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• M is n-dimensional compact connected manifold,
n ≥ 2. g is a Riemannian metric on M: for any
U, V ∈ TxM, their inner product is g(U, V ).
g(∂/∂xi , ∂/∂xj) := gij .

• g defines analogs of div and grad. The Laplacian ∆ of a
function f is given by

∆f = div(gradf ).

An eigenfunction φ with eigenvalue λ ≥ 0 satisfies

∆f + λf = 0.
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• Example 1: R2.

∆f =
∂2f
∂x2 +

∂2f
∂y2 .

Periodic eigenfunctions on the 2-torus T2:
f (x ± 2π, y ± 2π) = f (x , y). They are

sin(m · x + n · y), cos(m · x + n · y), λ = m2 + n2.

• Fact: any square-integrable function F (x , y) on T2 (s.t.∫
T2 |F (x , y)|2dxdy < ∞), can be expanded into Fourier

series,

F =
+∞∑

m,n=−∞
am,n sin(mx + ny) + bm,n cos(mx + ny).
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• Example 2: sphere S2 = {(x , y , z) : x2 + y2 + z2 = 1}.
Spherical coordinates: (φ, θ) ∈ [0, π]× [0, 2π], where
x = sin φ cos θ, y = sin φ sin θ, z = cos φ.

∆f =
1

sin2 φ
· ∂2f
∂θ2 +

cos φ

sin φ
· ∂f
∂φ

+
∂2f
∂φ2

• Eigenfunctions are called spherical harmonics:

Y m
l (φ, θ) = Pm

l (cos φ)(a cos(mθ) + b sin(mθ)).

Here λ = l(l + 1); Pm
l , |m| ≤ l is associated Legendre

function,

Pm
l (x) =

(−1)m

2l · l! (1− x2)
m
2

d l+m

dx l+m

(
(x2 − 1)l

)
.

Any square-integrable function F on S2 can be
expanded in a series of spherical harmonics.
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• The same is true on any compact M. Eigenvalues of ∆:

0 = λ0 < λ1 ≤ λ2 ≤ . . .

Any square-integrable function F on M can be
expanded in a series of eigenfunctions φi of ∆.

• Similar results hold for domains with boundary (you
need to specify boundary conditions).

• Standard boundary conditions: Dirichlet (φ vanishes on
the boundary); Neumann (normal derivative of φ
vanishes on the boundary).

• Example: M = [0, π]. sin x satisfies Dirichlet b.c; cos x
satisfies Neumann b.c.
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• Solving partial differential equations like heat equation
∂u(x , t)/∂t = c ·∆xu(x , t) and wave equation
∂2u(x , t)/∂t2 = c ·∆xu(x , t).

• Stationary solutions of Schrödinger equation or “pure
quantum states.”

• Inverse problems: suppose you know some
eigenvalues and eigenfunctions; describe the domain S
(related problems appear in radar/remote sensing,
x-ray/MRI, oil/gas/metal exploration etc).
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• Determine the smallest λ > 0 for a given surface S (its
“bass note”), and other small eigenvalues.

• Mark Kac: “Can you hear the shape of a drum?” Can
you determine the domain if you know its spectrum (all
the λi -s)?
Answer: No! Two different domains S can have the
same spectrum (sound the same). Example below is
due to Gordon, Webb and Wolpert.

• Count the eigenvalues: N(λ) = #{λj < λ}. Study N(λ)
as λ →∞.

• How do eigenvalue differences λi+1 − λi behave when
λ is large?
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• Example: 2-torus T2: λm,n = m2 + n2. Let λ = t2. Then

N(t2) = #{(m, n) : m2 + n2 < t2} =

#{(m, n) :
√

m2 + n2 < t}.
How many lattice points are inside the circle of radius
t? Leading term is given by the area:

N(t2) = πt2 + R(t), (1)

where R(t) is the remainder.
• Question: How big is R(t)? Conjecture (Hardy): for

any δ > 0,

R(t) < C(δ) · t1/2+δ, as t →∞.

Best known estimate (Huxley, 2003):

R(t) < C · t131/208(log t)2.26.

Note: 131/208 = 0.629807....
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• An analogue of (1) holds for very general domains; it is
called Weyl’s law (Weyl, 1911).
M is n-dimensional:

N(λ) = cn · vol(M)λn/2 + R(λ), R is a remainder .

• It is known (Avakumovic, Levitan, Hörmander) that

|R(λ)| < Cλ(n−1)/2.

• More detailed study of R(λ) is difficult and interesting; it
is related to the properties of the geodesic flow on M.
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|R(λ)| < Cλ(n−1)/2.

• More detailed study of R(λ) is difficult and interesting; it
is related to the properties of the geodesic flow on M.



Spectral
Theory of
Laplacian

Applications

Eigenvalue
questions

Counting
eigenvalues

Nodal sets
and domains

Critical points

Geodesic flow
and curvature

Billiards

Limits of
eigenfunctions

Billiard
eigenfunctions

• An analogue of (1) holds for very general domains; it is
called Weyl’s law (Weyl, 1911).
M is n-dimensional:

N(λ) = cn · vol(M)λn/2 + R(λ), R is a remainder .

• It is known (Avakumovic, Levitan, Hörmander) that
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• Nodal set N (φλ) = {x ∈ M : φλ(x) = 0}, codimension
1 is M. On a surface, it’s a union of curves.
First pictures: Chladni plates. E. Chladni, 18th century.
He put sand on a plate and played with a violin bow to
make it vibrate.
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• Chladni patterns are still used to tune violins.
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• How large are nodal sets, i.e. how large is
voln−1(N (φλ))?
Dimension n = 1: eigenfunction sin(nx) has ∼ n =

√
λ

zeros in [0, 2π].
• For real-analytic metrics, Donnelly and Fefferman

showed that there exists C1, C2 (independent of λ > 0)
s.t.

C1
√

λ ≤ voln−1(N (φλ)) ≤ C2
√

λ

Similar bounds are conjectured for arbitrary smooth
metrics in all dimensions (Cheng and Yau).

• In general, the best known result in dimension 2 for
arbitrary metrics is

C1
√

λ ≤ voln−1(N (φλ)) ≤ C2λ
3/4.

The lower bound is due to Brüning, the upper bound to
Donnelly and Fefferman.
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• Nodal domain of φ is a connected component of
M \ N (φ). Courant nodal domain theorem. φk has
≤ k + 1 nodal domains. The constant in the estimate
was improved by Pleijel.

• Nazarov and Sodin showed that a random spherical
harmonic φn has ∼ cn2 nodal domains.

• Eigenfunctions with large λ can have few nodal
domains: φn(x , y) = sin(nx + y) on T2 has two nodal
domains for all n; λn = n2 + 1.

• John Toth (McGill) and Zelditch recently studied
number of open nodal lines (intersecting the boundary)
in certain planar domains, and got a bound ≤ C · √n.

• Any collection of disjoint closed curves on S2, invariant
under (x , y , z) → (−x ,−y ,−z) is equivalent to a nodal
set of a spherical harmonic (Eremenko, J, Nadirashvili)
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• Question (Yau): Does the number of critical points
(maxima, minima and saddle points) of φλ always grow
as λ →∞?

• Answer (Jakobson, Nadirashvili): Not always! For
example, on T2 with a “metric of revolution”

(100 + cos(4x))(dx2 + dy2)

there exists a sequence φi such that λi →∞, and each
φi has exactly 16 critical points.

• It is not known if the number of critical points grows
generically.
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• Let
∆φ + λφ = 0, λ-large (high energy). Correspondence
principle (Niels Bohr) predicts that at high energies,
certain properties of eigenvalues and eigenfunctions of
∆ on M (quantum system) would depend on the
dynamics of the geodesic flow on M (classical system).

• Geodesic is a curve that locally minimizes distance
between points lying on it. Examples: straight lines in
Rn, great circles on Sn (that’s how planes fly on S2).

• Geodesic flow Gt is defined as follows: let
x ∈ M, v ∈ TxM, g(v , v) = 1. Consider a unique
geodesic γv (t) s.t. γ(0) = x , γ′(0) = v . Then

Gt(v) := γ′v (t)

Light travels along geodesics.
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• Question: how Gt behaves for t →∞: do close
trajectories converge (focusing), or diverge
(de-focusing)?

• Focusing: Sn. All geodesics (meridians) starting at the
north pole at t = 0 focus at the south pole at t = π (N
and S are called conjugate points).

• De-focusing: Hn, the n-dimensional hyperbolic space.
Geodesics diverge exponentially fast; no conjugate
points.
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• Curvature: S surface in R3, given by z = f (x , y). Let
gradf (p) = 0, then K = det(∂2f/∂x∂y). If K > 0, then S
is convex or concave at p; if K < 0, then S looks like a
saddle at p. Also,
vol(BS(x0, r)) = vol(BR2(r))

[
1− K (x0)r2

12 + O(r4)
]
.

• Positive curvature ⇒ focusing; K = +1 on S2.
• Examples of regular geodesic flows: flat torus (move

along straight lines); and surfaces of revolution. The
flow on a 2-dimensional surface has 2 first integrals.
Such flows are called integrable.

• Negative curvature ⇒ de-focusing; K = −1 on H2. If all
sectional curvatures on M are negative, then geodesic
flow on M is ergodic: all invariant sets have measure 0
or 1, almost every geodesic γ(t) becomes uniformly
distributed (on the unit sphere bundle in TM) as t →∞.
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• Planar billiards, billiard map: angle of incidence
equals angle of reflection.

• Regular billiard map: billiard in an ellipse. Orbits stay
forever tangent to confocal ellipses (or confocal
hyperbolas); such curves are called caustics.

• If the bounding curve is smooth enough and strictly
convex (curvature never vanishes), then caustics
always exist (Lazutkin).
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• Ergodic planar billiards: Sinai billiard and Bunimovich
stadium
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• Other examples of ergodic and integrable billiards:
cardioid and circular billiards
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• Question: Where do eigenfunctions concentrate?
• Answer: “Quantum ergodicity” theorem (Shnirelman,

Zelditch, Colin de Verdiere): If the geodesic flow is
erogdic (“almost all” trajectories become uniformly
distributed), then “almost all” eigenfunctions become
uniformly distributed.

• Billiard version: Gerard-Leichtnam, Zelditch-Zworski.
• What is the precise meaning? Eigenfunction φλ

describes a quantum particle; |φ|2 - probability density
of that particle. Let A ⊂ M; then

∫
A |φ|2 - probability of

finding the particle in A. For almost all φλ,

lim
λ→∞

∫
A |φλ|2∫
M |φλ|2

=
vol(A)

vol(M)
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• QE for Dirac operator, Laplacian on forms: Jakobson,
Strohmaier, Zelditch

• QE for restrictions of eigenfunctions to submanifolds (or
to the boundary in billiards): Toth, Zelditch
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• Example: M = S1 ∼= [0, 2π], φn(x) = 1√
π

sin(nx). Let
f (x) be an “observable.” Then

∫ 2π

0
f (x)(φn(x))2 dx =

1
2π

∫ 2π

0
f (x)(1− cos(2nx)) dx

which by Riemann-Lebesgue lemma converges to

1
2π

∫ 2π

0
f (x)dx

as n →∞.
• True for all eigenfunctions (quantum unique ergodicity

or QUE). Does QUE hold on any other manifolds?
• Conjecture: QUE should hold on compact

negatively-curved manifolds (Rudnick-Sarnak). Proved
for arithmetic hyperbolic manifolds (Lindenstrauss).
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Eigenfunctions of the hyperbolic Laplacian on H2/PSL(2, Z),
Hejhal:
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• Eigenfunctions on S2 = {x2 + y2 + z2 = 1}. Let
φn(x , y , z) = (x + iy)n. Then |φn|2 = (1− z2)n. That
expression is = 1 on the equator {z = 0}, and decays
exponentially fast for z > 0 as n →∞. Therefore,
φ2

n → δequator as n →∞.
• In fact, for any even nonnegative function f on S2, there

exists a sequence of spherical harmonics φn s.t. φ2
n → f

as n →∞ (Jakobson, Zelditch).
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• Billiards: QUE conjectures does not hold for the
Bunimovich stadium (Hassell). Ergodic eigenfunction:
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• Other stadium eigenfunctions, including “bouncing ball”
eigenfunctions, for which QUE fails (they have density 0
among all eigenfunctions, so QE still holds).
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• Ergodic eigenfunction on a cardioid billiard.
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• Billiards with caustics: there exist eigenfunctions that
concentrate in the region between the caustic and the
boundary (“whispering gallery”) eigenfunctions.
Example: circular billiard.
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Another eigenfunction for a circular billiard.


