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a b s t r a c t

In this paper we establish a framework for planar geometric interpolation with exact
area preservation using cubic Bézier polynomials. We show there exists a family of such
curves which are 5th order accurate, one order higher than standard geometric cubic
Hermite interpolation. We prove this result is valid when the curvature at the endpoints
does not vanish, and in the case of vanishing curvature, the interpolation is 4th order
accurate. The method is computationally efficient and prescribes the parametrization
speed at endpoints through an explicit formula based on the given data. Additional
accuracy (i.e. same order but lower error constant) may be obtained through an iterative
process to find optimal parametrization speeds which further reduces the error while
still preserving the prescribed area exactly.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the last several decades, interpolation using parametric curves has been studied extensively with the primary
application being geometric design and computer graphics [1–5]. The class of parametric polynomials we are concerned
with here are continuous in both the position and velocity vectors. These curves are classified as G1, or geometric
continuity of order 1. Further discussion of parametric and geometric continuity can be found in [6].

In this paper we introduce a G1 cubic Bézier interpolation framework which, given a parametric curve ⟨γ (s) , ξ (s)⟩ ∈ R2,
with s ∈ [s0, s1], exactly matches the area

∫ s1
s0

ξ (τ )γ ′(τ )dτ . A conservative framework of this type may be of particular
interest in areas of mathematics and engineering where physical laws must be obeyed, for examples see [7]. In addition to
being consistent with physical principles, conservative schemes offer additional stability properties [8]. From the outset,
conservative methods of this type may not directly appeal to the geometric design community, however the results
presented in this paper show it performs surprisingly well when compared to standard non-conservative methods, such
as the curvature matching method described in [1] and the curvature variation energy method discussed in [9]. One
interesting finding of our work is that requiring a traditionally 4th order cubic Bézier to exactly match the area of a
target function results in a 5th order accurate interpolating polynomial. In fact, we show that there is an entire family
of area-preserving G1 cubic polynomials which are 5th order accurate. In many applications choosing any member of
this family will provide sufficient accuracy, however, in situations where high precision is valued, an optimal member of
the family may be selected through an iterative procedure. We discuss details of the optimization procedure and show
that the error can be further reduced by several orders of magnitude. Before introducing the area-preserving method, we
discuss a selection of relevant results from the geometric design and interpolation literature.
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Geometric interpolation was first introduced by de Boor et al. in [1]. In that work a parametric-cubic interpolation
framework matching function value, tangents and curvature at endpoints was derived. This is now classified as G2

interpolation and is 6th order accurate. The method reduces to 4th order if the curvature vanishes anywhere within the
interpolation domain. Since that seminal result, work in geometric interpolation has grown extensively, with an emphasis
on non-local quantities. For example, in [10], the author succeeded to create a G1 interpolation framework which matches
prescribed arclength using Pythagorean-hodograph (PH) curves. For more on PH curves see [11–13]. Other extensively
studied methods of interpolation are concerned with seeking G1 polynomial curves which minimize the strain energy,∫ t1
t0
(κ(t))2dt , where κ(t) denotes the curvature, or the curvature variation energy

∫ t1
t0
(κ ′(t))2dt . For example, Jaklic and

Zagar in [14] study G1 cubic polynomials which minimize an approximate strain energy, also called the linearized bending
energy. This is also studied in [15] and extended to quintics in [16]. In [9] Jaklic and Zagar present a 4th order accurate
G1 interpolation method which minimizes a functional approximating the curvature variation energy. Recently in [17], Lu
et al. introduced a scheme which computes G1 cubic interpolants minimizing the true curvature variation energy through
a constrained minimization problem. The results are concluded to be better than the approximate methods in [9], however
this additional accuracy comes with a significant increase in computational cost. After an extensive search, it is to the best
of our knowledge that area-preservation within the context of parametric interpolation is novel. In the results section we
will compare our area-preserving G1 interpolation method to the curvature matching method of de Boor et al. and the
approximate curvature variation energy method of Jaklic and Zagar.

We begin Section 2 with a brief discussion of cubic Bézier curves and introduce the area-preserving cubic Bézier
framework. We then prove two Lemmas which lead to the main Theorem stating that a certain class of area-preserving
cubic Bézier curves are 5th order accurate. The main Theorem is followed by a Corollary which states that no 6th order
method can be constructed within this framework. In Section 3 numerical experiments are conducted to compare the
area-preserving scheme to other geometric interpolation methods, while also verifying the results presented in Section 2.
We then discuss the optimized method and show that an increase in accuracy can be achieved by choosing an optimal
member of the area-preserving cubic Bézier family. We conclude the numerical experiments section by discussing the
application of area-preserving parametric interpolation to scalar conservation laws in one space dimension. This brief
discussion solidifies the importance of the framework presented in this paper. In Section 4 we give some concluding
remarks and discuss future directions of work.

2. Area-preserving cubic Bézier curves

A parametric cubic Bézier curve B⃗(t) = ⟨B1(t) , B2(t)⟩ interpolating point A⃗ to point D⃗, for A⃗, D⃗ ∈ R2, is given by

B⃗(t) = A⃗(1 − t)3 + 3C⃗1(1 − t)2t + 3C⃗2(1 − t)t2 + D⃗t3, for t ∈ [0, 1], (2.1)

where C⃗1 and C⃗2 are referred to as control points which dictate the tangent direction and magnitude of B⃗ at t = 0 and
t = 1. The tangent direction at endpoints will be extracted from the prescribed data, therefore, the remaining degrees of
freedom are the magnitudes, r1 > 0 and r2 > 0, for the left and right tangents respectively. Taking the tangent direction
at the left endpoint to be α⃗ and β⃗ on the right we therefore obtain

B⃗′(0) = r1α⃗ and, B⃗′(1) = r2β⃗.

Rewriting the control points in terms of A⃗, D⃗, α⃗, β⃗, r1 and r2, yields the two-parameter family of cubic Bézier curves
matching function value and tangent directions,

B⃗(t) = A⃗(1 − t)3 + 3
(
A⃗ +

r1α⃗
3

)
(1 − t)2t + 3

(
D⃗ −

r2β⃗
3

)
(1 − t)t2 + D⃗t3, for t ∈ [0, 1]. (2.2)

Given a parametric curve ⟨γ (s) , ξ (s)⟩ parametrized by s ∈ [s0, s1], we reduce the two-parameter family of solutions (2.2)
to a one-parameter family by imposing the parametric area condition∫ 1

0
B2(t)B′

1(t)dt =

∫ s1

s0

ξ (s)γ ′(s)ds. (2.3)

Using that Bézier curves are formed by generalized convex combinations, we simplify the expression by shifting A⃗ to the
origin, which yields

B⃗(t) − A⃗ =B⃗(t) − A⃗((1 − t)3 + 3(1 − t)2t + 3(1 − t)t2 + t3)

=r1α⃗(1 − t)2t + 3
(
D⃗∗

−
r2β⃗
3

)
(1 − t)t2 + D⃗∗t3, for t ∈ [0, 1], (2.4)

where D⃗∗
= D⃗− A⃗, but for convenience we will drop the ∗. Using the shifted form (2.4), the integrand of (2.3), B2(t)B′

1(t),
is a 5th degree polynomial with coefficients given by r1, r2, α⃗, β⃗ and D⃗. Integrating each term and simplifying the result
yields∫ 1

0
B2(t)B′

1(t)dt =
r1r2
60

(α⃗ × β⃗) +
r1
10

(D⃗ × α⃗) +
r2
10

(β⃗ × D⃗) +
D1D2

2
= C, (2.5)
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Fig. 1. Signed area about the secant line between A⃗ and D⃗.

where C is the prescribed area after shifting the left endpoint to the origin, D1 and D2 are the first and second components
of D⃗ respectively, and the notation ‘‘×’’ refers to the planar vector product α⃗ × β⃗ = α1β2 − β1α2. Note that shifting
⟨γ (s) , ξ (s)⟩ to ⟨γ (s)− x0, ξ (s)− y0⟩, yields C =

∫ s1
s0

ξ (s)γ ′(s)ds− y0(γ (s1)−γ (s0)). Returning to Eq. (2.5), and moving D1D2
2

to the right hand side, we obtain the area constraint equation
r1r2
60

(α⃗ × β⃗) +
r1
10

(D⃗ × α⃗) +
r2
10

(β⃗ × D⃗) = CR, (2.6)

prescribing the signed area about the secant line of the parametric polynomial B⃗ to equal that of the data. A sketch of the
prescribed signed area is given in Fig. 1.

Our goal is as follows: Given the signed area CR, we aim to find choices of r1 > 0 and r2 > 0 which satisfy Eq. (2.6),
and in addition, obtain an estimate for the convergence rate of the error in a suitable norm as the size of interpolation
domain, |D⃗|, tends to zero.

We begin by discussing existence of solutions to (2.6) by looking at the three possible cases, CR > 0, CR = 0 and CR < 0.
Existence reduces to investigating the signs of the coefficients on the left hand side of Eq. (2.6). If CR > 0, then at least
one of the coefficients (α⃗× β⃗), (D⃗× α⃗), or (β⃗ × D⃗) must be positive. Similarly, if CR < 0, then at least one must be negative.
If CR = 0, then we must have one of each sign, or all must be zero. It is therefore clear that a lack of existence may only
occur if the coefficients (α⃗× β⃗), (D⃗× α⃗), and (β⃗ × D⃗) are all non-negative or all non-positive. To understand this condition
geometrically we rotate the problem so that the secant line lays on the x-axis, which implies D⃗ = ⟨D, 0⟩, and we consider
the rays

Lα
:= τ ⟨α1, α2⟩, with τ ≥ 0 and,

Lβ
:= ⟨D, 0⟩ − ν⟨β1, β2⟩, with ν ≥ 0.

Lemma 2.1. Consider Eq. (2.6) with D⃗ = ⟨D, 0⟩ for some D > 0. Then, the coefficients of (2.6) are all non-negative or all
non-positive provided Lα and Lβ are on the same side of the x-axis and do not cross.

Proof. The two rays Lα and Lβ cross if the system

τα1 = D − νβ1, and,
τα2 = −νβ2

is satisfied for some positive values of τ and ν. Suppose that both rays live above the x-axis, this implies that α2 > 0 and
β2 < 0, and therefore (D⃗ × α⃗) > 0 and (β⃗ × D⃗) > 0. To ensure they do not cross we plug the second equation into the
first and simplify to obtain

(α1β2 − α2β1)τ = β2D

⇒ (α⃗ × β⃗)τ = −(β⃗ × D⃗).

We conclude that no positive solution τ exists if (α⃗ × β⃗) > 0. Therefore having both rays above the x-axis and not
crossing yields all positive coefficients to (2.6). Similarly having the rays below the x-axis and not crossing yields all
negative coefficients.
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Fig. 2. Solutions to (2.6) for different area data.

One special case that may arise is if either α2 or β2 is zero. Suppose without loss of generality that β2 = 0. This means
the second equation is always satisfied when τ = 0. To ensure the rays do not cross we thus require β1 < 0. This implies
(α⃗ × β⃗) = −α2β1, which has the same sign as (D⃗ × α⃗). Repeating the argument with α2 = 0 concludes the proof. □

Remark 2.2. We note that the coefficients of (2.6) having the same sign does not imply a lack of admissible solutions. It
does imply however that a solution will only exist if the provided area data has the appropriate sign.

A sketch of how different areas can be obtained from the same endpoint and tangent data is shown in Fig. 2. In this
example we have α⃗ = ⟨1, 1⟩ and β⃗ = ⟨1, −1⟩, which is an example where Lα and Lβ cross. From left to right in Fig. 2
we have (r1, r2) = (0.1, 5), (r1, r2) = (5, 5), (r1, r2) = (5, .1). Within the context of our interpolation problem, if we fail to
have existence of solutions to (2.6), then a refinement of the mesh is required until the existence criterion is met.

Remark 2.3. We also note that in many application solutions with loops, such as the middle curve plotted in Fig. 2, are
undesirable. In this case additional constraints can be placed on r1 and r2 to ensure such solutions are not permissible.

We now turn our attention to choosing r1 and r2 satisfying (2.6) possessing desirable convergence properties. In
particular we are interested in finding r1 and r2 which minimize a prescribed distance between the planar curves B⃗(t)
and ⟨γ (s), ξ (s)⟩. Recall that given two parametric curves P⃗1 : [0, 1] → R2 and P⃗2 : [0, 1] → R2, the distance between the
sets P1, P2 ∈ R2 may be measured by the Hausdorff distance

dH (P1, P2) = max
(
sup
x∈P1

inf
y∈P2

d(x, y), sup
y∈P2

inf
x∈P1

d(x, y)
)
. (2.7)

Here we are seeking the asymptotic decay of dH (x, y) as the curve lengths tend to zero. In the context of our interpolation
problem, for small enough curve length (after rotation if necessary), the target curve can be represented by the graph of
a function f (x). Therefore, when investigating the accuracy of our interpolating parametric polynomial in this setting we
may relax (2.7) to the L∞ norm

∥B2(t) − f (B1(t))∥L∞(t∈[0,1]). (2.8)

Taking the interpolation domain to be x ∈ [0, h] we search for r1 and r2 which satisfy

∥Bh2 (t) − f (Bh1 (t))∥L∞([0,1]) = O(h4), (2.9)

where the subscript h signifies that for each choice of h > 0 the resulting Bézier interpolant, B⃗(t), is generated with
potentially different data.

To achieve the above result we employ the method utilized by de Boor et al. in [1] by relying upon classical results
for cubic Hermite polynomials H(x). Matching the data f (0), f ′(0), f (h), f ′(h) we have ∥H(x)− f (x)∥L∞([0,h]) = O(h4), with

∥H(x) − f (x)∥L∞([0,h]) ≤ max
z∈[0,h]

⏐⏐f (4)(z)⏐⏐ h4

4!
. (2.10)

To do this, we require that the curve given by B⃗h(t) for t ∈ [0, 1] can be represented by the graph of a function bh(x). We
show for 0 < r1, r2 < 3h that d

dt Bh1 (t) > 0 for t ∈ (0, 1).
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The first case we consider is when we can write α⃗ = ⟨1, f ′(0)⟩ and β⃗ = ⟨1, f ′(h)⟩. Combining this with A⃗ = 0 and
D⃗ = ⟨h, f (h)⟩ in Eq. (2.2) yields

Bh1 (t) = r1(1 − t)2t + (3h − r2)(1 − t)t2 + ht3. (2.11)

To show d
dt Bh1 (t) > 0 we consider it a function of three variables, d

dt Bh1 (t) = g(r1, r2, t), given by

g(r1, r2, t) = t2(3r1 + 3r2 − 6h) + t(−4r1 − 2r2 + 6h) + r1. (2.12)

We show that within the open set R =
{
(r1, r2, t) ∈ R3

⏐⏐(0, 0, 0) < (r1, r2, t) < (3h, 3h, 1)
}
we have g(r1, r2, t) > 0.

We first observe that g(r1, r2, t) has no critical points in R, then, checking boundaries and corners of R̄, we have values
in [0, 3h], implying that the interior has values within (0, 3h), and therefore g(r1, r2, t) > 0 within the desired region.
The cases when α⃗ = ⟨0, 1⟩ or β⃗ = ⟨0, 1⟩ similarly lead to d

dt Bh1 (t) > 0 for (r1, r2, t) ∈ R. We note that if the data α⃗

and β⃗ are given as unit vectors, α⃗ =
⟨1,f ′(0)⟩

√
1+(f ′(0))2

and β⃗ =
⟨1,f ′(h)⟩

√
1+(f ′(h))2

, then the above result becomes d
dt Bh1 (t) > 0 for

0 < r1 < 3h
√
1 + (f ′(0))2 and 0 < r2 < 3h

√
1 + (f ′(h))2 by the same argument.

Therefore, under the assumption that the target planar curve is the graph of a function f (x), and that (r1, r2, t) ∈ R,
we may write

∥Bh2 (t) − f (Bh1 (t))∥L∞([0,1]) = ∥bh(x) − f (x)∥L∞([0,h]) (2.13)

where the graph of bh(x) for x ∈ [0, h] yields the same curve as B⃗h(t) for t ∈ [0, 1].
Before proceeding we recall that the first spatial derivative of a planar curve ⟨x(t), y(t)⟩ is given by D1(x(t), y(t)) =

y′(t)
x′(t) ,

and that the nth spatial derivative is defined recursively by Dn(x(t), y(t)) =
d
dt D

n−1(x(t),y(t))
x′(t) . Therefore, with x(t) and y(t)

cubic polynomials, the 4th spatial derivative simplifies to

x′
(
15(x′′)2y′′

− 4x′x′′′y′′
− 6y′′′x′x′′

)
− y′

(
15(x′′)3 − 10x′′′x′x′′

)
(x′)7

. (2.14)

Studying the expression (2.14) allows us to prove the following Lemma.

Lemma 2.4. Suppose B⃗h(t) is interpolating a function f (x) ∈ C4([0, h]) on [0, h]. Then, if r1 = h+P1(h)h2 and r2 = h+P2(h)h2,
where Pi(h) are polynomials in h, then B⃗(t) is at least 4th order accurate provided P1(h) + P2(h) = O(hq) for any q ≥ 1, or if
f ′′(0) = 0.

Proof. Without loss of generality we assume B⃗h(0) = 0⃗, as discussed previously. The given expression for r1 and r2 implies
we can find an h small enough to ensure 0 < r1, r2 < 3h, as eventually the leading linear term will dominate, regardless
of the values of Pi(h). Since we are taking α⃗ = ⟨1, f ′(0)⟩ and β⃗ = ⟨1, f ′(h)⟩, this guarantees that the graph of B⃗h(t) can be
generated by some function bh(x) for each value of h > 0 sufficiently small. The given interpolation problem tells us that

bh(0) = f (0) = Bh2 (0) = 0, bh(h) = f (h) = Bh2 (1), b
′

h(0) = f ′(0) =
B′
h2

(0)

B′
h1

(0) , and b′

h(h) = f ′(h) =
B′
h2

(1)

B′
h1

(1) (The case where the

slope at endpoints is infinite can be ignored since further partitioning and rotation can be used). For any given h small
enough, the interpolation error is therefore given by

e(h) = ∥bh(x) − f (x)∥L∞[0,h].

Letting H(x) be the cubic Hermite for f (x) on x ∈ [0, h], the triangle inequality yields

∥bh(x) − f (x)∥L∞[0,h] ≤ ∥bh(x) − H(x)∥L∞[0,h] + ∥H(x) − f (x)∥L∞[0,h].

The second term is O(h4) by definition of the Hermite polynomial of f (x). We are thus left to show that ∥bh(x)−H(x)∥L∞[0,h]
is O(h4). Since H(x) is also the cubic Hermite polynomial for bh(x), we apply inequality (2.10) to obtain

∥bh(x) − f (x)∥L∞[0,h] ≤ sup
x∈(0,h)

⏐⏐⏐ d4
dx4

bh(x)
⏐⏐⏐h4

4!
. (2.15)

The proof will be complete if d4

dx4
bh(x) is bounded as h → 0. We rely on the property that for each x ∈ [0, h] there exists

a t∗ ∈ [0, 1] such that d4

dx4
bh(x) = D4(Bh1 (t

∗), Bh2 (t
∗)). Using Eq. (2.14) we demonstrate that D4(Bh1 (t), Bh2 (t)) is bounded.

We obtain the desired result by replacing each term by its Taylor expansion, then showing the lowest order terms in the
numerator and denominator are both O(h7).

Since we are interpolating a function, after a shift to the origin, the terms from Eq. (2.2) become A⃗ = 0⃗, D⃗ = ⟨h, f (h)⟩,
α⃗ = ⟨1, f ′(0)⟩, and β⃗ = ⟨1, f ′(h)⟩. Starting with

f (h) = hf ′(0) +
h2

2
f ′′(0) + O(h3)
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f ′(h) = f ′(0) + hf ′′(0) +
h2

2
f ′′′(0) + O(h3),

we obtain

B′

h1 (t) = h + O(h2), B′′

h1 (t) = 2h2(P1(h)(−2 + 3t) + P2(h)(−1 + 3t)) + O(h3),

B′′′

h1 (t) = 6h2(P1(h) + P2(h)) + O(h3),

B′

h2 (t) = f ′(0)h + O(h2),

B′′

h2 (t) = 2f ′(0)h2(P1(h)(−2 + 3t) + P2(h)(−1 + 3t)) + f ′′(0)h2
+ O(h3),

B′′′

h2 (t) = 6f ′(0)h2(P1(h) + P2(h)) + O(h3).

In fact, we can simplify our computations further by rewriting the second component derivatives in terms of the first
component derivatives, yielding

B′

h2 (t) = f ′(0)B′

h1 (t) + O(h2),

B′′

h2 (t) = f ′(0)B′′

h1 (t) + f ′′(0)h2
+ O(h3),

B′′′

h2 (t) = f ′(0)B′′′

h1 (t) + O(h3).

Plugging this into Eq. (2.14), we obtain

15x′(x′′)2y′′
= 15f ′(0)B′

h1 (t)(B
′′

h1 (t))
2
(
B′′

h1 (t) +
f ′′(0)
f ′(0)

h2
)

= O(h7),

−4(x′)2y′′x′′′
= −4f ′(0)(B′

h1 (t))
2B′′′

h1 (t)
(
B′′

h1 (t) +
f ′′(0)
f ′(0)

h2
)

+ O(h7),

−6(x′)2y′′′x′′
= −6f ′(0)(B′

h1 (t))
2B′′

h1 (t)B
′′′

h1 (t) + O(h7),

−15y′(x′′)3 = −15f ′(0)(B′

h1 (t))(B
′′

h1 (t))
3

= O(h7),

10y′x′x′′x′′′
= 10f ′(0)(B′

h1 (t))
2B′′

h1 (t)B
′′′

h1 (t) + O(h7).

Summing all terms above results in exactly

−4f ′′(0)(B′

h1 (t))
2B′′′

h1 (t)h
2
+ O(h7) = −24f ′′(0)h6(P1(h) + P2(h)) + O(h7).

Therefore, if P1(h) + P2(h) = O(hq), for q ≥ 1, or if f ′′(0) = 0, the resulting numerator is at least O(h7), which completes
the proof. □

This result gives some direction on how to choose r1 and r2 to ensure convergence. In fact, it shows the existence of
an entire class of cubic Bézier interpolants which are 4th order accurate or better. However, if we want to prove that a
choice of Pi(h) can yield 5th order accuracy or better, then another approach for measuring the error is required.

In the following Lemma we show that there exists a class of Pi(h) which are 5th order accurate or better, provided
the curvature does not vanish at the endpoints. Later we show that choices of Pi(h) which satisfy the area constraint are
within the class of 5th order accurate cubic Bézier curves.

Lemma 2.5. Suppose B⃗h(t) is interpolating a function f (x) ∈ C4([0, h]) on [0, h] with f ′′(0) ̸= 0. Then, if r1 = h + P1h3 and
r2 = h + P2(h), where P1 ∈ R, and P2(h) = −

f ′′′′(0)+24f ′′(0)P1
24f ′′(0) h3

+ O(h4) we have B⃗h(t) is at least 5th order accurate.

Proof. Suppose our Bézier polynomial B⃗h(t) = ⟨Bh1 (t), Bh2 (t)⟩, satisfying B′

h1
(t) > 0 on t ∈ (0, 1), is interpolating a function

f (x) on x ∈ [0, h], with f ′′(0) ̸= 0. Later we will see that for small enough h > 0 and given a reasonable choice of P1 that
B′

h1
(t) > 0 on t ∈ (0, 1), but for now we leave this as an assumption. To obtain the desired result we work directly with

the L∞ error,

∥Bh2 (t) − f (Bh1 (t))∥L∞(t∈[0,1]). (2.16)

Without loss of generality we continue to assume f (0) = 0, which implies Bh1 (0) = 0. We begin by studying the Taylor
expansion of f (Bh1 (t)) centered about t = 0,

f (Bh1 (t)) = f ′(0)B′

h1 (0)t +

(
f ′′(0)(B′

h1 (0))
2
+ f ′(0)B′′

h1 (0)
) t2
2

+

(
f ′′′(0)(B′

h1 (0))
3
+ 3f ′′(0)B′′

h1 (0)B
′

h1 (0) + f ′(0)B′′′

h1 (0)
) t3
6

+

(
f ′′′′(0)(B′

h1 (0))
4
+ 3f ′′(0)(B′′

h1 (0))
2
+ 4f ′′(0)B′

h1 (0)B
′′′

h1 (0) + 6f ′′′(0)B′′

h1 (0)(B
′

h1 (0))
2
) t4

24
+ O(t5), (2.17)
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where Bh1 (t) = (h+P1h3)t− (P2(h)+2P1h3)t2 + (P1h3
+P2(h))t3 given by (2.2) using the data α⃗ = ⟨1, f ′(0)⟩, β⃗ = ⟨1, f ′(h)⟩,

D⃗ = ⟨h, f (h)⟩, with r1 = h + P1h3 and r2 = h + P2(h).
Plugging this into (2.17) yields

f (Bh1 (t)) = (h + P1h3)f ′(0)t +

(
f ′′(0)(h + P1h3)2 − 2f ′(0)(P2(h) + 2P1h3)

) t2
2

+

(
f ′′′(0)(h + P1h3)3 − 6f ′′(0)(P2(h) + 2P1h3)(h + P1h3) + 6f ′(0)(P1h3

+ P2(h))
) t3
6

+ O(t4).

Dropping terms which are O(h5) or higher results in

f (Bh1 (t)) = (h + P1h3)f ′(0)t +

(
f ′′(0)(h2

+ 2P1h4) − 2f ′(0)(P2(h) + 2P1h3)
) t2
2

+

(
f ′′′(0)h3

− 6f ′′(0)(hP2(h) + 2P1h4) + 6f ′(0)(P1h3
+ P2(h))

) t3
6

+

(
f ′′′′(0)h4

+ 24f ′′(0)(P1h4
+ P2(h)h)

) t4

24
+ O(t5). (2.18)

We proceed to show for any choice of P1 ∈ R that taking P2(h) = −
f ′′′′(0)+24f ′′(0)P1

24f ′′(0) h3
+ O(h4) yields ∥Bh2 (t) −

f (Bh1 (t))∥L∞(t∈[0,1]) = O(h5).
Again using our data for α⃗, β⃗, D⃗, r1 and r2, Eq. (2.2) yields

Bh2 (t) = (h + P1h3)f ′(0)t +

(
3f (h) − 2hf ′(0) − hf ′(h) − f ′(h)P2(h) − 2f ′(0)P1h3

)
t2

+

(
hf ′(0) + hf ′(h) − 2f (h) + f ′(0)P1h3

+ f ′(h)P2(h)
)
t3.

Taylor expanding f (h) and f ′(h) up to O(h5) and dropping terms which are O(h5) or higher, Bh2 (t) simplifies to

Bh2 (t) = (h + P1h3)f ′(0)t +

(
f ′′(0)

h2

2
− f ′′′′(0)

h4

24
− (f ′(0) + hf ′′(0))P2(h) − 2f ′(0)P1h3

)
t2

+

(
f ′′′(0)

h3

6
+ f ′′′′(0)

h4

12
+ f ′(0)P1h3

+ (f ′(0) + hf ′′(0))P2(h)
)
t3. (2.19)

Using (2.19) and (2.18) we can compute ∥Bh2 (t) − f (Bh1 (t))∥L∞(t∈[0,1]). Going term by term we have

|Bh2 (t) − f (Bh1 (t))| ≤

⏐⏐⏐(h + P1h3) − (h + P1h3)
⏐⏐⏐f ′(0)t

+

⏐⏐⏐− f ′′(0)(hP2(h) + P1h4) − f ′′′′(0)
h4

24

⏐⏐⏐t2
+

⏐⏐⏐f ′′′′(0)
h4

12
+ f ′′(0)(2hP2(h) + 2P1h4)

⏐⏐⏐t3
+

⏐⏐⏐f ′′′′(0)
h4

24
+ f ′′(0)(P1h4

+ P2(h)h)
⏐⏐⏐t4 + O(h5) + O(t5)

Setting P2(h) = −
f ′′′′(0)+24f ′′(0)P1

24f ′′(0) h3
+ O(h4) we obtain the desired result that |Bh2 (t) − f (Bh1 (t))| = O(h5). □

Remark 2.6. We note that the O(t5) terms do not contribute any terms lower than h5, because each time we differentiate
a term of the form f (n1)(0)(B′

h1
(0))n2 (B′′

h1
(0))n3 (B′′′

h1
(0))n4 , for ni ∈ N the lowest power of h must increase since B′

h1
(0) =

O(h), B′′

h1
(0) = O(h2) and B′′′

h1
(0) = O(h3).

With Lemmas 2.4 and 2.5 in hand, we may now state our main result.

Theorem 2.7. Parametric area-preserving cubic Bézier curves, satisfying B′

1(0) = r1 = h + Ph3, for P ∈ R, and
B′

1(1) = r2 =
6(10CR−r1(D⃗×α⃗))
r1(α⃗×β⃗)+6(β⃗×D⃗)

, are 5th order accurate provided the curvature does not vanish at the endpoints. In the zero
curvature case, the interpolation is 4th order accurate.

Proof. We begin by proving the non-zero curvature case, which simply breaks down into showing that setting r1 = h+Ph3

and r2 =
6(10CR−r1(D⃗×α⃗))
r1(α⃗×β⃗)+6(β⃗×D⃗)

satisfies the conditions from Lemma 2.5. Again, since we are seeking the error as h → 0, we will
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assume that we are interpolating a function f (x) on [0, h]. Inputting the data from f (x) into the given equation for r2 yields

r2 =

6
(
10
(∫ h

0 f (x)dx −
hf (h)
2

)
− (h + Ph3)

(
⟨h, f (h)⟩ × ⟨1, f ′(0)⟩

))
(h + Ph3) (⟨1, f ′(0)⟩ × ⟨1, f ′(h)⟩) + 6 (⟨1, f ′(h)⟩ × ⟨h, f (h)⟩)

=

6
(
10
(∫ h

0 f (x)dx −
hf (h)
2

)
− (h + Ph3)

(
hf ′(0) − f (h)

))
(h + Ph3) (f ′(h) − f ′(0)) + 6 (f (h) − hf ′(h))

. (2.20)

Plugging in the Taylor expansion for each term in (2.20), we obtain

r2 =
−2f ′′(0)h3

−
3
2 f

′′′(0)h4
+ (3f ′′(0)P −

1
2 f

′′′′(0))h5
+ O(h6)

−2f ′′(0)h2 −
3
2 f

′′′(0)h3 + (f ′′(0)P −
7
12 f

′′′′(0))h4 + O(h5)
, (2.21)

which, for small enough h > 0 is equivalent to

r2 = h −
f ′′′′(0) + 24f ′′(0)P

24f ′′(0)
h3

+ O(h4). (2.22)

Therefore, by Lemma 2.5, we have our result.
In the case that f ′′(0) = 0, we follow a similar approach. Taking a Taylor expansion in x of each term in r2 we obtain

r2 =
−

3
2 f

′′′(0)h4
−

1
2 f

′′′′(0)h5
+ O(h6)

−
3
2 f

′′′(0)h3 −
7
12 f

′′′′(0)h4 + O(h5)
, (2.23)

which, for small enough h > 0, is equivalent to

r2 = h −
f ′′′′(0)
18f ′′′(0)

h2
+ O(h3).

Therefore, by Lemma 2.4, since r1 = h+ Ph3 and r2 = h+ P2(h)h2, for P2(h) a polynomial and f ′′(0) = 0, we have that the
curvature vanishing case is 4th order accurate. □

A simple computation leads us to the following Corollary on optimality.

Corollary 2.8. There does not exist a 6th order cubic Bézier area-preserving interpolating polynomial.

Proof. Suppose we allow the constant P1 to be a function of h, yielding r1 = h + P1(h)h3, with r2 =
6(10CR−r1(D⃗×α⃗))
r1(α⃗×β⃗)+6(β⃗×D⃗)

to
guarantee area preservation. Applying a Taylor expansion on the error (2.16) we obtain

∥Bh2 (t) − f (Bh1 (t))∥L∞(t∈[0,1]) =
(5f ′′′(0)f ′′′′(0) − 2f ′′(0)f ′′′′′(0))(4t − 1)t2

480f ′′(0)
h5

+ O(h6, t4).

Observing that the h5 term does not contain a P1(h) implies the only way to obtain 6th order would be to have P2(h) ≈
1
h ,

to allow the h6 term to cancel out the h5 term. This is equivalent to setting r1 = h + P1(h)h2, however, this leads to a
complicated h5 term containing the variable t . Therefore since we require P1(h) to not vary with t , no order higher than
h5 is possible. □

The following Corollary proves that if we are unable to provide an exact area, but instead an approximate area up to
some order O(h5), that the L∞ error drops to O(h4).

Corollary 2.9. If the prescribed area is an approximation of the true area with order O(h5), then the area-preserving Bézier
interpolation discussed above satisfies ∥Bh2 (t) − f (Bh1 (t))∥L∞(t∈[0,1]) = O(h4).

Proof. Suppose the prescribed area is not exact with error O(h5). This changes Eq. (2.6) to
r1r2
60

(α⃗ × β⃗) +
r1
10

(D⃗ × α⃗) +
r2
10

(β⃗ × D⃗) = CR + Mh5
+ O(h6), (2.24)

for h small enough, where M ∈ R is some constant independent of h. Solving for r2 yields

r2 =
6(10(CR + Mh5

+ O(h6)) − r1(D⃗ × α⃗))

r1(α⃗ × β⃗) + 6(β⃗ × D⃗)
.

Repeating the steps from Theorem 2.7, with r1 = h + Ph3, we now obtain

r2 = h −
f ′′′′(0) + 24f ′′(0)P + 720M

24f ′′(0)
h3

+ O(h4).

This results in r1 = h + O(h3) and r2 = h + O(h3) which satisfies the conditions for Lemma 2.4, implying 4th order
accuracy. □
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3. Numerical results

3.1. Preliminary considerations

In this section we present several examples illustrating the effectiveness of exact area-preserving cubic Bézier
interpolation. For a few of these examples we employ two methods. First we use the standard area-preserving method,
with r1 = h + Ph3, where P is chosen a priori. We also employ an optimized method, which we call the optimized area-
preserving method, where r1 and r2 are chosen to numerically minimize the error by extracting additional information
from the target function. The Figures presented in this section will refer to the standard area-preserving method as A-P,
and the optimized area-preserving method as O-A-P. For the standard scheme we assign P to be Pavg , given by

Pavg =
1
h3

[
1
2

(
h +

6(10CR − h(β⃗ × D⃗))

h(α⃗ × β⃗) + 6(D⃗ × α⃗)

)
− h

]
. (3.1)

We arrive at Pavg by taking the average of r1 = h and r1 =
6(10CR−h(β⃗×D⃗))
h(α⃗×β⃗)+6(D⃗×α⃗)

, which arises by solving the area equation
for r1 instead of r2 and simply setting r2 = h. A similar computation as in the proof of Theorem 2.7, shows that
6(10CR−h(β⃗×D⃗))
h(α⃗×β⃗)+6(D⃗×α⃗)

= h −
f ′′′′(0)
24f ′′(0)h

3
+ O(h4). Plugging this into the equation for Pavg we see that Pavg = O(1) as desired.

The standard scheme described above is an efficient 5th order method which, in most cases, performs remarkably well.
However, there are choices of r1 which lead to greater precision, but they are problem specific and require an iterative
process to compute. In many applications this additional precision may not be necessary, however it is important to note
that more optimal choices of r1 and r2 can be obtained.

We therefore seek solutions to the optimization problem

min
(r1,r2)∈S

∥B2(t, r1, r2(r1)) − f (B1(t, r1, r2(r1)))∥L∞(t∈[0,1]), (3.2)

where S is the set of all (r1, r2) > 0 resulting in a cubic Bézier curve which can be represented by a function b(x). We
note that an exact representation of S is easily obtained, however the square 0 < r1, r2 ≤ 3h does sufficiently well.

We implement the optimized method by discretizing 0 < r1 ≤ 3h into a fine grid 0 < r11 < r12 < · · · < r1n = 3h,
then compute r2(r1i ). For each pair (r1i , r2(r1i )) ∈ S we approximate the norm (3.2) then choose the minimizer amongst
all candidates. We note that if the target curve is a parametric curve ⟨γ (s) , ξ (s)⟩, then we replace the L∞ norm (3.2) with
the Hausdorff distance (2.7).

In the remaining subsections we will illustrate our theoretical findings through numerical examples. We present
convergence in the L∞ norm, but do not include any discussion of the error in the area, as, by construction, it was found
to be machine precision in all examples.

3.2. Example 1: Unit circle

Our first example is repeating the first example in Section 4 of [1], interpolating the unit circle. We instead interpolate
the semi circle as our scheme is rotation invariant, and measure the L∞ error as we partition the semi circle into
subintervals with decreasing length. Beginning with 2 sub intervals, or 4 points over the entire circle up to 32 points over
the entire circle, or partitioning the semi circle into 16 subintervals. At each step we compare the L∞ error obtained by our
area-preserving schemes versus the (non-area preserving) curvature matching scheme in [1]. The results are presented
in Table 1.

The results show that the curvature matching and standard area-preserving methods remain close throughout the
experiment, with the curvature matching method obtaining two to three times better accuracy for each test. This is
somewhat surprising as the curvature method is a 6th order accurate. We expect that if the experiments were continued
to a finer partition we would see a larger discrepancy in accuracy appear. The optimized method however is significantly
more accurate than the others with between 2 and 5 times more accuracy than the curvature matching method through
sixteen points. At 32 points the 6th order curvature method closes the gap and falls only slightly short of the optimized
area-preserving method. Fig. 3 confirms that the convergence is indeed 5th order, agreeing with the statement of
Theorem 2.7.

Table 1
L∞ error of area-preserving versus curvature matching.
Number of points Curvature matching [1] Area-preserving Optimized area-preserving

4 1.4×10−3 2.9×10−3 2.6×10−4

8 2.1×10−5 5.7 ×10−5 4.5×10−6

16 3.2×10−7 1.0 ×10−6 8.2×10−8

32 4.9×10−9 1.6×10−8 3.3×10−9
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Fig. 3. Illustrating 5th order convergence when interpolating the unit circle.

Fig. 4. Example of 4th order accuracy with vanishing curvature.

3.3. Vanishing curvature

The following example illustrates the statement of Theorem 2.7 when we have vanishing curvature. The target function
is f (x) = sin(x) + 3x4 − 4x3 + x for x ∈ [0, h], and the resulting convergence using Pavg defined in Section 3.1 is given in
Fig. 4. As predicted we obtain 4th order accuracy, the same as would be obtained by employing the method of de Boor
et al. in [1]. As we are only illustrating the 4th order accuracy of the method in the presence of vanishing curvature, we
do not discuss the optimized approach in this problem.

3.4. Comparison to the CVE method

To get a sense of how the standard area-preserving geometric interpolation method compares to other non-local G1

methods, we repeat the last example from [9], the method which minimizes an approximate curvature variation energy.
In this example we are interpolating the parametric curve

f⃗ (t) = ⟨(t3 − t + 1) sin(t), t cos(t)⟩ for t ∈ [0, 1]. (3.3)

The function (3.3) is broken up into two subintervals [0, 0.3678] and [0.3678, 1] in the first example, and [0, 0.48]
and [0.48, 1] in the second. Plots of the resulting interpolations are shown in Fig. 5. Since (3.3) is a parametric function,
we estimate the error by approximating the Hausdorff distance by partitioning the interpolant and f⃗ (t) and computing
(2.7) discretely. The results are given in Table 2. We note that the Hausdorff errors for the CVE method were not included
in [9], however it is clear by inspection of Figs. 5 and 6 in [9] that the area-preserving method obtained significantly
higher accuracy.
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Table 2
Approximate Hausdorff error of the standard area-preserving method corresponding to
the tests in Fig. 5.
Interpolation intervals Standard area-preserving

[0, 0.3678] and [0.3678, 1] 6.9 × 10−4

[0, 0.48] and [0.48, 1] 2.4 × 10-3

Fig. 5. Two area-preserving G1 polynomials interpolate (3.3) joining at t = 0.3678 on the left panel and t = 0.48 on the right panel.

Fig. 6. Interpolation of f (x) = 4x(x − 0.5)(x − 1)ex .

3.5. Optimized area-preservation

In this next example we showcase the accuracy that may be gained by selecting optimized r1 and r2. We interpolate the
function f (x) = 4x(x − 0.5)(x − 1)ex on the interval x ∈ [0, 1]. Fig. 6 shows f (x), the standard cubic Hermite polynomial
interpolant (see [18]), the standard area-preserving cubic Bézier with P = 0 and then the optimized area-preserving
Bézier. We note that Fig. 6 appears to only have 3 curves because the optimized curve is nearly identical to the target
function f (x).

3.6. Piecewise interpolation I

In the next example we construct a piecewise interpolation of the function f (x) = (x + 1)ex − 1 on the interval [0, 1].
We partition the domain into finer and finer subintervals, compute the interpolants on each subinterval, then compute
the maximum L∞ error over all interpolants. Fig. 7 shows the L∞ error convergence for the standard cubic Hermite
polynomial interpolant, the standard area-preserving cubic Bézier interpolation, and the optimized area-preserving cubic
Bézier interpolation.

Fig. 7 showcases the 5th order convergence of the standard area-preserving method with r1 = h, shown in blue, and
the 4th order convergence of the Hermite polynomial. The dramatic improvement of the optimized curve is also visible
as in Fig. 6, but the convergence is less consistent.
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Fig. 7. 5th order convergence of standard area-preserving method and optimized method. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. 4th order convergence of standard area-preserving method and optimized method when an inflection point is present within interpolation
domain.

3.7. Piecewise interpolation II

The last example has the same setup as the previous, but now the target function is f (x) = x2(1−x)ex. The significance
of this example is that f (x) has an inflection point, therefore by Theorem 2.7 we expect to obtain 4th order convergence.
The results are shown in Fig. 8. We see that both the optimized and unoptimized methods are 4th order accurate by
observing the last few data points. The inconsistency of the optimized convergence is simply a result of where the grid
points land relative to the inflection point and areas with high curvature.

3.8. Scalar conservation law

Thus far we have yet to apply the area-preserving cubic Bézier interpolation framework to a problem where the
conservation of area is vital to the resulting curve. Such an interpolation problem is standard in numerical methods for
conservation laws, where conservation of the studied quantity is fundamental to the dynamics. As discussed briefly in [7]
and [19], weak solutions to scalar conservation laws in one space dimension may be obtained by utilizing the equal area
principle. As shown in Fig. 9, the application of the equal area principle requires one to find the location of a vertical line
which partitions the overturned curve into two regions with equal area. The corresponding weak solution, as shown in
the right panel of Fig. 9, is discontinuous with a jump at the location of the equal area line.

From a numerical standpoint, the equal area principle is seldom leveraged as it requires the approximation of a multi-
valued curve. To bypass this, for example in [20], linear interpolation is employed. Although we leave the analysis and
discussion of a method utilizing area-preserving cubic Bézier interpolation for another paper, Fig. 9 makes it clear that
such an interpolation framework is ideal for the application of the equal area principle. We note that the data required to
implement area-preserving cubic Bézier interpolation may be obtained exactly by studying the characteristic equations
of the corresponding conservation law.
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Fig. 9. An illustration of the equal area principle.

4. Discussion

In this paper we set out to design a new cubic Bézier interpolation framework which exactly preserves area while
maintaining high accuracy. Theorem 2.7 demonstrates that, provided we select r1 correctly, matching the prescribed area
with a geometric cubic Hermite polynomial yields 5th order accuracy, one order higher than the standard geometric cubic
Hermite. This order is optimal for area-preserving cubics as shown in Corollary 2.8. In Section 3 we verify numerically
the statements of Theorem 2.7 by obtaining 5th order accuracy when the curvature is non-vanishing and 4th order
otherwise. The numerical comparisons with the methods of [1] and [9] show that the our area-preserving method is
competitive or superior in the L∞ or Hausdorff error, with the area-preserving method offering the additional benefit of
being conservative. The optimized method discussed in Sections 3.1 and 3.5 shows that further improvements to accuracy
can be obtained when an iterative process to find an optimal choice of r1 and r2 is employed. Finally in Section 3.8 we
briefly discuss how area-preserving geometric interpolation can be applied to conservations laws through the use of the
equal area principle. In the near future we look forward to further investigating the application to conservation laws along
with gradient augmented level set methods, such as those discussed in [21,22].
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