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• X n, n ≥ 2 - compact. ∆ - Laplacian. Spectrum:
∆φi + λiφi = 0, 0 = λ0 < λ1 ≤ λ2 ≤ . . .
Eigenvalue counting function:
N(λ) = #{√λj ≤ λ}.
Weyl’s law: N(λ) = CnVλn + R(λ), R(λ) = O(λn−1).
R(λ) - remainder.

• Spectral function: Let x , y ∈ X .
Nx ,y (λ) =

∑√
λi≤λ φi(x)φi(y).

If x = y , let Nx ,y (λ) := Nx(λ).
Local Weyl’s law:
Nx ,y (λ) = O(λn−1), x 6= y ;
Nx(λ) = Cnλ

n + Rx(λ), Rx(λ) = O(λn−1); Rx(λ) -
local remainder.

• We study lower bounds for R(λ), Rx(λ) and Nx ,y (λ).
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• Notation: f1(λ) = Ω(f2(λ)), f2 > 0 iff
lim supλ→∞ |f1(λ)|/f2(λ) > 0. Equivalently,
f1(λ) 6= o(f2(λ)).

• Theorem 1[JP] If x , y ∈ X are not conjugate along any
shortest geodesic joining them, then

Nx ,y (λ) = Ω
(
λ

n−1
2

)
.

• Theorem 2[JP] If x ∈ X is not conjugate to itself along
any shortest geodesic loop, then

Rx(λ) = Ω(λ
n−1

2 )

• Other results in dimension n > 2 involve heat invariants.
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• Example: flat square 2-torus
λj = 4π2(n2

1 + n2
2), n1, n2 ∈ Z

φj(x) = e2πi(n1x1+n2x2), x = (x1, x2)

|φj(x)| = 1 ⇒ N(λ) ≡ Nx(λ)

Gauss circle problem: estimate R(λ).
Theorem 2 ⇒ R(λ) = Ω(

√
λ) -

Hardy–Landau bound. Theorem 2 generalizes that
bound for the local remainder.
Soundararajan (2003):

R(λ) = Ω

(√
λ(log λ)

1
4 (log log λ)

3(24/3−1)
4

(log log log λ)5/8

)
.

• Hardy’s conjecture: R(λ) ¿ λ1/2+ε ∀ε > 0.

Huxley (2003): R(λ) ¿ λ
131
208 (log λ)2.26.
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• Negative curvature. Suppose sectional curvature
satisfies
−K 2

1 ≤ K (ξ, η) ≤ −K 2
2

Theorem (Berard): Rx(λ) = O(λn−1/ log λ)
Conjecture (Randol): On a negatively-curved surface,
R(λ) = O(λ

1
2 +ε). Randol proved an integrated (in λ)

version for Nx ,y (λ).
• Theorem (Karnaukh) On a negatively curved surface

Rx(λ) = Ω(
√

λ)

+ logarithmic improvements discussed below.
Karnaukh’s results (unpublished 1996 Princeton Ph.D.
thesis under the supervision of P. Sarnak) served as a
starting point and a motivation for our work.
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• Thermodynamic formalism: Gt - geodesic flow on
SX , ξ ∈ SX , Tξ(SX ) = Es

ξ ⊕ Eu
ξ ⊕ Eo

ξ ,
• dim Es

ξ = n − 1 : stable subspace, exponentially
contracting for Gt ;
• dim Eu

ξ = n − 1 : unstable subspace, exponentially
contracting for G−t ;
• dim Eo

ξ = 1 : tangent subspace to Gt .
Sinai-Ruelle-Bowen potential H : SM → R:

H(ξ) =
d
dt

∣∣∣∣
t=0

ln det dGt |Eu
ξ

• Topological pressure P(f ) of a Hölder function
f : SX → R satisfies (Parry, Pollicott)

∑

l(γ)≤T

l(γ) exp
[∫

γ
f (γ(s), γ′(s))ds

]
∼ eP(f )T

P(f )
.
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• γ - geodesic of length l(γ). P(f ) is defined as

P(f ) = sup
µ

(
hµ +

∫
fdµ

)
,

µ is Gt -invariant, hµ - (measure-theoretic) entropy.
• Ex 1: P(0) = h - topological entropy of Gt . Theorem

(Margulis): #{γ : l(γ) ≤ T} ∼ ehT /hT .
Ex. 2: P(−H) = 0.

• Theorem 3[JP] If X is negatively-curved then for any
δ > 0 and x 6= y

Nx ,y (λ) = Ω
(
λ

n−1
2 (log λ)

P(−H/2)
h −δ

)

Here P(−H/2)/h ≥ K2/(2K1) > 0.
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Theorem 4a[JP] X - negatively-curved. For any δ > 0

Rx(λ) = Ω
(
λ

n−1
2 (log λ)

P(−H/2)
h −δ

)
, n = 2, 3.

Results for n ≥ 4 involve heat invariants.

K = −1 ⇒ Rx(λ) = Ω
(
λ

n−1
2 (log λ)

1
2−δ

)

Karnaukh, n = 2: estimate above + weaker estimates in
variable negative curvature.
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• Global results: R(λ)
Randol, n = 2:

K = −1 ⇒ R(λ) = Ω
(
(log λ)

1
2−δ

)
, ∀δ > 0.

Theorem 4b[JPT] X - negatively-curved surface
(n = 2). For any δ > 0

R(λ) = Ω
(
(log λ)

P(−H/2)
h −δ

)
.

• Conjecture (folklore). On a generic negatively curved
surface

R(λ) = O(λε) ∀ε > 0.
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• Selberg, Hejhal: On general compact hyperbolic
surfaces,

R(λ) = Ω

(
(log λ)

1
2√

log log λ

)
.

• On compact arithmetic surfaces that correspond to
quaternionic lattices R(λ) = Ω

( √
λ

log λ

)
. Reason:

exponentially high multiplicities in the length spectrum;
generically, X has simple length spectrum.

• In [JN], similar ideas are used to obtain lower bounds
for resonances of infinite area hyperbolic surfaces.
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We describe lower bounds for resonances obtained in [JN].
Let Γ be a geometrically finite subgroup of PSL(2, R) without
elliptic elements. Fundamental domain X = Γ\H2 has
finitely many sides. Assume that X has infinite hyperbolic
area: X decomposes into a finite area surface N (called
Nielsen region or convex core) to which finitely many infinite
area half-cylinders (funnels) are glued.
If Γ has parabolic elements, then N has cusps (parabolic
vertices); a surface without cusps is called convex
co-compact; then Γ has no parabolic elements.
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• The spectrum of ∆ = y2(∂2/∂x2 + ∂2/∂y2) on X
consists of the continuous spectrum [1/4, +∞] (no
embedded eigenvalues) plus possibly a finite set of
eigenvalues.

• The first nonzero eigenvalue λ = δ(1− δ), where δ is
the Hausdorff dimension of the limit set Λ(Γ) ⊂ S1 for
the action of Γ, provided δ > 1/2 (Patterson, Sullivan).

• The resolvent

R(λ) =

(
∆X −

1
4
− λ2

)−1

: L2(X ) → L2(X )

is well-defined and analytic in {=(λ) < 0}, except for
finitely many poles corresponding to the finite point
spectrum.
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• Resonances are the poles of the resolvent R(λ) in the
whole C. Their set is denoted by RX . Guillopé and
Zworski showed that ∃C > 0 such that

1/C < #{z ∈ RX : |z| < R}/R2 < C, R →∞.

• Finer asymptotics: let

NC(T ) = #{z ∈ RX : =(z) ≤ C, |<(z)| ≤ T}.

• Zworski, Guillopé and Lin: “fractal” upper bound
Theorem 5. For convex co-compact X ,
NC(T ) = O(T 1+δ); where C is fixed, and T →∞.
They conjectured the upper bound is sharp.
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• Lower bounds: Guillopé, Zworski: ∀ε > 0∃Cε > 0,
such that

NCε
(T ) = Ω(T 1−ε).

The proof uses a wave trace formula for resonances on
X and takes into account contributions from a single
closed geodesic on X .

• Question: Can one improve lower bounds taking into
account contributions from many closed geodesics on
X?

• Answer: Yes, this is done in [JN].
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account contributions from many closed geodesics on
X?

• Answer: Yes, this is done in [JN].
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• Guillopé, Lin, Zworski: let

D(z) = {λ ∈ RX : |λ− z| ≤ 1}

Then for all z : =(z) ≤ C, we have D(z) = O(|<(z)|δ).
• Let A > 0, and let WA denote the logarithmic

neighborhood of the real axis:

WA = {λ ∈ C : =λ ≤ A log(1 + |<λ|)}

• Theorem 6. Let X be a geometrically finite hyperbolic
surface of infinite area, and let δ > 1/2. Then there
exists a sequence {zi} ∈ WA,<(zi) →∞ such that

D(zi) ≥ (log |<(zi)|)
δ−1/2

δ
−ε.
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• Corollary: If δ > 1/2, then WA ∩RX is different from a
lattice.

• Examples of Γ such that δ(Γ) > 1/2 are easy to
construct. Pignataro, Sullivan: fix the topology of X .
Denote by l(X ) the maximum length of the closed
geodesics that form the boundary of N. Then
λ0(X ) ≤ C(X )l(X ), where C = C(X ) depends only on
the topology of X . By Patterson-Sullivan,
λ0 < 1/4 ⇔ δ > 1/2, so letting l(X ) → 0 gives many
examples.

• Proof of Theorem 6 uses (a version of Selberg) trace
formula due to Guillopé and Zworski, and Dirichlet box
principle.
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• Theorem 6 gives a logarithmic lower bound
D(zi) ≥ (log |<(zi)|)

δ−1/2
δ

−ε for an infinite sequence of
disks D(zi , 1). Conjecture of Guillopé and Zworski
would imply that ∀ε > 0 ∃{zi} such that
D(zi) ≥ |<(zi)|δ−ε.

• Question: can one get polynomial lower bounds for
some particular groups Γ?
Answer: Yes. Idea: look at infinite index subgroups of
arithmetic groups a la Selberg-Hejhal.

• Theorem 7. Let Γ be an infinite index geom. finite
subgroup of an arithmetic group Γ0 derived from a
quaternion algebra. Let δ(Γ) > 3/4. Then
∀ε > 0, ∀A > 0, there exists {zi} ⊂ WA,<(zi) →∞,
such that

D(zi)) ≥ |<(zi)|2δ−3/2−ε.
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Key ideas:

• Number of closed geodesics on X :

#{γ : l(γ) < T} ∼ eδT

δT
, T →∞.

• Number of distinct closed geodesics in the arithmetic
case: for Γ derived from a quaternion algebra, one has

#{L < T : L = l(γ)} ¿ eT/2.

Accordingly, for δ > 1/2, there exists exponentially
large multiplicities in the length spectrum.

• Distinct lengths are well-separated in the arithmetic
case: for l1 6= l2, we have

|l1 − l2| À e−max(l1,l2)/2.

Ex: M1, M2 ∈ SL(2, Z), trM1 6= trM2 then
|trM1 − trM2| = 2| cosh(l1/2)− cosh(l2/2)| ≥ 1.
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Trace formula (Guillopé, Zworski): Let ψ ∈ C∞
0 ((0, +∞)),

and N - Nielsen region. Then (in case there are no cusps)

∑

λ∈RX

ψ̂(λ) = −V (N)

4π

∫ +∞

0

cosh(t/2)

sin2(t/2)
ψ(t)dt

+
∑

γ∈P

∑

k≥1

l(γ)ψ(kl(γ))

2 sinh(kl(γ)/2)
,

where P = {primitive closed geodesics on X}.
For α, t À 0, we take

ψt ,α(x) = e−itxψ0(x − α),

where ψ0 ∈ C∞
0 ([−1, 1]), ψ ≥ 0, and ψ0 = 1 on [−1/2, 1/2].
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• Geometric side (sum over closed geodesics):

Sα,t =
∑

α−1≤kl(γ)≤α+1

l(γ)ψ0(kl(γ)− α)

2 sinh(kl(γ)/2)
e−itkl(γ).

• Lemma 8: ∃A > 0 s.t. ∀T > 0, if we let α = 2 log T − A,
and

J(T ) =

∫ 3T

T

(
1− |t − 2T |

T

)
|Sα,t |2dt ,

then

J(T ) ≥ C2T 4δ−2

(log T )2 .
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Lemma 8 ⇒ Theorem 7: Assume for contradiction that for
all z ∈ WA,<(z) ≥ R0 we have D(z) ≤ |<(z)|β. Let
α = 2 log T − A. We have

C2T 1+4δ−3

(log T )2 ≤ J(T ) ≤
∫ 3T

T
|Sα,T |2dt .

Assumption implies that

Sα,T = O(1 + tβ + T 2δ−3).

Integrating, we find that

J(T ) = O(T 2β+1).

This leads to a contradiction if 2β + 1 < 1 + 4δ − 3, or
β < 2δ − 3/2, proving Theorem 7.



General
Results

Negative
Curvature

Resonances

Proof:
Arithmetic
case

Proof: Weyl’s
Law

Proof:
Spectral
Function

Subtracting
heat kernel
terms

Proof of Lemma 8 uses the fact that geodesic lengths on X
have exponentially high multiplicities and their lengths are
well-separated.
After expanding |S2

α,T |2 and integrating, we write
J(T ) = J1(T ) + J2(T ), where J1(T ) is the diagonal term

J1(T ) = T
∑

l∈L(Γ)

(l#µ(l))2ψ2
0(l − α)

4 sinh2(l/2)
,

where LΓ denotes set of distinct lengths of closed
geodesics on X ; µ(l) is the multiplicity of l ; l# the primitive
length of a closed geodesic.
J1(T ) ≥ 0, and J2(T ) denotes the off-diagonal term. J2(T )

involves integrals
∫ 3T

T (1− |t − 2T |/T )ei(l1−l2)tdt , where
l1 ≤ l2. Since distinct lj -s are well-separated, we get
cancellation in J2(T ). One can show that |J2(T )| ≤ J1(T )/2
with α, T chosen as in Lemma.
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• It remains to bound J1(T ) from below. ψ0(l − α) is
supported on [α− 1, α + 1]. The denominator
4 sinh2(l/2) is of order eα. We find that

J1(T ) ≥ C3Te−α
∑

l∈LΓ∩[α−1/2,α+1/2]

(µ(l))2.

• Call the last sum S. Then

S ≥

(∑
l∈LΓ∩[α−1/2,α+1/2] µ(l)

)2

(∑
l∈LΓ∩[α−1/2,α+1/2] 1

)

The numerator is À [eδα/α]2 by the prime geodesic
theorem. The denominator is O(eα/2) (since the
lengths are well-separated). Hence S À e(2δ−1/2)α/α2.
Substituting J(T ) À S · T/eα, α = 2 log T − A, we get
J(T ) À T 4δ−2/(log T )2, proving Lemma 8.
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Examples of an “arithmetic” groups ΓN with δ > 3/4 are
subgroups of index 2 of the groups ΛN constructed by A.
Gamburd in 2002. Gamburd showed that δ(ΛN) → 1 as
N →∞, hence δ(ΓN) > 3/4 for large enough N.
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Proof of Theorem 4b: (about R(λ)). X -compact,
negatively-curved surface.
Wave trace on X (even part):

e(t) =
∞∑

i=0

cos(
√

λi t).

Cut-off: χ(t , T ) = (1− ψ(t))ρ̂
( t

T

)
, where

• ρ ∈ S(R), supp ρ̂ ⊂ [−1, +1], ρ ≥ 0, even;
• ψ(t) ∈ C∞

0 (R), ψ(t) ≡ 1, t ∈ [−T0, T0], and
ψ(t) ≡ 0, |t | ≥ 2T0.
In the sequel, T = T (λ) →∞ as λ →∞. Let

κ(λ, T ) =
1
T

∫ ∞

−∞
e(t)χ(t , T ) cos(λt)dt
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• Key microlocal result:
Proposition 9. Let T = T (λ) ≤ ε log λ. Then

κ(λ, T ) =
∑

l(γ)≤T

l(γ)# cos(λl(γ)) · χ(l(γ), T )

T
√|det(I − Pγ)| + O(1)

where
γ - closed geodesic; l(γ) - length; l(γ)#-primitive
period; Pγ - Poincaré map.

• Long-time version of the “wave trace” formula of
Duistermaat and Guillemin, microlocalized to shrinking
neighborhoods of closed geodesics. Allows to isolate
contribution from a growing number of closed
geodesics with l(γ) ≤ T (λ) to κ(λ, T ) as λ, T (λ) →∞.
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• Long-time version of the “wave trace” formula of
Duistermaat and Guillemin, microlocalized to shrinking
neighborhoods of closed geodesics. Allows to isolate
contribution from a growing number of closed
geodesics with l(γ) ≤ T (λ) to κ(λ, T ) as λ, T (λ) →∞.



General
Results

Negative
Curvature

Resonances

Proof:
Arithmetic
case

Proof: Weyl’s
Law

Proof:
Spectral
Function

Subtracting
heat kernel
terms

• Proof - separation of closed geodesics in phase space
+ small-scale microlocalization near closed geodesics.

• Dynamical lemma: Let X - compact, negatively curved
manifold. Ω(γ, r) - neighborhood of γ in S∗X of radius r
(cylinder). There exist constants B > 0, a > 0 s.t. for all
closed geodesics on X with l(γ) ∈ [T − a, T ], the
neighborhoods Ω(γ, e−BT ) are disjoint, provided
T > T0.
Radius r = e−BT is exponentially small in T , since the
number of closed geodesic grows exponentially.
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• Lemma 10. If R(λ) = o((log λ)b), b > 0 then

κ(λ, T ) = o((log λ)b).

Goal: estimate κ(λ, T ) from below. Need to extract
long exponential sums as the leading asymptotics of
the long-time wave trace expansion.

• Consider the sum

S(T ) =
∑

l(γ)≤T

l(γ)√|det(I − Pγ)|

• Pγ preserves stable and unstable subspaces.
Dimension 2: eigenvalues are
exp

[
± ∫

γ H(γ(s), γ′(s))ds
]
.



General
Results

Negative
Curvature

Resonances

Proof:
Arithmetic
case

Proof: Weyl’s
Law

Proof:
Spectral
Function

Subtracting
heat kernel
terms

• Lemma 10. If R(λ) = o((log λ)b), b > 0 then

κ(λ, T ) = o((log λ)b).

Goal: estimate κ(λ, T ) from below. Need to extract
long exponential sums as the leading asymptotics of
the long-time wave trace expansion.

• Consider the sum

S(T ) =
∑

l(γ)≤T

l(γ)√|det(I − Pγ)|

• Pγ preserves stable and unstable subspaces.
Dimension 2: eigenvalues are
exp

[
± ∫

γ H(γ(s), γ′(s))ds
]
.



General
Results

Negative
Curvature

Resonances

Proof:
Arithmetic
case

Proof: Weyl’s
Law

Proof:
Spectral
Function

Subtracting
heat kernel
terms

• Lemma 10. If R(λ) = o((log λ)b), b > 0 then

κ(λ, T ) = o((log λ)b).

Goal: estimate κ(λ, T ) from below. Need to extract
long exponential sums as the leading asymptotics of
the long-time wave trace expansion.

• Consider the sum

S(T ) =
∑

l(γ)≤T

l(γ)√|det(I − Pγ)|

• Pγ preserves stable and unstable subspaces.
Dimension 2: eigenvalues are
exp

[
± ∫

γ H(γ(s), γ′(s))ds
]
.



General
Results

Negative
Curvature

Resonances

Proof:
Arithmetic
case

Proof: Weyl’s
Law

Proof:
Spectral
Function

Subtracting
heat kernel
terms

• Pγ − Id is conjugate to
 exp

[∫
γ H

]
− 1 0

0 exp
[
− ∫

γ H
]
− 1




Thus, S(T ) is asymptotic to

∑

l(γ)≤T

l(γ) exp
[
−1

2

∫

γ
H

]
.

Results of Parry and Pollicott ⇒
• Theorem 11. As T →∞,

S(T ) ∼ eP(−H2 )·T

P(−H/2)

Here P
(−H

2

) ≥ (n − 1)K2/2.
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Dirichlet box principle ⇒ “straighten the phases:” ∃λ s.t.

cos(λl(γ)) > ν > 0, ∀γ : l(γ) ≤ T .

(λl(γ) close to 2πZ). This combined with Theorem 11 shows
that ∃λ, T s.t.

κ(λ, T ) ∼ exp[P
(−H

2

)
T (1− δ/2)]

T

This leads to contradiction with Lemma 10. Q.E.D.
For Dirichlet principle need T ³ ln ln λ, So, get logarithmic
lower bound in Theorem 4b.
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Proof of Theorem 3: N(x , y , λ)
Wave kernel on X :

e(t , x , y) =
∞∑

i=0

cos(
√

λi t)φi(x)φi(y),

fundamental solution of the wave equation
(∂2/∂t2 −∆)e(t , x , y) = 0, e(0, x , y) = δ(x − y),
(∂/∂t)e(0, x , y) = 0.

kλ,T (x , y) =

∫ ∞

−∞

ψ(t/T )

T
cos(λt)e(t , x , y)dt

where ψ ∈ C∞
0 ([−1, 1]), even, monotone decreasing on

[0,1], ψ ≥ 0, ψ(0) = 1.
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Lemma 10a If Nx ,y (λ) = o(λa(log λ)b)), where a > 0, b > 0
then

kλ,T (x , y) = o(λa(log λ)b)).
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• Pretrace formula. M - universal cover of X , no
conjugate points, E(t , x , y) be the wave kernel on M.
Then for x , y ∈ X , we have

e(t , x , y) =
∑

ω∈π1(X)

E(t , x , ωy)

• Hadamard Parametrix for E(t , x , y) ⇒

Kλ,T (x , y) ∼λ→∞ Q1λ
n−1

2 ×
∑

ω∈π1(X):d(x ,ωy)≤T

ψ
(

d(x ,ωy)
T

)
sin(λd(x , ωy) + θn)

√
Tg(x , ωy) d(x , ωy)n−1

+ O
[
λ

n−3
2 eO(T )

]
.

Here g =
√

det gij in normal coordinates,
θn = (π/4)(3− (n mod 8)), and Q1 6= 0.
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• Pointwise analog of the sum S(T ):

Sx ,y (T ) =
∑

ω:d(x ,ωy)≤T

1√
g(x , ωy) d(x , ωy)n−1

,

where g =
√

det gij in normal coordinates at x . Sx ,y (T )
grows at the same rate as S(T ).

• Reason: let x , y ∈ M, γ - geodesic from x to y ,
ξ = (x , γ′(0)), and dist(x , y) = r . Then√

g(x , y)rn−1 ¿ JacVert(ξ)Gr .
Here Vert(ξ) ∈ TξSM - vertical subspace; Eu

ξ ∈ TξSM -
unstable subspace at ξ.
By properties of Anosov flows,
Dist[DGr (Vert(ξ)), DGr (Eu

ξ )] ≤ Ce−αr . Therefore,

JacVert(ξ)Gr ¿ JacEξu Gr = exp
[∫

γ H
]
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Our local estimates are not uniform in x , y . Need
Proposition 9 to prove global estimates.
Heat trace asymptotics:

∑

i

e−λi t ∼ 1
(4π)n/2

∞∑

j=0

aj t j− n
2 , t → 0+

Local: K(t , x , x) =
∑

i e−λi tφ2
i (x) ∼

1
(4π)n/2

∑∞
j=0 aj(x)t j− n

2 ,

aj(x) - local heat invariants, aj =
∫

X aj(x)dx .
a0(x) = 1, a0 = vol(X ). a1(x) = τ(x)

6 , τ(x) - scalar
curvature.
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“Heat kernel” estimates:
Theorem 2b[JP] If the scalar curvature
τ(x) 6= 0,=⇒ Rx(λ) = Ω(λn−2).
Global:[JPT] If

∫
X τ 6= 0,⇒ R(λ) = Ω(λn−2).

Remark: if τ(x) = 0, let k = k(x) be the first positive
number such that the k -th local heat invariant ak (x) 6= 0. If
n − 2k(x) > 0, then

Rx(λ) = Ω(λn−2k(x)).

Similar result holds for R(λ): if
∫

ak (x)dx 6= 0 and
n − 2k > 0, then

R(λ) = Ω(λn−2k ).
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• Oscillatory error term: subtract [(n − 1)/2] terms
coming from the heat trace:

Nx(λ) =
∑[ n−1

2 ]
j=0

aj (x)λn−2j

(4π)
n
2 Γ( n

2−j+1)
+ Rosc

x (λ)

Warning: not an asymptotic expansion!
Physicists: subtract the “mean smooth part” of Nx(λ).

• Theorem 2c[JP] If x ∈ X is not conjugate to itself along
any shortest geodesic loop, then

Rosc
x (λ) = Ω(λ

n−1
2 )

Theorem 4c[JP] X - negatively-curved. For any δ > 0
Rosc

x (λ) = Ω
(
λ

n−1
2 (log λ)

P(−H/2)
h −δ

)
, any n.

If n ≥ 4 then Theorem 2b, Rx(λ) = Ω(λn−2) gives a
better bound for Rx(λ).

• Global Conjecture: X - negatively-curved. For any
δ > 0
Rosc(λ) = Ω

(
(log λ)

P(−H/2)
h −δ

)
, any n.
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The behavior of N(x , y , λ)/(λ(n−1)/2) was studied by
Lapointe, Polterovich and Safarov.
[LPS] Average growth of the spectral function on a
Riemannian manifold. arXiv:0803.4171, to appear in Comm.
PDE.


