
MATH 578, Assignment 1

Alexandra Tcheng

Problem 1

Part A, using an equidistant grid:

Method: In order to test the numerical order of accuracy of the Lagrange interpolation technique, we must be
able to compute the L∞-norm of the error for various h, while keeping the degree of the interpolating polynomial

constant. Since the degree of the polynomial (= N) is directly related to the number of points on the grid (= n), via
the relation N = n− 1, this means that the only way to change h is to vary the size of the interval [a, b].

For example: Let N = 2, so the grid must have n = 3 points. If we want to get 10 points on the final log-log
plot, we can choose h = {2−0, 2−1, 2−2, . . . , 2−10}, and make the code iterate over the size of the interval, ie:

- When h = 2−0 = 1, the grid comprises the points: {0, 1, 2} (So a = 0 and b = 2).
- When h = 2−1, the grid comprises the points: {0, 12 , 1} (So a = 0 and b = 1).
- etc.

1. When f(x) = sin(x), the theorem tells us that the theoretical upper bound is:

hn

4n
||f (n)||∞ ≤ hn

4n
· 1 = O(hn) (1)

since f (n)(x) = ± cos(x) or ± sin(x).

Results: The same behaviour is observed on each graph (see Figures 1, 2 and 3):

• when h is large, the error is O(100): the approximation is really poor. However that error cannot exceed 2,
since −1 ≤ sin(x) ≤ +1.

• as h decreases, the approximation becomes better. The measured error lies close to the theoretical error,
revealing that using an equidistant grid is not an optimal choice of abscissa points.

• for N = 7, 16, as h becomes very small, the measured error exceeds the theoretical error, and they agree for
N = 2. In this range, the results are no longer reliable, since the numbers involved are of O(ǫmachine) ≈ 10−16.

To determine the order of convergence, we refer to Table 1. The third column computes the slope between two
consecutive points, ie:

slope =
log( ||E(i−1)||∞

||E(i)||∞ )

log(h(i−1)
h(i) )

=
log( ||E(i−1)||∞

||E(i)||∞
log(2)

(2)

Based on the graphs, we see that not all points are reliable: In general, one should only consider those values as the
error approaches ǫmachine (in boldface characters in the table).

Overall, those values seem to agree with the theorem, since we expect: log(||E||∞) ≤ log(h
n

4n ) = C + n · log(h).
And indeed, for

- n = 3, the convergence is O(h3),
- n = 8, the convergence is roughly of O(h8),
- n = 17, there are not enough points to assert what the order of convergence is. To make it clear that it is

of O(h17), one would have to sample the part between h = 0.791 . . .0.391 with more points, and perform a similar
analysis.
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Figure 1: Log-log plot of ||E||∞ and the Theoretical Error vs. h, for f(x) = sin(x) with N = 2.
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Figure 2: Log-log plot of ||E||∞ and the Theoretical Error vs. h, for f(x) = sin(x) with N = 7.
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Figure 3: Log-log plot of ||E||∞ and the Theoretical Error vs. h, for f(x) = sin(x) with N = 16.

N = 2 N = 7 N = 16
h(i) ||E(i)||∞ slope h(i) ||E(i)||∞ slope h(i) ||E(i)||∞ slope

1.00E+02 1.86E+00 1.0000 1.00E+02 1.98E+00 1.0000 1.00E+02 2.00E+00 1.0000
5.00E+01 1.49E+00 0.3247 5.00E+01 1.99E+00 -0.0064 5.00E+01 2.00E+00 0.0007
2.50E+01 1.24E+00 0.2621 2.50E+01 1.79E+00 0.1585 2.50E+01 2.00E+00 0.0000
1.25E+01 1.11E+00 0.1614 1.25E+01 1.43E+00 0.3239 1.25E+01 1.86E+00 0.1009
6.25E+00 1.04E+00 0.0893 6.25E+00 1.21E+00 0.2416 6.25E+00 1.49E+00 0.3253
3.13E+00 1.00E+00 0.0593 3.13E+00 1.42E+00 -0.2356 3.13E+00 1.34E+02 -6.4925
1.56E+00 5.65E-02 4.1459 1.56E+00 2.74E-01 2.3755 1.56E+00 1.74E+00 6.2691
7.81E-01 2.32E-02 1.2810 7.81E-01 1.18E-03 7.8630 7.81E-01 5.64E-05 14.9090

3.91E-01 3.58E-03 2.6979 3.91E-01 8.23E-06 7.1591 3.91E-01 6.10E-10 16.4961

1.95E-01 4.70E-04 2.9289 1.95E-01 2.28E-08 8.4985 1.95E-01 2.04E-13 11.5447
9.77E-02 5.95E-05 2.9825 9.77E-02 4.82E-11 8.8836 9.77E-02 1.23E-13 0.7347
4.88E-02 7.46E-06 2.9956 4.88E-02 9.61E-14 8.9698 4.88E-02 8.59E-14 0.5149
2.44E-02 9.33E-07 2.9989 2.44E-02 3.61E-16 8.0570 2.44E-02 4.33E-14 0.9889
1.22E-02 1.17E-07 2.9997 1.22E-02 6.94E-17 2.3785 1.22E-02 2.27E-14 0.9331
6.10E-03 1.46E-08 2.9999 6.10E-03 3.47E-17 1.0000 6.10E-03 8.51E-15 1.4144
3.05E-03 1.82E-09 3.0000 3.05E-03 1.73E-17 1.0000 3.05E-03 4.77E-15 0.8335
1.53E-03 2.28E-10 3.0000 1.53E-03 1.04E-17 0.7370 1.53E-03 2.70E-15 0.8245
7.63E-04 2.85E-11 3.0000 7.63E-04 5.20E-18 1.0000 7.63E-04 1.49E-15 0.8536
3.81E-04 3.56E-12 3.0000 3.81E-04 2.17E-18 1.2630 3.81E-04 5.53E-16 1.4330
1.91E-04 4.45E-13 3.0000 1.91E-04 1.08E-18 1.0000 1.91E-04 3.36E-16 0.7171
9.54E-05 5.56E-14 3.0000 9.54E-05 7.59E-19 0.5146 9.54E-05 1.90E-16 0.8216
4.77E-05 6.96E-15 3.0000 4.77E-05 3.25E-19 1.2224 4.77E-05 8.29E-17 1.1971

Table 1: Order of accuracy of the method, for f(x) = sin(x)
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Figure 4: Log-log plot of ||E||∞ and the Theoretical Error vs. h, for f(x) = x6 with N = 2.

N = 2
h(i) ||E(i)||∞ slope

1.00E+00 1.47E+01 1.00
5.00E-01 2.30E-01 6.00
2.50E-01 3.59E-03 6.00
1.25E-01 5.62E-05 6.00
6.25E-02 8.77E-07 6.00
3.13E-02 1.37E-08 6.00
1.56E-02 2.14E-10 6.00
7.81E-03 3.35E-12 6.00
3.91E-03 5.23E-14 6.00
1.95E-03 8.17E-16 6.00
9.77E-04 1.28E-17 6.00

Table 2: Order of accuracy of the method, for f(x) = x6

2. When f(x) = x6, if (like me) you decreased the size of the interval while maintaining a constant (I chose
a = 0), then the theorem tells us that the theoretical upper bound is:

hn

4n
||f (n)||∞ ≤ hn

4n
· (||6! · x

6−n

(6 − n)!
||∞) =

hn

4n
· (6! · b

6−n

(6− n)!
) =

hn

4n
· (6! · (a+ (n− 1) · h)6−n

(6 − n)!
) = O(h6) (3)

ie: the convergence is expected to be O(h6) no matter what the degree of the polynomial is!

Results: All 3 graphs display a straight line for the measured error, which has to be interpreted differently
depending on N :

• For N = 2, Figure 4 and Table 2 reveal that ||E||∞ follows exactly the predictions of the theorem. Data beyond
||E||∞ ≈ ǫmachine should be ignored.

• For N = 7, 16, the estimated error does not appear on the graph. Indeed, it is identically 0, since for N > 6,
f (N) ≡ 0. Equivalently, since we’re trying to approximate x6 with a polynomial of degree less or equal to 7
or 16, the Lagrange interpolation formula naturally returns x6 itself. Numerically, the resulting error is thus
expected to be very small, so small that it is below machine precision. Yet, for large values of h the computer
keeps returning values, which should therefore be discarded.
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Figure 5: Log-log plot of ||E||∞ and the Theoretical Error vs. h, for f(x) = x6 with N = 7.
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Figure 6: Log-log plot of ||E||∞ and the Theoretical Error vs. h, for f(x) = x6 with N = 16.
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Figure 7: Log-log plot of ||E||∞ for a Chebychev grid (in green) and ||E||∞ for an equidistant grid
(in blue) vs. h, for f(x) = sin(x) with N = 16.

Part B, using a Chebyshev grid

Method: Following the same procedure as in the Part A: h is varied by shrinking the interval over which the
function is approximated. The code is actually the same as for Part A, except for the building of the grid: the
abscissa points are chosen to be the zeros of the appropriate Chebychev polynomial. Note that the h used in the
log-log plot is h = maxi=2...n |xi − xi−1|.

Results: Qualitatively, the resulting graphs and tables for f(x) = sin(x) and f(x) = x6 are extremely similar to
those obtained using an equidistant grid, and should be interpreted in the same way.

Quantitatively though, the remarkable difference is that ||E||∞ for the Chebychev grid lies lower than the one for
the equidistant grid. This becomes more appearant as the degree of the polynomial increases. Figure 7 compares
the two errors for N = 16 with f(x) = sin(x). This agrees with the theory, which states that Chebychev points are
an optimal choice of abscissa points for the Lagrange interpolation technique.
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Problem 2

•Prove that if u, v ∈ L2, then (u ∗ v)(x) = (v ∗ u)(x).

Solution:

(u ∗ v)(x) =
∫ +∞

−∞
u(x− y)v(y)dy

z=x−y︷︸︸︷
=

∫ −∞

+∞
u(z)v(x− z)(−dz) =

∫ +∞

−∞
u(z)v(x− z)dz = (v ∗ u)(x)

•Compute û(p)(ξ) ≡ F (u ∗ u ∗ . . . ∗ u)(ξ) for the function u(x) =





1
4 −2 ≤ x < 0
− 1

4 0 < x ≤ 2
0 otherwise

.

Solution: By induction,
p = 1:

û(ξ) =

∫

R

e−iξx u(x)dx =
1

4

(∫ 0

−2

e−iξxdx−
∫ 2

0

e−iξxdx

)
=

1

4

(
e−iξx

−iξ
|0−2 −

e−iξx

−iξ
|20
)

=
i

4ξ

(
1− e+2iξ − e−2iξ + 1

)
=

i

4ξ

(
1− e+2iξ − e−2iξ + 1

)
=

i

ξ

(
e+2iξ − 2 + e−2iξ

−4

)

=
i

ξ

(
e+iξ − e−iξ

2i

)2

=
i

ξ
sin2(ξ)

p = n: Assume that û(n)(ξ) =
(

i
ξ
sin2(ξ)

)n
.

p = n+ 1:

û(n+1)(ξ) ≡ F (u ∗ u ∗ . . . ∗ u︸ ︷︷ ︸
n+1 times

)(ξ)

= F (u ∗ u ∗ . . . ∗ u︸ ︷︷ ︸
n times

)(ξ) · F (u)(ξ) by the Convolution Theorem

=

(
i

ξ
sin2(ξ)

)n

· i
ξ
sin2(ξ) by the previous steps

=

(
i

ξ
sin2(ξ)

)n+1

Therefore, for all p ∈ N, û(p)(ξ) =
(

i
ξ
sin2(ξ)

)p
.

•Compute the Fourier transform of the Gaussian function u(x; s) ≡ 1√
2πs2

exp
(

−x2

2s2

)
.

Solution:

û(ξ) =

∫ +∞

−∞
exp(−iξx) · 1√

2πs2
exp

(
− x2

2s2

)
dx =

1√
2πs2

∫ +∞

−∞
exp

(
− x2

2s2
− iξx

)
dx

Rewriting the exponent

− x2

2s2
− iξx = −1

2

(
x2

s2
+ 2iξx+ (iξs)2 − (iξs)2

)

= −1

2

(x
s
+ iξs

)2
− ξ2s2

2
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=⇒ û(ξ) =
exp

(
− ξ2s2

2

)

√
2πs2

∫ +∞

−∞
exp

(
−1

2

(x
s
+ iξs

)2)
dx let y =

x

s
+ iξs ⇔ sdy = dx

=
exp

(
− ξ2s2

2

)

√
2πs2

· s
∫ +∞

−∞
exp

(
−1

2
y2
)
dy using

∫ +∞

−∞
exp

(
−ax2

)
dx =

√
π

a

=
exp

(
− ξ2s2

2

)

√
2πs2

· s ·
√
2π

= exp

(
−ξ2s2

2

)

•Prove that the convolution of p Gaussian functions (with variances s21, s
2
2, . . . , s

2
p) is a Gaussian function with

s =
√∑

s2i

Solution: It is proved that the convolution of 2 Gaussian functions with variances s21, s
2
2 is a Gaussian function

with variance s =
√
s21 + s22. The claim for n Gaussian functions follows by induction.

Using the Convolution Theorem:

(us1 ∗ us2)(x) = F−1 (F (us1 ∗ us2)(ξ)) (x)

= F−1 (F (us1)(ξ) · F (us2)(ξ)) (x) by the Convolution Theorem

= F−1

(
exp

(
−ξ2s21

2

)
· exp

(
−ξ2s22

2

))
(x) by the previous question

= F−1


exp


−

ξ2
(√

s21 + s22

)2

2





 (x)

=
1√

2π (s21 + s22)
exp

( −x2

2 (s21 + s22)

)
by the previous question

=: u(x,
√
s21 + s22)

Or working only in real space:

∫ +∞

−∞
u(x− y; s1) u(y; s2)dy =

∫ +∞

−∞

1√
2πs21

exp

(
− (x− y)2

2s21

)
1√
2πs22

exp

(
− y2

2s22

)
dy

=
1

2πs1s2

∫ +∞

−∞
exp

(
− (x− y)2

2s21
− y2

2s22

)
dy

Rewriting the exponent:

− (x− y)2

2s21
− y2

2s22
= − (x2 − 2xy + y2)s22 + y2s21

2s21s
2
2

= −x2s22 − 2xys22 + y2s22 + y2s21
2s21s

2
2

= − 1

2s21s
2
2

·
(
y2(s21 + s22)− 2xys22 + x2s22

)

= − 1

2s21s
2
2

·
(
y2(s21 + s22) + (2xys21 − 2xys21)− 2xys22 + (x2s21 − x2s21) + x2s22

)
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= − 1

2s21s
2
2

·
(
y2(s21 + s22)− 2xy(s21 + s22) + x2(s21 + s22) + 2xys21 − x2s21

)

= − 1

2s21s
2
2

·
(
(y − x)2(s21 + s22) + 2xys21 − x2s21

)
let z = y − x

= − 1

2s21s
2
2

·
(
z2(s21 + s22) + 2x(z + x)s21 − x2s21

)

= − 1

2s21s
2
2

·
(
z2(s21 + s22) + 2xzs21 + x2s21

)

= − 1

2s21s
2
2

·
(
z2(s21 + s22) + 2 · z

√
s21 + s22 ·

xs21√
s21 + s22

+

(
x2s41

s21 + s22
− x2s41

s21 + s22

)
+ x2s21

)

= − 1

2s21s
2
2

·
((

z2(s21 + s22) + 2 · z
√
s21 + s22 ·

xs21√
s21 + s22

+
x2s41

s21 + s22

)
+

(
x2s21 −

x2s41
s21 + s22

))

= − 1

2s21s
2
2

·



(
z

√
s21 + s22 +

xs21√
s21 + s22

)2

+
x2s21s

2
2

s21 + s22


 let a = z

√
s21 + s22 +

xs21√
s21 + s22

= − 1

2s21s
2
2

(a2 +
x2s21s

2
2

s21 + s22
)

= − a2

2s21s
2
2

− x2

2(s21 + s22)

=⇒
∫ +∞

−∞
u(x− y; s1)u(y; s2)dy =

1

2πs1s2

∫ +∞

−∞
exp

(
− a2

2s21s
2
2

− x2

2(s21 + s22)

)
da√
s21 + s22

=
1

2πs1s2
√
s21 + s22

exp

(
− x2

2(s21 + s22)

)∫ +∞

−∞
exp

(
− a2

2s21s
2
2

)
da

=
1

2πs1s2
√
s21 + s22

exp

(
− x2

2(s21 + s22)

)
·
√
2πs21s

2
2

=
1√

2π(s21 + s22)
exp

(
− x2

2(s21 + s22)

)
= u(x,

√
s21 + s22)
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