles, as proposed by Enright, Fedkiw, Ferziger, and Mitchell [23]. This latter method resolves the difficulties described
above in a satisfactory manner, but at the expense of simplicity.

Fig. 2 shows a signed distance level set function ¢ (solid line) of a 1D “bubble” between two grid points. Classical level set
methods use a linear interpolation (dashed line). Hence, no structure is identified, since the level set function has equal sign
on the two grid points. Of course, the same structure would be identified if a grid point fell within it, but it would be lost
when advected into the situation shown in Fig. 2. Also, if one knows that ¢ is a signed distance function, the surface can
be identified, as shown by Chopp [2]. Unfortunately, this approach incurs difficulties in higher space dimensions, where
ambiguities arise. In addition, the assumption of having a precise signed distance function is too limiting in many cases.

Fig. 1. Subgrid structures in 3D, defined by a tri-cubic: a drop, a jet, and a film.

0.6f (signed distance) level set function 1
= = = linear interpolant (classical level set approach)
0.5 == Hermite cubic interpolant 1
0.4} 1
0.3f .- 7“ 1
=== ’
0.2} =" / .
- ¢
- - \,
01 & = ’, .
N\, ’°
N, kS
- -
0 <. — -
-0.1f T 1
-0.2f 1
-0.3F 1
-0.4F 1
0 0.2 0.4 0.6 0.8 1

Fig. 2. A subgrid structure in 1D, not identified by linear interpolation, but recovered by a Hermite cubic.
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A gradient-augmented level set approach allows the representation of a full structure, i.e. two surfaces, between two
neighboring grid points. Fig. 2 shows a cubic interpolant (dash-dotted line) along a cell edge, constructed from the correct
function values and gradients. In fact, a subgrid structure is detected. Similarly, with bi-/tri-cubics, subgrid structures in 2D
and 3D can be approximately represented. Each subgrid structure shown in Fig. 1 is defined by a tri-cubic, as follows. For a
cube of size h, we consider the function values on the vertices ¢ = 0.1. The drop (sphere) is then obtained by providing gra-
dients § = %= (®—(4.1.,1)). The jet (cylinder) is obtained by V= +(0,y —%,z—1). And the film (two planes) is obtained by
J=1(0y-1.0).

At the same time, the example in Fig. 2 indicates a major drawback of p-cubic approaches: Level set functions are typically
non-smooth (e.g. signed distance functions). Hermite p-cubics are smooth, hence the approximation is not very accurate
near kinks. As a result, even with p-cubic approaches, smaller structures may vanish eventually, though significantly later
than with classical level set methods. A potential remedy can be to use higher order, or nonlinear interpolations, which
we shall investigate in future work.

Theoretically, the gradient-augmented level set approach allows the representation of (at least some) isolated structures
of arbitrarily small size. Hence, the use of gradient information is more than a mere increase of resolution. Of course, in prac-
tice there are limitations to the size of the small structures that can be represented reliably. In addition, only isolated subgrid
structures can be represented. The structure shown in Fig. 2 is indistinguishable from two small structures in the cell, whose
outer boundaries are at the same positions as the boundaries of the single structure.

3.2. Approximation of derivative quantities

In many applications (e.g. in two-phase flow simulations with surface tension), normal vectors and curvatures are re-
quired. In terms of the first and second derivatives of the level set function ¢, the expressions are (here in 2D)

T
o God) an
(62 +43)
o Pud] = 20ty by + by (12)
(62 +43)

In classical level set methods, the required derivatives ¢, ¢, ¢y, ¢y, ¢y, are typically obtained from ¢ by central differences.
Assuming that the level set function ¢ is known with fourth order accuracy on the grid points, second order accurate approx-
imations to normals and curvature on the grid points are obtained from the expressions (11) and (12).

Away from grid points (such as it is required by the ghost fluid method), second order accurate approximations can be
obtained by using weighted averages. Several problems with computing curvature from level set (and volume of fluid) func-
tions, in particular in connection with reinitialization (3), have been presented by Raessi et al. [11]. In addition, even if a suit-
ably high order advection scheme is used, under various circumstances the level set function values can cease to be fourth
order accurate. For instance, when a WENO stencil crosses a discontinuity in the gradient (e.g. signed distance level set func-
tions (2) possess discontinuous derivatives), the accuracy of the approximation can drop [14].

Gradient-augmented level set methods offer new possibilities in the approximation of derivative quantities. For instance,
the p-cubic Hermite interpolation considered here gives rise to a particularly simple way to obtain normals and curvatures at
arbitrary points. Inside each cell, all first and second derivatives can be obtained analytically by differentiating the interpo-
lant (7). Normal vectors and curvature are then simply obtained by (11), respectively (12). Due to Theorem 4, first derivatives
are third order accurate, and so is the obtained 7i. Further, second derivatives are second order accurate, and so is the ob-
tained k. The numerical results shown in Section 6.1.3 verify this. Hence, using the Hermite p-cubic, derivative quantities
(of up to second order) can be obtained everywhere with at least second order accuracy, by a simple recipe with optimally
local stencils, i.e. they use information only from a single cell.

3.3. Coherent advection with optimally local stencils

In order to both accurately advect structures, and calculate derivative quantities, high order schemes have to be used. In
classical approaches, the stencils for high order schemes reach over multiple cells. This results in a cumbersome implemen-
tation on adaptive grids and near boundaries.

In Section 4, we present a semi-Lagrangian approach that solves the advection problem with third order accuracy. The
characteristic form of Eqs. (1) and (4) is used to update the function values and gradients at the grid points. In each time
step, the characteristics are traced backwards from the grid points, and function values and gradients on the characteristic,
at the prior time step, are extracted from the Hermite interpolant, as defined in Section 2.3. A key advantage of this approach
is that at each grid point, the data is updated using only information from a single adjacent cell. Hence, the gradient-aug-
mented approach delivers a high order advection with optimally local stencils. It seems evident that the optimal locality
should allow a simple treatment when combined with adaptive mesh refinement and near boundaries. The detailed inves-
tigation of this matter is left for future work.
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4. Numerical methodology of the generalized CIR scheme

We consider the linear advection Eq. (1) with 7 = 7(%, t). The evolution of the level set function and its gradient, given by
(1) and (4) can be rewritten as

¢+ 0-V¢=0
Ye+D-Vi=-V-y.
For functions defined everywhere, the evolution for i is completely determined by ¢. However, for functions known only on

grid points, the gradients  carry additional information that is not encoded in ¢. For the moment, we assume the velocity
field 7 = (u, »,w)", and the velocity deformation matrix

(13)

u v ow
ox  ox  OX
u v ow
9z 0z oz
to be exactly accessible everywhere. The system (13) consists of an advection part (left hand side), and a source term for .
Its characteristic form is
dé dy - a3
—=0 and ——=-V7.-y along —-=7(X1t). 14
dr de 4 & @~ Y& (14)
This system of ODE describes the evolution of ¢ and ¢ along the characteristic curves defined by & — P(X,t). We solve these
equations by a generalization of the CIR method by Courant, [saacson, and Rees [12]: the characteristics (14) are traced back-
wards from the grid points, and the required data is obtained by the interpolation. Note that, while the CIR method is, in
general, non-conservative for nonlinear conservation laws, its use is justified here, since Eqs. (1) and (4) are linear.
Let ¢",y" denote the data at time t, and ¢"*', "' denote the data at time t + At. We find the characteristic curves that
pass through grid points at time t + At, and solve (14) along these characteristic curves. One time step of the scheme from t
to t + At reads as follows:

1. For each grid point %;, solve the characteristic equation

0 5 . S S
(@) = 0(X(1),7), X(t+AL) =X, (15)

backwards from © =t + At to T =t, to find the point X; = X(t). The characteristic curve that passes through ¥; at time ¢,
reaches ¥; at time t + At. | .

2. Assign j'.’“ (X)) = ¢(%;) and X; = (¥;), both evaluated analytically from the Hermite interpolation (7) in the cell that ¥; falls
into.

3. Solve (14) forward along the characteristic curve, i.e. solve

. L . .
5 V() = =VIE(D).7) (1), (D)

from 7 =t to T =t + At. Assign 1 (X;) =y (t + At).

I
2o

, (16)

In principle, there is no requirement for the backward characteristic curves to remain in a single cell, as long as the inte-
gration scheme for (15) is accurate enough to prevent the approximate backwards characteristic curves from intersecting
(which may cause oscillations). However, in practice, it is often convenient, and not too restrictive, to choose At < “g=h,
where v, is the maximum magnitude of 7, and h = min{Ax, Ay, Az} is the grid size. This guarantees that characteristic
curves from different grid points do not intersect, and that characteristic curves do not cross multiple cells.

As proved in Theorem 4, the interpolation approximates ¢ with fourth order accuracy and  with third order accuracy.
Therefore, in order to achieve the maximum possible order of accuracy, the backwards characteristics Eq. (15) needs to
be solved with fourth order accuracy in each time step.' One step of the Shu-Osher RK3 method [13] does the job. Since gra-
dients are generally one order less accurate, their evolution Eq. (16) needs to be solved with third order accuracy. One step of
Heun’s RK2 method (explicit trapezoidal) does the job. However, in Section 5 we outline another possibility, which is to system-
atically inherit the update rule for (16) from the scheme used for (15). We also investigate the accuracy and stability of the gra-
dient-augmented scheme.

In one space dimension, for constant velocity fields, the presented approach is equivalent to the CIP method [9,10], which
also uses a p-cubic interpolant. Note that the presented gradient-augmented level set approach is not limited to p-cubic
interpolants. Within the setting of superconsistency, introduced in Section 5.1, the projection step, defined in Section 5.2,
can be replaced by other forms of projection (see Remark 2).

1 This then yields a globally third order in time algorithm, see Section 5.5.
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The gradient-augmented level set method is not a finite difference method, since differential operators are not approx-
imated. Instead, fundamental properties of the exact solution to the underlying equation are used, and derivatives are eval-
uated analytically from the interpolation patch. The approach is based on local basis functions, as a finite element method is.
However, the update rule is very different than for classical finite element approaches.

The generalized CIR approach is cell-based, thus preserving the benefits of the level set method, such as handling of topol-
ogy changes, parallelizability, etc. In addition, it is optimally local: The new data values at a grid point use only information
from corner points of a single adjacent cell. Compared to WENO schemes, which use information multiple cells away, the CIR
method promises an easier treatment of approximations on locally refined meshes and near domain boundaries. In addition,
the locality allows smaller structures to get close together without spoiling the accuracy of the approximation.

4.1. Boundary conditions

When solving the linear advection Eq. (1) on a domain Q with outward normals #i, boundary conditions have to be pre-
scribed wherever the flow enters the domain, i.e. 7 - fi < 0. The accurate treatment of boundary conditions is a common chal-
lenge in high order methods. For level set methods, this is important whenever the interface is close to the boundary. In
WENO methods, ghost points have to be created using appropriate extrapolations. Since WENO stencils reach over multiple
cells, not only do inflow boundaries pose a challenge, but also outflow boundaries, at which the actual equation does not
require any boundary conditions.

In contrast, the gradient-augmented CIR method presented above, treats outflow boundaries naturally: no information
has to be prescribed, since characteristics come from inside the domain. At inflow boundaries, information for both ¢ and
¢ has to be prescribed. Below we give two illustrative examples that show how to create the required information from
the advection Eq. (1), for the two most common types of boundary conditions. Other types of boundary conditions can be
treated similarly.

Consider a domain boundary that is aligned with cell edges. WLOG assume that this boundary is perpendicular to
fi = (1,0,0). Then

¢ Dirichlet boundary conditions prescribe ¢ on the boundary, which is perpendicular to i = (1,0, 0). Therefore, all partial
derivatives perpendicular to 7, i.e. ¢, and ¢,, as well as ¢,, are prescribed as well. The missing derivative ¢, on the bound-
ary follows from the Eq. (1) as
¢ + vy +Wo,
=
Note that u=0, since 7 -7 < 0.
e Neumann boundary conditions prescribe ¢, on the boundary. Thus Eq. (1) yields a linear advection equation on the
boundary

¢+ y¢y + W, = —Ud,, (17)

with initial conditions given by the values of ¢ on the boundary at t = 0. Eq. (17) can again be solved using the gradient-
augmented CIR scheme. This yields the function values ¢ and the derivatives perpendicular to i, i.e. ¢, and ¢,.

5. Analysis of the gradient-augmented CIR method

Consider the numerical scheme presented in Section 4, for the linear advection Eq. (1), with 2 = #(%, t) given. Let X(%, t, 7)
be the solution to the characteristic Eq. (14), defined by

%X(z t,7) = DX(% t,7),7), XEtt)=% (18)
The solution operator to the linear advection Eq. (1) is then
Sterach(®, 1) = $(X, t + At) = p(X(X,t + AL, 1), 0). (19)

Now consider a numerical approximation X to )? as arising from a numerical ODE solver, e.g. a Runge-Kutta scheme. Let the
corresponding approximate solution operator to (1) be denoted by

—

Ariard(®,0) = G(X(X,t + AL, 1), 1). (20)

5.1. Superconsistency

Eq. (19) provides the exactly evolved solution, while Eq. (20) defines an approximately evolved solution, both at every
point X in the computational domain. In the actual numerical method, we consider only the (approximate) characteristic
curves that go through the grid points at time t + At. However, we can use the solution operator (20) to derive a natural up-
date rule for the gradients. The gradient of the approximately advected function is
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V(Aad(® 1) = VXE L+ ALL) - VH(X(E t+ AL L), 1), (21)
which yields the update rule for approximate function values ¢ and gradients §

{ (R, t+ At) = (XX, t + AL, 1),

. o (22)
Y(X, t+ At) = VX(X, t + At t) -

t)
Y(X(R t+ AL, 1), )

Definition 5. We call a gradient-augmented scheme superconsistent, if it satisfies (22).

Example 2. Using forward Euler to approximate (18) yields the superconsistent scheme
R= XE,t+ALE) =% — AL (R £+ AL)
VX = — At VIt + At)
PEL+ A = $(E.1)
DE E+ AL = VRDE )

While this scheme is particularly simple, it is only first order accurate. A globally third order accurate scheme is obtained
when using a third order Runge-Kutta scheme, such as in the following example.

Example 3. Using the Shu-Osher scheme [13] for (18) yields the superconsistent scheme

X1 =X — At D(X,t + At),
VX =1- At V(X t + At),

% :X'fAt<}lz7()?7t+At)+1 z?(il,t))

o~

VR =1 At(}lV?/(ié, 4 AD + V- V?/()?l,t)>,

A, 1. 1. 2. 1
x_fot<€v(x,t+At)+€7/(x1.,t)+§v(x2,t+§At)>,
Vi

. At(%V?/(ﬁ,t+At) R VR Vi) + 5 V- Vz7<5c'2,t+%At>>,

(X, £+ At) = (X, 1),
DRt + A = VRGP 0).

Of course, it is not necessary to use a superconsistent scheme to update . In fact, other schemes to approximate (4) might
be more accurate and/or more efficient. However, superconsistent schemes have the advantage that the gradients are
evolved exactly as if the function values were evolved everywhere, and then the gradients were obtained by differentiating
the function. This increases the coherence between function values and derivatives. In addition, superconsistent schemes can
be analyzed in function spaces, without actually having to consider an evolution for the gradient.

5.2. Projection

The update rule (22) uses the function values ¢ and the gradients i at X = X(X;,t + At t) for each grid point ¥;. The point X;
is in general not a grid point. Hence, in the gradient-augmented numerical scheme, ¢(X;, t) and J/()?j, t) are defined by the Her-
mite interpolation. Each time step of a superconsistent gradient-augmented scheme can be interpreted (in a function space)
as an approximate advection step, followed by a projection step

Mt,t+At = PAt.t+At~

At time t, the level set function ¢ is represented by the cell-based p-cubic interpolant approximation. This function is then
advanced in time to t + At by the approximate advection operator A, . Then a new representation in terms of cell-based p-
cubic interpolants is obtained by the projection operator P, which uses the function and gradient values of the advected func-
tion at the grid points.

In this paper, the projection P is given by the p-cubic Hermite interpolant defined in Eq. (7), with the proviso that the
required cross derivatives that appear in (7) are obtained by one of the (various possible) finite differentiation schemes de-
scribed in Section 2.3.
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In general, the operator A, alone is a much better approximation to S, than the combined M ar = PA¢r:ar. HOw-
ever, the projection step P is required to be able to represent the numerical approximation to ¢, at a given instance in time,
by a finite amount of data. For the choice of P used in this paper, a function P¢(X) is uniquely defined by the function values
¢(X;) and gradient values V¢ (X;) on the grid points X;. Hence, in the numerical scheme, the advection operator A; . : has to be
evaluated only along the characteristic curves that go through the grid points, using only the function values and derivatives
there.

Remark 2. In principle, the presented generalized CIR algorithm works for any projection which depends on a finite amount
of information that can be extracted from the function being projected. A superconsistent scheme is defined by selecting an
approximate advection scheme and an appropriate projection strategy. The p-cubic interpolation projection used here is
linear, generalizes nicely to higher space dimensions, and gives rise to a simple algorithm. However, other projections may
exist, providing increased subgrid resolution, or other advantages. Obvious candidates include the incorporation of higher
order information, such as curvature. We plan to investigate these, and other alternatives, in future work.

5.3. Consistency
We investigate the consistency of the method, by estimating the truncation error after applying a single step of the

numerical scheme to the exact solution. Let At denote the time step, and h = max{Ax, Ay, Az} the grid size.
Theorem 5. (consistency) Assume that the exact solution ¢ is smooth with bounded derivatives up to fourth order, and that the
velocity field (X, t) is smooth with bounded derivatives up to third order. If a third order method is used to integrate the
characteristic equations, then the presented gradient-augmented method with At o h is consistent, with errors that are O(h4) in
the level set function ¢, and O(h3) in the gradient .
Proof. One step of third order scheme is fourth order accurate is fourth order accurate

XX, £+ At t) = XX, t + At, t) + O(AtH).
Thus it yields a fourth order accurate approximation to the advected solution

(XX, t+ AL 1) — G(X, t + AL)| = [H(X(X, t+ AL, 1)) — $X(R, t + AL, 1)) = [VH(X(R, t + AL, 1))| O(AL*). (23)

The corresponding error in the gradient V¢ is obtained using the triangle inequality, after adding and subtracting the Jaco-
bian of the approximate advection step times the gradient of ¢ at the exact characteristic at time t. For a better transparency
of the formulas, here we omit the arguments for X, X, VX, and V X, which are always evaluated at (X, t + At, t).

IV X-V(X, 1) — V(X t + Ab)| < |V X-V(X, 1) — VX-V(X,0)| + |V X VHX.t) - VX-V(X, 1)
= [V X(VH(X, 1)~ VH(X,1)] + (VX -V X) - V(X 1)

< IVAD*$(X)||X - X| + V(X = X)[[Vo(X.t)| = O(ALY). (24)
=0(At%) =0(At%)

Eq. (24) yields the error in the gradient, obtained by a function ¢ that is defined everywhere. Due to Definition 5, this is ex-
actly the error on y in any superconsistent scheme.

As proved in Theorem 4, the projection of a smooth function ¢ incurs a fourth order error in the function values, and a
third order error in the gradients

IP$() - p(X)| = O(h"), (25)

IV(P$)(R) — V()| = O(h*). (26)
Starting with the exact solution ¢(X, t), we denote the approximately advected function

¢ (%) = Arcoap (R.1) = (XX, L+ ALL) D).

Followed by the projection operator, we obtain one step of the numerical scheme. Adding and subtracting the approximately
advected solution, using the triangle inequality, and using the estimates (23) and (25), we obtain the error in function value

|(P")X) — p(R,t + AL < |(PP)(R) — ¢"(X)| + |$(X(K. £ + AL D), 1) — $(R, L+ AD)].

=o(h*) =0(At*)

Hence, with At o h, one step is fourth order accurate in ¢. Similarly, the estimates (24) and (26) yield that one step of the
numerical scheme is third order accurate in y. O

When taking multiple steps of the scheme, the approximate advection and projection operators are applied itera-
tively. Taking a step from a function that approximates the true solution with fourth order accuracy in function values
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and third order accuracy in gradient values, exactly preserves the above accuracies because Theorem 4 applies to the
projection. Thus the gradient-augmented CIR method is consistent, with a local truncation error that is fourth order
in ¢ and third order in .

Remark 3. Observe that for superconsistent schemes, such as the one given in Example 3, the approximate advection itself
preserves gradients with fourth order accuracy, while the projection yields (and requires) only a third order accurate
approximation of gradients. Therefore, it can be more efficient to solve the gradient evolution Eq. (16) with a Runge-Kutta 2
scheme, while not sacrificing accuracy.

Remark 4. The orders of accuracy derived above are achieved for smooth functions with derivatives up to fourth order. Note
that level set functions are frequently signed distance functions (2) and as such not differentiable along certain sets of mea-
sure zero. In cells that contain such “ridges” of the level set function, the accuracy of the scheme typically drops to first order.
For structures that are multiple grid cells wide, this drop in accuracy does not affect the evolution of the zero contour. In
contrast, structures of subgrid size may be evolved only with first order accuracy, which is of course still better than losing
them completely. The situation shown in Fig. 2 visualizes this effect. Note further that even near ridges, the presented
numerical scheme does not create spurious oscillations in the first derivative. In 1D, this follows since the Hermite cubic pro-
jection minimizes the L? norm of the second derivative (see Remark 1). Although this simple principle does not transfer
directly to 2D or 3D, similar stability properties as in the 1D case are observed (see Section 6).

5.4. Stability

Here we investigate the stability of the method, i.e. integration over a fixed time interval 0 < t < T, with At oc h — 0, does
not lead to a blow up of neither ¢ nor . Proving stability for the gradient-augmented advection scheme is difficult, since the
application of the projection P to a smooth function ¢ can both increase the function values (because of the effect of the gra-
dients at the grid points), and the gradients (a cubic can have steeper slopes than a given smooth function with the same
values and gradients at the grid points). The following theorem shows the stability of the method in the constant coefficient
case in one space dimension.

Theorem 6. (stability) The presented gradient-augmented method, considered in one space dimension and for a constant velocity
field, is stable.

Proof. Consider the 1D advection equation ¢, + v¢, = 0 with v constant. We choose |v|At < h, and WLOG assume v < 0.
Since the scheme is gradient-augmented, the state vector contains both function values and derivatives. Let ¢; denote the
approximate solution, and y;' denote the approximate derivative, both at the grid point x = jh and time t = nAt. One step
of the generalized CIR scheme is obtained by applying (8) and (9)

7= () + ¢1af (1= ) +h(w]8(0) — g1 - 9),

27)
= (GO — $af (- 9) + (W@ +ug1-9).

where ¢ = ""% € (0, 1], while f and g are the basis functions (5). Note that, since the velocity field is constant, the gradient v is

also constant along the characteristics. In the special case ¢ = 1, the scheme becomes

n+l __ n n+1 __ /n
i =g and YT =g,

i.e. it is decoupled and exact, and thus stable. Hence, in the following, we restrict to the case 0 < ¢ < 1.

Since we are investigating a linear partial differential equation with constant coefficients, we can apply von Neumann
stability analysis, and analyze the stability of (27) in Fourier space. We consider the Fourier transform of the equations, and
rewrite them in terms of the Fourier coefficients a? and by, which are related to ¢ and y by

¢f =Y ape™ and yj = be™. (28)
k k
Substituting (28) into (27) yields an update rule for the Fourier coefficients that is given by a 2 x 2 growth factor matrix as

G\ [ fot+e’fi  h(g,+e'g) (az>
byt Vi etf)  gyre'gy ) \bi)

=Gen(0)

where 0 = kh, we have used the notation fy = f(¢),f1 = f(1 — &), 8, = g(¢),8, = —g(1 — ¢), and the primes are derivatives with
respect to ¢.
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As we show below, the scheme is stable because:

(a) For 6 = 0, one eigenvalue of G.(0) is i = 1, while the other one satisfies -1 < 2, < 1.
(b) For 00, and |0] < 7, both eigenvalues of G:(0) are strictly inside the complex unit circle.

In the case 6 = 0, the matrix E;g‘hw) has the form

_ (1 8o +81
Gg,h(())*<0 ]766(1*5))

Hence its eigenvalues are 2; =1 and 4, =1 — 6&(1 — ¢). Clearly, —1 < 4, < 1, provided 0 < ¢ < 1.
In the case 0+#0, we can consider the matrix

G:(0) =U'-G.4(0)-U where U:(Z ?)

By construction, this new matrix, given by

i0 i0
Ge(0) = f? i emflr g? N emg/l ’
fo+e'fi g +e'g

has the same eigenvalues as ai,h(ﬁ), but it is simpler, since it does not depend on the mesh size h.

At the current state, a strict formal estimate on the eigenvalues of G:(0) remains to be done. However, the eigenvalues can
be evaluated numerically and plotted. Fig. 3 shows the eigenvalue graphs (as functions of 6 € [-m, 7r]) of the growth factor
matrix for ¢ € {0.2,0.4,0.6,0.8}. Note that in each figure the curve consists of both eigenvalues (7, solid part, /1, dashed part).
The four figures indicate that for 60, both eigenvalues are always inside the unit circle. This observation hold true for all
values of 0 < ¢ < 1 that we have tested. Thus the gradient-augmented p-cubic CIR method is stable. O

Remark 5. It is very plausible that the presented stability result carries over to the case of variable coefficients. The reason is
that the most usual way in which instabilities arise is in the short wave limit, i.e. oscillations on the scale of the grid reso-
lution h. Exactly those waves are covered by the above von Neumann analysis, since any smooth velocity field is locally con-
stant if the chosen resolution h is sufficiently small. A general stability proof in higher space dimensions and for variable
coefficients is the subject of current research. In all numerical tests presented in Section 6, and others, the method is
observed to be stable.

Remark 6. The prior considerations show that the scheme is stable, so that grid scale oscillations are not amplified. In addi-
tion, it is interesting to see what happens with the components that are well resolved by the grid, i.e. both h and 0 are small.
In this case, for 0 < ¢ < 1 fixed, as h — 0 we can write

~ 1 0
%0~ (- ) 1-sc1-5) +O0

This has the eigenvalue 7; =1+ O(h), with corresponding eigenvector & = (1,ik)" + O(h), and the eigenvalue 7, =

1 —6¢&(1 — &) + O(h), which is fully inside the unit circle.

The higher order corrections to 4; give the advection at velocity v up to some error (as we know from consistency, see
Section 5.3). Furthermore, since 4, is inside the unit circle, no matter how we start, the solution will always be driven into a
configuration where = ik¢. This happens for all the “resolved” values of k, while the others decay, as shown in the stability
considerations.

£=0.2 £=04 £=06
11X 1=x (N —
_ : A A,
0 !' 0 0 )
-1 -1 ‘ -1
-1 0 1 -1 0 1 -1 0 1

Fig. 3. Eigenvalues of the growth factor matrix G;(0) of the cubic CIR scheme, for ¢ € {0.2,0.4,0.6,0.8}.
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Hence, the presented method drives the solution in the spectral sense into a configuration in which y is the derivative of
the ¢. In other words, at least in this case of constant », we have a very strong form of coherence being enforced by the
method. Our conjecture is that this property carries over to the general case.

5.5. Convergence

With the p-cubic projection (7), the presented numerical scheme is linear. Therefore, due to the Lax equivalence theorem
[24], consistency (shown in Section 5.3), and stability (investigated in Section 5.4)) imply convergence, i.e. the numerical
approximation converges to the true solution as At o h — 0, provided an appropriate CFL condition is enforced (i.e.
CAt < h, where the constant C depends on the velocity field).

As shown in Section 5.3, a fixed number of time steps yield a fourth order accurate approximation to ¢, and the third or-
der accurate approximation to 1. In order to compute the solution over a fixed time interval [0, T], a total of L time steps are
required. Hence the global error can only be guaranteed to be third order accurate in ¢ and second order accurate in . The
numerical results in Section 6 indicate that this drop by one order is in fact what happens.

6. Numerical results

In this section we test the accuracy and performance of the gradient-augmented level set method, as presented in the
prior sections. We use the superconsistent scheme given in Example 3, which is based on the Shu-Osher RK3 method. Note
that in all presented examples, the use of Heun’s method to update gradients (see Section 4) leads to results that differ by
less than 0.1%.

The local and global accuracy of the generalized CIR method, as theoretically predicted in Section 5, as well as the accu-
racy of the approximation of the curvature from the p-cubic interpolant, outlined in Section 3.2, are investigated in Section
6.1. In addition, the performance of the gradient-augmented level set method is compared with a classical high order level
set approach. The results of various benchmark tests are presented in Section 6.2.

6.1. Accuracy of the advection and curvature approximations

We numerically investigate the accuracy of the gradient-augmented CIR method advection scheme, as presented in Sec-
tion 4 and analyzed in Section 5, as well as the accuracy of curvature when recovered from the p-cubic interpolant, as de-
scribed in Section 3.2. The order of convergence of these approximations is based on a Taylor expansion, and thus requires
the considered functions to be smooth. In practice, level set functions are often chosen as signed distance functions (2),
which possess discontinuous gradients. The rationale is that the signed distance property generally yields more benefits than
the jumps in the gradient cause disadvantages. In fact, if the represented structures are sufficiently large, the drop in accu-
racy of numerical approximations is typically located only near the discontinuous gradients, while near the zero contour, the
full accuracy for smooth functions is observed. In order to investigate the order of accuracy of the presented approaches rig-
orously, here in Section 6.1, we consider the evolution and differentiation of infinitely often differentiable functions.

In the following, we measure the error of the numerical scheme. At some time, let the true solution be denoted by ¢, and
the numerical approximation at a grid point %; be denoted by ¢, for function values, and y; for gradients. The numerical error
of the gradient-augmented scheme is computed in the L*-norm, both for function values and for gradients

emax(¢) = m}.ax |§Abj - ¢(’2})|’

» 5 - (29)

emax(‘//) = mjax ”l//] - vd)(xj)”max’

where || 7] ,.x = max;|v;|.

6.1.1. Local truncation error in a pseudo-1D advection

In the 2D domain [0, 1] x [0, 1], we consider the advection (1) of the smooth initial conditions

$(x.y) = exp(~[X — Xo|*) —exp (~r),

with X = (x,¥),% = (0.5,0.5), and r, = 0.15, under the velocity field
Bix.y) - = exp (VELVTY) (V2 (30

V2+m V2+Tm VT

This velocity field represents a 1D flow in a constant direction that is not aligned with the 2D grid. Hence, we call it a “pseu-
do-1D flow”. The velocity field possesses a non-zero divergence, and a non-constant deformation V7. It is selected because
the advection under (30) possesses a simple analytical solution. At the inflow edges 7 -ii < 0, homogeneous Neumann
boundary conditions are prescribed. However, we evaluate the error only on a part of the domain that is not influenced
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by the boundary conditions. We consider the numerical solution with the gradient-augmented CIR method, presented in Sec-
tion 4.

The test aims at estimating the local truncation error. For a sequence of regular grids, with spacing h = Ax = Ay and time
step At =1h, we perform a fixed number (N = 16) of steps with the advection scheme.

The convergence of the local truncation error (29) is presented in Figs. 4 and 5. We observe fourth order accuracy for the
function value ¢, and third order accuracy for the gradients V¢. These results are in agreement with the local truncation
error estimates derived in Section 5.3.

6.1.2. Global truncation error in a 2D deformation field

In this section we present the results obtained for a time-modulated, two-dimensional deformation field. This test is often
times referred to as “vortex in a box” flow, following LeVeque [25], and Bell, Colella, and Glaz [26]. On the domain
[0,1] x [0, 1], we consider the velocity field

7 _v _( 20 %
Z/(th./t)—v (p(X,y,t)7< ay',aX)a (31)

Fig. 5. Local truncation error for V¢ - pseudo-1D advection.

L. _Error
inf

Fig. 4. Local truncation error for ¢ - pseudo-1D advection.



J.-C. Nave et al./Journal of Computational Physics 229 (2010) 3802-3827 3817

given by the stream function
o(x,y,t) = % cos (nTt) sin(mx)* sin(my)?.

This generates a time-dependent incompressible velocity field with a deformation matrix V2 that changes both in space and
in time. Thus this flow field provides a realistic test for our method. Since the velocity field is zero at the domain boundaries,
no boundary conditions need to be prescribed. Notice that the function cos (%) is an odd function with respect to t =T/2,
thus the advection under (31) is anti-symmetric around t = T/2. In particular, ¢(X,T) = ¢(X,0), i.e. at time t = T, the flow
has brought back the level set function to its initial values. Thus, we can check the error behavior of the numerical method
att=T.

We consider the advection (1) of the smooth initial conditions

o

¢ = exp(—[% — X|*) — exp (-13),

L, Error for ¢

Fig. 6. Global truncation error for ¢ - 2D deformation field.

L, Error for y

Fig. 7. Global truncation error for V¢ - 2D deformation field.
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with X = (x,y),X = (0.5,0.75), and rp, = 0.15, under the given velocity field, and apply the gradient-augmented level set
method.

Here, we use At = h = Ax = Ay, and T = 2. We compute the L* norm of the difference between the computed solution at
t = T and the initial conditions. This provides the global truncation error. In Figs. 6 and 7, the convergence of the error in the
L*-norm for both ¢ and V¢ is shown. We observe third order accuracy for the function value ¢, and second order accuracy
for the gradients V¢, as predicted in Section 5.

6.1.3. Accuracy of curvature
We numerically investigate the accuracy of the curvature approximation, when recovering it by differentiating the p-cu-
bic interpolant. On the domain [0, 1] x [0, 1], we consider the function

Px.y) = (x=2)(y —x))’.

This function possesses enough non-zero derivatives (and cross derivatives) to provide a non-trivial test. Furthermore, it has
no curvature singularities inside the considered domain.

For a given sequence of grids with various grid spacing h, we evaluate both ¢ and V¢ on the grid points. As described in
Section 3.2, an approximation to the curvature is obtained from this data, using Eq. (12), everywhere inside the domain.
Here, the function values and all required derivatives are evaluated analytically from the p-cubic interpolation (which in-
volves the reconstruction of the cross derivatives from V¢, as presented in Section 2.3). We obtain an estimate of the accu-
racy of the curvature calculation over the whole domain (not just at grid points), by computing the L*-error on a fixed grid
with a much finer grid spacing.

Convergence results are presented in Fig. 8. We observe that the curvature is obtained with second order accuracy every-
where in the domain, which is in agreement with the theoretical considerations in Section 3.2.

6.2. Performance of the gradient-augmented level set method

In this section, we compare the performance of the gradient-augmented level set method with that of a classical level set
approach. For all test cases, we represent the initial surface by a signed distance function (2). For the classical level set meth-
od, the advection Eq. (1) is solved using a fifth order WENO scheme [14] for the spacial approximation, and the Shu-Osher
scheme (a three stage, third order accurate, strongly stability preserving Runge-Kutta method) [13] for the time step. In
addition, in each time step, the reinitialization Eq. (3) is solved to preserve the signed distance property (2) approximately.
We empirically find that for the presented test cases, the classical level approach yields best results, when after each advec-
tion step of size At, two reinitialization steps, each of size 0.75 h are performed. The gradient-augmented level set approach is
applied as described in Section 4. Here, no reinitialization is applied. Hence, for the 2D and 3D deformation field tests, the
velocity field yields significant deformations of the level set function away from a signed distance function.

L. . Error for
inf
)

Fig. 8. Convergence plot for curvature k(x,y), recovered from the Hermite bi-cubic.
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Fig. 11. Zalesak’s sphere at t € {0,157,314,471,628} - classical approach (left), gradient-augmented method (right).
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6.2.1. Zalesak’s circle
We consider the rigid body rotation of Zalesak’s circle [27] in a constant vorticity velocity field. On the domain
[0,100] x [0,100], let the initial data describe a slotted circle, centered at (50,75) with a radius of 15, a slot width of 5,
and a slot length of 25. The constant vorticity velocity field is given by
T
u(x,y) = 37250 -y),

V(X,y) = % (x — 50).

The disk completes one revolution in a time interval 0 < t < 628. At the inflow edges 7 - i < 0, homogeneous Neumann
boundary conditions are prescribed.

On a 64 x 64 grid, we compare the gradient-augmented CIR scheme with the classical WENO advection scheme with
reinitialization. The time step is At = 1, hence one revolution equals 628 time steps. Fig. 9 shows the evolution of the solu-
tion in time. The top figure shows the initial conditions, and the velocity field. The middle figure shows the obtained surface
after one revolution, and the bottom figure shows the results after four revolutions. One can observe that the gradient-aug-
mented level set method recovers the shape significantly more accurately than the classical WENO scheme. In particular,
after four revolutions, with the classical approach the notch in the circle has vanished. In contrast, with gradient, it has
shrunk, yet it is still present.

6.2.2. 2D deformation field

We consider the 2D velocity field described in Section 6.1.2, with T = 8. On a 64 x 64 grid, we compare the gradient-aug-
mented CIR scheme with the classical WENO advection scheme with reinitialization. The time step is At = Ax.

Fig. 10 shows the evolution of the solution in time. The top figure shows the initial conditions, and the velocity field. The
middle figure shows the obtained surface at t = 4 = T/2, which is the time of maximal deformation of the zero contour. Ob-
serve that the true solution has the surface swirled around one-and-a-half times, and the structure’s thickness gets close (or
even below) the grid size. From the analysis in Section 3.1 we expect the gradient-augmented level set method to perform
better at representing the thin structure. The results verify our expectation: the classical WENO scheme loses a full revolu-
tion on the receding tail of the structure. In addition, the surface breaks up into multiple components. In contrast, the gra-
dient-augmented level set approach recovers one connected structure, which captures the true shape very well at the
trailing front. Of course, even with gradients, there are limits to the subgrid resolution, and here, still a quarter revolution
of the tail is missing. Nevertheless, the results are striking, considering that the grid is relatively coarse. The bottom figure
in Fig. 10 shows the results at t = 8 = T. At this time, the flow has brought the structure back to its initial configuration. The
structure evolved with the WENO scheme has lost a remarkable amount of mass. In contrast, the mass loss obtained with the
gradient-augmented scheme is significantly smaller.

6.2.3. Zalesak’s sphere
On the domain [0,100] x [0,100] x [0,100], a three dimensional slotted sphere of radius 15, initially centered at
(50,75,50), with a slot width of 5 and slot depth of 25 is is rotated under the velocity field

T
u(xmyvz) = m(SO _y)a
T
U(X7y7z) = m(x - 50)7
w(x,y,z) = 0.

The test is performed on a 50 x 50 x 50 grid. The time step is At = 1. At the inflow edges 7 - ii < 0, homogeneous Neumann
boundary conditions are prescribed.

In Fig. 11, the Zalesak’s sphere for a sequence of snapshots during one full revolution is shown, using the gradient-aug-
mented level set method (on the right), and the classical level set approach (on the left). We observe that the gradient-aug-
mented approach preserves the correct shape of the surface better than the classical level set method does. In particular, it is
able to maintain the notch on the Zalesak’s sphere, in contrast to the standard approach which merges both sides while sig-
nificantly gaining mass.

6.2.4. 3D deformation field
LeVeque proposed a three dimensional incompressible flow field [25] which combines a deformation in the x — y plane
with one in the x — z plane. The velocity is given by

u(x,y,z) = 2 sin(nx)? sin(2mxy) sin(27z),
v(x,y,2) = — sin(27x) sin(my)* sin(27z)

w(x,y,z) = —sin(27x) sin(27y) sin(nz)*.
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Fig. 12. 3D deformation field test at t € {0,0.625,1.25,1.875,2.5} - classical approach (left), gradient-augmented method (right).

The field is modulated in time using cos (%). Here, we consider T = 2.5. The tests is performed on a 50 x 50 x 50 grid. A
sphere of radius 0.15 that is initially centered at (0.35,0.35,0.35), is advected up to t = 2.5, i.e. it is deformed by the flow,
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and then brought back to its initial configuration. As before, we compare the gradient-augmented scheme with WENO, both
with At = Ax.

In Fig. 12, a sequence of snapshots is shown, using the gradient-augmented level set method (on the right), and the clas-
sical level set approach (on the left). We observe the CIR method’s ability to conserve mass and maintain the topology of the
sphere more accurately than the standard approach. In the middle frame, one can observe that the classical level set method
suffers a significant loss of mass around the time of maximal deformation t = 1.25, at which the surface is very thin. Evi-
dently, the ability of the gradient-augmented level set method to represent structures of subgrid size is particularly bene-
ficial here.

Note that the jagged edges seen in the middle frame in Fig. 12 are due to the representation of a surface that is thinner
than the grid resolution. While these grid effects are present in both numerical schemes, the level set functions themselves
do not show any spurious oscillations.

6.2.5. Computational effort

Both in 2D and 3D, the gradient-augmented level set method carries about the same computational cost as the classical
level set method. More specifically, we compare the CPU times for the computation of the 2D deformation field, considered
in Section 6.2.2, on a 64 x 64 grid, using a single core desktop computer. The classical level set approach takes 13 seconds
with reinitialization, and 10 seconds without (in which case the quality of the results is significantly reduced). In comparison,
the gradient-augmented approach takes 9 seconds when the superconsistent Shu-Osher RK3 method is used, and 8 seconds
when gradients are updated using Heun’s method. These ratios carry approximately over to other grid resolutions and other
tests.

Gradient-augmented CIR method

50 3 50 x 50 grid 100 x 100 x 100 grid 150 % 150 x 150 grid 200 % 200 x 200 grid
WENO

50 % 50 x 50 grid 100 x 100 x 100 grid 150 x 150 x 150 grid 200 x 200 x 200 grid

WENO with reinitialization

NOO O

503 50 x 50 grid 100 > 100 % 100 grid 150 » 150 » 150 grid 200 x 200 x 200 grid

Fig. 13. Final state of deformation of a sphere for various resolutions.
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Table 1

Volume loss for the deformation of a sphere.
Resolution (%) n=>50 (%) n =100 (%) n =150 (%) n =200 (%)
GA-CIR —6.4 -29 -2.0 -13
WENO -63.1 -14.1 —-43 -2.0
WENO reinit —66.3 -9.0 -29 -1.3

6.2.6. Volume loss

For the 3D deformation field defined in Section 6.2.4, we investigate the loss of volume of two closed surfaces (a sphere
and a cube), and its dependence on the grid resolution. We compare the gradient-augmented CIR method with the classical
WENO scheme, once without, and once with reinitialization. The four considered grid resolutions are 50 x 50 x 50, 100x
100 x 100,150 x 150 x 150, and 200 x 200 x 200. As the middle picture in Fig. 12 shows, the surface becomes thinner than
the grid resolution on a 50 x 50 x 50 grid.

Fig. 13 shows the final state (t = T = 2.5) of a sphere of radius 0.15, centered at (0.35,0.35,0.35), under the evolution by
the velocity field given in Section 6.2.4. In all cases, the final shape has lost some volume. The specific relative volume loss is
shown in Table 1. One can observe that the gradient-augmented scheme performs significantly better than the classical
schemes if the grid resolution is on the order of the size of the smallest structures. This indicates that gradient-augmented
schemes can be expected to particularly improve the resolution of small structures in realistic flow simulations, for which
features on various length scales have to be resolved. The results shown in Fig. 13 also clearly show the convergence of all
three schemes to a perfect sphere, as the grid resolution is increased.

Gradient-augmented CIR method

\

50 x 50 x 50 grid 100 % 100 x 100 grid 150 x 150 % 150 grid 200 x 200 x 200 grid

WENO

50 x 50 x 50 grid 100 % 100 x 100 grid 150 x 150 % 150 grid 200 x 200 x 200 grid

WENO with reinitialization

50 x 50 x 50 grid 100 x 100 x 100 grid 150 x 150 x 150 grid 200 x 200 x 200 grid

Fig. 14. Final state of deformation of a cube for various resolutions.
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Table 2

Volume loss for the deformation of a cube.
Resolution n =50 (%) n =100 (%) n =150 (%) n =200 (%)
GA-CIR -54 -33 -1.6 -0.9
WENO -54.5 -15.8 -9.6 -6.5
WENO reinit -35.4 -11.2 -71 -5.0

Another interesting observation can be made about reinitialization. The comparison of WENO without reinitialization and
WENO with reinitialization, shown in Fig. 13, indicates that reinitialization generally improves the quality of the obtained
results. Small structures are represented in a more robust fashion, and consequently the loss of volume is reduced. In addi-
tion, the shape of the final surface appears closer to a true sphere. In particular, reinitialization flattens out the numerical
notch that is present in the top two rows in Fig. 13.

However, reinitialization has a tendency to make surfaces round, and thus it performs particularly well for surfaces that
are similar to spheres. This can be clearly seen in the results shown in Fig. 14. For the same 3D deformation field, now a cube
of size 0.3 x 0.3 x 0.3, centered at (0.35,0.35,0.35), is evolved. Observe that reinitialization smears out the numerical notch
(which is good), but also rounds the bottom face of the cube (which is bad). This effect is also visible in the loss of volume,
given in Table 2. Observe that for the considered cube, a significant volume loss occurs for WENO, both with and without
reinitialization. In contrast, the volume loss with the gradient-augmented scheme is much smaller. In addition, the results
in Fig. 14 again show that in relation to classical schemes, the gradient-augmented scheme performs particularly well for low
grid resolutions.

7. Conclusions and outlook

The results presented in this paper show that common problems with level set methods can be ameliorated when incor-
porating gradients as an independent quantity into the computation. The presented gradient-augmented level set method is
based on a Hermite interpolation, which is used as a fundamental ingredient for the reconstruction of the surface, the
approximation of surface normals and curvature, and the advection under a given velocity field. In this paper, we consider
a p-cubic Hermite interpolant, that in each grid cell is defined solely by data on the cell vertices. We have shown that this p-
cubic interpolant gives rise to a certain level of subgrid resolution, to a second order accurate approximation of curvature,
and to a globally third order accurate advection scheme. Curvature is obtained at arbitrary positions by analytically differ-
entiating the p-cubic interpolant. The advection scheme is based on a generalization of the CIR method. Characteristic curves
are traced backwards from grid points, and function values and derivatives of the level set function are obtained from the p-
cubic interpolant, respectively its derivatives. Therefore, the resulting approximations and schemes are optimally local, i.e.
information at a given (grid) point is updated by using data from only a single cell. This promises a simpler treatment of
adaptive mesh refinement and boundary conditions.

In the theoretical investigation of gradient-augmented schemes, the concept of superconsistency has been introduced,
which admits the interpretation of a gradient-augmented method as an evolution rule in a function space, in which analyt-
ical coherence between function values and gradients is preserved. In each time step a projection rule is applied, that is based
on an interpolation. In this paper, the specific case of a p-cubic Hermite interpolation is studied. Employing the introduced
concepts, the accuracy and stability of the generalized CIR method have been investigated theoretically and verified in
numerical experiments. In addition, the performance of the gradient-augmented level set approach has been compared to
a classical high order level set method, both in 2D and 3D benchmark tests. While of similar computational cost, the gradi-
ent-augmented approach generally yields more accurate results. In particular, small structures are preserved much better
than with the classical level set method. The ability to represent structures of subgrid size turns out to be of great benefit.

While the presented approach looks promising and performs well in numerical tests, various aspects remain to be inves-
tigated. The proof of stability presented in this paper covers only a special case, and a general proof of stability is one key
objective of our current research. Another question of theoretical importance is the issue of reinitialization. All numerical
tests with the generalized level set method considered in this paper have been done without reinitialization. While the
knowledge of gradients itself generally gives rise to a more accurate recovery of the surface, an additional reinitialization
may improve the quality of the method even further.

A fundamental question of interest in the technical realm is the combination of the gradient-augmented level set ap-
proach with adaptive mesh refinement. Here, the optimal locality of the advection scheme may prove advantageous, and
preserve automatically the high order accuracy through various levels of grid refinement. Also, the combination with
Lagrangian particles, such as done in [23] for the classical level set method, is of interest. Another important aspect to be
investigated is the case of the velocity field, and its gradient, not being accessible everywhere. Most prominently, this is
the case in multi-phase fluid flow simulations, in which the evolution of the level set function is coupled to an evolution
for the fluid velocities. In future research, we plan to investigate the incorporation of the presented gradient-augmented le-
vel set method into a ghost fluid method [19]. One of various challenges with this approach is the new possibility of up to
three intersections of the reconstructed surface with each cell edge.
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The p-cubic interpolant considered in this paper yields an accurate method, but as discussed in Section 3.1, it may be too
smooth to capture small structures when these are represented by a signed distance function. Hence, it is an important ques-
tion to investigate whether other types of interpolation can improve the ability to capture subgrid structures. A related ques-
tion is whether it is beneficial to additionally augment the method by higher derivatives. For instance, having direct access to
the Hessian of the level set function may give rise to an even better representation of small structures, and an even more
accurate approximation of curvature. Another question is whether the gradient-augmented approach can be generalized
to, and yields good methods for, other types of evolution equations. Simple generalization of the linear advection equation
are the level set reinitialization equation, or the G-equation in combustion modeling [28]. More complex examples are prob-
lems involving diffusion, up to the actual equations of fluid flow. A consistently coupled gradient-augmented scheme for
both the two-phase Navier-Stokes equations and the level set equation for the interface could not only allow the represen-
tation of subgrid structures, but also yield a certain level of subgrid resolution in the actual fluid flow simulation.
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