MATH 578, Assignment 1
Alexandra Tcheng

PROBLEM 1
Part A, using an equidistant grid:

Method: In order to test the numerical order of accuracy of the Lagrange interpolation technique, we must be
able to compute the Lo.-norm of the error for various h, while keeping the degree of the interpolating polynomial
constant. Since the degree of the polynomial (= N) is directly related to the number of points on the grid (= n), via
the relation N = n — 1, this means that the only way to change h is to vary the size of the interval [a, b].

For example: Let N = 2, so the grid must have n = 3 points. If we want to get 10 points on the final log-log
plot, we can choose h = {279,271 272 . 2710} "and make the code iterate over the size of the interval, ie:

- When h = 27% = 1, the grid comprises the points: {0,1,2} (So a =0 and b = 2).

- When h = 27! the grid comprises the points: {0, %, 1} (Soa=0and b=1).

- etc.

1. When f(z) = sin(z), the theorem tells us that the theoretical upper bound is:

n

h™
(n) < . 1=0(h" 1
4n||f ||°°—4n (h™) (1)

since f(™ () = =+ cos(x) or +sin(x).

Results: The same behaviour is observed on each graph (see Figures 1, 2 and 3):

e when h is large, the error is O(10°): the approximation is really poor. However that error cannot exceed 2,
since —1 < sin(z) < +1.

e as h decreases, the approximation becomes better. The measured error lies close to the theoretical error,
revealing that using an equidistant grid is not an optimal choice of abscissa points.

e for N = 7,16, as h becomes very small, the measured error exceeds the theoretical error, and they agree for
N = 2. In this range, the results are no longer reliable, since the numbers involved are of O(€machine) ~ 10-16,

To determine the order of convergence, we refer to Table 1. The third column computes the slope between two
consecutive points, ie:

slope = log( EG)I]oo ): log (1 2)
log(41=1) log(2)

Based on the graphs, we see that not all points are reliable: In general, one should only consider those values as the
error approaches €machine (in boldface characters in the table).

Overall, those values seem to agree with the theorem, since we expect: log(||F||s) < log(%) = C+n-log(h).
And indeed, for

- n = 3, the convergence is O(h%),

- n = 8, the convergence is roughly of O(h®),

- n = 17, there are not enough points to assert what the order of convergence is. To make it clear that it is
of O(h'"), one would have to sample the part between h = 0.791...0.391 with more points, and perform a similar
analysis.
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Figure 1: LOG-LOG PLOT OF ||E||cc AND THE THEORETICAL ERROR VS. h, FOR f(x) = sin(z) WITH N = 2.
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Figure 2: LOG-LOG PLOT OF [|E||cc AND THE THEORETICAL ERROR VS. h, FOR f(x) = sin(z) WITH N = T.



Figure 3: LOG-LOG PLOT OF ||E||cc AND THE THEORETICAL ERROR VS. h, FOR f(x) =sin(xz) WITH N = 16.
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N=2 N=7 N =16

h(i) IE(@)|loc | slope h(i) IE(@)|loc | slope h(i) IE(i)]|oc | slope
1.00E+02 | 1.86E+400 | 1.0000 || 1.00E+02 | 1.98E4-00 | 1.0000 || 1.00E+02 | 2.00E4-00 | 1.0000
5.00E+4-01 | 1.49E+00 | 0.3247 | 5.00E4-01 | 1.99E+00 | -0.0064 || 5.00E4-01 | 2.00E+00 | 0.0007
2.50E401 | 1.24E+00 | 0.2621 | 2.50E401 | 1.79E+00 | 0.1585 | 2.50E401 | 2.00E+00 | 0.0000
1.25E+01 | 1.11E400 | 0.1614 || 1.25E+01 | 1.43E400 | 0.3239 || 1.25E+01 | 1.86E+4-00 | 0.1009
6.25E4+00 | 1.04E4-00 | 0.0893 | 6.25E400 | 1.21E400 | 0.2416 || 6.25E4-00 | 1.49E+00 | 0.3253
3.13E4+00 | 1.00E4-00 | 0.0593 | 3.13E4-00 | 1.42E+00 | -0.2356 || 3.13E4-00 | 1.34E+02 | -6.4925
1.56E+00 | 5.65E-02 | 4.1459 | 1.56E4-00 | 2.74E-01 | 2.3755 || 1.56E+00 | 1.74E400 | 6.2691
7.81E-01 | 2.32E-02 | 1.2810 7.81E-01 | 1.18E-03 | 7.8630 7.81E-01 | 5.64E-05 | 14.9090
3.91E-01 | 3.58E-03 | 2.6979 3.91E-01 | 8.23E-06 | 7.1591 || 3.91E-01 | 6.10E-10 | 16.4961
1.95E-01 | 4.70E-04 | 2.9289 1.95E-01 | 2.28E-08 | 8.4985 || 1.95E-01 | 2.04E-13 | 11.5447
9.77E-02 | 5.95E-05 | 2.9825 || 9.77E-02 | 4.82E-11 | 8.8836 | 9.77E-02 | 1.23E-13 0.7347
4.88E-02 | 7.46E-06 | 2.9956 || 4.88E-02 | 9.61E-14 | 8.9698 || 4.88E-02 | 8.59E-14 0.5149
2.44E-02 | 9.33E-07 | 2.9989 | 2.44E-02 | 3.61E-16 | 8.0570 || 2.44E-02 | 4.33E-14 0.9889
1.22E-02 | 1.17E-07 | 2.9997 | 1.22E-02 | 6.94E-17 | 2.3785 1.22E-02 | 2.27E-14 0.9331
6.10E-03 | 1.46E-08 | 2.9999 | 6.10E-03 | 3.47E-17 | 1.0000 6.10E-03 | 8.51E-15 1.4144
3.06E-03 | 1.82E-09 | 3.0000 || 3.05E-03 | 1.73E-17 | 1.0000 3.06E-03 | 4.77E-15 0.8335
1.53E-03 | 2.28E-10 | 3.0000 | 1.53E-03 | 1.04E-17 | 0.7370 1.53E-03 | 2.70E-15 0.8245
7.63E-04 | 2.85E-11 | 3.0000 || 7.63E-04 | 5.20E-18 | 1.0000 7.63E-04 | 1.49E-15 0.8536
3.81E-04 | 3.56E-12 | 3.0000 || 3.81E-04 | 2.17E-18 | 1.2630 3.81E-04 | 5.53E-16 1.4330
1.91E-04 | 4.45E-13 | 3.0000 || 1.91E-04 | 1.08E-18 | 1.0000 1.91E-04 | 3.36E-16 0.7171
9.54E-05 | 5.56E-14 | 3.0000 || 9.54E-05 | 7.59E-19 | 0.5146 9.54E-05 | 1.90E-16 0.8216
4.77E-05 | 6.96E-15 | 3.0000 || 4.77E-05 | 3.25E-19 | 1.2224 4.77E-05 | 8.29E-17 1.1971

Table 1: ORDER OF ACCURACY OF THE METHOD, FOR f(z) = sin(z)
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Figure 4: LOG-LOG PLOT OF ||E||oc AND THE THEORETICAL ERROR VS. h, FOR f(z) = 2% WITH N = 2.

N=2

h(7) [|E(#)||oo | slope
1.00E+00 | 1.47E+01 | 1.00
5.00E-01 2.30E-01 6.00
2.50E-01 3.59E-03 6.00
1.25E-01 5.62E-05 6.00
6.25E-02 8.7T7E-07 6.00
3.13E-02 1.37E-08 6.00
1.56E-02 2.14E-10 6.00
7.81E-03 3.35E-12 6.00
3.91E-03 5.23E-14 6.00
1.95E-03 8.17E-16 6.00
9.77E-04 1.28E-17 6.00

Table 2: ORDER OF ACCURACY OF THE METHOD, FOR f(z) = %

2. When f(z) = 2%, if (like me) you decreased the size of the interval while maintaining a constant (I chose
a = 0), then the theorem tells us that the theoretical upper bound is:

A 6leaS hno 61057 b 6l (a+ (n—1) - h)ST

T G = 5 o)) = ) =00 @)

h’ﬂ

— (n) <

a1 oo <
ie: the convergence is expected to be O(h®) no matter what the degree of the polynomial is!

Results: All 3 graphs display a straight line for the measured error, which has to be interpreted differently
depending on N:

e For N = 2, Figure 4 and Table 2 reveal that || F||o follows exactly the predictions of the theorem. Data beyond
[|E||loo & €machine Should be ignored.

e For N = 7,16, the estimated error does not appear on the graph. Indeed, it is identically 0, since for N > 6,
fW) = 0. Equivalently, since we're trying to approximate z with a polynomial of degree less or equal to 7
or 16, the Lagrange interpolation formula naturally returns x° itself. Numerically, the resulting error is thus
expected to be very small, so small that it is below machine precision. Yet, for large values of h the computer
keeps returning values, which should therefore be discarded.
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Figure 5: LOG-LOG PLOT OF ||E||sc AND THE THEORETICAL ERROR VS. h, FOR f(z) = 2% WiTH N = 7.
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Figure 6: LOG-LOG PLOT OF ||E||oc AND THE THEORETICAL ERROR VS. h, FOR f(z) = 2% wiTH N = 16.
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Figure 7: LOG-LOG PLOT OF ||F||oc FOR A CHEBYCHEV GRID (IN GREEN) AND ||E||cc FOR AN EQUIDISTANT GRID
(IN BLUE) VS. h, FOR f(z) = sin(z) WITH N = 16.

Part B, using a Chebyshev grid

Method: Following the same procedure as in the Part A: h is varied by shrinking the interval over which the
function is approximated. The code is actually the same as for Part A, except for the building of the grid: the
abscissa points are chosen to be the zeros of the appropriate Chebychev polynomial. Note that the h used in the
log-log plot is h = max;—a. n |x; — xi—1].

Results: Qualitatively, the resulting graphs and tables for f(x) = sin(z) and f(z) = %
those obtained using an equidistant grid, and should be interpreted in the same way.

are extremely similar to

Quantitatively though, the remarkable difference is that || F||o for the Chebychev grid lies lower than the one for
the equidistant grid. This becomes more appearant as the degree of the polynomial increases. Figure 7 compares
the two errors for N = 16 with f(z) = sin(x). This agrees with the theory, which states that Chebychev points are
an optimal choice of abscissa points for the Lagrange interpolation technique.



PROBLEM 2

e Prove that if u,v € L%, then (uxv)(x) = (v *u)(x).

SOLUTION:
+o00 z’:-/w;y —00 +o00
(uxv)(x) = / ulx —y)v(y)dy "= / u(z)v(x — 2)(—dz) = / u(z)v(x — 2)dz = (v *u)(x)
—co +o0 -
i —2<z<0
e Compute () (€) = F(usxux*...xu)(§) for the function u(z) =4 —3 0<z<2
0 otherwise

SOLUTION: By induction,

p=1
) 1 0 ) 2 ) 1 e—iﬁ;ﬂ e—sz
u) = /e_lgwuxdw:—(/ e_zfﬂ”dx—/ e_lgmdx)=—< — %, — — 2)
( ) R ( ) 4 L o 4 _,Lg | 2 _,Lg |0

et o4 e2i§>

_ (1 et =2 1 1) = 4% (1 et2i€ %€ 4 1) = 3<

3
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(=) -~
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I s

n

p = n: Assume that u,)(§) = (% sin? (5)) .

p=n+1:

Umin(§) = Fluxux...xu)(§)
n+1 times
= Fluxux*...xu)(&) - F(u)(§) by the Convolution Theorem
n times
(I A .
= gsm &) - gsm ) by the previous steps

- (pen)”

Therefore, for all p € N, 4, (&) = (% Sin2(§))p'

e Compute the Fourier transform of the Gaussian function u(x;s) = \/% exp (;:22)

27 s?

SOLUTION:

—~ Feo . 1 x? 1 oo 2 )
10 = [ evtien e (g )= i [ e (g it

Rewriting the exponent

itz = -

I2
55 (3_2 + 2ifx + (i€s)? — (i{s)2)

(% + 255)2 - 52252

N~ N



2.2
N eXp(_£28) teo 1/z 2 x
—  ae) = 7/ exp<—§(§+igs))dx lety =2 +its & sdy=da

Foo 14 . Foo 9 I
= Ts/_OO exp<—§y>dy using /_OO exp(—aa:)d:z:—\/g

%) |
exp | —
= — 2/ 5. \orn

@
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~
|
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e Prove that the convolution of p Gaussian functions (with variances s3,s3, .. .,512)) is a Gaussian function with

N

SoLUTION: It is proved that the convolution of 2 Gaussian functions with variances s?, s3 is a Gaussian function
with variance s = /s% + s3. The claim for n Gaussian functions follows by induction.

Using the Convolution Theorem:

(usy *usy) (@) = F 1 (F(ug, % ug,)(€)) ()
= F 1 (F(us,)(€) - Fus,)(6)) (x) by the Convolution Theorem
5282 5252
= F!'{exp (_Tl) rexp |~ 2>) (x) by the previous question
2
& (VoT+3)
= Fllexp| - x)
2
1 e ( - ) by the previous question
= X A%
T rea A Y ey rep a

= u(w/st+53)

Or working only in real space:

+o00 —+00 2 2
/ u(z —y;s1) u(y;s2)dy = / ! exp (— (= _2y) ) . exp (_y_2) dy
—o0 —o0 \/27‘(5% 251 \/27‘(5% 252
1 —+o00 _ 2 2
_ / exp <_u Y \ay

2715152 J_ oo 253 253

Rewriting the exponent:

-y oyt (@ =2y +y7)s3 + st
252 252 25353
- x2s% — 2xys% + yQSg + y2s%
N 25753
1
= —55 - (¥P(sT + 53) — 2aysy + 2%s3)
25785
1
= g (6 )+ 2ot = 2 — 2oy + (075 — %)+ %)



’ (yz(si + 53) — 2xy(s] + s3) + (7 + 53) + 2zys] — x25§)

_25%33
1
522" ((?J—I)Q(sf —l—sg) +2xysl —xzs%) let z=y—ux
2s7s5
1
—gmg  (P(s1 + 53) +20(x + 0)st — s}
5152
1 2 2.2
522 +s3)+2 +
25757 - (2%(s1 + 53) 4 2wzs] + 2”sT)
1 9 xs% I25411 xzs%
-5 $2 4+ 82)4+2-24/87 + 53 + _ 1242
25183 < 1) R/ s?2+s3 si+s3 !
1 152 2264 2254
—5353 T4+s3)+2-2¢/87 + 53 1 1 —|—<x252— 1 )
25753 ( : IRV P R 8T

1 + rs? n 225252 ot n 5551
- 87+ 85+ ——— SR et a =24/5%+ s2
25%52 1 s+ EE 52+ 52 VST tsst+ %91 ap
+

L (a2 Tis,
25%52 % %
a2 {I,'

25183 2(s1 + 53)

( ) ( )d 1 /+OO ( CL :1;2 ) da
u(x —y; s1)u(y; s = exp _
y; s1)uly; s2)dy 275152 252 2(31 +53)) /52 + 52

2s
+oo 2
= ( )/ exp (__(12 2) da
27T8182 31 + 52 —I— 52 oo 25253
-1/ 2ms2s2
< +s2 > 172

exp
= — w(z, /5% + 2
V27(s3 + 53) (sl—i—s ( (s +52) ( )

2#5152 51 + 52



