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Spectral
Laplagian e M is n-dimensional compact connected manifold,
n > 2. g is a Riemannian metric on M: for any
U, V € TxM, their inner product is g(U, V).
9(9/0xi,0/9x) := gj-
e g defines analogs of div and grad. The Laplacian A of a
function f is given by

Af = div(gradf).
An eigenfunction ¢ with eigenvalue )\ > 0 satisfies

Af+Xf=0.
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Periodic eigenfunctions on the 2-torus T?:
f(x £2m,y +27) = f(x,y). They are

sin(m-x+n-y),cos(m-x+n-y), \=m?+n?.



o Example 1: R?.
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Laplacian 2 2
P Af — o°f  0°f

ox2 oy

Periodic eigenfunctions on the 2-torus T?:
f(x £2m,y +27) = f(x,y). They are

sin(m-x+n-y),cos(m-x+n-y), \=m?+n?.

o Fact: any square-integrable function F(x, y) on T? (s.t.
Jy2 |F(x,y)[2dxdy < o0), can be expanded into Fourier
series,

+00
F= Y amnsin(mx+ ny)+ bpncos(mx+ ny).

m,n=—o0
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o Example 2: sphere S? = {(x,y,z) : x> + y? + 22 = 1}.

Spherical coordinates: (¢, 8) € [0, 7] x [0, 27], where
X =singcosh,y =singsing, z = cos ¢.

1 0*f cos¢ Of  Of

Af = R . g
sin®¢ 062 + sing  d¢ + D2




o Example 2: sphere S? = {(x,y,z) : x> + y? + 22 = 1}.
Spectral Spherical coordinates: (¢, ) € [0, 7] x [0, 27], where
[ neary of X = sin ¢ cos 0, y—smgbsme Z = COS ¢.

Laplacian

1 0*f cos¢ Of  Of

sy O ' sing 06 ' 062

Af =

e Eigenfunctions are called spherical harmonics:
Y"(¢,0) = P"(cos ¢)(acos(mb) + bsin(mé)).

Here A\ = /(I +1); P/",|m| < | is associated Legendre
function,

_1\ym m I+m
PP = U0 2 0 (02 1Y),

dx A l+m

Any square-integrable function F on S? can be
expanded in a series of spherical harmonics.
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The same is true on any compact M. Eigenvalues of A:
O= X <M< <.l

Any square-integrable function F on M can be
expanded in a series of eigenfunctions ¢; of A.

Similar results hold for domains with boundary (you
need to specify boundary conditions).

Standard boundary conditions: Dirichlet (¢ vanishes on
the boundary); Neumann (normal derivative of ¢
vanishes on the boundary).

Example: M = [0, 7r]. sin x satisfies Dirichlet b.c; cos x
satisfies Neumann b.c.
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ou(x,t)/ot = c- Axu(x, t) and wave equation
Q%u(x,t)/0t2 = ¢ - Axu(x, t).
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Applications

e Solving partial differential equations like heat equation
ou(x,t)/ot = c- Axu(x, t) and wave equation
Q%u(x,t)/0t2 = ¢ - Axu(x, t).

e Stationary solutions of Schrédinger equation or “pure
quantum states.”

e Inverse problems: suppose you know some
eigenvalues and eigenfunctions; describe the domain S
(related problems appear in radar/remote sensing,
x-ray/MRI, oil/gas/metal exploration etc).
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e Determine the smallest A > 0 for a given surface S (its
“pass note”), and other small eigenvalues.




e Determine the smallest A > 0 for a given surface S (its
“bass note”), and other small eigenvalues.
e Mark Kac: “Can you hear the shape of a drum?” Can
you determine the domain if you know its spectrum (all
Eigenvalue the )\,“S)?
questions Answer: No! Two different domains S can have the
same spectrum (sound the same). Example below is
due to Gordon, Webb and Wolpert.
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as \ — oo.



e Determine the smallest A > 0 for a given surface S (its
“bass note”), and other small eigenvalues.
e Mark Kac: “Can you hear the shape of a drum?” Can
you determine the domain if you know its spectrum (all
Eigenvalue the )\,“S)?
questions Answer: No! Two different domains S can have the
same spectrum (sound the same). Example below is
due to Gordon, Webb and Wolpert.

o Count the eigenvalues: N()\) = #{)\; < A}. Study N()\)
as \ — oo.

e How do eigenvalue differences \;, 1 — A\; behave when
A is large?



o Example: 2-torus T?: Ay = m? + n?. Let A = t2. Then
N(t?) = #{(m,n) - m? + n* < 2} =
#{(m,n) : vVm2 + n? < t}.

How many lattice points are inside the circle of radius
t? Leading term is given by the area:

Counting
eigenvalues

N(t?) = nt? + R(t), (1)

where R(t) is the remainder.



o Example: 2-torus T?: Ay = m? + n?. Let A = t2. Then
N(t?) = #{(m,n) - m? + n* < 2} =

#{(m,n) : vVm2 + n? < t}.
How many lattice points are inside the circle of radius
t? Leading term is given by the area:

Counting
eigenvalues

N(t?) = nt? + R(t), (1)

where R(t) is the remainder.

e Question: How big is R(t)? Conjecture (Hardy): for
any 6 > 0,

R(t) < C(6) - t/2+2, ast — oc.
Best known estimate (Huxley, 2003):
R(t) < C- t131/208(|09 t)2'26.

Note: 131/208 = 0.629807....



e An analogue of (1) holds for very general domains; it is
called Weyl’s law (Weyl, 1911).
M is n-dimensional:

Counting

eigenvalues N(\) = ¢, - vol(M)A"2 + R()\), R is a remainder.
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e An analogue of (1) holds for very general domains; it is
called Weyl’s law (Weyl, 1911).
M is n-dimensional:

Qounting
clgenvalues N(A) = cp - vol(M)A"2 + R()), R is a remainder.
e |t is known (Avakumovic, Levitan, Hérmander) that

IR(\)| < CAl=1/2,

o More detailed study of R(}\) is difficult and interesting; it
is related to the properties of the geodesic flow on M.



e Nodal set N(¢)) = {x € M: ¢,(x) = 0}, codimension
1is M. On a surface, it’s a union of curves.

Spectral . . B .
B First pictures: Chladni plates. E. Chladni, 18th century.
Lapl . T
Aap‘am?” He put sand on a plate and played with a violin bow to
pplicafions! . .

make it vibrate.
Eigenvalue
questions -
Counting L & £ = - —!
eigenvalues A - X Q s i \‘
Nodal sets / 1 ‘
and domains o= o4 b — ot
Critical points: M @ w

= ] Y

Geodesic flow, & 3 «
and curvature 9 \
Billiards

T
[

OillliA

-
—
7
» £
3 o 2.6 X3
Limits of
eigenfunctions| g
Billiard
. . 4 7S 6
eigenfunctions % =g
‘.
o

ot

j
Aai
V




e Chladni patterns are still used to tune violins.

Nodal sets
and domains




e How large are nodal sets, i.e. how large is

volp_1(N(¢2))?
Dimension n = 1: eigenfunction sin(nx) has ~ n = v/A

zeros in [0, 27].
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e How large are nodal sets, i.e. how large is
volp_1 (N (64))?
Dimension n = 1: eigenfunction sin(nx) has ~ n = v/A
zeros in [0, 27].

e For real-analytic metrics, Donnelly and Fefferman
showed that there exists Cq, C, (independent of A > 0)
S.t.

S CiVA < volp_1(N(9y)) < CaVA

Similar bounds are conjectured for arbitrary smooth
metrics in all dimensions (Cheng and Yau).



Nodal sets
and domains

e How large are nodal sets, i.e. how large is

volp_1(N(¢x))?

Dimension n = 1: eigenfunction sin(nx) has ~ n = v/A
zeros in [0, 27].

For real-analytic metrics, Donnelly and Fefferman
showed that there exists Cq, C, (independent of A > 0)
Ss.t.

Cq VA < vol,_1 (N((]ﬁ)\)) < Czﬁ

Similar bounds are conjectured for arbitrary smooth
metrics in all dimensions (Cheng and Yau).

In general, the best known result in dimension 2 for
arbitrary metrics is

CiVA < volp_1(N(4n)) < CoA¥*.

The lower bound is due to Briining, the upper bound to
Donnelly and Fefferman.



e Nodal domain of ¢ is a connected component of
M\ N(¢). Courant nodal domain theorem. ¢, has
< k + 1 nodal domains. The constant in the estimate
was improved by Pleijel.
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Nodal sets
and domains

e Nodal domain of ¢ is a connected component of

M\ N(¢). Courant nodal domain theorem. ¢, has
< k + 1 nodal domains. The constant in the estimate
was improved by Pleijel.

Nazarov and Sodin showed that a random spherical
harmonic ¢, has ~ cn® nodal domains.

Eigenfunctions with large A can have few nodal
domains: ¢n(x, y) = sin(nx + y) on T2 has two nodal
domains for all n; A, = n? + 1.

John Toth (McGill) and Zelditch recently studied
number of open nodal lines (intersecting the boundary)
in certain planar domains, and got a bound < C - v/n.
Any collection of disjoint closed curves on S?, invariant
under (x,y,z) — (—x, —y,—2Z) is equivalent to a nodal
set of a spherical harmonic (Eremenko, J, Nadirashvili)



¢ Question (Yau): Does the number of critical points
(maxima, minima and saddle points) of ¢, always grow
as \ — oo?
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¢ Question (Yau): Does the number of critical points
(maxima, minima and saddle points) of ¢, always grow
as \ — oo?

e Answer (Jakobson, Nadirashvili): Not always! For
example, on T2 with a “metric of revolution”

Critical points (1 00 + COS(4X))(dX2 + dyz)

there exists a sequence ¢; such that \; — oo, and each
¢; has exactly 16 critical points.



¢ Question (Yau): Does the number of critical points
(maxima, minima and saddle points) of ¢, always grow
as \ — oo?

e Answer (Jakobson, Nadirashvili): Not always! For
example, on T2 with a “metric of revolution”

Critical points (1 00 + COS(4X))(dX2 + dyz)

there exists a sequence ¢; such that \; — oo, and each
¢; has exactly 16 critical points.

e |t is not known if the number of critical points grows
generically.



o Let
Ao + Ao = 0, M\-large (high energy). Correspondence
principle (Niels Bohr) predicts that at high energies,
certain properties of eigenvalues and eigenfunctions of
A on M (quantum system) would depend on the
dynamics of the geodesic flow on M (classical system).
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Geodesic flow
and curvature

o Let

Ao + Ao = 0, M\-large (high energy). Correspondence
principle (Niels Bohr) predicts that at high energies,
certain properties of eigenvalues and eigenfunctions of
A on M (quantum system) would depend on the
dynamics of the geodesic flow on M (classical system).

Geodesic is a curve that locally minimizes distance
between points lying on it. Examples: straight lines in
R", great circles on S” (that’s how planes fly on S2).

Geodesic flow Gt is defined as follows: let
xeM,veTiM, g(v,v)=1. Consider a unique
geodesic v, (t) s.t. v(0) = x,~/(0) = v. Then

G!(v) =7, (1)

Light travels along geodesics.



e Question: how G! behaves for t — oco: do close
trajectories converge (focusing), or diverge
(de-focusing)?
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e Focusing: S". All geodesics (meridians) starting at the
north pole at t = 0 focus at the south pole at t = 7 (N
and S are called conjugate points).
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e Question: how G! behaves for t — oco: do close
trajectories converge (focusing), or diverge
(de-focusing)?

e Focusing: S". All geodesics (meridians) starting at the
north pole at t = 0 focus at the south pole at t = 7 (N
and S are called conjugate points).

e De-focusing: H”, the n-dimensional hyperbolic space.
Geodesics diverge exponentially fast; no conjugate
points.

Geodesic flow
and curvature




e Curvature: S surface in R3, given by z = f(x, y). Let
gradf(p) = 0, then K = det(6%f/0xdy). If K > 0, then S
is convex or concave at p; if K < 0, then S looks like a
saddle at p. Also,

vol(Bs(xo, ) = vol(Bge(r)) [1 — K L o(r4].
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flow on a 2-dimensional surface has 2 first integrals.
Such flows are called integrable.



Geodesic flow
and curvature

Curvature: S surface in R3, given by z = f(x, y). Let
gradf(p) = 0, then K = det(6%f/0xdy). If K > 0, then S
is convex or concave at p; if K < 0, then S looks like a
saddle at p. Also,

vol(Bs(xo, r)) = vol(Bge(r)) [1 — K L o(r4].

Positive curvature = focusing; K = +1 on S2.

Examples of regular geodesic flows: flat torus (move
along straight lines); and surfaces of revolution. The
flow on a 2-dimensional surface has 2 first integrals.
Such flows are called integrable.

Negative curvature = de-focusing; K = —1 on H2. If all
sectional curvatures on M are negative, then geodesic
flow on M is ergodic: all invariant sets have measure 0
or 1, almost every geodesic ~(t) becomes uniformly
distributed (on the unit sphere bundle in TM) as t — oc.
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Planar billiards, billiard map: angle of incidence
equals angle of reflection.
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e Planar billiards, billiard map: angle of incidence
equals angle of reflection.

e Regular billiard map: billiard in an ellipse. Orbits stay
forever tangent to confocal ellipses (or confocal
hyperbolas); such curves are called caustics.
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e Planar billiards, billiard map: angle of incidence
equals angle of reflection.

e Regular billiard map: billiard in an ellipse. Orbits stay

forever tangent to confocal ellipses (or confocal
hyperbolas); such curves are called caustics.

e If the bounding curve is smooth enough and strictly
convex (curvature never vanishes), then caustics
always exist (Lazutkin).
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e Ergodic planar billiards
stadium

: Sinai billiard and Bunimovich



e Other examples of ergodic and integrable billiards:
cardioid and circular billiards

Billiards
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e Question: Where do eigenfunctions concentrate?

e Answer: “Quantum ergodicity” theorem (Shnirelman,
Zelditch, Colin de Verdiere): If the geodesic flow is
erogdic (“almost all” trajectories become uniformly
distributed), then “almost all” eigenfunctions become
uniformly distributed.
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Question: Where do eigenfunctions concentrate?

e Answer: “Quantum ergodicity” theorem (Shnirelman,
Zelditch, Colin de Verdiere): If the geodesic flow is
erogdic (“almost all” trajectories become uniformly
distributed), then “almost all” eigenfunctions become
uniformly distributed.

e Billiard version: Gerard-Leichtnam, Zelditch-Zworski.

e What is the precise meaning? Eigenfunction ¢,
describes a quantum particle; |¢|? - probability density
of that particle. Let A C M; then [, [¢|? - probability of

Limits of finding the particle in A. For almost all ¢,,

eigenfunctions
im daloa® _ vol(A)
=00 iy [0a2 — vol(M)
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e QE for Dirac operator, Laplacian on forms: Jakobson,
Strohmaier, Zelditch

o QE for restrictions of eigenfunctions to submanifolds (or
to the boundary in billiards): Toth, Zelditch

Limits of
eigenfunctions



o Example: M = S' = [0, 27], ¢n(x) = —= sin(nx). Let
f(x) be an “observable.” Then

5

2w 1 2w
/ f(X)(on(x))? dx = 2/ f(x)(1 — cos(2nx)) dx
0 m™Jo

which by Riemann-Lebesgue lemma converges to

1 2m
27T/o f(x)dx

as n — oo.
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o Example: M = S' = [0, 27], ¢n(x) = —= sin(nx). Let
f(x) be an “observable.” Then

5

2w 1 2w
/ f(X)(on(x))? dx = 2/ f(x)(1 — cos(2nx)) dx
0 m™Jo

which by Riemann-Lebesgue lemma converges to

1 2m
— f
o /o (x)dx
as n — oo.

S e True for all eigenfunctions (quantum unique ergodicity
or QUE). Does QUE hold on any other manifolds?

e Conjecture: QUE should hold on compact
negatively-curved manifolds (Rudnick-Sarnak). Proved
for arithmetic hyperbolic manifolds (Lindenstrauss).
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o Eigenfunctions on S? = {x? + y2 + z2 = 1}. Let
bn(x,y,2) = (X + iy)". Then |¢p|? = (1 — z%)". That
expression is = 1 on the equator {z = 0}, and decays
exponentially fast for z > 0 as n — oo. Therefore,
¢% — Oequator @S N — 00.
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o Eigenfunctions on S? = {x? + y2 + z2 = 1}. Let
bn(x,y,2) = (X + iy)". Then |¢p|? = (1 — z%)". That
expression is = 1 on the equator {z = 0}, and decays
exponentially fast for z > 0 as n — oo. Therefore,

d)% — Oequator @S N — 00.

e In fact, for any even nonnegative function f on S?, there
exists a sequence of spherical harmonics ¢, s.t. ¢2 — f
as n — oo (Jakobson, Zelditch).

Limits of
eigenfunctions



e Billiards: QUE conjectures does not hold for the
Bunimovich stadium (Hassell). Ergodic eigenfunction:
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eigenfunctions, for which QUE fails (they have density 0
among all eigenfunctions, so QE still holds).

e Other stadium eigenfunctions, including “bouncing ball”
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Theory of e Ergodic eigenfunction on a cardioid billiard.
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e Billiards with caustics: there exist eigenfunctions that
concentrate in the region between the caustic and the
boundary (“whispering gallery”) eigenfunctions.
Example: circular billiard.
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Another eigenfunction for a circular billiard.




