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We propose an efficient semi-Lagrangian method for solving the two-dimensional incom-
pressible Euler equations with high precision on a coarse grid. This new approach evolves 
the flow map using a combination of the Characteristic Mapping (CM) method [1] the 
gradient-augmented level-set (GALS) method [2]. The flow map possesses a semigroup 
structure which allows for the decomposition of a long-time deformation into short-time 
submaps. This leads to a numerical scheme that achieves exponential resolution in linear 
time. Error estimates are provided and conservation properties are analysed. The computa-
tional efficiency and the high precision of the method are illustrated in the vortex merger, 
four-modes and random flow problems. Comparisons with the Cauchy-Lagrangian method 
[3] are also presented.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The numerical simulation of incompressible fluids is an important mathematical problem with many scientific and in-
dustrial applications. The study of the incompressible Euler equations in two-dimensional (2D) space poses many challenges. 
It is well known that solutions of the 2D Euler equations, although smooth, have fast growing gradients. The growth of the 
sup-norm of the vorticity gradient can be bounded by a double exponential in time [4], this bound was proven to be sharp 
in the case of smooth initial data on a disk [5]. Furthermore, on a flat periodic 2-torus, it has been shown that for an 
arbitrary time interval, there exists a vorticity field whose gradient exhibits exponential growth within the chosen interval 
[6]. For a summary on the advances in mathematics for the Euler equations, we refer to a 2013 review by Bardos and Titi 
[7]. These theoretical results suggest that the spatial discretization for the numerical solution of the Euler equations can be 
challenging. As the gradient of the solution grows, the numerical resolution required to correctly capture the solution also 
increases. The resources necessary to avoid excessive spatial truncation errors can thus become prohibitive for long time 
simulations. On the other hand, allowing for spatial truncation errors by undersampling the solution can generate numerical 
dissipation akin to a viscosity term which qualitatively affects the simulation. In some cases, truncation errors resonate with 
the solution, creating spurious oscillations and numerical instability. This phenomenon is analysed in detail by Ray et al. [8]
in the case of a conservative Fourier-Galerkin scheme, and a wavelet regularization technique has been proposed by Pereira 
et al. in [9].
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Existing numerical methods for fluid simulation lie in the spectrum from fully Lagrangian to fully Eulerian formulations. 
Eulerian methods use fixed spatial meshes to represent evolving quantities. This gives easy access to the relevant simulated 
quantities. The spatial features generated by large fluid deformations can be represented as long as the grid has sufficient 
resolution. However, finer scale features are lost resulting in artificial dissipation. Examples of Eulerian methods include 
the Fluid-in-Cell [10] method and the Marker-in-Cell method [11], where fluid quantities are associated to fixed spatial 
subdivisions and updated in time using the evolution equations. In Lagrangian methods, particles or grid nodes follow 
the movement of the flow, resulting in less dissipative schemes. However, with the particle or moving grid frameworks, 
the evaluation of Eulerian quantities is difficult and less accurate. Furthermore, large fluid deformations can be difficult to 
resolve and often require frequent remeshing or resampling routines. Examples of purely Lagrangian methods include the 
Smooth Particle Hydrodynamics [12,13] and the Vortex blob [14] methods, where fluid quantities are transported using a 
particle method. More recently, Bowman et al. [15] developed a fully Lagrangian scheme for the advection and advection-
diffusion equations, exploiting the relabelling symmetry of the incompressible advection and Euler equations. This scheme 
does not require costly remeshing routines and is void of artificial dissipation; in particular, the algorithm preserves all 
Casimir invariants of the equations. Many numerical solvers use a mix of Lagrangian and Eulerian descriptions to exploit 
the advantages of each approach. For instance, Arbitrary Lagrangian-Eulerian [16,17] methods use reference coordinates that 
are neither fully Lagrangian nor fully Eulerian to describe the fluid configuration. Another large family of numerical solvers 
are the semi-Lagrangian methods. In these methods, relevant quantities are represented on an Eulerian frame, however, 
the evolution equations are discretized from a Lagrangian description. Methods of this type include the Cauchy-Lagrangian 
method [3] where the vorticity field is evolved by transport along a moving mesh following the flow, the result is then 
periodically projected back on an Eulerian grid. Level-set methods are another popular semi-Lagrangian framework used 
for fluid simulation and implicit interface tracking, e.g. [18]. In these methods, characteristics are traced backwards in 
time and Eulerian interpolation schemes are used to update the solution. A level-set formulation of the 3D incompressible 
Euler equations was recently studied by Deng et al. [19] through the use of generalized Clebsch variables. This theoretical 
framework provided new global existence results for the solutions of the 3D Euler and Lagrangian-Averaged Euler equations 
under certain assumptions, and existing level-set methods can potentially be applied to generate efficient schemes for fluid 
simulations in 3D space. Semi-Lagrangian schemes have also been used to generate fast simulations intended for computer 
graphics [20,21]. One main property of the semi-Lagrangian approach is that it tries to capture the characteristic structure of 
the equations. In particular, in 2D inviscid flow, the vorticity field is transported along characteristic curves, hence accuracy 
and stability can be improved by taking the geometric approach of following these characteristic curves in order to propagate 
the solution in time.

In this paper, we present a method where the evolved numerical quantity is the deformation map of the domain gen-
erated by the fluid velocity. This approach is geometric and fully exploits the characteristic structure of the fluid flow. We 
construct numerically a characteristic map which identifies a point on an arbitrary characteristic curve to its initial position 
through a spatial transformation. Advected quantities, in particular vorticity, can then be constructed as the function compo-
sition of the initial condition with the characteristic map. This method stems from the semi-Lagrangian Gradient-Augmented 
Level-Set (GALS) [2] and Jet-Scheme methods [22] and constitutes an extension of the Characteristic Mapping (CM) method 
for linear advection [23,1] to the self-advection in 2D incompressible Euler. The CM method for Euler splits the evolution 
equations into the advection of the vorticity and the computation of the velocity through the Biot-Savart law. These two 
parts are connected in that the advection provides the vorticity field for the Biot-Savart kernel, whose resulting velocity 
field is then used to advect the CM map. In doing so we achieve a separation of scales: under the assumption that the flow 
is governed by large scale features of the velocity field, the characteristic map can be accurately evolved on a coarse grid. 
Furthermore, since the vorticity solution is constructed through the pullback of the initial condition by the characteristic 
map, the functional definition of the solution provides arbitrarily fine spatial resolution.

One main issue in inviscid fluid simulation is the artificial viscosity incurred from the spatial truncations during the 
evolution of the solution. Some methods such as [3] approach this problem by designing high order methods in order to 
take extremely large time steps, hence minimizing the accumulation of the diffusive error. Others employ an adaptive multi-
resolution mesh refinement to efficiently resolve fine scale features [24–27]. One unique property of the CM method for 2D 
Euler demonstrated in this paper is that it eliminates artificial viscosity by never directly evolving a discretized vorticity 
field: the vorticity changes as a consequence of the evolving characteristic map used to compute the pullback. In particular, 
a straightforward consequence is that the extrema of the vorticity field are conserved for all times. Additionally, in order to 
correctly represent the arbitrarily fine scales generated by the flow, we use a time decomposition of the characteristic map 
based on its semigroup structure. This allows the CM method to represent exponentially growing vorticity gradients while 
only computing on a fixed coarse grid. The resulting scheme achieves arbitrary subgrid resolution, high long term enstrophy 
conservation and is non-dissipative.

The rest of the paper is organized as follows: in section 2 we lay out the mathematical framework for the CM method 
and carry out some heuristic analysis of its properties. In section 3, we present in detail the numerical implementation of 
the method and provide some error bounds. Section 4 contains several numerical tests and discussions on the accuracy and 
qualitative properties of the solutions. Finally, we make some concluding remarks and propose future directions of work in 
section 5.
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2. Mathematical framework

In this section, we present the mathematical framework behind the CM method for 2D incompressible Euler. The section 
is organized as follows: first, we present the equations with the advection/Biot-Savart splitting used in the method. Then we 
look at the CM method for the advection equation along with its intrinsic semigroup structure. We will next examine the 
advection-vorticity coupling of the equation through the Biot-Savart law. Finally, we will put everything together to write 
the modified equation which naturally arises from a numerical CM method for the Euler equations.

The equations governing the motion of a perfect fluid in two-dimensional space are:

∂t u + (u · ∇)u = −∇p (x, t) ∈ U ×R+, (1a)

∇ · u = 0, (1b)

u(x,0) = u0(x), (1c)

where U is some fixed star-shaped spatial domain, u is a vector field describing the instantaneous velocity of a fluid 
element and p is the pressure. For this paper, we assume for simplicity that U is the flat 2-torus and hence there are no 
boundary conditions. In general, for a boundary ∂U , the non-penetration boundary condition for inviscid flow is u ·n = 0 on 
∂U where n is the normal vector to the boundary. This will require further extensions to the framework and is not covered 
in this paper.

Define ω = ∇ × u the scalar vorticity of the fluid, and taking the 2D curl of (1), we obtain the vorticity equations:

∂tω + (u · ∇)ω = 0 (x, t) ∈ U ×R+, (2a)

∇ · u = 0, (2b)

ω(x,0) = ω0(x). (2c)

Using the incompressibility assumption, u can be obtained from ω by solving a Helmholtz-Hodge problem, u is then given 
by the Biot-Savart law

u = −�−1 ∇ × ω. (3)

Given a solution u(x, t) of (1), we make the observation that ω solves the advection equation (2a) under the velocity field 
u. The approach presented in this paper consists in splitting the vorticity equations (2) into the coupling of the advection of 
the vorticity by (2a) and the Biot-Savart law (3). The advection equation is solved using the Characteristic Mapping method 
and the Biot-Savart law is applied in Fourier space. We present details on these two methods in the following sections.

2.1. Characteristic mapping framework

The Characteristic Mapping approach consists in finding the solution operator for the advection equation associated to 
some transport velocity. A more detailed exposition of this approach can be found in [1,2,23].

Consider a linear advection equation with a divergence-free transport velocity u

∂tφ + (u · ∇)φ = 0 (x, t) ∈ U ×R+, (4a)

φ(x,0) = φ0(x). (4b)

The method of characteristics for advection equations implies that φ satisfies

d

dt
φ(γ (t), t) = 0, (5)

or equivalently

φ(γ (t), t) = φ0(γ 0), (6)

for any characteristic curve γ solving

d

dt
γ (t) = u(γ (t), t), (7a)

γ (0) = γ 0. (7b)

The smoothness of these characteristic curves in the case of the Euler equations is proven in [28].
Therefore, we look for a solution operator X : U ×R+ → U such that X(γ (t), t) = γ 0 for all characteristic curves γ (t)

associated to the velocity u. For any fixed t , the map X(·, t) : U → U is the inverse of the t-time flow map of the velocity 
u. We call X the backward characteristic map since it “traces back” a particle at time t to its initial position γ 0. Assuming 
3
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Fig. 1. Evolution of the characteristic map acting on the initial condition. (For interpretation of the colours in the figure(s), the reader is referred to the web 
version of this article.)

smooth divergence-free velocity, the flow map is a diffeomorphism, hence, we can write X as the solution to the following 
vector-valued advection equation:

∂t X + (u · ∇)X = 0 ∀(x, t) ∈ U ×R+, (8a)

X(x,0) = x. (8b)

One can check that d
dt X(γ (t), t) = 0 and hence X(γ (t), t) = X(γ 0, 0) = γ 0.

Remark 1. Wolibner proved in 1933 [29] that for an L1 initial vorticity field (with appropriate decay at infinity), the 
corresponding velocity field (which is log-Lipschitz) solving the Euler equations generates a Hölder continuous forward 
characteristic map. That is to say, the transformation �(·, t) : γ0 �→ γ (t) is a Hölder continuous homeomorphism for all t . 
The existence, continuity and area-preservation of the backward map X follows since X(·, t) = �−1(·, t).

The solutions to the advection equation (4) can be then computed as the pullback of the initial condition by this back-
ward map using (4)

φ(x, t) = φ0 (X(x, t)) . (9)

In fact, for any initial condition φ0, the corresponding advection equation has solution φ0 ◦ X (see Fig. 1). The character-
istic map is independent of the advected quantity, it captures the deformation of the space induced by the velocity u and 
acts as a solution operator of all quantities transported by u. In particular, if u is a solution to the Euler equations (1), then 
its vorticity field must satisfy

ω(x, t) = ω0 (X(x, t)) . (10)

2.1.1. Semigroup structure
The treatment of incompressible inviscid flow from the point of view of differential geometry and geodesic flow on the 

group of volume preserving diffeomorphisms was initiated by Arnold in 1966 [30]. The backward characteristic maps are the 
inverse maps of the elements of the one-parameter semigroup of these volume preserving forward flow maps parametrized 
by t . Hence, they inherit the same semigroup properties.

Definition 1. We denote by X [t f ,t0] : U → U the characteristic submap of the time interval [t0, t f ]. The endpoints of the 
interval in the subscript [t f , t0] are inverted to reflect the fact that X [t f ,t0] is the characteristic transformation of the domain 
mapping U at time t f back to time t0. The submap is given by the following equations:

∂t X† + (u · ∇)X† = 0, (11a)

X†(x, t0) = x, (11b)

X [t ,t0](x) := X†(x, t f ). (11c)
f

4
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One can then check that given arbitrary times t0 < t1 < t2, the submaps satisfy the semigroup property:

X [t2,t0] = X [t1,t0] ◦ X [t2,t1]. (12)

This is in fact true without the t0 < t1 < t2 assumption and would involve forward characteristic maps. This paper will only 
focus on the use of the backward maps.

This semigroup structure is at the heart of the CM method. The time evolution of the characteristic map is defined 
though this map composition rather than through the usual PDE. We can see the evolution of X as given by

X(·, t + �t) = X(·, t) ◦ X [t+�t,t]. (13)

The numerical approximation of X relies on discretizing the above using some small time step �t .
We also make use of this semigroup property to adaptively adjust the numerical resolution of the map. In particular, a 

backward characteristic map X(·, t) for the time interval [0, t] can be split into arbitrarily many submaps in the following 
way:

We subdivide the interval [0, t] into m subintervals [τi−1, τi] with 0 = τ0 < τ1 < · · · < τm = t . One can then check that 
the following decomposition holds:

X(·, t) = X [t,0] = X [τ1,0] ◦ X [τ2,τ1] ◦ · · · ◦ X [τm−1,τm−2] ◦ X [t,τm−1] (14)

Each of the submaps X [τi ,τi−1] can be computed individually and stored. The global time map is then defined as the com-
position of all the stored submaps. This decomposition will provide several important numerical advantages which we will 
discuss in section 3. In particular, each submap has the identity map as initial condition and the subdivision allows for 
dynamic and adaptive spatial resolution without changing the computational grid.

In 2D incompressible Euler, the vorticity gradient can grow exponentially in time. Using the characteristic map, we can 
write

ω(x, t) = ω0(X(x, t)). (15)

We observe from this that the advection operator is responsible for the formation of high vorticity gradient since

∇ω(x, t) = ∇ω0 · ∇ X(x, t). (16)

In cases where the vorticity gradient grows exponentially, we infer that ∇ X must also grow exponentially. The semi-
group decomposition is analogous to the exponential function in one variable, where the natural instantaneous evo-
lution is multiplicative instead of additive in the sense that exp(c(t + �t)) ≈ (1 + c�t) exp(ct) is more natural than 
exp(c(t + �t)) ≈ exp(ct) + c�t exp(ct) (the latter requiring tracking an integrand which grows exponentially). Similarly, 
taking the gradient of equation (14), we have

∇ X [t,0] = ∇ X [τ1,0]∇ X [τ2,τ1] · · ·∇ X [τm−1,τm−2]∇ X [t,τm−1]. (17)

This means that an exponential growth in gradient can be achieved by the composition of submaps each having bounded 
gradient.

2.2. Advection-vorticity coupling

We use the backward characteristic map to rewrite the vorticity equation (2a) as the following coupling of u, ω and X :

ω(x, t) = ω0(X(x, t)), (18a)

u = −�−1 ∇ × ω, (18b)

(∂t + u · ∇)X = 0. (18c)

Equation (18b) is known as the Biot-Savart law and can be obtained from ∇ · u = 0 and the definition of the vector 
Laplacian:

� F = ∇ (∇ · F ) − ∇ × (∇ × F ) (19)

for F a R2 → R2 vector field. We let u = F and commute �−1 and ∇× in (18b), the velocity is then obtained from the 
stream function ψ :

ψ = −�−1 ω, u = ∇ × ψ. (20)

The CM method for Euler equations then consists of numerically evolving X in time using equation (18c); the velocity 
and vorticity are defined using (18a), and (20). Additionally, if we employ the submap decomposition from the semigroup 
property, we would solve equation (18c) for the submaps X [t,τi ] for t ∈ [τi, τi+1] and initial condition X [τi ,τi ](x) = x; the 
pullback (18a) would be computed from the composition of all submaps.
5



X.-Y. Yin, O. Mercier, B. Yadav et al. Journal of Computational Physics 424 (2021) 109781
2.3. Modified equations

In order to qualify the properties of the numerical solution obtained from this method, we look at the modified equa-
tions.

Let X n be the numerical characteristic map at time step tn . Let ωn = ω0(X n) and let un be the velocity field associated 
to ωn . This velocity un is used to advance the map to time tn+1 from which we obtain the velocity un+1 from pullback 
and Biot-Savart; the process continues so on. Here, we look at the modified equation which arises from replacing the true 
velocity u by some modified ũ which is better approximated by the discrete evolution of the characteristic map.

We look at a modified velocity ũ defined at all times which approximates the velocities un at discrete time steps tn . The 
corresponding modified equation for the characteristic map is then

∂t X̃ + (ũ · ∇)X̃ = 0. (21)

From here on, we will use the notation tilda for variables associated to the modified equation. Discretized variables will be 
denoted by script letters with a superscript n referring to the corresponding time step tn .

We will estimate the difference between the true solution X and the solution to the modified equation X̃ . This is a 
useful strategy as it will allow us to estimate the error of the numerical solution X using |X −X | ≤ |X − X̃ | + |X̃ −X |.

Consider the evolution of X and X̃ in some time interval [t0, t] (for t0 < t). We can write X and X̃ in integral form:

X [t,t0](x) = x +
t0∫

t

u
(

X [t,r](x), r
)
dr, (22a)

X̃ [t,t0](x) = x +
t0∫

t

ũ
(

X̃ [t,r](x), r
)
dr. (22b)

By Grönwall’s lemma, we have that∣∣∣X [t,t0](x) − X̃ [t,t0](x)

∣∣∣ � C(t − t0)eC(t−t0)‖u − ũ‖∞, (23)

for some C ≈ ‖∇u‖∞ .
Heuristically, we note from this that if a numerical solution X approximates well the solution X̃ of the modified equa-

tion generated by the discretized velocity field ũ (or some approximation of it), that is, if the scheme is “self-consistent”, 
then it is sufficient to control the difference between ũ and the true velocity u. This tool makes the error analysis more 
straightforward and allows us to obtain better bounds on the error in the conservation of various advected quantities. In 
particular, we can write the modified equation approximated by the numerical vorticity solution:

∂t(ω0 ◦ X̃) = ∇ω0 · ∂t X̃ = −∇ω0 · (ũ · ∇)X̃ = −(ũ · ∇)(ω0 ◦ X̃). (24)

That is, the numerical vorticity approximates an advection equation under the modified flow generated by ũ , making the 
error “advective” rather than diffusive. The exact nature of the modified equation is unclear and depends on the leading 
order term of u − ũ. In cases where spatially truncation errors dominate, we shall see that this is closely related to the 
Lagrangian-Averaged Euler equations.

2.3.1. Multiscale evolution
Due to the presence of different scales in the solution and to limited computational resources, we need to make choices 

on the degree of spatial truncation appropriate to each evolved quantity. In particular, the Biot-Savart law implies that u has 
a faster decay in its Fourier coefficients compared to ω and X . Therefore, it can be represented on a coarser grid without 
incurring excessive L∞ error. In this method, we make a similar assumption as in Lagrangian-Averaged Euler (LAE-α), that 
is, that the low frequency features of the velocity dictate the global evolution of the flow and high frequency small features 
do not need to be solved for exactly: it is sufficient to resolve the coarse scales of the velocity field as long as the fine 
scale features of the transported vorticity are not lost. With this assumption in mind, we design a method where the 
representation of the instantaneous velocity as well as the short time deformation map (by “short time”, we refer to the 
submaps in the decomposition (14)) are done on a grid much coarser than the fine scales present in the vorticity solution. 
However, since the vorticity is defined as the pullback/rearrangement by X , all scales in the vorticity are preserved and 
coherently transported under the smoothed velocity field. Indeed, in the CM method, ω is defined as a function ω0 ◦ X
over the entire domain and evolves in time as a consequence of the changes in the deformation map X . The absence of 
a grid-based discretization of ω means that we do not incur a dissipative error due to spatial truncation and preserve all 
small scale features. As a result, the CM method can achieve arbitrary resolution on the vorticity field and allows us to 
separate the scales involved in the problem: the large scales are computed and accurately represented whereas small scales 
are preserved and passively transported.
6
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Fig. 2. 1D Hermite cubic basis functions.

Here we make a parallel between the CM method and the LAE-α equations. The LAE-α equations aim at modelling the 
flow of an incompressible inviscid fluid on a spatial scale larger than α by taking a Lagrangian average of the velocity field. 
For more details on the LAE-α and LANS-α formulation, readers can refer to [31–33]. In its vorticity form, the LAE-α can 
be written as

∂tω + (u · ∇)ω = 0, (25a)

u = −∇ × �−1(1 − α �)−1ω. (25b)

The above equation also models the flow of a second-grade non-Newtonian fluid; an analysis of the relation between 
second-grade non-Newtonian fluids, the vortex blob method [14] and the LAE-α equations can be found in [34].

We see from (25) that the vorticity is transported by u and that u is obtained from the Biot-Savart law on a smoothed 
vorticity field (1 − α �)−1ω. This smoothing effect can also be achieved by a spatial filter during the same Biot-Savart 
computation in CM, resulting in a smoothed modified velocity ũ (see section 2.3). The difference is that the quantity of 
interest in LAE-α is the averaged velocity whereas in CM, we are interested in the vorticity field which contains arbitrarily 
fine scales. It remains that in cases where the sampling of the velocity in CM corresponds to the (1 − α �)−1 smoothing in 
LAE-α, the flow maps from both formulations are the same and hence generate the same dynamics.

3. Numerical implementation

We present in this section the numerical framework for the CM method. First, we present the Hermite interpolation 
structure used for spatial discretization as well as the spatial definition of the discretized velocity field. We then provide a 
time semi-discretization of the equations and make the link to the modified equation in 2.3. The space and time discretiza-
tions are combined to generate the CM solver for the Euler equations for which we then give some error estimates. Finally, 
we describe the remapping method which aims to adaptively resolve increasingly complicated spatial features.

3.1. Spatial discretization

We review in this section the definition of Hermite cubic interpolants which is at the heart of all spatial computations 
in this method. We then present the spatial discretization of the velocity field.

3.1.1. Hermite cubic interpolation
We assume that the computational domain U is discretized in a rectangular meshgrid G . In 2D, G consists of grid points 

xi, j and has cells Ci, j with corners xi, j, xi+1, j, xi, j+1 and xi+1, j+1. We assume for simplicity that U is a flat torus and G is 
a square grid with uniform cell widths �x.

The space of Hermite cubic functions on G , VG , is a finite dimensional subspace of C1(U ) consisting of functions that 
are bicubic in each Ci, j . To construct the basis functions, we take a tensor product of the 1D cubic basis (see Fig. 2):

Q 0(x) = (1 + 2|x|)(1 − |x|)2 x ∈ [−1,1], (26a)

Q 1(x) = x(1 − |x|)2 x ∈ [−1,1], (26b)

Q 0(x) = Q 1(x) = 0 x /∈ [−1,1]. (26c)

These functions have the property that ∂c Q k|y = δc
kδ

0
y for c, k ∈ {0, 1} and y ∈ {−1, 0, 1} and are cubic in [−1, 0] and [0, 1]

and are everywhere continuously differentiable.
7
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We define the 2D basis functions on the grid G for x = (x1, x2) using tensor products:

Hi, j
k,l (x) = Q k

(
x1 − x1

i, j

�x

)
Q l

(
x2 − x2

i, j

�x

)
�xk+l. (27)

These basis functions satisfy

∂(c,d)Hi, j
k,l (xa,b) = δa

i δ
b
j δ

c
kδ

d
l . (28)

Each Hi, j
k,l is supported on 4 cells Ci−1, j−1, Ci, j−1, Ci−1, j and Ci, j . It is bicubic in each cell, everywhere C1 with continuous 

mixed derivative ∂(1,1) . It has continuous normal derivatives and C∞ tangential derivatives on cell boundaries.
The interpolation operator is the projection operator HG : C1(U ) → VG

HG [ f ](x) =
∑
i, j

∑
k,l

f k,l
i, j Hi, j

k,l (x), (29)

where f k,l
i, j = ∂(k,l) f (xi, j) for f ∈ C1(U ).

It is well known that for f ∈ C4(U ) the interpolation is order 4:

‖ f −HG [ f ]‖∞ < c‖D4 f ‖∞�x4, (30)

for some constant c.
Furthermore, we see that if the grid data f k,l

i, j are perturbed by ε , then the perturbation of the interpolant is

‖HG [ f ] −HG [ fε]‖∞ = O(ε�xk+l). (31)

Therefore, in order to obtain a 4th order accurate interpolant of a function f , it is sufficient to know the (k, l) derivative 
of f to order O(�x4−(k+l)).

3.1.2. Spatial representation of the velocity field
In 2D Euler, the vorticity field solves a transport equation under the velocity u . Assuming we have the global time 

characteristic map, X(·, t), and that the initial condition for the vorticity ω0 is given analytically, we have that the vorticity 
at time t is given by

ω(x, t) = ω0(X(x, t)). (32)

This evaluation is necessary at every time step for the Biot-Savart law. Numerically, the spatial resolution is limited by 
the grid’s Nyquist frequency resulting in a spatial filter when defining the velocity u . Instead of filtering by a coarse grid 
sampling (undersampling), we define

uε = ηε ∗ u, (33)

where ηε is a mollifier supported in a ball of radius ε .
Commuting mollification with derivatives, we have that

uε = ∇ × ψε for ψε = ηε ∗ ψ, (34a)

ψε = −�−1 ωε for ωε = ηε ∗ ω. (34b)

Finally, using ω = ω0 ◦ X , we can write the pullback of the convolution

ωε(x, tn) =
∫

Bε (x)

ηε(x − y)ω0 (X(y, tn))d y (35)

=
∫

X(Bε (x),tn)

ηε(x − X−1(y, tn))ω0(y)|det(∇ X)|−1d y

=
∫

X(Bε (x),tn)

η̃ε(X(x, tn), y)ω0(y)d y = [η̃ε ∗ ω0]X(x,tn) ,

where η̃ε(x, y) = ηε(X−1(x, tn) − X−1(y, tn))| det(∇ X(x, tn))|−1. The last line above can be verified by plugging in x =
X−1(·, tn).
8
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During simulations, when sampling the vorticity at discrete locations xi , we pick a mollifier such that ηε,xi form a 
partition of unity of the domain. This further guarantees that the numerical average vorticity is equal to the true exact 
average up to quadrature and Jacobian determinant errors. Given a numerical approximation X n of X(·, tn), we define the 
mollified numerical vorticity at time step tn to be

ωn
ε(x) := [

ηn
ε ∗ ω0

]
X n(x)

, (36)

for ηn
ε(x, y) = ηε((X n)−1(x) − (X n)−1(y))| det(∇X n(x))|−1. Note that the numerical evaluation of ωn

ε is performed by 
quadrature on the deformed cells X n(Cij) and requires no computations of the inverse or Jacobian determinant of X n .

Remark 2. We only use this mollified vorticity to generate a mollified velocity, the true numerical solution is still defined 
as ωn = ω0 ◦X n .

The velocity field can be obtained from ωn
ε through the stream function as in equation (20). Numerically we will solve 

this using a spectral method with Fast Fourier transforms. Let F denote the Discrete Fourier transform operator, we have:

ψn
ε := −F−1 [�−1 F

[
ωn

ε

]]
, (37)

where the above �−1 solves the Poisson equation in Fourier space and is a diagonal operator.
The divergence-free property of the velocity should be preserved in order for the characteristic map to be volume pre-

serving. Therefore un should be defined as the curl of some scalar function. To achieve this, we use a grid U for the 
representation of the velocity field and define

un
ε := ∇ ×HU [ψn

ε ]. (38)

This definition guarantees that un
ε ∈ curl(VU ) ⊂ { f ∈ C0(U ) | ∇ · f ≡ 0}. Indeed, un is C∞ in each cell and continuous 

across cell boundaries, its divergence is however continuous everywhere and identically 0 due to the continuity of the 
mixed partials ∂(1,1)HU [ψn

ε ]. As a result, the numerical flow is also divergence-free which allows us to control the error on 
the volume-preserving property of the characteristic map.

Remark 3. The grid U and the parameter ε used to represent the velocity field are independent of the grid used for the 
evolution of X , the interpolant is also not restricted to Hermite cubics. Consequently, U can be made arbitrarily fine and 
ε arbitrarily small such that un

ε approach the exact Biot-Savart velocity associated to the numerical vorticity ωn = ω0 ◦ X . 
Furthermore, it is important to have a fine enough U so that the interpolation of ψn

ε does not create new extrema from 
undersampling, as this can cause spurious oscillations and pollute the solution. In fact, choosing a fine grid does not require 
large computational resources as it only involves an inverse FFT of a zero-padded ψ̂n

ε .

3.2. Time discretization

Section 3.1.2 gives us a discretization of the velocity field at time tn given the characteristic map. In this section, we 
provide the time discretization for the evolution of the characteristic map based on this un

ε .
The characteristic map can be evolved using the semigroup property (13). Let tn be the discrete time steps, with �t =

tn+1 − tn , we have

X [tn+1,0] = X [tn,0] ◦ X [tn+1,tn]. (39)

In order to approximate the one-step map X [tn+1,tn] , we extend the velocity un
ε to the time interval [tn, tn+1] using an 

order p Lagrange polynomial in time. This is similar to a multistep method. Let

ũ(x, t) :=
p−1∑
i=0

li(t)un−i
ε (x), (40)

where li are the Lagrange basis polynomials for time steps tn−i . We note that for each fixed time t , ũ is a linear combination 
of un−i

ε . In particular, this implies that if ∇ · un−i
ε = 0 then ∇ · ũ = 0.

The one-step map X [tn+1,tn] is then approximated from (22b) by a k-stage Runge-Kutta integration of the velocity ũ along 
characteristic curves, for �t backward in time:

X [tn+1,tn](x) = x − �t
s∑

j=1

b jk j, (41)

with
9
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k j = ũ

⎛
⎝x − �t

j−1∑
m=1

a jmkm, tn+1 − c j�t

⎞
⎠ , (42)

and k0 := 0. The coefficients a, b, c are those of the Butcher tableau corresponding to the explicit Runge-Kutta scheme.

Remark 4. The smoothness of ũ is required for the convergence of RK schemes. However, the Hermite cubic definition of 
un

ε in section 3.1.2 is C0. Nonetheless, this does not pose a problem since HU [ψn
ε ] is a piecewise polynomial approximation 

of ψn
ε , which is smooth: the moduli of smoothness for un

ε scale with the cell width of U (in the limit of infinitely fine grid 
U , un

ε is smooth). Therefore, by appropriately scaling U with �t the lack of smoothness does not affect the convergence.

3.3. Characteristic Mapping method for 2D Incompressible Euler

We combine the time and space discretizations in the previous sections to generate the Characteristic Mapping method 
for 2D Euler. The evolution of X [t,0] at discrete time steps tn is given by (39). We construct the numerical approximation 
of X by evolving a map in the space of Hermite cubic C1 diffeomorphisms in the sense that each coordinate function is a 
piecewise Hermite cubic polynomial defined on some grid M . We use the same evolve-project strategy as the CM method 
for linear advection to advance the characteristic map [1]:

X n+1 = HM
[
X n ◦X [tn+1,tn]

]
, (43)

X 0(x) = x, (44)

where the one step map X [tn+1,tn] is given in (40) and (41). The velocities un
ε required to define the one step map are given 

by (36), (37) and (38). The velocities un−i
ε at previous time steps used in (40) are stored until no longer needed (for p steps 

where p is the order of the Lagrange polynomial chosen to represent ũ).

3.3.1. Error estimates
We give some estimates on the characteristic map error:

En := ‖X(x, tn) −X n(x)‖∞. (45)

First, we consider some given numerical solutions X n for n = 0, 1, . . . N for some unspecified N . The characteristic map 
at each time step tn generates a velocity field un

ε . We take the velocity field ũ(x, t) given in (40) to be the velocity field 
of the modified equation (21). We notice that the numerical solution X is exactly the CM discretization of the advection 
operator X̃ for the velocity ũ (taking ũ as given). That is X is a CM method approximation of the advection operator 
generated by the modified velocity it engenders.

Theorem 1. Using an s-stage explicit RK integrator with Hermite cubic spatial interpolation, the numerical characteristic map Xn(x)

is consistent with X̃(x, tn) to order

‖Dα(X̃(x, tn) −X n(x))‖∞ = O(tn(�x2−|α| min(�t,�x2�t−1) + �ts)), (46)

for α ∈ {0, 1}2 .

Proof. Taking ũ as a fixed velocity, X is simply CM method applied to ũ. The error estimates are given in [1]. It is a property 
of jet-schemes with Hermite cubic interpolants that we lose one order of convergence for the first mixed derivative only in 
the spatial error term. This is because time integration in jet-schemes computes the function values and mixed derivatives 
of degree 1 in each dimension and all functions evaluated in the method are at least everywhere C1.

We note that the velocity field ũ is smooth in space (see Remark 4), however it may be discontinuous in time at tn . 
This does not cause an issue as the smoothness of the velocity is only required in the time step intervals [tn, tn+1]. The 
local truncation error estimates still hold for the one-step maps X [tn+1,tn] and X̃ [tn+1,tn]; the global truncation error can be 
obtained from the composition and Hermite interpolation of the one-step maps. �
Remark 5. The above error bounds are valid within the stability requirements that the modified velocity ũ remains regular 
and bounded independently of �x and �t . In the CM method for Euler equations, the spatial and time grids used to 
define ũ are in fact independent of those for the map X . It is possible stabilize the flow to various degrees by choosing 
an appropriate spatial resolution and smoothing for un

ε to control the numerical behaviour of ũ. Again, this is akin to the 
α-regularization of the velocity in the LAE-α equations.

Corollary 1. The CM method for 2D incompressible Euler conserves enstrophy to order O(tn(�x2 min(�t,�x2�t−1) + �ts)).
10
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Proof. Since ũ is by definition divergence-free, we have that X̃ is a volume preserving map, i.e. det(∇ X̃) = 1. We get by a 
change of variable that, with U = X̃(U ),∫

U

f (ω0(x)))dx =
∫

X̃(U )

f (ω0(X̃(x, tn)))det(∇ X̃(x, tn))dx =
∫
U

f (ω0(X̃(x, tn)))dx, (47)

for any measurable f . Therefore, we have∫
U

f (ω0(X n(x)))dx −
∫
U

f (ω0(x)))dx ≈
∫
U

∇( f ◦ ω0)(X n(x) − X̃(x, tn))dx (48)

≤ ‖∇( f ◦ ω0)‖L2‖X n − X̃(·, tn)‖L2 = O(tn(�x2 min(�t,�x2�t−1) + �ts))

In particular, taking f (ω) = ω2 gives us conservation of enstrophy, and for higher order monomials, this implies that the 
moments of the vorticity are conserved, as they are in the continuous setting. �
Remark 6. In other words, Corollary 1 shows that the discretized map reproduces with controlled error the relabelling 
symmetry in the solutions of 2D Euler equations, and hence the method can achieve accurate conservation of the Casimir 
invariants. This could be of interest for the study of 2D turbulence in the zero-viscosity limit of the Navier-Stokes equations. 
It is conjectured that higher-order Casimir invariants also exhibit turbulent cascades in their energy spectrum. However, due 
to larger aliasing error incurred in spectral methods for these higher order terms, it is generally difficult to obtain numerical 
evidence. One computation of the cascades in the fourth-order Casimir invariant appeared in [35], where the author used a 
specialized implementation of the FFT convolution routine to tack the scale transfers and provided numerical evidence for 
the presence of a direct transfer to small scales.

To obtain a full error bound, it is sufficient to bound the difference between the true characteristic map and the map 
from the modified equation. Let

Ẽn := ‖X(x, tn) − X̃(x, tn)‖∞. (49)

From Theorem 1, we then have that

En ≤ Ẽn +O(tn(�x2 min(�t,�x2�t−1) + �ts)). (50)

Theorem 2. From the above error decomposition we can deduce that the global truncation error for the characteristic map is

En = O
(
�ts + �x2 min(�t,�x2�t−1) + �t p

)
. (51)

Proof. It is sufficient to control the evolution of Ẽn . We note that X [tn,0] = X [tn−1,0] ◦ X [tn,tn−1] and X̃ [tn,0] = X̃ [tn−1,0] ◦
X̃ [tn,tn−1] , hence

X [tn,0] − X̃ [tn,0] = (X [tn−1,0] − X̃ [tn−1,0]) ◦ X [tn,tn−1] +O(X [tn,tn−1] − X̃ [tn,tn−1]). (52)

From our estimates in (23), we have that X [tn,tn−1] − X̃ [tn,tn−1] = O(�t‖u − ũ‖∞). Given that ω(x, tn−1) − ωn−1(x) =
O(En−1), we have

X [tn,tn−1] − X̃ [tn,tn−1] = O(�tEn−1 + �t p+1), (53)

where we incurred an extra order p + 1 error from the Lagrange interpolation.
Therefore,

Ẽn ≤ Ẽn−1 +O(�tEn−1 + �t p+1) (54)

= Ẽn−1 +O
(
�tẼn−1 + �t(tn(�x2 min(�t,�x2�t−1) + �ts)) + �t p+1

)
, (55)

which implies that

Ẽn = O
(
�x2 min(�t,�x2�t−1) + �ts + �t p

)
. (56)

Together with (50), we obtain the desired error estimate. �

11
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Fig. 3. Map and vorticity error and conservation errors of enstrophy and energy for the Characteristic Mapping method without remapping.

Remark 7. Equation (53) in fact omits a sampling error incurred when defining un
ε , due to sampling the vorticity at discrete 

points. In this method, we define ωn
ε by convolution with a pullback mollifier instead of directly evaluating ω0 ◦ X n at 

sample points. This allows us to justify a Fourier truncation at low number of modes, however, we incur an error term 
which is second order in the width of the mollifier. This is omitted from the analysis since the sampling grid for ωn

ε is 
independent of the computational grid for the map, hence the sampling error can be controlled separately.

3.3.2. Convergence tests
We provide here some numerical evidence for the error estimates derived above. We will more extensively test the full 

method in section 4.
We use a standard four-modes initial condition (66) to test the convergence. For the spatial error, we fix �t at 1/512

using third order Lagrange interpolation in time and third order explicit Runge-Kutta for time-integration. We then vary 
the spatial grid size between 32 to 512. To test the error in the time variable, we fix the spatial grid at 1024 and vary �t
between 1/8 and 1/128. This time, we test both a second and third order Lagrange interpolant while keeping the same 
Runge-Kutta scheme as before. This aims to show the independence of the conservation error from the solution error. For 
all tests, we sample the vorticity on a 1024 grid and represent the stream function as a piecewise Hermite cubic interpolant 
on a 2048 grid. We run the simulation to time t = 1 and calculate the errors in the following quantities:

Map error := ‖X n − X(·, tn)‖∞, (57a)

Vorticity error := ‖ωn − ω(·, tn)‖∞, (57b)

Enstrophy conservation error := ‖ωn‖2
L2 − ‖ω0‖2

L2 , (57c)

Energy conservation error := ‖un‖2
L2 − ‖u0‖2

L2 . (57d)

Conservation errors are calculated directly, the sup-norm map and vorticity errors are estimated by comparing each 
result to the �x = 1/1024, �t = 1/512 test. The functions are evaluated on a 2048 grid, both the L∞ and L2 norms are 
approximated by their discrete variants on this grid. The results are shown in Fig. 3.

Figs. 3a and 3b are both time convergence plots, the difference is that one uses a third order Lagrange interpolant for 
the definition of ũ and the other, second order. We see that as expected, the enstrophy conservation error is independent 
of the choice of Lagrange interpolation and is third order in both cases due to the use of RK3 integration for ũ. The error 
on the map values and vorticity however, do depend on the accuracy of ũ and have third and second order convergence for 
the respective tests.

Fig. 3c shows the convergence with respect to �x. Our error estimates suggest a convergence between O(�t�x2) and 
O(�t−1�x4). For a fixed �t , this is between second and fourth order. This ambiguity comes from the time stepping in GALS 
methods. The grid data at time tn+1 are obtained by evaluating the time tn Hermite interpolants at X [tn+1,tn](xg) for xg a 
grid point; X [tn+1,tn](xg) is commonly called the “foot-point”. The interpolation error depends on the location of the foot-
point relative to grids points. In each dimension, Hermite cubic interpolation errors scales quadratically with both closest 
grid points. This implies that the interpolation error is O(�x2�t2) if �t � �x and O(�x4) otherwise. This is consistent 
with the third order convergence we see in Fig. 3c.

The experiments in this section suggest that the CM method with Hermite cubic spatial interpolation, third order La-
grange time interpolation and RK3 time integration yields a globally third order method. This is to provide some support for 
12
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the error estimates in section 3.3.1. In practice, since a faithful representation of fine scale features in the velocity field does 
not contribute very much to the global dynamics and deformation of the domain, we use a coarse grid to represent short 
time characteristic maps in order to improve efficiency. In this regard, the remapping step presented in the next section will 
play an important role in maintaining an accurate resolution of the fine scale features in the deformation map generated by 
long term advection. We will then provide more numerical results and benchmark tests in section 4.

3.4. Adaptive remapping and arbitrary resolution

In the absence of a viscosity term, solutions of Euler equations tend to develop arbitrarily small scale spatial features. 
As a result, a fixed grid for representing the characteristic map is only valid for a limited amount of time before spatial 
resolution needs to be increased. Changing the computational grid during simulations can be cumbersome and adversely 
affect the speed of all computations thereafter. We use instead a decomposition method based on the semigroup property 
of the characteristic map mentioned in section 2.1.1. Numerically, the time t characteristic map can be constructed as the 
composition of several submaps of time subintervals:

X (·, t) := X [τ1,0] ◦X [τ2,τ1] ◦ · · · ◦X [τm−1,τm−2] ◦X [t,τm−1], (58)

for some subdivision 0 < τ1 < τ2 < · · · < τm−1 < t . Each of these submaps are computed using the CM method described in 
previous sections. We initialize X [τ ,τi ] with the identity map at τ = τi and evolved until a remapping time τ = τi+1 which 
can be determined dynamically. Once the remapping time is reached, we store X [τi+1,τi ] in memory and start computing 
the map for the next subinterval.

Heuristically speaking, each of the subintervals [τi, τi+1] should be short enough such that the grid used to discretize 
X [τi+1,τi ] can correctly represent the deformation generated by the velocity ũ in this interval. Here we should point 
out that the intervals [τi, τi+1] are different from the [tn, tn+1] from previous sections. The latter has length �t and 
is used to discretize the one-step maps X [tn+1,tn]; these are immediately composed and projected through X [tn+1,t†] =
HM

[
X [tn,t†] ◦X [tn+1,tn]

]
, they are used to evolve the maps. The intervals [τi, τi+1] on the other hand are longer, each 

X [τi ,τi+1] comprise of several �t steps. Once computed, they will be stored in memory.
In this implementation, we use the error in the Jacobian determinant

en
det := ‖det ∇X n − 1‖∞ (59)

as a measurement of the map quality, based on which we choose the remapping times. We pick an error threshold δdet
for the submaps. The ith submap is initialized with the identity map. After each time step, we compute the Jacobian 
determinant of X [τi+n�t,τi ] at off-grid sample points. If for some n, the Jacobian error exceeds δdet for the first time, we 
define τi+1 := τi + n�t and store X [τi+1,τi ] . The same process is repeated for the i + 1st submap using τi+1 as initial time.

Although ‖ det ∇X n − 1‖∞ < δdet does not constitute a proper bound on the error in X , we can use this as an approx-
imate a posteriori error estimate for the gradient of the map compared to that of the map from the modified equation. 
Indeed, since ‖X − X̃‖∞ is the error from using the CM method on the velocity ũ, it is globally third order when �x ∼ �t . 
Assuming that ∇X − ∇ X̃ is small, we can justify the following first order expansion

edet = ‖det ∇X − det∇ X̃‖∞ ≈
∥∥∥tr

(
∇ X̃

−1
(∇X − ∇ X̃)

)∥∥∥∞ = O(‖∇X − ∇ X̃‖∞) (60)

Choosing the remapping times such that for each subinterval, we have edet < δdet implies that each submap has 
O(�xδdet) error with respect to X̃ and hence volume preservation and enstrophy conservation error of the same order. 
In turn, since the error is 0 at the initial time and we remap at the first time step where this threshold is exceeded, we 
know that we can assume the error to be small enough to justify the above first order expansion (at least for all previous 
time steps).

This remapping technique is key in the accurate, dissipation-free resolution of the vorticity field. Qualitatively speaking, 
there are two types of errors in this method, one is dissipative in nature, and the other, “advective”. Dissipative error refers 
to artificial diffusion (or diffusion-like) terms that we incur from spatial truncation of the solution. When we represent an 
evolving quantity on a fixed spatial grid, the high frequency features of the solution, namely those above the grid’s Nyquist 
frequency, are lost. When these spatial truncations are directly applied to the Euler equations, we get artificial dissipation 
of ω or u resulting in loss of enstrophy or energy. In the case of Fourier-Galerkin truncation, the dissipative errors can 
resonate with the solution resulting in numerical artefacts and spurious oscillations [8].

Due to the discrete nature of numerical computations, truncation errors are somewhat inevitable. In the present method, 
the evolution of X n (and only X n) contains a diffusive type error since during each GALS update step, the Hermite cubic 
interpolation consists of a 4th order averaging of grid values. The leading order error is a 4th order spatial derivative acting 
like a squared Laplacian. Over time, this accumulated averaging error artificially smooths out the map and resists fine scale 
deformations which might be present in the true solution. However, since ωn = ω0 ◦ X n , the error in the vorticity is not 
dissipative in nature. The vorticity is not directly obtained from the previous step ωn−1 and there is no averaging involved. 
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Instead, the error occurs only at the evaluation of ωn and is produced by evaluating ω0 at a wrong position. In fact, since 
X and X n are both diffeomorphisms of �, there exists a diffeomorphism �n = (X n)−1 ◦ X [tn,0] such that

X [tn,0] = X n ◦ �n. (61)

The error for ωn can then be seen as an advective error in the sense that

ω(x, tn) = ωn(�n(x)), (62)

where ω on the left-hand side refers to the true solution.
This means that qualitatively speaking, the global dynamics of the solution are not obtained from a viscous approxima-

tion: the numerical fluid is still inviscid. We make an error on the position of the vortices, controlled by the error of the 
characteristic map. In particular, it is a straightforward consequence that the numerical solution has the correct L∞-norm. 
Moreover, all Lp-norms for 1 ≤ p < ∞ are controlled by ‖X − X̃‖∞ . Essentially, the CM method places the inevitable diffu-
sive truncation error on the deformation map so that by composition with ω0, the dissipative error in X manifests itself in 
ω as an advective error, hence preserving the inviscid quality of the numerical solution.

Going back to the remapping routine, we apply the same principle. In limiting the length of the submap intervals 
[τi, τi+1] by choosing a small δdet, we limit the amount of artificial diffusion a single submap can accumulate. This prevents 
the dissipative error from smoothing out the map and smearing out the fine scale deformations generated by the advection: 
the global time map is constructed by composition of the short time submaps, also resulting in an advection type error for 
the map.

In practice, we can interpret the choice of δdet in several ways. On one hand, since the use of a smoother un
ε velocity 

can be seen as coarse scale discretization of the fluid velocity in the sense of the LAE-α and non-Newtonian fluid equations, 
we can view the choices of the remapping threshold δdet as control on the artificial elasticity of the numerical flow due 
to spatial truncations. In this sense, the CM method does not make an error on the viscosity, rather it allows for some 
small controlled elasticity in the fluid. On the other hand, δdet controls the error on the volume preserving property of the 
map. The numerical deformation map is not exactly volume preserving, hence the characteristic paths approximate those 
of a fluid that is slightly compressible. Therefore, the CM method avoids numerical dissipation by allowing for a small 
compressibility in particle paths. It is important to note however that the vorticity field is still advected and is not stretched 
by the compressibility relaxation of the characteristic map.

Lastly, one can also look at the spatial resolution of the remapping routine from the point of view of the gradient 
of the represented quantities. Heuristically speaking, the maximum gradient that can be accurately represented on a grid 
of cell width �x is O(�x−1), that is, the gradient scales roughly with N , the number of grid points per dimension. It 
follows that for an exponentially growing vorticity gradient, the required grid size to avoid excessive truncation errors 
grows exponentially also. For methods where the evolution of ω is carried out additively, i.e. methods of the type

ωn+1 = ωn + �t∂tω
n, (63)

it implies that computations for ∂tω
n must be carried out on an exponentially growing grid.

On the other hand, ω is not evolved additively in the CM method, the gradient is instead generated by the characteristic 
map:

∇ω(·, tn) = ∇ω0∇X [tn,0]. (64)

Here, the exponential quantity is ∇X n . This growth is however a natural property of the characteristic map (the map being 
itself the exponential flow map of the backward time velocity). In fact, the semigroup decomposition (17) is the intrinsic 
generating process of the gradient just as multiplication is the generating process of the exponential function. We have

∇X [t,0] =
m∏

j=1

∇X [τ j,τ j−1], (65)

where the �2 operator norm ‖∇X [τ j ,τ j−1]‖2 of each submap gradient is expected to scale exponentially with �τ j = τ j −τ j−1. 
Therefore, by appropriately choosing the remapping criterion, one can make �τ small enough that the gradient of each 
submap is bounded of order 1 + O(�τ), hence representable on a coarse grid. This means that through the semigroup 
property, we can generate exponential growth in the vorticity gradient without having to do computations on an expo-
nentially growing grid. As we shall see in the next section, this yields a computationally efficient method which captures 
arbitrarily fine scales and arbitrarily large gradients in the solution.

4. Numerical tests

In this section we present some numerical tests using the CM method for 2D Euler to simulate incompressible flows 
starting from some given initial condition. All computations are done on Matlab using double precision. However, the GALS 
14
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Fig. 4. Contour plot of the 4-modes initial vorticity and its Laplacian. Isolines are shown for 9 values uniformly distributed in the range of each function.

Fig. 5. Contour plot of the vorticity using 1282 grid for X n , 5122 grid for representing ψn , �t = 1/32 and δdet = 10−4.

method for evolving the characteristic map uses a 4th order ε-difference method to replace the analytic chain rules involved 
in map updates. This simplifies implementation, but with our choice of ε = 5 × 10−4, it effectively limits the machine 
precision for the characteristic map to around 10−13.

4.1. “4-modes” test

We test the CM method for 2D incompressible Euler using the “4-modes” initial condition. We use the tests performed 
in [3] as reference. The initial vorticity is given by:

ω0(x, y) = cos(x) + cos(y) + 0.6 cos(2x) + 0.2 cos(3x). (66)

This flow can roughly be characterised as two vortices of opposite signs partitioning a flat torus. The contour plot of ω0 and 
�ω0 are shown in Fig. 4, all contour plots in this paper show 9 isolines at values uniformly distributed in the range of the 
plotted data. For this flow, we used a 1282 grid for the evolution of the maps with a 5122 grid to represent ũ. The time 
step �t was set at 1/32 and the remapping determinant error threshold to 10−4. The simulation was run to times 3.5 and 
4 for the enstrophy spectrum plot in Fig. 16, and for several times until t = 8 for the long time simulation in Figs. 5 an 6.

The same tests were performed in [3] up to time t = 5 using the Cauchy-Lagrange method of various truncation order 
in time on spatial grids up to 81922. This was necessary due to the presence of large high frequency components in the 
vorticity at large times and to the necessary anti-aliasing routines in Fourier pseudo-spectral methods. On the other hand, 
one can justify using a coarser 1282 grid for the submap evolution in the CM method since the submaps are remapped and 
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Fig. 6. Contour plot of the Laplacian of the vorticity using 1282 grid for X n , 5122 grid for representing ψn , �t = 1/32 and δdet = 10−4.

Table 1
Number of remaps and CPU times for the 4-modes test.

t 1 2 3 4 5 6 7 8

Number of remaps 1 4 14 30 47 65 88 105
Total CPU time 20 s 41 s 66 s 100 s 145 s 202 s 274 s 359 s

reset to identity before large high frequency features can form. Furthermore, these maps are evolved using the velocity field 
ũ which, by the Biot-Savart law, has a faster decay in its Fourier coefficients than the vorticity field.

The simulations in this section were carried out on Matlab on a computer with an Intel Core i5-2320 3.00 GHz 4 cores 
processor and 8 GB of RAM. For the current simulations, we have not used any parallelization routines. However, almost all 
the computational time is spent on Hermite interpolations. Parallel and GPU implementation of these operations are stan-
dard and could drastically improve the speed of the simulations. Parallelization and application of domain decomposition 
techniques may be of interest for future work.

Figs. 5 and 6 show the contour plots of the vorticity and its Laplacian at length 1 time intervals between 0 and 8. The 
characteristic maps are computed on a coarse gird, we only use a fine grid sampling of the vorticity to generate the figures. 
Table 1 shows the number of remaps and total computational times required to reach the various plotting times.

From Figs. 5 and 6, we see that for larger times, the flow forms very thin vortex sheets where the two vortices meet. 
These regions have high vortex gradient and present increasingly fine scale features. For methods employing a fixed grid to 
represent the solution ωn , these fine features will eventually become smaller than the grid resolution after which they are 
lost. This can be interpreted as numerical diffusion or hyper-diffusion associated to the grid size and eventually destroys 
sharp features of the solution. In the case of conservative high resolution methods such as [3], the truncation of high 
frequency modes can provoke resonance in the solution leading to a type of spurious oscillations called “Tygers”: essentially, 
for a given spatial resolution the numerical solution will reach a time after which numerical artefacts become visible and 
the solution becomes unstable.

The CM method circumvents this issue by obtaining the solution as a “rearrangement” of the initial condition using the 
backward map. The lack of spatial resolution due to the discrete representation of the map does not result in a dissipative 
error in the vorticity. This can be observed in Figs. 5 and 6 where we can see that for large times, the solution still contains 
fine scale features and there are no spurious oscillations. There is however some numerical dissipation in X akin to an 
artificial elasticity term. From the point of view of vorticity, the effect of this dissipation in the map is that the vorticity 
will be transported along a less violent flow. This error is controlled by the remapping routine. Normally, if we evolve a 
single characteristic map on a 1282 grid, the accumulated diffusive error will prevent sharp deformations to form. Using the 
remapping method with δdet = 10−4 we limit the amount of diffusive error in each submap. The global map is constructed 
from the composition of the submaps and hence is able to represent large shears and the formation of thin vortex sheets. 
Indeed, we can see from the results that the vorticity develops scales much finer than the 1282 grid used for the submap 
16
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Table 2
Conservation errors for the 4-modes test using the CM method.

t 1 2 3 4

Enstrophy 1.35 · 10−6 2.75 · 10−6 4.39 · 10−6 6.13 · 10−6

Energy −3.21 · 10−8 −4.14 · 10−8 −5.17 · 10−8 4.66 · 10−8

t 5 6 7 8

Enstrophy 7.90 · 10−6 9.76 · 10−6 1.17 · 10−5 1.37 · 10−5

Energy −3.51 · 10−7 −1.64 · 10−6 −3.98 · 10−6 −7.51 · 10−6

Fig. 7. Gradual 64× zoom on the vorticity at t = 4.

Fig. 8. Gradual 64× zoom on the Laplacian of the vorticity at t = 4.

evolution. These scales were absent in the initial condition and are generated from the domain deformation represented by 
the composition of several submaps.

Another advantage of the remapping routine is that it offers some control over the growth of the enstrophy conservation 
error. Indeed, since each additional submap transports the vorticity at the previous remapping time, we incur the conser-
vation error in Corollary 1 with respect to the enstrophy at the previous remapping. This means that the enstrophy error 
accumulates additively when remapping. The error from each submap is controlled through the choice of the remapping 
tolerance δdet, thereby providing better long term conservation. The enstrophy and energy conservation errors are shown in 
Table 2.

Compared to a direct grid based representation of the vorticity, this growth is much slower. Indeed, in [3], using the 8th
order Cauchy-Lagragian method on a 10242 grid, the enstrophy error increases from 10−14 to 10−12 to 10−6 for times 1, 3
and 5, whereas for the CM method, the enstrophy error seems to grow linearly with time.

The remapping method combined with the functional representation of the characteristic map offers the possibility of 
arbitrary spatial resolution of the solution. Indeed, since the interpolation structure of the submaps implies that the global 
map X [t,0] can be readily evaluated anywhere in the domain, it follows that the vorticity of any quantity transported by 
the flow can also be evaluated anywhere. With the accuracy control provided by the remapping method, this means that 
solutions can be faithfully represented at an arbitrary resolution. We illustrate this property by gradually zooming into the 
solution at times 4 and 8.

Figs. 7, 8, 9 and 10 demonstrate the arbitrary spatial resolution provided by the characteristic map. Each zoomed plot is 
sampled with the same number of sample points, providing the same image resolution on gradually smaller subdomains. We 
observe that when we zoom in, we recover additional small scale features not visible on the original plot. The undersampling 
from the [0, 1] × [0, 1] plot fails to represent the complexity of the contour lines inside the thin vortex sheet (see Figs. 9a 
v.s. 9d). These features are recovered when using a finer sampling. This in fact shows that the solution provided by the CM 
method is not bound to a fixed set of sample points. Whereas in most methods, once a grid is chosen, any detail finer than 
17
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Fig. 9. Gradual 64× zoom on the vorticity at t = 8.

Fig. 10. Gradual 64× zoom on the Laplacian of the vorticity at t = 8.

this grid is lost, the CM method does not compute the solution on a fixed grid, rather it provides an algorithm to sample 
the vorticity field ωn = ω0 ◦X n defined as a function over the whole domain. This means that the solution can be evaluated 
anywhere, providing arbitrary spatial resolution. In practice, in case ω0 is given numerically, this implies that we maintain 
the same resolution as that of ω0 throughout the entire simulation: there is no loss of spatial features.

4.2. Random initial conditions

In this section, we perform the same tests as in section 4.1 on a randomly generated initial condition. The procedure to 
generate the random initial condition is given in [8]. In short, the vorticity is defined in Fourier space, which is divided into 
lattice shells, each containing all modes k = (k1, k2) such that 

√
k2

1 + k2
2 ∈ [K , K + 1). The K th shell contains N(K ) modes, 

and for each of these modes, we assign a vorticity Fourier coefficient ω̂k of fixed modulus 2K 7/2 exp(−K 2/4)/N(K ) and 
a phase picked randomly from [0, 2π) with uniform distribution. This guarantees that the total vorticity in the K th shell 
decays like 2K 7/2 exp(−K 2/4). Further, to ensure that the vorticity is real, opposite wave vectors (i.e. ω̂k and ω̂−k) are given 
opposite phases so that the resulting Fourier expansion is Hermitian. The same test was performed in [3] until t = 1 using 
the Cauchy-Lagrange methods with 20482 spatial Fourier modes.

Since the CM method does not work directly with the Fourier transform of the initial vorticity, we defined our initial ω0
as follows: we first generate ω̂k as described above, we then sample the Fourier series on a 5122 grid to obtain a Hermite 
cubic interpolant which we use as ω0. We used total of 32 lattice shells, i.e. K = 0, 1, . . . 32; in fact, due to the prescribed 
decay rate of the coefficients, |ω̂k| is already well below machine precision for |k| = 32 and is below machine underflow for 
64. Using more shells would have no consequence on our ω0. The initial vorticity and its Laplacian are shown in Fig. 11. 
We ran the CM method on this initial condition using a 2562 grid for the map, 10242 grid to represent ψn , �t = 1/64 and 
δdet = 10−4. Contour plots of the vorticity field and of its Laplacian are shown at 0.5 time intervals in Figs. 12 and 13. The 
number of remaps and CPU times required are shown in Table 3. We also include a zoom of the vorticity and its Laplacian 
in Figs. 14 and 15.

As in the 4-modes test, we also observe slow growth in conservation errors for the random initial data in Table 4. In 
comparison, the enstrophy error for the 8th order, 20482 harmonics Cauchy-Lagrangian method grows from 10−14 to 10−13

to 10−8 for times 0.2, 0.6 and 1.

4.3. Spatial resolution

The vorticity solutions in both tests in this section are observed to have increasingly finer spatial features as time 
progresses. One way to quantify the evolution of the spatial scales is through the Fourier expansion of the solution, in 
18
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Fig. 11. Contour plot of the random initial vorticity and its Laplacian.

Fig. 12. Contour plot of ωn for the random initial condition test using 2562 grid for X n , 10242 grid for representing ψn , �t = 1/128 and δdet = 10−4.

Fig. 13. Contour plot of �ωn for the random initial condition test using 2562 grid for X n , 10242 grid for representing ψn , �t = 1/128 and δdet = 10−4.

particular, we look at the decay of the magnitudes of the high frequency coefficients. This can be seen from the enstrophy 
spectrum obtained by integrating the square of vorticity over circular shells in Fourier space. That is, let ω̂k be the k =
(k1, k2) coefficient of the Fourier transform of ω and denote |k| =

√
k2

1 + k2
2, we have

Eω(K ) := 1

2

∑
K≤|k|<K+1

|ω̂k|2. (67)

We compare the enstrophy spectrum from the CM method to that of the Cauchy-Lagrangian (CL8) method presented in 
[3]. Fig. 16 shows the overlay of the vorticity spectra obtained from both methods. The vorticity fields are sampled at times 
3.45 and 3.95 (due to the nature of the time steps in the CL8 method, the times presented in [3] did not land exactly on 
t = 3.5 and 4).1

We see that in Fig. 16, the enstrophy spectra obtained from the CM method match almost exactly, up to double precision, 
the high-fidelity results obtained from the 80962 harmonics Cauchy-Lagrangian simulation (the curves are on top of each 

1 The Cauchy-Lagrangian method employs variable length time steps. The enstrophy spectrum presented in [3] is computed at the last time step before 
reaching times 3.5 and 4. The final times turned out to be approximately 3.45 and 3.95. In this figure, the final times for the CM method are taken to be 
exactly 3.45 and 3.95.
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Table 3
Number of remaps and CPU times for the random initial condi-
tion test using the CM method.

t 0.5 1 1.5 2

Number of remaps 3 18 38 69
Total CPU time 233 s 499 s 822 s 1226 s

Table 4
Conservation errors for random initial condition test using the CM method.

t 0.5 1 1.5 2

Enstrophy error −2.40 · 10−6 1.36 · 10−6 5.95 · 10−6 9.36 · 10−6

Energy error −7.74 · 10−7 −4.71 · 10−6 −3.79 · 10−5 −9.36 · 10−5

Fig. 14. Gradual 64× zoom on the vorticity at t = 2.

Fig. 15. Gradual 64× zoom on the Laplacian of the vorticity at t = 2.

other. The plots are provided in vector-graphics format, zooming in the tail of the spectrum shows some discrepancies 
between the two curves. This is in large part due to the two simulations not having exactly the same final times). This 
suggests that small time deformations can be accurately represented on a coarse 1282 grid and the fine scale global time 
deformations can be reconstructed by the composition of the submaps without loss of resolution.

One measurement of the asymptotic decay of the Fourier coefficients is the radius of analyticity. The decay rate of the 
enstrophy spectrum at high frequency modes indicates the spatial scales present in the solution. Asymptotically, the decay 
of the enstrophy spectrum is typically

Eω(K ) ∼ K αe−2δK . (68)

The rate of the exponential, δ, is the radius of analyticity and governs the spatial truncation error. For a grid which resolves 
a maximum frequency of kmax, the spatial truncation error scales like e−δkmax .

Fig. 17 shows the evolution of the radius of analyticity in time for both numerical tests. The radius is estimated at 
various times by taking a least-squared fit of the logarithm of the tail of the enstrophy spectrum log(Eω(K )) with respect 
to the quantities log(K ), K and 1; we extract δ from the fitted coefficient for K . We see that the reduction in the radius of 
analyticity is exponential. This implies that in order to maintain a certain level of spatial truncation, the maximum resolved 
frequency kmax must grow exponentially. In particular, for the 4-modes test, at time 8, a grid size of order 104 would be 
needed to properly resolve the solution. We see that the CM method allows us to evolve the solution for long times without 
having to use such large grids: through the submap decomposition, only local time coarse grids computations are required, 
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Fig. 16. Decay in the enstrophy spectrum at times 3.5 and 4.

Fig. 17. Radius of analyticity δ(t) vs. time.

the fine scale details can be recovered by the composition of the submaps. The CM method in fact dynamically adapts 
to the spatial resolution necessary to the problem. Through the remapping process, the available numerical resolutions 
autonomously grow as the spatial features in the solution increase.

4.4. Illustration of the arbitrary subgrid resolution

Finally, in this section we provide an illustration of the power of the semigroup decomposition approach in achieving 
high subgrid resolution of the solution. For this, we simulate a 2 vortex merger problem. We use two identical Gaussian 
blobs of variance 0.07 placed 0.3 apart in a periodic domain of width 1 (see Fig. 18). The two vortices both have clockwise 
spins and are expected to start spinning around each other and almost merge into a single vortex blob. Due to the lack of 
viscosity, the vortices do not become a single vortex and will generate instabilities as time goes on.

The fine scale features produced by this flow require a high amount of spatial resolution to evolve and represent. We 
performed the simulation using the CM method on a 512 grid for the map with time step 1/128 until t = 20. The results 
are shown in Figs. 19 and 20.

The final frame (Fig. 19) at time 20 is obtained using a composition of 605 submaps. This allows for the representation 
of a tremendous amount of fine scale subgrid structures. To illustrate this, we take a gradual zoom towards the position 
(x, y) = (13/32, 13/32) in the last frame. Fig. 21 shows the zoomed view on the t = 20 vorticity field. Each subfigure is 
obtained by evaluating the submap compositions on the subdomain corresponding to the zoomed view. Since the charac-
teristic map has a functional definition, we can use the same number of sample points to generate each picture, therefore 
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Fig. 18. Initial vorticity for the vortex merger simulation.

Fig. 19. Vorticity field at time t = 20.

obtaining high resolution images of arbitrarily small regions in the domain. For instance, Fig. 21l shows the vorticity field 
in a region of size 1/8192 × 1/8192. The image is generated using 7682 sample points, providing an accurate depiction of 
the details seen at the fine scale level.

The numerical experiments in section 4 showcase several advantageous properties of the CM method for the 2D incom-
pressible Euler equations. Firstly, the submap decomposition using the semigroup property of the characteristic map allows 
for quick and accurate computations on a coarse grid, circumventing the usual requirement of increasing spatial resolution 
due to exponential vorticity gradient growth. As evidence, solutions from a 1282 grid CM solver achieve the same enstrophy 
spectrum as an 81922 grid direct vorticity solver (see Fig. 16). Furthermore, due to the volume preserving property of the 
characteristic map, the CM method achieves high accuracy enstrophy conservation for all times. Whereas other methods 
experience a spike in enstrophy error when the vorticity fields become complicated, the enstrophy conservation in CM is 
independent of the current time vorticity and is a direct result of volume preservation. This allows the enstrophy error 
to grow only linearly in time, regardless of the complexity of the vorticity field. Lastly, the functional definition of the 
numerical vorticity through composition with the backward map allows for an arbitrary spatial resolution of the solution. 
Furthermore, the submap decomposition generates the correct scales of gradients, ensuring that the increasing fine scale 
features in the vorticity solutions are properly represented as the resolution increases. This property is evidenced in Figs. 7, 
8, 9, 10 and more thoroughly in 21 in section 4.4, where we zoom in on the solution to show the arbitrary spatial resolution 
achieved by the CM method.
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Fig. 20. Evolution of the vorticity field in the vortex merger simulation.

5. Conclusion

In this paper, we have presented a novel numerical method for solving the 2D incompressible Euler equations. The work 
in this paper is an extension of the CM method for linear advection and is based on the GALS and Jet-Scheme frameworks. 
This method is unique in that it solves for the deformation map generated by the fluid flow and captures the geometry 
of the problem; all evolved quantities of interest can be obtained from this transformation. As a result, this scheme is 
characterized by the arbitrarily fine subgrid resolution it provides on the solutions and a lack of artificial dissipation. Several 
key observations have led to the development of this method. Firstly, the arbitrarily fine scales typically generated by an 
inviscid flow lead to the functional representation of the vorticity field though the pullback by the characteristic map, 
this approach not only preserves fine scales but more importantly avoids spatial truncations of the vorticity field hence 
eliminating artificial dissipation. These properties are demonstrated in the tests in section 4, in particular in the zoomed 
view of the solutions. Secondly, the possible exponential growth in the vorticity gradient lead to the use of the semigroup 
structure of the flow maps to decompose the characteristic map: exponential growth can be generated by a composition of 
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Fig. 21. Gradual zoom on the t = 20 frame (Fig. 19), each subfigure is a 2× zoom on the previous.

maps of fixed resolution. Lastly, the assumption that the dynamics of the fluid is mainly governed by the large scale low 
frequency features of the velocity allowed us to carry out the characteristic map computations on a coarse grid, improving 
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the efficiency of the method. We drew a parallel between the use of coarse scale velocity and the Lagrangian-Averaged Euler 
equations.

The use of the characteristic map for the simulation of inviscid fluids opens many new possibilities for future research. 
The next step is to include the vorticity-stretching term in order to generalize this 2D method to three-dimensional prob-
lems. Another possible direction would be to use the level-set formulation by Deng et al. [19] to reduce the 3D Euler 
equations to a system of scalar advection equations: the solutions of all advection equations would then be provided by 
the same characteristic map. There is also a possibility of including forcing terms by tracking an integral quantity along 
characteristics and potentially extensions to the method which deals with forcing terms while maintaining the character-
istic structure. In the CM method, the assumption of a transport structure does not apply to equations with a diffusive 
source term such as the incompressible Navier-Stokes equations. In cases where solutions do not exhibit arbitrary fine 
scales, the source terms integrated along forward characteristics need to counteract the fine scales created by the advection, 
resulting in additional numerical difficulties. Direct grid-based integration of such source terms is not desirable with the 
current framework as it undermines the advantages the CM method. We are currently examining various approaches to 
the advective structure of the deformation maps to better manage the viscous term in the Navier-Stokes equations. Lastly, 
the implementation of boundary conditions and the application of the method to complex geometries is also an important 
problem to study. These are the current directions of our research as we believe that the CM method provides a unique and 
appropriate framework for solving more general problems in computational fluid dynamics.
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