# MATH 578, Assignment 1 Alexandra Tcheng

### Problem 1

#### Part A, using an equidistant grid:

<u>Method</u>: In order to test the numerical order of accuracy of the Lagrange interpolation technique, we must be able to compute the  $L_{\infty}$ -norm of the error for various h, while keeping the degree of the interpolating polynomial constant. Since the degree of the polynomial (= N) is directly related to the number of points on the grid (= n), via the relation N = n - 1, this means that the only way to change h is to vary the size of the interval [a, b].

For example: Let N = 2, so the grid must have n = 3 points. If we want to get 10 points on the final log-log plot, we can choose  $h = \{2^{-0}, 2^{-1}, 2^{-2}, \dots, 2^{-10}\}$ , and make the code iterate over the size of the interval, ie:

- When  $h = 2^{-0} = 1$ , the grid comprises the points:  $\{0, 1, 2\}$  (So a = 0 and b = 2).
- When  $h = 2^{-1}$ , the grid comprises the points:  $\{0, \frac{1}{2}, 1\}$  (So a = 0 and b = 1).
- etc.
- 1. When  $f(x) = \sin(x)$ , the theorem tells us that the theoretical upper bound is:

$$\frac{h^{n}}{4n}||f^{(n)}||_{\infty} \le \frac{h^{n}}{4n} \cdot 1 = O(h^{n})$$
(1)

since  $f^{(n)}(x) = \pm \cos(x)$  or  $\pm \sin(x)$ .

<u>Results:</u> The same behaviour is observed on each graph (see Figures 1, 2 and 3):

- when h is large, the error is  $O(10^0)$ : the approximation is really poor. However that error cannot exceed 2, since  $-1 \le \sin(x) \le +1$ .
- as *h* decreases, the approximation becomes better. The measured error lies close to the theoretical error, revealing that using an equidistant grid is not an optimal choice of abscissa points.
- for N = 7, 16, as h becomes very small, the measured error exceeds the theoretical error, and they agree for N = 2. In this range, the results are no longer reliable, since the numbers involved are of  $O(\epsilon_{\text{machine}}) \approx 10^{-16}$ .

To determine the order of convergence, we refer to Table 1. The third column computes the slope between two consecutive points, ie:

$$slope = \frac{\log(\frac{||E(i-1)||_{\infty}}{||E(i)||_{\infty}})}{\log(\frac{h(i-1)}{h(i)})} = \frac{\log(\frac{||E(i-1)||_{\infty}}{||E(i)||_{\infty}})}{\log(2)}$$
(2)

Based on the graphs, we see that not all points are reliable: In general, one should only consider those values as the error approaches  $\epsilon_{\text{machine}}$  (in **boldface** characters in the table).

Overall, those values seem to agree with the theorem, since we expect:  $\log(||E||_{\infty}) \leq \log(\frac{h^n}{4n}) = C + n \cdot \log(h)$ . And indeed, for

- n = 3, the convergence is  $O(h^3)$ ,

- n = 8, the convergence is roughly of  $O(h^8)$ ,

- n = 17, there are not enough points to assert what the order of convergence is. To make it clear that it is of  $O(h^{17})$ , one would have to sample the part between  $h = 0.791 \dots 0.391$  with more points, and perform a similar analysis.



Figure 1: Log-log plot of  $||E||_{\infty}$  and the Theoretical Error vs. h, for  $f(x) = \sin(x)$  with N = 2.



Figure 2: Log-log plot of  $||E||_{\infty}$  and the Theoretical Error vs. h, for  $f(x) = \sin(x)$  with N = 7.



Figure 3: Log-log plot of  $||E||_{\infty}$  and the Theoretical Error vs. h, for  $f(x) = \sin(x)$  with N = 16.

|              | N=2                  |        |                      | N = 7               |         |                      | N = 16               |         |
|--------------|----------------------|--------|----------------------|---------------------|---------|----------------------|----------------------|---------|
| h(i)         | $  E(i)  _{\infty}$  | slope  | h(i)                 | $  E(i)  _{\infty}$ | slope   | h(i)                 | $  E(i)  _{\infty}$  | slope   |
| 1.00E + 02   | 1.86E + 00           | 1.0000 | 1.00E + 02           | 1.98E + 00          | 1.0000  | 1.00E + 02           | 2.00E + 00           | 1.0000  |
| 5.00E + 01   | $1.49E{+}00$         | 0.3247 | $5.00E{+}01$         | $1.99E{+}00$        | -0.0064 | 5.00E + 01           | $2.00E{+}00$         | 0.0007  |
| $2.50E{+}01$ | 1.24E + 00           | 0.2621 | $2.50E{+}01$         | $1.79E{+}00$        | 0.1585  | $2.50E{+}01$         | $2.00E{+}00$         | 0.0000  |
| $1.25E{+}01$ | 1.11E + 00           | 0.1614 | $1.25E{+}01$         | $1.43E{+}00$        | 0.3239  | $1.25E{+}01$         | 1.86E + 00           | 0.1009  |
| $6.25E{+}00$ | 1.04E + 00           | 0.0893 | 6.25E + 00           | 1.21E + 00          | 0.2416  | 6.25E + 00           | $1.49E{+}00$         | 0.3253  |
| $3.13E{+}00$ | 1.00E + 00           | 0.0593 | $3.13E{+}00$         | 1.42E + 00          | -0.2356 | $3.13E{+}00$         | 1.34E + 02           | -6.4925 |
| 1.56E + 00   | 5.65 E-02            | 4.1459 | 1.56E + 00           | 2.74E-01            | 2.3755  | 1.56E + 00           | 1.74E + 00           | 6.2691  |
| 7.81E-01     | 2.32E-02             | 1.2810 | 7.81E-01             | 1.18E-03            | 7.8630  | 7.81E-01             | $5.64 \text{E}{-}05$ | 14.9090 |
| 3.91E-01     | 3.58E-03             | 2.6979 | 3.91E-01             | 8.23E-06            | 7.1591  | 3.91E-01             | 6.10E-10             | 16.4961 |
| 1.95E-01     | 4.70E-04             | 2.9289 | 1.95E-01             | 2.28E-08            | 8.4985  | 1.95E-01             | 2.04E-13             | 11.5447 |
| 9.77 E-02    | $5.95 \text{E}{-}05$ | 2.9825 | $9.77 \text{E}{-}02$ | 4.82E-11            | 8.8836  | $9.77 \text{E}{-}02$ | 1.23E-13             | 0.7347  |
| 4.88E-02     | 7.46E-06             | 2.9956 | 4.88E-02             | 9.61E-14            | 8.9698  | 4.88E-02             | 8.59E-14             | 0.5149  |
| 2.44E-02     | 9.33E-07             | 2.9989 | 2.44E-02             | 3.61E-16            | 8.0570  | 2.44E-02             | 4.33E-14             | 0.9889  |
| 1.22E-02     | 1.17E-07             | 2.9997 | 1.22E-02             | 6.94E-17            | 2.3785  | 1.22E-02             | 2.27E-14             | 0.9331  |
| 6.10E-03     | 1.46E-08             | 2.9999 | 6.10E-03             | 3.47E-17            | 1.0000  | 6.10E-03             | 8.51E-15             | 1.4144  |
| 3.05E-03     | 1.82E-09             | 3.0000 | 3.05E-03             | 1.73E-17            | 1.0000  | 3.05E-03             | 4.77E-15             | 0.8335  |
| 1.53E-03     | 2.28E-10             | 3.0000 | 1.53E-03             | 1.04E-17            | 0.7370  | 1.53E-03             | 2.70E-15             | 0.8245  |
| 7.63E-04     | 2.85 E-11            | 3.0000 | 7.63E-04             | 5.20E-18            | 1.0000  | 7.63E-04             | 1.49E-15             | 0.8536  |
| 3.81E-04     | 3.56E-12             | 3.0000 | 3.81E-04             | 2.17E-18            | 1.2630  | 3.81E-04             | 5.53E-16             | 1.4330  |
| 1.91E-04     | 4.45E-13             | 3.0000 | 1.91E-04             | 1.08E-18            | 1.0000  | 1.91E-04             | 3.36E-16             | 0.7171  |
| 9.54 E-05    | 5.56E-14             | 3.0000 | 9.54 E- 05           | 7.59E-19            | 0.5146  | 9.54 E- 05           | 1.90E-16             | 0.8216  |
| 4.77E-05     | 6.96E-15             | 3.0000 | 4.77 E-05            | 3.25E-19            | 1.2224  | 4.77 E-05            | 8.29E-17             | 1.1971  |

Table 1: Order of accuracy of the method, for  $f(x) = \sin(x)$ 



Figure 4: Log-log plot of  $||E||_{\infty}$  and the Theoretical Error vs. h, for  $f(x) = x^6$  with N = 2.

|            | N=2                 |       |
|------------|---------------------|-------|
| h(i)       | $  E(i)  _{\infty}$ | slope |
| 1.00E + 00 | 1.47E + 01          | 1.00  |
| 5.00E-01   | 2.30E-01            | 6.00  |
| 2.50E-01   | 3.59E-03            | 6.00  |
| 1.25E-01   | 5.62 E- 05          | 6.00  |
| 6.25 E-02  | 8.77E-07            | 6.00  |
| 3.13E-02   | 1.37E-08            | 6.00  |
| 1.56E-02   | 2.14E-10            | 6.00  |
| 7.81E-03   | 3.35E-12            | 6.00  |
| 3.91E-03   | 5.23E-14            | 6.00  |
| 1.95E-03   | 8.17E-16            | 6.00  |
| 9.77 E-04  | 1.28E-17            | 6.00  |

Table 2: Order of accuracy of the method, for  $f(x) = x^6$ 

2. When  $f(x) = x^6$ , if (like me) you decreased the size of the interval while maintaining a constant (I chose a = 0), then the theorem tells us that the theoretical upper bound is:

$$\frac{h^n}{4n} ||f^{(n)}||_{\infty} \le \frac{h^n}{4n} \cdot (||\frac{6! \cdot x^{6-n}}{(6-n)!}||_{\infty}) = \frac{h^n}{4n} \cdot (\frac{6! \cdot b^{6-n}}{(6-n)!}) = \frac{h^n}{4n} \cdot (\frac{6! \cdot (a + (n-1) \cdot h)^{6-n}}{(6-n)!}) = O(h^6)$$
(3)

ie: the convergence is expected to be  $O(h^6)$  no matter what the degree of the polynomial is!

<u>Results</u>: All 3 graphs display a straight line for the measured error, which has to be interpreted differently depending on N:

- For N = 2, Figure 4 and Table 2 reveal that  $||E||_{\infty}$  follows exactly the predictions of the theorem. Data beyond  $||E||_{\infty} \approx \epsilon_{\text{machine}}$  should be ignored.
- For N = 7, 16, the estimated error does not appear on the graph. Indeed, it is identically 0, since for N > 6,  $f^{(N)} \equiv 0$ . Equivalently, since we're trying to approximate  $x^6$  with a polynomial of degree less or equal to 7 or 16, the Lagrange interpolation formula naturally returns  $x^6$  itself. Numerically, the resulting error is thus expected to be very small, so small that it is below machine precision. Yet, for large values of h the computer keeps returning values, which should therefore be discarded.



Figure 5: Log-log plot of  $||E||_{\infty}$  and the Theoretical Error vs. h, for  $f(x) = x^6$  with N = 7.



Figure 6: Log-log plot of  $||E||_{\infty}$  and the Theoretical Error vs. h, for  $f(x) = x^6$  with N = 16.



Figure 7: LOG-LOG PLOT OF  $||E||_{\infty}$  FOR A CHEBYCHEV GRID (IN GREEN) AND  $||E||_{\infty}$  FOR AN EQUIDISTANT GRID (IN BLUE) VS. h, FOR  $f(x) = \sin(x)$  WITH N = 16.

#### Part B, using a Chebyshev grid

<u>Method</u>: Following the same procedure as in the Part A: h is varied by shrinking the interval over which the function is approximated. The code is actually the same as for Part A, except for the building of the grid: the abscissa points are chosen to be the zeros of the appropriate Chebychev polynomial. Note that the h used in the log-log plot is  $h = \max_{i=2...n} |x_i - x_{i-1}|$ .

<u>Results:</u> Qualitatively, the resulting graphs and tables for  $f(x) = \sin(x)$  and  $f(x) = x^6$  are extremely similar to those obtained using an equidistant grid, and should be interpreted in the same way.

Quantitatively though, the remarkable difference is that  $||E||_{\infty}$  for the Chebychev grid lies lower than the one for the equidistant grid. This becomes more appearant as the degree of the polynomial increases. Figure 7 compares the two errors for N = 16 with  $f(x) = \sin(x)$ . This agrees with the theory, which states that Chebychev points are an optimal choice of abscissa points for the Lagrange interpolation technique.

## Problem 2

•Prove that if  $u, v \in L^2$ , then (u \* v)(x) = (v \* u)(x).

SOLUTION:

$$(u * v)(x) = \int_{-\infty}^{+\infty} u(x - y)v(y)dy \stackrel{z = x - y}{\longrightarrow} \int_{+\infty}^{-\infty} u(z)v(x - z)(-dz) = \int_{-\infty}^{+\infty} u(z)v(x - z)dz = (v * u)(x)$$

• Compute  $\widehat{u_{(p)}}(\xi) \equiv F(u * u * \dots * u)(\xi)$  for the function  $u(x) = \begin{cases} \frac{1}{4} & -2 \le x < 0\\ -\frac{1}{4} & 0 < x \le 2\\ 0 & \text{otherwise} \end{cases}$ .

Solution: By induction, p = 1:

$$\begin{aligned} \widehat{u}(\xi) &= \int_{\mathbb{R}} e^{-i\xi x} \ u(x) dx = \frac{1}{4} \left( \int_{-2}^{0} e^{-i\xi x} dx - \int_{0}^{2} e^{-i\xi x} dx \right) = \frac{1}{4} \left( \frac{e^{-i\xi x}}{-i\xi} \Big|_{-2}^{0} - \frac{e^{-i\xi x}}{-i\xi} \Big|_{0}^{2} \right) \\ &= \frac{i}{4\xi} \left( 1 - e^{+2i\xi} - e^{-2i\xi} + 1 \right) = \frac{i}{4\xi} \left( 1 - e^{+2i\xi} - e^{-2i\xi} + 1 \right) = \frac{i}{\xi} \left( \frac{e^{+2i\xi} - 2 + e^{-2i\xi}}{-4} \right) \\ &= \frac{i}{\xi} \left( \frac{e^{+i\xi} - e^{-i\xi}}{2i} \right)^{2} = \frac{i}{\xi} \sin^{2}(\xi) \end{aligned}$$

<u>p = n</u>: Assume that  $\widehat{u_{(n)}}(\xi) = \left(\frac{i}{\xi}\sin^2(\xi)\right)^n$ .

p = n + 1:

$$\widehat{u_{(n+1)}}(\xi) \equiv F(\underbrace{u * u * \dots * u}_{n+1 \text{ times}})(\xi)$$

$$= F(\underbrace{u * u * \dots * u}_{n \text{ times}})(\xi) \cdot F(u)(\xi)$$

$$= \left(\frac{i}{\xi} \sin^2(\xi)\right)^n \cdot \frac{i}{\xi} \sin^2(\xi)$$

$$= \left(\frac{i}{\xi} \sin^2(\xi)\right)^{n+1}$$

by the Convolution Theorem

by the previous steps

Therefore, for all  $p \in \mathbb{N}$ ,  $\widehat{u_{(p)}}(\xi) = \left(\frac{i}{\xi}\sin^2(\xi)\right)^p$ .

• Compute the Fourier transform of the Gaussian function  $u(x;s) \equiv \frac{1}{\sqrt{2\pi s^2}} \exp\left(\frac{-x^2}{2s^2}\right)$ . SOLUTION:

$$\widehat{u}(\xi) = \int_{-\infty}^{+\infty} \exp(-i\xi x) \cdot \frac{1}{\sqrt{2\pi s^2}} \exp\left(-\frac{x^2}{2s^2}\right) dx = \frac{1}{\sqrt{2\pi s^2}} \int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{2s^2} - i\xi x\right) dx$$

Rewriting the exponent

$$-\frac{x^2}{2s^2} - i\xi x = -\frac{1}{2} \left( \frac{x^2}{s^2} + 2i\xi x + (i\xi s)^2 - (i\xi s)^2 \right)$$
$$= -\frac{1}{2} \left( \frac{x}{s} + i\xi s \right)^2 - \frac{\xi^2 s^2}{2}$$

$$\implies \widehat{u}(\xi) = \frac{\exp\left(-\frac{\xi^2 s^2}{2}\right)}{\sqrt{2\pi s^2}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\left(\frac{x}{s}+i\xi s\right)^2\right) \mathrm{d}x \qquad \text{let } y = \frac{x}{s}+i\xi s \quad \Leftrightarrow \quad s\mathrm{d}y = \mathrm{d}x$$
$$= \frac{\exp\left(-\frac{\xi^2 s^2}{2}\right)}{\sqrt{2\pi s^2}} \cdot s \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}y^2\right) \mathrm{d}y \qquad \text{using } \int_{-\infty}^{+\infty} \exp\left(-ax^2\right) \mathrm{d}x = \sqrt{\frac{\pi}{a}}$$
$$= \frac{\exp\left(-\frac{\xi^2 s^2}{2}\right)}{\sqrt{2\pi s^2}} \cdot s \cdot \sqrt{2\pi}$$
$$= \exp\left(-\frac{\xi^2 s^2}{2}\right)$$

•Prove that the convolution of p Gaussian functions (with variances  $s_1^2, s_2^2, \ldots, s_p^2$ ) is a Gaussian function with  $s = \sqrt{\sum s_i^2}$ 

Solution: It is proved that the convolution of 2 Gaussian functions with variances  $s_1^2, s_2^2$  is a Gaussian function with variance  $s = \sqrt{s_1^2 + s_2^2}$ . The claim for *n* Gaussian functions follows by induction.

## Using the Convolution Theorem:

$$\begin{aligned} (u_{s_1} * u_{s_2})(x) &= F^{-1} \left( F(u_{s_1} * u_{s_2})(\xi) \right)(x) \\ &= F^{-1} \left( F(u_{s_1})(\xi) \cdot F(u_{s_2})(\xi) \right)(x) \qquad \text{by the Convolution Theorem} \\ &= F^{-1} \left( \exp\left( -\frac{\xi^2 s_1^2}{2} \right) \cdot \exp\left( -\frac{\xi^2 s_2^2}{2} \right) \right)(x) \qquad \text{by the previous question} \\ &= F^{-1} \left( \exp\left( -\frac{\xi^2 \left( \sqrt{s_1^2 + s_2^2} \right)^2 \right)}{2} \right) \right)(x) \\ &= \frac{1}{\sqrt{2\pi (s_1^2 + s_2^2)}} \exp\left( \frac{-x^2}{2 (s_1^2 + s_2^2)} \right) \qquad \text{by the previous question} \\ &=: u(x, \sqrt{s_1^2 + s_2^2}) \end{aligned}$$

Or working only in real space:

$$\begin{aligned} \int_{-\infty}^{+\infty} u(x-y;s_1) \ u(y;s_2) \mathrm{d}y &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi s_1^2}} \exp\left(-\frac{(x-y)^2}{2s_1^2}\right) \ \frac{1}{\sqrt{2\pi s_2^2}} \exp\left(-\frac{y^2}{2s_2^2}\right) \mathrm{d}y \\ &= \frac{1}{2\pi s_1 s_2} \int_{-\infty}^{+\infty} \exp\left(-\frac{(x-y)^2}{2s_1^2} - \frac{y^2}{2s_2^2}\right) \mathrm{d}y \end{aligned}$$

Rewriting the exponent:

$$\begin{aligned} -\frac{(x-y)^2}{2s_1^2} - \frac{y^2}{2s_2^2} &= -\frac{(x^2 - 2xy + y^2)s_2^2 + y^2s_1^2}{2s_1^2s_2^2} \\ &= -\frac{x^2s_2^2 - 2xys_2^2 + y^2s_2^2 + y^2s_1^2}{2s_1^2s_2^2} \\ &= -\frac{1}{2s_1^2s_2^2} \cdot \left(y^2(s_1^2 + s_2^2) - 2xys_2^2 + x^2s_2^2\right) \\ &= -\frac{1}{2s_1^2s_2^2} \cdot \left(y^2(s_1^2 + s_2^2) + (2xys_1^2 - 2xys_1^2) - 2xys_2^2 + (x^2s_1^2 - x^2s_1^2) + x^2s_2^2\right) \end{aligned}$$

$$\begin{aligned} &= -\frac{1}{2s_1^2 s_2^2} \cdot \left(y^2 (s_1^2 + s_2^2) - 2xy (s_1^2 + s_2^2) + x^2 (s_1^2 + s_2^2) + 2xy s_1^2 - x^2 s_1^2\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \cdot \left((y - x)^2 (s_1^2 + s_2^2) + 2xy s_1^2 - x^2 s_1^2\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \cdot \left(z^2 (s_1^2 + s_2^2) + 2x (z + x) s_1^2 - x^2 s_1^2\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \cdot \left(z^2 (s_1^2 + s_2^2) + 2x z s_1^2 + x^2 s_1^2\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \cdot \left(z^2 (s_1^2 + s_2^2) + 2 \cdot z \sqrt{s_1^2 + s_2^2} \cdot \frac{xs_1^2}{\sqrt{s_1^2 + s_2^2}} + \left(\frac{x^2 s_1^4}{s_1^2 + s_2^2} - \frac{x^2 s_1^4}{s_1^2 + s_2^2}\right) + x^2 s_1^2\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \cdot \left(\left(z^2 (s_1^2 + s_2^2) + 2 \cdot z \sqrt{s_1^2 + s_2^2} \cdot \frac{xs_1^2}{\sqrt{s_1^2 + s_2^2}} + \frac{x^2 s_1^4}{s_1^2 + s_2^2}\right) + \left(x^2 s_1^2 - \frac{x^2 s_1^4}{s_1^2 + s_2^2}\right)\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \cdot \left(\left(z \sqrt{s_1^2 + s_2^2} + \frac{xs_1^2}{\sqrt{s_1^2 + s_2^2}}\right)^2 + \frac{x^2 s_1^2 s_2^2}{s_1^2 + s_2^2}\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \left(z + \frac{x^2 s_1^2 s_2^2}{s_1^2 + s_2^2}\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \left(z + \frac{x^2 s_1^2 s_2^2}{s_1^2 + s_2^2}\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \left(z + \frac{x^2 s_1^2 s_2^2}{s_1^2 + s_2^2}\right) \\ &= -\frac{1}{2s_1^2 s_2^2} \left(z + \frac{x^2 s_1^2 s_2^2}{s_1^2 + s_2^2}\right) \\ &= -\frac{a^2}{2s_1^2 s_2^2} - \frac{x^2}{2(s_1^2 + s_2^2)}\right) \end{aligned}$$

$$\implies \int_{-\infty}^{+\infty} u(x-y;s_1)u(y;s_2)dy = \frac{1}{2\pi s_1 s_2} \int_{-\infty}^{+\infty} \exp\left(-\frac{a^2}{2s_1^2 s_2^2} - \frac{x^2}{2(s_1^2 + s_2^2)}\right) \frac{da}{\sqrt{s_1^2 + s_2^2}} \\ = \frac{1}{2\pi s_1 s_2 \sqrt{s_1^2 + s_2^2}} \exp\left(-\frac{x^2}{2(s_1^2 + s_2^2)}\right) \int_{-\infty}^{+\infty} \exp\left(-\frac{a^2}{2s_1^2 s_2^2}\right) da \\ = \frac{1}{2\pi s_1 s_2 \sqrt{s_1^2 + s_2^2}} \exp\left(-\frac{x^2}{2(s_1^2 + s_2^2)}\right) \cdot \sqrt{2\pi s_1^2 s_2^2} \\ = \frac{1}{\sqrt{2\pi (s_1^2 + s_2^2)}} \exp\left(-\frac{x^2}{2(s_1^2 + s_2^2)}\right) = u(x, \sqrt{s_1^2 + s_2^2})$$