

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 38, No. 4, pp. A2307–A2333

A FAST-MARCHING ALGORITHM FOR NONMONOTONICALLY
EVOLVING FRONTS∗

ALEXANDRA TCHENG† AND JEAN-CHRISTOPHE NAVE†

Abstract. The nonmonotonic propagation of fronts is considered. When the speed function
F : Rn × [0, T] → R is prescribed, the nonlinear advection equation φt + F |∇φ| = 0 is a Hamilton–
Jacobi equation known as the level-set equation. It is argued that a small enough neighborhood of
the zero-level-setM of the solution φ : Rn× [0, T]→ R is the graph of ψ : Rn → R, where ψ solves a
Dirichlet problem of the form H(u, ψ(u),∇ψ(u)) = 0. A fast-marching algorithm is presented where
each point is computed using a discretization of such a Dirichlet problem, with no restrictions on
the sign of F . The output is a directed graph whose vertices evenly sample M. The convergence,
consistency, and stability of the scheme are addressed. Bounds on the computational complexity are
estimated and experimentally shown to be on par with the fast-marching method. Examples are
presented where the algorithm is shown to be globally first-order accurate. The complexities and
accuracies observed are independent of the monotonicity of the evolution.

Key words. front propagation, Hamilton–Jacobi equations, viscosity solutions, fast-marching
method, level-set method, finite-difference schemes

AMS subject classifications. 65M06, 65M22, 65H99, 65N06, 65N12, 65N22

DOI. 10.1137/15M1017302

1. Introduction. Front propagation is a time-dependent phenomenon occurring
when the boundary between two distinct regions of space is evolving. It is possible to
make the distinction between monotone and nonmonotone motion of fronts. Consider
a fire propagating through a forest: the interface divides space into a burnt and an
unburnt region. It evolves monotonically in that if a point x = (x1, . . . , xn) of space
belongs to the burnt region, then it cannot belong to the unburnt region at a later
time [21]. In contrast, if a plate containing water is gently rocked, the front separating
the dry region from the wet one may advance or recede. In this paper, we present an
algorithm that dynamically builds a sampling of the subset of Rn × [0, T) consisting
of the surface traced out by the front as it evolves through time. The structure of the
scheme is akin to the fast-marching method (FMM), yet our approach is oblivious to
the monotonicity of the evolution.

Given an initial front C0 as a codimension-one subset of Rn and an advection rule,
our goal is to recover the front Ct at later times t > 0. Let each point of the front
evolve with a prescribed speed F : Rn × [0, T] → R in the direction of the outward
normal to the front n̂t : Ct → Sn. The evolution is nonlinear, such that even if F and
C0 are smooth the front may become C0 and undergo topological changes [8].

On the one hand, a robust numerical method for tracking either kind of evolution
is the level-set method [21, 22, 28]. This implicit approach embeds the front as the

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 17,
2015; accepted for publication (in revised form) May 17, 2016; published electronically August 2,
2016.

http://www.siam.org/journals/sisc/38-4/M101730.html
†Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Mon-

treal, Quebec H3A 0B9, Canada (alexandra.tcheng@mail.mcgill.ca, jcnave@math.mcgill.ca). The
first author was supported by the Schulich Graduate Fellowship. The second author was supported
by NSERC Discovery and Discovery Accelerator Supplement grants.

A2307

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/38-4/M101730.html
mailto:alexandra.tcheng@mail.mcgill.ca
mailto:jcnave@math.mcgill.ca

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2308 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

zero-level-set of a function φ : Rn × [0, T)→ R and solves the initial-value problem{
φt + F |∇φ| = 0 in Rn × (0, T),

φ(x, 0) = φ0(x) on Rn × {0},(1.1)

where φ0 satisfies {x : φ0(x) = 0} = C0. Assuming the computational grid comprises
Nn points, the total complexity of the first-order algorithm solving (1.1) is O(Nn+1)
when endowed with the usual CFL condition ∆t ∝ 1/N . On the other hand, the
FMM [26, 27, 28, 29, 33] may be used when F = F (x) ≥ δ > 0 and is therefore suited
for monotone propagation. This approach reduces the dimensionality of the problem
by building the first arrival time function ψ̂ : Rn → R, i.e., t = ψ̂(x) gives the unique
time at which the front reaches x. This function solves the boundary-value problem{

|∇ψ̂| = 1
F in B0,

ψ̂(x) = 0 on C0,
(1.2)

where B0 is the unbounded component of Rn \ C0 for F > 0. The FMM solves (1.2)
in O(Nn logNn) time using a variant of Dijkstra’s algorithm [9]. Schemes derived
from the FMM include an extension to the case where F depends on time [34, 35] and
the generalized FMM [4]. Problem (1.2) may also be solved using the fast sweeping
method [32], which is a first-order accurate method running in O(Nn) time. When
F ≡ 1, higher-order methods exist, such as the one of Cheng and Tsai [5], which
exploits the relation between (1.2) and the time-dependent Eikonal equation.

The generalized FMM of [4] allows F to vanish and change sign albeit at the
expense of the computational time. In [31], when n = 2 the authors propose a scheme
that can handle such speed functions while featuring a computational complexity
comparable to that of the FMM. This approach considers the set M := {(x, t) :

x ∈ Ct}. Each point p ∈ M may be described as p = (x, y, ψ̂(x, y)) and/or p =
(ψ̃(y, t), y, t) and/or p = (x, ψ̄(x, t), t). In regions where |F | ≥ δ > 0, the algorithm

builds ψ̂ using the FMM, whereas near points where F = 0, it solves a PDE satisfied
by either ψ̃ or ψ̄. Despite a number of satisfactory results, the mechanism to change
representation is cumbersome, andM is undersampled near regions where F vanishes.

In the present paper, rather than limiting ourselves to the n + 1 representations
just mentioned, we now describeM locally with functions of the form ψ(u) where the
points u = (u1, . . . , un) belong to some hyperplane lying in Rn × [0, T]. Consider the
orthonormal spanning set for this hyperplane consisting of {û1, . . . , ûn}, and let the
normal be ûn+1. Thus in this convention, any point (u, un+1) of space-time Rn×[0, T]
may be written as (u, un+1) = u1û1 + · · · + unûn + un+1ûn+1. Section 2 shows that
ψ : Rn → R solves a Dirichlet problem of the form{

H(u, ψ(u),∇ψ(u)) = 0 in U ⊂ Rn,
ψ(u(x, t)) = un+1(x, t) on x ∈ Ct ∩ V

(1.3)

for appropriate neighborhoods U and V. The Hamiltonian function H : Rn×R×Rn →
R depends on ψ through the speed function F and involves constants that capture
the relative orientations of the two coordinate systems in use. Section 3 presents the
discretization of (1.3) using finite-differences, as well as the design of a constrained
minimization problem. Section 4 discusses the different parts of the algorithm for
the case n = 2. The protocol we propose is similar to the FMM: Points sampling

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2309

M first belong to the narrow band N before moving to the accepted set A. When
pa ∈ N is accepted, a local {û1, . . . , ûn+1}-coordinate system is found. Using pa
and another point in A, a new point is computed through the finite-difference solvers
and the optimization problem. Section 5 highlights the properties of the solvers and
the global scheme. In particular, convergence of the local solvers is addressed and
the total computational complexity is estimated. As illustrated in section 6 with
numerous examples, the output of the algorithm is a directed graph. Its meshsize is
bounded below by a predetermined parameter h, and its vertices provide a discrete
sampling of M. Given t ∈ (0, T), the front Ct can be recovered using interpolation.

Methods with a similar flavor have been explored in [25], which presents a high-
order fast interface tracking method, and [17], where the authors formulate n “quasi-
linear PDEs satisfied by the manifold’s local parametrization” and “solve that system
locally in an Eulerian framework.”

For clarity of illustration, the setting of our paper is n = 2, so that x = (x1, x2) =
(x, y), u = (u1, u2) = (u, v), and u3 = w. It is worth noting, however, that most of
the underlying ideas, which are presented in sections 2 and 3, easily extend to the
general higher dimensional case. Current obstacles to the full generalization of the
method lie in the design of a practical interface tracker, able to capture the global
features of the front at all times. The successful results of sections 4, 5, and 6 when
n = 2 provide a proof of concept that such a goal should be pursued in future work.

Our approach offers numerous advantages when n = 2. It extends previous work:
If the local and global systems coincide, then ψ = ψ̂, whereas if (û1, û2) = (ŷ, t̂) and
û3 = x̂, then ψ = ψ̃. By construction, the transition from one representation to
another is smooth, and the resolution of the sampling is regular. The initialization
is almost identical to the main procedure and does not require any information away
from C0. The accuracy of the scheme is O(h). If C0 is sampled by m points, the
computational complexity is bounded by CN , where C = max{O(m),O

(
10n+2

)
}

with N = O(mn). When run on a monotone example, for the same computational
time, our method yields a more accurate solution than the FMM.

2. Hyperplane representation. In this section, we derive problem (1.3) from
the initial-value problem (1.1) after making a few assumptions. We then argue that
the solution of (1.3) locally describes M and that a finite number of such solutions
provides a covering of M.

2.1. Assumptions. The set C0 is a closed, co-dimension-one subset of Ω ⊂ R2

without boundary, where Ω is bounded. Moreover, C0 is the graph of a C1 function.
The speed function F : R2 × [0, T] → R is continuous. It may vanish and change
sign. Under those assumptions, the level-set equation (LSE) in (1.1) is a Hamilton–
Jacobi equation with a unique continuous viscosity solution [6, 7, 8]. It follows that
M embeds in R2 × [0, T] as a C0 manifold. We denote as ν̂(x, t) the outward normal
to M at (x, t).

2.2. PDE on an arbitrary plane. Let a normal vector ν̄ ∈ S3 be given, and
consider a corresponding plane lying in xyt-space. We denote as ûv̂ŵ the unique right-
handed orthonormal coordinate system satisfying the following conditions: ŵ = ν̄, the
v̂ŵ-plane is vertical, and the t̂-component of v̂ is positive. See Figure 1. We have û

v̂
ŵ

 =

 α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 x̂
ŷ
t̂

 := M

 x̂
ŷ
t̂

 ,(2.1)

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2310 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

(a) M ⊂ R2 × [0, T]. The xyt-coordinate system is
the global one.

(b) Two neighborhoods and their
uvw-coordinate systems.

Fig. 1. Illustration of the notation for n = 2.

where the α’s, β’s, and γ’s are constants. In particular, α3 = 0 and β3 > 0 (see
Appendix A for details). Let us now assume that a neighborhood V of (x0, t0) ∈ M
may be represented as the graph of the C1 function:

ψ : R2 → R, ψ : u 7→ ψ(u).(2.2)

If ν̄ · ν̂(x0, t0) > 0, then by the implicit function theorem φ(x, t) = w − ψ(u), where
φ is the solution of (1.1). Using implicit differentiation, we replace the derivatives
appearing in (1.1) by

φxi = γi − αiψu − βiψv, i = 1, 2, and φt = γ3 − α3ψu − β3ψv.(2.3)

Using the orthonormality of the ûv̂ŵ-coordinate system, (1.1) can be rewritten solely
in terms of α3, β3, and γ3 as

[γ − (αψu + βψv)] +G

√
1 + ψ2

u + ψ2
v − [γ − (αψu + βψv)]

2
= 0,(2.4)

where the subscript ·3 was dropped, and G(u, ψ(u)) := F (x(u, ψ(u)), t(u, ψ(u))) was
introduced. Equivalently, (2.4) can be rearranged using the vectors R̂ := (α, β, γ) and
ν := (−ψu,−ψv, 1), as

ν · R̂+G

√
ν · ν −

(
ν · R̂

)2

= 0.(2.5)

Note that this formulation is independent of dimension. In the event where ν̄ =
ν̂(x0, t0), the point (x0, t0) is a local maximum of V, and we may explicitly relate the
orientation coefficients to the speed function:

R̂ =

(
0 ,

1√
1 + F 2(x0, t0)

,
−F (x0, t0)√
1 + F 2(x0, t0)

)
.(2.6)

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2311

We arrived at the following conclusion: Suppose ψ satisfies the boundary condition

ψ(u(x, t0)) = w(x, t0) when x ∈ Ct0 ∩ V(2.7)

and solves (2.5) on U ⊂ R2. Then letting t∗ := t(u, ψ(u)) for u ∈ U , we have that
x∗ := x(u, ψ(u)) ∈ Ct∗ .

2.3. Well-posedness. Equation (2.4) is a Hamilton–Jacobi equation of the form

H(u, ψ,∇ψ; R̂) := − [γ − βψv]−G(u, ψ)

√
ψ2
u + (β + γψv)

2
= 0,(2.8)

where we defined the Hamiltonian H : R2 × R× R2 → R. The well-posedness of this
equation is guaranteed in the class of viscosity solutions [1]. The following theorem
justifies defining H as the negative of the left-hand side of (2.4).

Theorem 2.1. The viscosity solutions of (1.1) and (2.8) are equivalent in the
sense that the zero-level-set of φ at various times t = t(u, w) is precisely the set of
points x = x(u, w) for which ψ(u) = w.

Note that this equivalence is investigated in the general case in Osher and Fedkiw’s
paper [22].

Proof. If M is C1 at a point p̄, then the manipulations of section 2.2 hold in the
strong sense. Thus, let M be singular at the point p̄, and consider the second-order
PDE,

φεt + F |∇φε| = ε∆φε, ε > 0,(2.9)

i.e., a viscous term was added to the right-hand side of the level-set equation. De-
fine ψε := w − φε(u, v). Following the same reasoning as in section 2.2, using the
orthonormal relations, as well as the fact that α3 = 0, (2.9) becomes

[γ − βψv] +G

√
ψ2
u + (β + γψv)

2
= −ε

[
ψεuu +

(
β2

1 + β2
2

)
ψεvv
]
.(2.10)

Taking ε to zero, the arguments detailed for example in section 1.5 of Lions’ book [18]
apply to yield that the Hamilton–Jacobi equation of interest is (2.8).

In light of this result, (2.8) is preferred over (2.4) in the rest of this paper.

2.4. Geometric properties. We illustrate how M can be globally described
by a covering of ψ-functions.

ψ provides a local representation of M. Suppose that the solution of (1.3) is such
that V := U×ψ(U) is C0. Let tmin = inf{t : (x, t) ∈ V} and tmax = sup{t : (x, t) ∈ V}.

Theorem 2.2. For any given t∗ ∈ (tmin, tmax), we have

{x ∈ R2 : ψ(u(x, t∗)) = w(x, t∗)} = Ct∗ ∩ V.

The proof follows the same argument as the proof of Theorem 4.2 in [31], and we
therefore omit it.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2312 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

Fig. 2. Illustration of the notation in Theorem 2.3. M is C0 along the blue line.

Covering of M. It follows from compactness that M can be covered by a finite
number of images of functions ψ, each solving a problem of the form (1.3). The
construction presented below builds one such covering that is particularly suited for
algorithmic purposes. Given ∆t > 0 and 0 ≤ t0 ≤ T −∆t, consider the strip

St := {(x, t) ∈M : t0 ≤ t ≤ t0 + ∆t}.(2.11)

Theorem 2.3. Suppose that Ct0 has codimension one in Rn× [0, T). There exists
a finite covering of St consisting of the graphs of functions ψi, where each ψi solves a
Dirichlet problem of the form (1.3) with boundary conditions imposed on Ct0 .

Proof. Consider an open covering of Ct0 by open segments s with the following
property: Defining

νav
0 :=

1

|s|

∫
ν̂ ds, where |s| =

∫
ds,(2.12)

for each p ∈ s we have ν̂(p) · νav
0 > 0. Since Ct0 is compact, we may extract a finite

open covering, say, S0 = {si : i = 1, 2, . . . , I}. Fix i, and define the future domain of
influence of si as the subset of St satisfying

Wi :={(x, t) : ∃ {(xn, tn)}∞n=1 → (x, t) such that for each

(xn, tn)∃ a characteristic of the LSE starting in si and ending at (xn, tn)}.

(See, for example, [12] for details on the method of characteristics.) See Figure 2 for
an illustration. We have St = ∪Ii=1Wi. Define

νav
∆t :=

1

|Wi|

∫
ν̂ dWi, where |Wi| =

∫
dWi.(2.13)

Note that lim∆t→0 ν
av
∆t = νav

0 . Picking ∆t > 0 small enough, it follows from the
continuity of M that for each p ∈ Wi, we have ν̂(p) · νav

∆t > 0. Consider the Dirichlet

problem H(u, ψ,∇ψ; R̂(νav)) = 0 with boundary conditions imposed at si ⊂ Ct0 .
From Theorem 2.2, Wi is contained in the graph of ψ.

A global covering may then be obtained from decomposing M into strips of the
form (2.11) and extracting a finite subcover.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2313

Fig. 3. The points pa = (ua, va, wa), pb = (ub, vb, wb), and pc = (uc, vc, wc) belong to A.
Given ud = (ud, vd), we wish to compute wd.

3. Discretization. Throughout this section, assume that the uvw-coordinate
system is fixed. Suppose we are given two points belonging to M of the form pa =
(ua, wa) and pb = (ub, wb) and wish to compute wd = ψ(ud) at a location ud =
(ud, vd). We will refer to pa and pb as the parents of the child point pd = (ud, wd).
In section 3.1, we first assume that ud is given and propose two different solvers that
take as input pa, pb, and ud and return a value wd. Then in section 3.2, we turn to the
question of how ud should be determined. The answer takes the form of a constrained
minimization problem, for which we propose two different methods.

Section 3 thus provides a framework for solving the problem locally. Global issues
also need to be addressed—see section 4.4.

3.1. Solving the PDE. As illustrated in Figure 3 define

~sa := ud − ua, ~sb := ud − ub, ~sc := ud − uc(3.1)

and let ŝi = ((si)u, (si)v), where i = a, b, c, be the corresponding unit vectors. Then

ψi =
wd − wi
|~si|

where i = a, b, c,(3.2)

provides first-order approximations of the directional derivatives of ψ at ud. Making
use of the calculus identity ψk = ∇ψ · k̂ for any unit vector k̂, we have(

ψu
ψv

)
=

(
(sa)u (sa)v
(si)u (si)v

)−1(
ψa
ψi

)
=: B−1

(
ψa
ψi

)
, where i = b, c,(3.3)

provided that ŝa and ŝi are not colinear. We write

ν̃ = − ~M wd − ~N with ~M := (mu,mv, 0) and ~N := (nu, nv,−1),(3.4)

where the constants mu, mv, nu, and nv depend on (ua, wa), (ui, wi), where i = b or
c, and ud. The quantity ν̃ provides a first-order approximation of ν.

3.1.1. Direct solver. Consider approximating G by setting it equal to G0 =
G(pa). Note that this is independent of wd, which implies that the relation

ν̃ · R̂+G0

√
ν̃ · ν̃ −

(
ν̃ · R̂

)2

= 0(3.5)

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2314 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

can be rearranged as a quadratic in wd. Indeed, first rewriting (3.5) as(
ν̃ · R̂

)2 (
1 +G2

0

)
= G2

0 (ν̃ · ν̃)(3.6)

and then making use of (3.4), we arrive at(
ν̃ · R̂

)2

= k1w
2
d + 2k2wd + k3 and ν̃ · ν̃ = k4w

2
d + 2k5wd + k6,(3.7)

where

k1 =
(
R̂ · ~M

)2

, k2 =
(
R̂ · ~M

)(
R̂ · ~N

)
, k3 =

(
R̂ · ~N

)2

,

k4 = ~M · ~M, k5 = ~M · ~N, k6 = ~N · ~N.
(3.8)

Rearranging further yields(
k1 +G2

0(k1 − k4)
)
w2
d + 2

(
k2 +G2

0(k2 − k5)
)
wd +

(
k3 +G2

0(k3 − k6)
)

= 0

. The discriminant of this quadratic reads

0 + ρ1G
2
0 + ρ2G

4
0 = G2

0

(
ρ1 + ρ2G

2
0

)
,(3.9)

where ρ1 = −2k2k5 + k1k6 + k3k4 and ρ2 = ρ1 + k2
5 − k4k6. We set

wd =
−
(
k2 +G2

0(k2 − k5)
)

+G0

√
ρ1 + ρ2G2

0

(k1 +G2
0(k1 − k4))

.(3.10)

Since sign(γ) = −sign(G0), this choice of root minimizes td = αud+βvd+γwd, where
α = 0 and β > 0. This is consistent with the control theoretical approach to this
problem [11, 13, 33, 34]. If 0 = k1 + G2

0(k1 − k4), the quadratic relation degenerates
to a linear one with solution:

wd = − k3 +G2
0(k3 − k6)

2 (k2 +G2
0(k2 − k5))

.(3.11)

The outward normal to M at pd can then be computed as ν̂d = ν̃/|ν̃|.
Remark. As mentioned in section 2.3, when R̂ = (0, 0,±1), the PDE reduces to

the Eikonal equation. If working on a Cartesian grid, formulas (3.10) and (3.11) can
be verified to agree with the solvers used in the traditional FMM.

3.1.2. Iterative solver. An alternative to approximating the speed term G as
in section 3.1.1 is to solve (2.5) iteratively in pseudotime τ , i.e., Let

ν̃n := − ~M wnd − ~N and Gn := F (x(ud, w
n
d), t(ud, w

n
d))(3.12)

and iterate

ν̃n · R̂+Gn
√
ν̃n · ν̃n −

(
ν̃n · R̂

)2

=
wn+1
d − wnd

∆τ
(3.13)

until |wn+1
d −wnd | is below some predetermined tolerance. The direct solver can be used

to initialize w0
d. The size of the pseudotime step is determined based on Definition 5

of [19]—see Appendix B for details.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2315

3.2. Optimal sampling. Suppose that a set A of points sampling a part of
M is available. Given pa, pi ∈ A, we now consider where to compute a new point
pd. Constraints are heuristically imposed so as to efficiently build a regular sampling
of M. Rigorous justifications of these choices are provided in section 5, where the
properties of the scheme are analyzed.

3.2.1. Constrained minimization problem.
Accuracy. According to (3.2), the accuracy of either solver increases as |~sa| and

|~si| become smaller. We combine those requirements into a single function to be
minimized:

f(ud) := |~sa|2 + |~si|2.

The result is that the child point pd should lie close to its parents. However, we now
argue that it should not be too close.

Evenness of the sampling. Repulsion between pd and its parents is introduced
to avoid oversampling parts of M. The minimum three-dimensional (or (n + 1)-
dimensional) distance between pd and any other point in A should be at least h,
where h is a predetermined parameter. As will be clear in section 6, h bounds the
meshsize of the resulting graph from below.

Characteristic structure. Last, we make sure that pd does not violate the charac-
teristic structure of the solution: wd must be real, and in addition pd has to satisfy
td ≥ max{ta, ti} for causality to hold. We impose the more stringent condition:

td ≥ max{ta, ti}+ ∆t, where ∆t =
h√

G2(uj) + 1
,

with j = a if max{ta, ti} = ta and j = i otherwise. This choice of ∆t speeds up
computations and simplifies our analysis, as will be evident in section 5.1.1, where
∆t = βh.

Optimal sampling—summary. Given a pair of points pa, pi ∈ A, we wish to
minimize the objective function

f(ud) = |~sa|2 + |~si|2(A)

subject to the constraints

g1(ud) = =(wd) = 0,(V1)

g2(ud) = td −max{ta, ti} ≥ ∆t,(V2)

g3(ud) = min
p∈A
{‖pd − p‖} ≥ h.(E)

3.2.2. Solving the constrained minimization problem. Although the ob-
jective function is simple, the constraints are nonlinear functions of ud. Unlike the
other two, constraint (V1) does not require evaluating wd. If using the direct solver, it
amounts to checking the sign of the discriminant. Constraint (V2) requires conversion
of the data to xt-coordinates. Constraint (E) can be very costly to verify if A is large.
This is why it is preferable to work with a predetermined small subset of A. To be
efficient, a scheme solving this problem should not require too many evaluations of
the constraints. We briefly discuss two possible methods and relegate the details of
the procedure to Appendix C.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2316 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

The grid method. This simple yet efficient approach is the one we use in practice.
The problem is solved using grids sampling a neighborhood of pa and pi in the uv-
plane. The objective function f is computed at those points where all three constraints
are satisfied. The location of the minimum of f is found, and a finer grid centered at
this point is defined. The procedure is repeated until convergence, e.g., the change in
the value of the minimum is below some predefined tolerance.

The Lagrangian method. Following [3] (sections 2.1, 2.2, and 3.1), the augmented
Lagrangian L is defined by adding the three constraints to f along with Lagrange
multipliers µi and penalty coefficients ci > 0, where i = 1, 2, 3. The following pro-
cedure is iterated until convergence, e.g., the change in the value of the minimum
is below some predefined tolerance. First, for some values of the ci and µi, the un-
constrained minimum of L is found. This can be done using BFGS along with line
minimization [24]. Then the ci’s are increased and the µi’s are updated. Although
convergence is guaranteed, this method requires a large number of evaluations of the
constraints, which makes it too slow for our purposes.

4. Algorithms. We present the algorithms used to generate the results in
section 6.

4.1. Initialization. Little information is required to initialize the algorithm.
The input is a sampling of C0 consisting of m points and m− 1 undirected segments.
The normal ν̂ at each point and a final time must also be provided.

Store those pieces of information into a list, say, L. In the following, we will
assume that each row of L contains data pertaining to one point, e.g., if p = (x, t) =
(x1, x2, . . . , t) has normal ν̂(x, t), then L might initially look like

x1 x2 . . . t ν̂1(x, t) ν̂2(x, t) . . . ν̂n+1(x, t)

row 1 −.1625 0.0080 . . . 0.0342× 10−15 −.1634 0.301 . . . −0.5668
row 2 −.1705 0.0099 . . . 0.0398× 10−15 −.1706 0.385 . . . −0.5909

...

The variables MN and MA help monitor the number of points in N and A, respec-
tively. See Algorithm 1.

Algorithm 1. Initialization.

1: A ← L, MA ← m+ 1
2: N ← L, MN ← m+ 1
3: h← (minp, q∈L ‖p− q‖) /2.

4.2. Get a local representation. This routine is called when a point pa is
accepted to go from a global to a local representation. See Algorithm 2.

Algorithm 2. Get a local representation.

1: Find the L closest neighbors of pa among Ã and form the list S. Set Ã = S.
2: Find ν̄ such that ν̄ · ν̂(pi) > 0 for each pi ∈ S. The default value is ν̄ = ν̂a.
3: Compute the uvw-coordinates of the points in S using relation (2.1).
4: Find the point pb ∈ S lying closest to pa with ub − ua > h/2.
5: Return: Ã, the change of coordinates matrix M , and pb.D

ow
nl

oa
de

d
09

/2
2/

16
 to

 1
32

.2
06

.1
50

.1
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2317

4.3. Computing a new point. Once the minimum ud is found using the direct
solver, the iterative solver is run to improve the accuracy of the solution wd. See
Algorithm 3.

Algorithm 3. Compute a new point.

1: ∆t = h/
√
G2(ua) + 1, pd = 0, ν̂d = 0.

2: Solve the constrained optimization problem defined by pa, pi, G(ua), h, and ∆t
to get ud. See section 3.2 and Appendix C for details.

3: if a solution to the optimization problem was found then
4: Compute wd associated with ud using the iterative solver detailed in

section 3.1.2.
5: Compute the normal ν̂d at (ud, wd).
6: Get pd and ν̂d in (x, t)-coordinates using the change of coordinates matrix M .
7: end if
8: Return: [pd; ν̂d].

4.4. Global constraints. The global features of the manifold are monitored
with the help of the structure Book, which consists of a list of segments. For example,
if N has the form

N = [p1; p2; . . . ; pMN]
T
. then Book = [p2 − p5; p11 − p23; . . . ; p14 − p8]

T
.(4.1)

Segments are not directed, i.e., [p1−p2] is the same as [p2−p1]. Initially, the collection
of segments lies in the xy-plane and provides a piecewise linear approximation of C0.
We impose the following constraints on Book.

• Multiplicity: Each point p ∈ N appears exactly twice in Book.
• Loops: A segment cannot start and end at the same point. A segment can

appear only once in Book.
• Intersections: Segments cannot intersect.
• Spikes: The acute angle formed by two segments sharing an endpoint cannot

be less than ≈ 0.2π.
The situations are illustrated with simple examples in Figures 4–7. The framed

subfigures are obtained after connecting hanging nodes, which are nodes that appear
only once in Book. This is done as follows.

Stitching hanging nodes. Given a hanging node p1 = (x1, t1), let p2 = (x2, t2) be
the hanging node that minimizes the xy-distance ‖x1 − x2‖. Then add the segment
[p1 − p2] to Book. Repeat until there are no hanging nodes left.

Fig. 4. Multiplicity.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2318 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

Fig. 5. Loops. Once the double-loop is removed, the nodes are either stitched (top situation)
or removed from N (bottom situation).

Fig. 6. Intersections. The final configuration must differ from the original one.

Fig. 7. Spikes.

Those global constraints are imposed to N in Algorithm 4. Note that we omit
the details of the updating procedure of Book, which consists in relabeling nodes and
possibly deleting some segments. See [30] for details.

Remark. When a new point is computed by Algorithm 3, the checks performed
at lines 7 and 8 need only involve the segments attached to that new point, which
requires an O(1) number of operations.

4.5. Main loop. A couple of remarks on Algorithm 5 are in order. Lines 5–7
are ignored during the first m iterations of the main loop: This can be considered as
the end of the initialization procedure. The fact that the algorithm does not compute
a new value when ta > final time implies that N is eventually empty, at which point
the algorithm naturally ends. If Algorithm 3 fails, next-to-nearest neighbors are used
(line 14). Since |Ã| ≤ L, this occurs at most L times. Here, we present the algorithms
with i = b. The procedure is unchanged if i = c.D

ow
nl

oa
de

d
09

/2
2/

16
 to

 1
32

.2
06

.1
50

.1
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2319

Algorithm 4. Book keeping of N .

1: if MN > 1 then
2: if a new point was computed by Algorithm 3 then
3: Update Book.
4: else
5: Update and clean Book.
6: end if
7: Check intersections, and clean Book if a point was removed from N .
8: Check spikes, and clean Book if a point was removed from N .
9: end if

10: procedure Clean Book.
11: do
12: Multi = 0; Loop = 0; Inter = 0;
13: Check multiplicity, and set Multi to 1 if a point was removed from N .
14: Check loops, and set Loop to 1 if a point was removed from N .
15: Check intersections, and set Inter to 1 if a point was removed from N .
16: while Multi+Loop+Inter > 0
17: end procedure

Algorithm 5. Main loop.

1: counter = 1
2: while N is not empty do
3: Find p ∈ N with the smallest t value, call it pa = (xa, ta).
4: Remove [pa; ν̂a] from N . MN ←MN − 1
5: if counter> m then
6: Add [pa; ν̂a] to A in the MA-th row. MA ←MA + 1
7: end if
8: if ta < Final time then
9: Set Ã = A and get a local representation using Algorithm 2.

10: Run Algorithm 3 with the pair pa - pb to get pd, ν̂d.
11: if Algorithm 3 was successful at finding a new point then
12: Add [pd; ν̂d] to N in the MN -th row. MN ←MN + 1
13: else
14: Remove [pb; ν̂b] from Ã, find a new pb ∈ Ã, and go back to line 10.
15: end if
16: end if
17: Run Algorithm 4 to impose the global constraints on N .
18: counter ← counter+1
19: end while

5. Properties of the scheme. We first discuss local properties of the scheme by
approximating the solution of the optimization problem and asserting the convergence
of the solvers. We then turn to global properties.

5.1. Local properties. Let us assume that pa and pi ∈ A are exact, i.e., pa,
pi ∈ M and that ‖pa − pi‖ = O(h). Moreover, consider that we are working on a
neighborhood where ψ is C1, so that ν̄ = ν̂a and wi = wa + o(h2). We investigate the

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2320 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

properties of the algorithms used to compute pd. We show that the constraints of the
optimization problem are such that the discretizations of (2.5) are monotone.

5.1.1. Optimization. The objective function can be rewritten as

f(ud) = 2
(
‖ud − umin‖2 − ua · uTi

)
, where umin =

(
ua + ui

2
,
va + vi

2

)
,(5.1)

i.e., f is a paraboloid which reaches its minimum at umin. It follows from the convexity
of f that the solution of our optimization problem either is umin or lies on the boundary
of the feasibility set. In the limit where h → 0, we expect wmin ≈ (wa + wi)/2.
Recalling the relation t = βv + γw, if γ is small we may have tmin ≤ max{ta, tb},
which violates constraint (V2). As a result, in general umin does not belong to the
feasibility set.

Turning to constraint (V1) requires the study of the sign of ρ1 + ρ2G
2
0. It can be

shown that

ρ1 ≥ ‖M‖2‖N‖2ε for some ε = ε(R̂, ~M, ~N) > 0.(5.2)

Picking δ > 0 such that ε ≥ δ2/(1 + δ2) gives ρ1 + ρ2G
2
0 ≥ 0 when |G0| < δ. When

|G0| ≥ δ > 0, using the approximation wi = wa yields the following estimate:

ρ1 +G2
0ρ2 ≈

(
γ2 − β2G2

0

)
m2
u +m2

v = m2
v ≥ 0.(5.3)

Next, we momentarily focus on the solution to the following subproblem: Mini-
mize (A) subject only to constraint (V2). The constraint is equivalent to

β (vd − va) + γ (wd − wa) ≥ βh =⇒ (vd − va) + o(h2) ≥ h(5.4)

so that it primarily constrains vd. Thus, as h→ 0, the solution tends to

ud = umin, vd = max {h+ va, vmin} .(5.5)

The interplay between (V2) and (E) must be addressed. If pj ∈ A since ta ≥ tj ,

β (vd − vj) + γ (wd − wj) ≥ βh =⇒ (vd − vj) +O(h2) ≥ h(5.6)

and so ‖pd − pi‖ ≥ h as h −→ 0.
In conclusion, under the assumption that ψ is locally C1, in the limit where

h −→ 0, we have that (V1) holds, and satisfying constraint (V2) implies satisfying
constraint (E). It follows that the solution of the optimization problem is given by
the minimum of (5.1) subject to the constraint (5.4). Note that in the event where
the assumption on the regularity of ψ is dropped, neither existence nor uniqueness
can easily be asserted.

5.1.2. Direct solver. Given a location ud, the direct solver returns a value
wdir
d using either (3.10) or (3.11). We first show that this discretization is degenerate

elliptic in the sense of [19], i.e., letting

H̄(ψi, ψa) := − [γ − βψv(ψa, ψi)]−G0

√
(β + γψv(ψa, ψi))

2
+ ψ2

u(ψa, ψi)(5.7)

we show that H̄ is nondecreasing in each variable. Recall relation (3.3):

ψu(ψa, ψi) =
1

detB
((si)vψa − (sa)vψi) , ψv(ψa, ψi) =

1

detB
(−(si)uψa + (sa)uψi).

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2321

From the previous subsection, we expect |~sa| and |~si| to be O(h), as well as

− (si)u
detB

= c1 ≥ 0 and
(sa)u
detB

= c2 ≥ 0.(5.8)

Moreover, given our assumption that ν̄ = ν̂(pa), we have that ∇ψ(ua) = ~0, and

∇ψ(ud) = ∇ψ(ua) + ~h = ~h,(5.9)

where ~h is such that |~h| = O(h). We have

∂H̄

∂ψa
= β

∂ψv
∂ψa

−G0

(β + γψv)γ
∂ψv

∂ψa
+ ψu

∂ψu

∂ψa√
(β + γψv)

2
+ ψ2

u

(5.10)

= β
∂ψv
∂ψa

−G0

γ ∂ψv

∂ψa
+
(
γ2ψv

∂ψv

∂ψa
+ ψu

∂ψu

∂ψa

)
/β√

1 + (2βγψv + γ2ψ2
v + ψ2

u) /β2
(5.11)

= βc1 −G0
γc1 +O(h)√

1 +O(h)
(5.12)

= (β −G0γ) c1 +O(h)(5.13)

=
√

1 +G2
0 c1 +O(h) ≥ 0 for h small enough.(5.14)

The argument that ∂H̄/∂ψi ≥ 0 is completely analogous. We then show that the
solver is stable in the sense of Barles and Souganidis [2]. Consider again the quadratic(

(G2
0 + 1)k1 −G2

0k4

)
w2
d + 2

(
(G2

0 + 1)k2 −G2
0k5

)
wd +

(
(G2

0 + 1)k3 −G2
0k6

)
= 0.

Using (2.6), (3.4), (3.8) and letting |~si| = cih, where ci is O(1), we may rewrite it as

aw2
d + 2(b1 + hb2)wd + (c1 + hc2) = 0, where a, b1, b2, c1, c2 are O(1).(5.15)

Assuming that h < 1, it is easily shown that the solution can be bounded by a bound
independent of h. Verifying the consistency of the scheme reveals that it is first-order
accurate with respect to h. Locally uniform convergence follows from [2].

5.1.3. Iterative solver. Given a location ud, the iterative solver returns a value
witer
d using (3.13). The initial guess is provided by the direct solver. We let

H̃(wnd , ψ
n
a , ψ

n
i) := − [γ − βψv(ψna , ψni)]−Gn

√
(β + γψv(ψna , ψ

n
i))

2
+ ψ2

u(ψna , ψ
n
i),

where ψni = (wnd−wi)/|~si| for i = a, b, c, and Gn := F (x(ud, w
n
d), t(ud, w

n
d)). Without

loss of generality, we assume that the scheme is proper in the sense of [19], considering
H̃ + ε̃wn if necessary. From the previous section, it follows that H̃ is a degenerate
elliptic scheme. Theorem 8 of [19] guarantees convergence to the unique solution for
arbitrary initial data.

5.2. Global properties.

5.2.1. The sets A and N . We demonstrate some properties of these sets.

Lemma 5.1. The size of N cannot exceed m, the number of points sampling C0.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2322 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

Proof. Initially, the size of N is m. Each iteration of the main loop successively
removes exactly one point from N (line 4); adds at most one point to N (line 12);
may remove points from N (Algorithm 4).

The following lemma justifies promoting the point in N with the smallest time
value to the set A.

Lemma 5.2. Subsequent iterations of the Main Loop will not affect the value of
the point in N with the smallest time value.

Proof. Suppose that during the k-th iteration of the main loop, pa ∈ N is pro-
moted to the set A, and let us denote by p∗ the point in N with the smallest time
value. It follows from constraint (V2) that if pa has a child point, its time value
satisfies td ≥ ta + ∆t > ta ≥ t∗. Therefore pd cannot belong to the past domain of
influence of p∗.

Remark. It is not possible to closely mimic the proofs of Sethian [26] or Tsitsiklis
[33]. Indeed, those proofs assume the existence of a graph where the values of ψ (resp.,
V) are to be found. In constrast, in our framework, the choice of which point gets
promoted to the set A directly influences the shape of the graph sampling M.

5.2.2. Global convergence. When discussing the global convergence of the
scheme, we distinguish between different cases based on the regularity and topological
properties of M.

• M is C1. Then the local solvers may be used anywhere on M, since the
correspondence between the LSE and the Dirichlet problem highlighted in
section 2.2 holds in the strong sense. As h→ 0, the assumptions listed in the
beginning of section 5.1 hold and imply that the local solvers are convergent.
Considering the relation ∆t = h/

√
G2(ua) + 1 as a CFL condition ensures

the stability of the global scheme. Global convergence is thus expected.
• M is C0 and the singularities arise from topological changes. Our argument

is that the global constraints imposed on N are such that the local solvers are
used only in regions ofM that are smooth. Indeed, topological changes imply
that the segments monitored by Book intersect. Such a situation should
be prevented by Algorithm 4. It is therefore expected that the scheme is
convergent in those situations as well—although no proof is available at this
point.

• M is C0. Should the speed F be merely continuous, M may develop sin-
gularities without undergoing topological changes. In those situations, it is
unclear whether the scheme globally converges. Let us note that the iterative
scheme in section 5.1.3 should converge regardless of the regularity of the
Hamiltonian. Nonetheless, the size of the pseudotime step ∆τ required for
convergence may be hard to determine. For that reason, the examples con-
sidered in the next section only involve speeds that are C1 everywhere along
the curve.

5.2.3. Computational time. Recall that, in what follows, n = 2 and m is
the number of points sampling C0. We first bound the number of operations in one
iteration of the main loop. Finding the minimum among N can be done in O(logm)
iterations using a binary heap [26]. Finding the L closest neighbors of pa among A,
where L is typically ∼10 requires ∼mL number of operations. (Since A is ordered in
time, it is only necessary to look at the tail of the list.)D

ow
nl

oa
de

d
09

/2
2/

16
 to

 1
32

.2
06

.1
50

.1
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2323

The grid method performs at most five iterations on an sn grid, where s is typically
∼10. Computing w and evaluating constraints (V1) and (V2) at each point requires
∼10 operations. Evaluating constraint (E) requires ∼L operations. We arrive at a
total of 5sn×10×L = O(10n+2) operations to find ud. The complexity of the iterative
solver is hard to bound a priori. Indeed, it is currently unclear how many operations
may be required to compute the CFL condition. However, when F ∈ C1(Rn ×
[0, T]), we find that devoting ∼102 operations to this task results in a solver that only
requires O(10) iterations to converge. Updating Book in Algorithm 4 requires O(m)
operations, and as noted earlier, the other procedures usually require O(1) operations
but may require up to O(m) (e.g., when topological changes occur). We arrive at the
conclusion that the cost of one iteration is bounded by max{O(m),O

(
10n+2

)
}.

The parameter m is determined by the user and directly influences the total
number of points N computed by the algorithm. We have h ≈ length(C0)/(2m) so
that h = O(1/m).

When F ≡ C or F = F (t), thenM is roughly decomposed into I strips comprising
O(m) points. We have I ≤ TF/(∆t)min, where (∆t)min = h/

√
maxG2 + 1 = O(h),

which yields a reliable estimate for the total number of points:

N = (# of strips) × (# points per strip) =
TF

O(h)
× O(m) = O(m2).(5.16)

When F = F (x, t), thenM no longer exhibits a stratified structure. However, in
general, we still expect a strip of average height ∆t = O(h) to contain O(m) points,
and therefore we arrive at the same estimate for N .

In summary, the total cost of the algorithm is CN , where

C = max{O(m),O
(
10n+2

)
} and N = O(m2).(5.17)

Remark. Although the number of operations required to find ud is admittedly
large, they can be performed fairly efficiently. In MATLAB for example, the entire
procedure can be vectorized. Empirically, it is found to take no more than 33% of the
total computational time. (See Appendix D.)

6. Results. We illustrate the properties of the algorithm through various exam-
ples. More details about the tests procedures can be found in Appendix D.

6.1. Examples. With the exception of example (c), C0 consists of a circle cen-
tered at the origin. The corresponding manifolds M are presented in Figure 8. The
exact normal is used to initialize the algorithm.

(a) The expanding circle. Using the constant speed F ≡ 1 yields a manifold M
that consists of a truncated cone.

(b) The football. The speed is set to F (t) = 1− e10t−1, resulting in a circle that
first expands and then contracts. M then resembles an American football.

(c) Two circles. As in the previous example, the time-dependent speed F (t) =
1 − 2t changes sign. However, the fact that C0 now consists of two disjoint circles
implies that topological changes occur during the evolution.

(d) The oscillating circle. The speed is set equal to F = a sin(b(t + c)) for some
constants a, b, and c.

(e) The escaping circle. The speed is such that the circle first expands and then
moves in the positive x-direction while growing.

(f) The 3-leafed rose. F depends on the polar angle in such a way that Ct even-
tually takes the shape of a 3-leafed rose.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2324 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

(a) The expanding circle (b) The football

(c) Two circles (d) The oscillating circle

(e) The escaping circle (f) The 3-leafed rose

Fig. 8. The manifold M in xyt-space. C0 points are featured in blue.

6.2. Local properties. In the following, the error associated to each point is
measured as Ep := |φ(p)| = |φ(x, t)|, where φ is the exact solution to the LSE (1.1).

6.2.1. Optimization problem. We start with an analysis of the grid method
used to solve the optimization problem. Convergence results are presented on Figure 9
for examples (a), (d), and (f). The errors associated with the solutions of the direct
and the iterative solver are both recorded. Second-order convergence with respect to
the repulsion parameter h is clear. This result is consistent with the test procedure:

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2325

Fig. 9. Local convergence results for examples (a), (d), and (f).

Table 1
Number of iterations.

h (a) (d) (f)

10−2 1 10 9
10−3 1 9 9
10−4 1 9 8
10−5 4 8 7
10−6 6 7 6
10−7 8 10 7

(a) The football, ex. (b) (b) The oscillating circle, ex. (d) (6 periods).

Fig. 10. Error versus time.

As h gets smaller, the child point moves closer to its parents, but the distance between
the two parent points also decreases. For the most general case represented by example
(f), the iterative solver slightly increases the accuracy of the solution. The number of
iterations required to reach the tolerance is O(1), as recorded in Table 1.

6.2.2. Error propagation. We now discuss data obtained from running a full
simulation. Convergence results for examples (b) and (d) are presented in Figure 10.
In Figure 10(a), the error is seen to behave nicely even near the “tip” of M. Note
that the code naturally stops once Ct = ∅. Moreover, the stratified structure alluded
to in section 5.2.3 is evident. The symmetry of example (d) gives rise to cancellations
as the circle contracts. The error appears to increase at a slow pace.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2326 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

6.3. Global properties. Define

L1(E) = hn
∑
p∈A

Ep, L2(E) =

√
hn
∑
p∈A

E2
p , L∞(E) = max

p∈A
Ep(6.1)

with n = 2, as well as the Haussdorff distance between the reconstructed and the
exact curve, denoted by LH . We first consider qualitative features of the manifoldM
before turning to global convergence results and speed tests.

(a) The expanding circle, ex. (a) (b) The expanding circle, ex. (a)

(c) The football, ex. (b) (d) The football, ex. (b)

(e) The 3-leafed rose, ex. (f) (f) The 3-leafed rose, ex. (f)

Fig. 11. Sampling of M returned by the the algorithm.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2327

(a) Distance to Parent a (b) Distance to Parent b

Fig. 12. Three-dimensional distance from a child to each of its parents, in units of h.

(a) Full set (b) Side view of those points with |x| < 0.5

Fig. 13. Sampling of M returned by the algorithm for example (c), the two circles.

6.3.1. Evenness of the sampling. As can be seen from Figure 11, the sampling
of M is regular. This is confirmed when the distance from a child to its parents is
monitored in example (b); see Figure 12.

6.3.2. Domain of influence. Figure 11(a) may give the impression that the
data propagate by spiralling outward. However, this is not the case, as can be seen
from tracking a point’s ancestry and descendance, as in Figures 11(b) and 11(d). It
is of particular interest to note that the true characteristic going through the point
does lie in the numerical past and future domains of influence.

6.3.3. Topological changes. The two-circles example illustrates the ability of
the algorithm to deal with topological changes. As can be seen from Figure 13, the
code naturally stops computing points when it reaches the y-axis. As a result, the
circles appropriately merge. Their separation is also well-captured.

6.3.4. Convergence results. Convergence results are presented in Figure 14,
along with the exact and the reconstructed curves obtained for some simulations.
Example (e) is used to illustrate the robustness of the algorithm whenM is smooth.
Qualitatively similar results are obtained for examples (d), (e), and (f), namely, first-
order convergence with respect to h is observed in all the norms considered. Similar

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2328 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

(a) The escaping circle, ex. (e) (b) The escaping circle, ex. (e)

(c) The football, ex. (b) (d) The football, ex. (b)

(e) The two circles, ex. (c) (up to T = 0.5) (f) The two circles, ex. (c)

Fig. 14. Left: Global convergence results. Right: Exact and reconstructed curves.

results are obtained for the football example, despite the fact thatM is only C0. The
two-circles example also converges with first-order accuracy in the L1, L2, and LH
norms. Convergence in the L∞ norm is not as clear.

6.3.5. Speed tests. Our method is now compared to the standard first-order
FMM; see, for, example [26]. The solution to example (a) is computed on the set
|x| < 0.75 for various gridsizes—see Appendix D. The CPU times are presented in
Figure 15(a). Note that the vertical axis is the L1 norm of the error associated with

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2329

(a) The expanding circle, ex. (a) (b) Results obtained using our method

Fig. 15. Accuracy of the solution versus CPU times.

the sampling ofM. It is apparent that for higher accuracies, our method is faster than
the standard FMM for this example. Figure 15(b) also presents CPU times obtained
for nonmonotone examples: The trend is found to be similar to the monotone case.

Remark (see Appendices B and C). We point out a few changes that can be made
to improve the computational speed of the code. As noted at the end of section 5.1.1,
constraints (E) and (V2) are not necessarily equivalent. However, since in practice
(V2) =⇒ (E) for an overwhelming number of points, the verification of constraint (E)
may be taken out of the grid method and checked a posteriori. Based on Figure 9,
running the iterative solver does not necessarily improve the accuracy of the solution.
Making the stopping criterion depend on h, e.g., |wn+1

d − wnd | ≤ 10h∆τ , may avoid
unnecessary computations.

Conclusion. We presented a scheme that describes the nonmonotone propaga-
tion of fronts while featuring a numerical complexity comparable to that of the stan-
dard FMM. Local convergence was demonstrated and verified. Evidence of global
convergence was supported by several examples where F ∈ C1. The most general
case, i.e., F ∈ C0, requires further theoretical investigation and will therefore be the
subject of subsequent papers. The theory presented in sections 2 and 3 trivially ex-
tends to higher dimensions. Nonetheless, some practical obstacles currently prevent
the design of an algorithm when n > 2. The most prominent one is to properly mon-
itor the global features of the manifold, as in Algorithm 4—see [10, 15, 16] for the
case n = 3. Moreover, choosing an appropriate triplet of parents still requires some
thought.

As it stands, the algorithm is first-order accurate. It may be extended to higher
order using filtered schemes [14, 20]. Allowing h to depend on (x, t) would increase
the accuracy in regions with high mean curvature and avoid unecessary computations
in other regions. The precise adaptivity criteria must be carefully addressed. A
different approach is to resort to reseeding by introducing points to the narrow band
in regions of the front that are undersampled. We conclude by remarking that the
novel ideas presented in this paper may apply to other evolution equations, such as
linear advection, anisotropic propagation, or mean curvatuve flow.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2330 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

Appendix A. uvw-coordinate system.

A.1. Tilted plane. Let a unit normal vector ν̄ = (n1, n2, n3) ∈ S3 define a
plane through the origin of the form t = ax+ by, where a = −n1/n3 and b = −n2/n3.
Define µ =

√
1 + a2 + b2, as well as ŵ = ±(a, b,−1)/µ, where the sign is chosen such

that sign(ŵ3) = sign(n3). The following coordinate system can be verified to satisfy
the conditions listed in section 2:

u = ± 1√
a2+b2

(b , − a , 0) ,

v = 1√
a2+b2 µ

(
a , b , a2 + b2

)
,

w = ± 1
µ (− a , − b , 1) .

(A.1)

A.2. Vertical plane. If n3 = 0, then ν̄ ∈ S3 describes a vertical plane. The
orthonormal coordinate system we use is then u = (− n2 , n1 , 0) ,

v = (0 , 0 , 1) ,
w = (n1 , n2 , 0) .

(A.2)

A.3. ν̄ is the outward normal to M. Suppose that M is C1 at some point
pa and that ν̄ = ν̂(pa). If |F (pa)| > 0, then a neighborhood of pa is locally described
by ψ(x), where ψ satisfies [26]:

|∇ψ(xa)| = 1

|F (xa)|
.(A.3)

Then φ(x, t) = sign(F (pa)) (ψ(x)− t), and we have

ν̂ = sign(F (pa))
(ψx, ψy,−1)√
ψ2
x + ψ2

y + 1
.(A.4)

Using the PDE (A.3) and the results from section A.2 with a = ψx and b = ψy, we
get

β3 =
1√

1 + F 2(pa)
and γ3 =

−F (pa)√
1 + F 2(pa)

.(A.5)

If F (pa) = 0, then ν̂(pa) describes a vertical plane, and β3 = 1 and γ3 = 0.

Appendix B. The iterative solver. The size of the pseudotime step used in
the iterative solver is determined as follows. Defining the left-hand side of (3.13) as
−H̃(wn), we set ∆τ = 9

10
Q
2ε , where

|H̃(w1)− H̃(w2)|

≤ |
(
ν̃2 − ν̃1

)
· R̂|+ |G1|

∣∣∣∣∣
√
ν̃1 · ν̃1 −

(
ν̃1 · R̂

)2

−
√
ν̃2 · ν̃2 −

(
ν̃2 · R̂

)2
∣∣∣∣∣

+ |G1 −G2|
√
ν̃2 · ν̃2 −

(
ν̃2 · R̂

)2

=: Q,

ε = h/10 and w1, w2 ∈ (w0
d− ε, w0

d + ε). The neighborhood is sampled with 10 points.

Appendix C. The grid method: Pseudocode. This is the method we use
in practice. Note that lines 6–10 can be completely vectorized.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2331

Algorithm 6. Constrained optimization: The grid method.

1: h̄← h/2, u0 ← umin, v0 ← h+ va,
2: Q = 1, tol = 10−15, i = 1, f0 = 106.
3: while Q >tol do
4: Build a grid of s× s points, with meshsize h, centered at (u0, v0)
5: On the grid, initialize f = +∞.
6: for each point (u, v) on the grid do
7: Compute w using the direct solver (using G(ua)).
8: Compute g1, g2 and g3.
9: If all three constraints are satisfied, compute f(u, v).

10: end for
11: Let the minimum of f be fi and occur at (ud, vd).
12: Q = |fi − fi−1|
13: h̄← h̄/2, u0 ← ud, v0 ← vd, i← i+ 1
14: if i == 5 or fi == +∞ then Q = 0 end if
15: end while
16: Return: (ud, vd).

Appendix D. Examples and tests procedures.

D.1. Examples. With the exception of the third example, C0 always consists of
a single circle of radius r0 centered at the origin.

The expanding circle. The speed is F ≡ 1 and the signed distance function that
solves the LSE is φ(x, y, t) =

√
x2 + y2 − t− r0 with r0 = 0.25.

The football. The speed is F (t) = 1−e10t−1 and the signed distance function that

solves the LSE is φ̃(x, y, t) =
√
x2 + y2 − (r0 − (ect − 1) /(ce) + t) with r0 = 0.25.

Two circles. The speed is F (t) = 1 − 2t and the signed distance function that
solves the LSE up to time T = 0.5 is φ(x, y, t) =

√
(x− sign(x)0.5)2 + y2−

(
r0 + t− t2

)
with r0 = 0.35.

The oscillating circle. The speed is F (t) = a sin(b(t + c)) with a = 0.7, b = 10,

and c = 0.3, and φ(x, y, t) =
√
x2 + y2 − (r0 + (a/b)(cos(bc)− cos(b(t+ c)))) is the

signed distance function that solves the LSE with r0 = 0.25.
The escaping circle. The speed is F = (x−gt)(g′t+g)/

√
(x− gt)2 + y2+c, where

g(t) = arctan (b(t− 0.5)) + π
2 , and the signed distance function that solves the LSE

is φ(x, y, t) =
√

(x− gt)2 + y2 − (r0 + ct) with r0 = 0.25, b = 10, and c = 0.5.

The 3-leafed rose. The speed is F = cos(lθ)/
√

1 + (lt/r)2(sin(lθ))2 and a solution
of the LSE is φ(x, y, t) = r− (t cos(lθ) + r0), where l = 3 is the number of petals and
r0 = 0.25. Note that this is not the signed distance function.

D.2. Tests procedures.
Time for computing ud. The estimate of the time taken to compute ud provided

in the remark at the end of section 5.2.3 is based on example (f), run with m = 150.
Optimization problem. Each point is obtained as follows. The parent points are

exact: pa, pb ∈ M. The point pa is fixed, and pb is such that (xb, yb) = (xa, ya) +
(−3, 4)h/8. The exact normal at pa is used to get the local coordinate frame. The
optimization problem is solved using the direct solver and returns pdir

d . Then the
iterative solver is initialized with w0

d = wdir
d and run until |wn+1

d − wnd | < 10−10∆τ .
Error propagation. Figures 10(a) and 10(b) were produced using m = 60.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2332 ALEXANDRA TCHENG AND JEAN-CHRISTOPHE NAVE

Global properties. The results presented in Figure 11 were obtained using M = 25
for the expanding circle, M = 60 for the football, and M = 150 for the 3-leafed rose.
The histograms of Figure 12 correspond to the football simulation. The binwidth is
0.2 and the total number of points N is 6229. In Figure 13, there are initially 80
points on each circle. The data used to get the results presented in Figure 14 are as
follows: example (e), final T = 0.4, tH = 0.35; example (b), tH = 0.1; example (c),
final T = 0.5, tH = 0.45.

Hausdorff distance. To get the Hausdorff distance between the exact and the
reconstructed curves, samplings of each set were first obtained. For the exact one,
we used the exact solution to the LSE and the MATLAB contour function. For
the reconstructed one, local Delaunay triangulations were obtained using appropriate
subsets of A. Let the resulting two cloud of points be respectively C`rec and C`ex.
Then the Hausdorff distance between those sets is

LH(C`rec, C`ex) = max

{
sup

x∈C`rec
inf

y∈C`ex
d(x,y), sup

y∈C`ex
inf

x∈C`rec
d(x,y)

}
,(D.1)

where d is the Euclidean distance function. To get the first term in braces, the exact
signed distance function is used, since for a given x ∈ C`rec, we have infy∈C`ex d(x,y) =
φ(x, tH). To get the second one, given y ∈ C`ex, the nearest point x ∈ C`rec is found.

Speed tests. To get the results labeled “Modified FMM” in Figure 15(a), our
method is run. The points labeled “FMM” are obtained using the first-order FMM
with different gridsizes. Points with |x| < 0.25 + 2dx are initialized with exact values.
The solution to the FMM is computed on the set |x| < 0.75 + dx (the neighbors
of those accepted points with |x| > 0.75 were not added to the narrow band). The
procedure used to sort and update the narrow band is the same in both methods:

• The point with the smallest time value is found using the MATLAB min

command.
• This point is removed from the narrow band by deleting the corresponding

row (using N (I, :) = []).
• Each new point is added at the end of the narrow band.

The CPU time was evaluated using the MATLAB cpu command. The final times
of the simulations are: (a) 0.5, (c) 0.5, (d) 1.5 period, (e) 0.4, (f) 0.19.

Acknowledgments. The authors would like to thank Prof. Bruce Shepherd
and Dr. Jan Feys for helpful discussions about the optimization problem. We also
thank the anonymous referees for their very constructive comments.

REFERENCES

[1] Y. Achdou, G. Barles, H. Ishii, G. Litvinov, P. Loreti, and N. Tchou, Hamilton-Jacobi
Equations: Approximations, Numerical Analysis and Applications: Cetraro, Italy 2011, P.
Loreti and N. A. Tchou, eds., Lecture Notes in Mathematics/C.I.M.E. Foundation Sub-
series, Springer, Berlin, 2013.

[2] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear
second order equations, Asymptot. Anal., 4 (1991), pp. 271–283.

[3] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Athena Scientific,
Belmont, MA, 1996.

[4] E. Carlini, M. Falcone, N. Forcadel, and R. Monneau, Convergence of a generalized fast-
marching method for an eikonal equation with a velocity-changing sign, SIAM J. Numer.
Anal., 46 (2008), pp. 2920–2952.

[5] L.-T. Cheng and Y.-H. Tsai, Redistancing by flow of time dependent eikonal equation, J. Com-
put. Phys., 227 (2008), pp. 4002–4017.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A FAST-MARCHING ALGORITHM FOR NONMONOTONE FRONTS A2333

[6] M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of
Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 487–502.

[7] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc., 27 (1992), pp. 1–67.

[8] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc., 277 (1983), pp. 1–42.

[9] E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[10] J. Du, B. Fix, J. Glimm, X. Jia, X. Li, Y. Li, and L. Wu, A simple package for front tracking,
J. Comput. Phys., 213 (2006), pp. 613–628.

[11] L. Evans, Partial Differential Equations, Grad. Stud. Math., AMS, Providence, RI, 2010.
[12] L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Version 0.2, Lectures

Notes, 1983; also available online from https://math.berkeley.edu/∼evans/control.course.
pdf.

[13] M. Falcone, The minimum time problem and its applications to front propagation, in Motion
by Mean Curvature and Related Topics, De Gruyter, Berlin, 1994, pp. 70–88.

[14] B. D. Froese and A. M. Oberman, Convergent filtered schemes for the Monge–Ampre partial
differential equation, SIAM J. Numer. Anal., 51 (2013), pp. 423–444.

[15] J. Glimm, J. W. Grove, X. L. Li, K.-M. Shyue, Y. Zeng, and Q. Zhang, Three dimensional
front tracking, SIAM J. Sci. Comput., 19 (1995), pp. 703–727.

[16] J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan, Robust computational algorithms for dy-
namic interface tracking in three dimensions, SIAM J. Sci. Comput., 21 (2000), pp. 2240–
2256.

[17] J. Guckenheimer and A. Vladimirsky, A fast method for approximating invariant manifolds,
SIAM J. Appl. Dynam. Syst., 3 (2004), pp. 232–260.

[18] P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Res. Notes Math. 69, Pit-
man, Boston, 1982.

[19] A. M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations:
Hamilton–Jacobi equations and free boundary problems, SIAM J. Numer. Anal., 44 (2006),
pp. 879–895.

[20] A. M. Oberman, and T. Salvador, Filtered schemes for Hamilton-Jacobi equations: A simple
construction of convergent accurate difference schemes, J. Comput. Phys., 284 (2015), pp.
367–388.

[21] S. Osher, A level set formulation for the solution of the Dirichlet problem for Hamilton–Jacobi
equations, SIAM J. Math. Anal., 24 (1993), pp. 1145–1152.

[22] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Appl. Math. Sci.
153, Springer-Verlag, New York, 2003.

[23] S. Osher and J. Sethian., Fronts propagating with curvature dependent speed: Algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988)), pp. 12–49.

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes:
The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007.

[25] O. Runborg, Analysis of high order fast interface tracking methods, Numer. Math., 128 (2014),
pp. 339–375.

[26] J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl.
Acad. Sci., USA, 93 (1996), pp. 1591–1595.

[27] J. Sethian, Fast marching methods, SIAM Rev., 41 (1999), pp. 199–235.
[28] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computa-

tional Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge
Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, UK, 1999.

[29] J. A. Sethian, Numerical methods for propagating fronts, in Variational Methods for Free
Surface Interfaces, P. Concus and R. Finn, eds., Springer New York, 1987, pp. 155–164.

[30] A. Tcheng, Fast Marching Algorithms for Non-monotonically Evolving Fronts, Ph.D. thesis,
McGill University, 2015.

[31] A. Tcheng and J.-C. Nave, A low-complexity algorithm for non-monotonically evolving fronts,
J. Sci. Comput. (2016), pp. 1–27, DOI:10.1007/s10915-016-0231-8.

[32] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for a class
of Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673–694.

[33] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat.
Control, 40 (1995), pp. 1528–1538.

[34] A. Vladimirsky, Static PDEs for time-dependent control problems, Interfaces Free Bound., 8
(2006), pp. 281–300.

[35] A. B. Vladimirsky, Fast Methods for Static Hamilton-Jacobi Partial Differential Equations,
Ph.D. thesis, Lawrence Berkeley National Laboratory, Berkeley, CA, 2001.

D
ow

nl
oa

de
d

09
/2

2/
16

 to
 1

32
.2

06
.1

50
.1

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://math.berkeley.edu/~evans/control.course.pdf
https://math.berkeley.edu/~evans/control.course.pdf

	Introduction
	Hyperplane representation
	Assumptions
	PDE on an arbitrary plane
	Well-posedness
	Geometric properties

	Discretization
	Solving the PDE
	Direct solver
	Iterative solver

	Optimal sampling
	Constrained minimization problem
	Solving the constrained minimization problem

	Algorithms
	Initialization
	Get a local representation
	Computing a new point
	Global constraints
	Main loop

	Properties of the scheme
	Local properties
	Optimization
	Direct solver
	Iterative solver

	Global properties
	The sets A and N
	Global convergence
	Computational time

	Results
	Examples
	Local properties
	Optimization problem
	Error propagation

	Global properties
	Evenness of the sampling
	Domain of influence
	Topological changes
	Convergence results
	Speed tests

	Appendix A. uvw-coordinate system
	Tilted plane
	Vertical plane
	 is the outward normal to M

	Appendix B. The iterative solver
	Appendix C. The grid method: Pseudocode
	Appendix D. Examples and tests procedures
	Examples
	Tests procedures

	Acknowledgments
	References

