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Genara] e X" n>2-compact. A - Laplacian. Spectrum:
Api+Xigi=0, 0=Xg< A <A< ...
Eigenvalue counting function:
NN = #{/N < A}
Weyl’s law: N(\) = C,VA" + R(\), R(\) = O(A"1).
R(\) - remainder.
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e Spectral function: Let x, y € X.

Nxy(A) = 22 m<n 2i(X)9i(y)-
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Local Weyl’s law:
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Ni(A\) = CoA"+ By(\),  Rx()) = O(N"1); Ry(N) -
local remainder.



Genara] e X" n>2-compact. A - Laplacian. Spectrum:
Api+Xigi=0, 0=Xg< A <A< ...
Eigenvalue counting function:
NN = #{/N < A}
Weyl’s law: N(\) = C,VA" + R(\), R(\) = O(A"1).
R(\) - remainder.
e Spectral function: Let x, y € X.

Nxy(A) = z\ﬁ,g)\ 0i(x)9i(y)-
If x =y, let Ny (\) := Nx(A).
Local Weyl’s law:
Niy(N) = O,  x#y;
Ni(A\) = CoA"+ By(\),  Rx()) = O(N"1); Ry(N) -
local remainder.
e We study lower bounds for R(\), Bx(X) and Ny ,()).



e o Notation: f;(\) = Q(f(\)), f > 0 iff
limsup,_, . |fi(A)|/f2(X) > 0. Equivalently,
fr(A) # o(fa(N))-
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limsupy_ |fi(A)|/E(X) > 0. Equivalently,
fi(X) # o(f(})).
e Theorem 1[JP] If x, y € X are not conjugate along any
shortest geodesic joining them, then

Ney(N) = Q (A%) .
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e Theorem 2[JP] If x € X is not conjugate to itself along
any shortest geodesic loop, then



S Notation: f;(\) = Q(f()\)), & > 0 iff

limsupy_ |fi(A)|/E(X) > 0. Equivalently,

fi(X) # o(f(})).

Theorem 1[JP] If x, y € X are not conjugate along any
shortest geodesic joining them, then

Ney(N) = Q (A%) .

Theorem 2[JP] If x € X is not conjugate to itself along
any shortest geodesic loop, then

Other results in dimension n > 2 involve heat invariants.



General
Results

o Example: flat square 2-torus

N =4m3(nf +n3), nynpeZ
(z)j(x) — 6271'/.(rl1X1—i—f72X2)7 X = (X’],Xz)

6 =1 = N(A) = N(A)

Gauss circle problem: estimate R(\).

Theorem 2 = R(\) = Q(V) -
Hardy-Landau bound. Theorem 2 generalizes that
bound for the local remainder.

Soundararajan (2003):

1 32*/3-1)
R(\) =Q VA(logA)3 (loglog\) ™~ 4 >

(log log log X\)>/8



o Example: flat square 2-torus
General 2 5 o
Results A = 4r (n1_+ ns), ny,meZ
d’j(x) — (;/,27r/(n1x1—|-n2x2)7 X = (X1 7 X2)

6 =1 = N(A) = N(A)

Gauss circle problem: estimate R(\).

Theorem 2 = R(\) = Q(V) -
Hardy-Landau bound. Theorem 2 generalizes that
bound for the local remainder.

Soundararajan (2003):

1 32*/3-1)
R(\) =Q VA(logA)3 (loglog\) ™~ 4 >

(log log log X\)>/8

 Hardy’s conjecture: R()\) < \'/2%¢ ve > 0.
Huxley (2003): R(\) < As (log \)2-25.



e Negative curvature. Suppose sectional curvature
satisfies
S —K2 < K(¢,1) < —K2
Theorem (Berard): Ry (\) = O(\"~"/log \)
Conjecture (Randol): On a negatively-curved surface,
R(\) = O(A%+€). Randol proved an integrated (in \)
version for Ny y ().



Negative
Curvature

e Negative curvature. Suppose sectional curvature

satisfies

7K12 < K(f»ﬁ) < 7K22

Theorem (Berard): Ry (\) = O(\"~"/log \)
Conjecture (Randol): On a negatively-curved surface,
R(\) = O(A%+€). Randol proved an integrated (in \)
version for Ny y ().

Theorem (Karnaukh) On a negatively curved surface

+ logarithmic improvements discussed below.
Karnaukh’s results (unpublished 1996 Princeton Ph.D.
thesis under the supervision of P. Sarnak) served as a
starting point and a motivation for our work.



e Thermodynamic formalism: G' - geodesic flow on
SX, &€ SX, Te(SX) = Ef & E{ & EY,
e dim Eg = n—1: stable subspace, exponentially

Corvature contracting for G';

e dim Eg = n— 1 : unstable subspace, exponentially
contracting for G;
o dim E2 = 1 : tangent subspace to G'.
Sinai-Ruelle-Bowen potential 7/ : SM — R:

H(E) = 91 ndet th]Eg



e Thermodynamic formalism: G' - geodesic flow on
SX, &€ SX, Te(SX) = Ef & E{ & EY,
e dim Eg = n—1: stable subspace, exponentially
contracting for G;
e dim Eg = n— 1 : unstable subspace, exponentially

contracting for G;
o dim E2 = 1 : tangent subspace to G'.
Sinai-Ruelle-Bowen potential 7/ : SM — R:

ey =2

_ t
= —|  IndetdGle:

t=0

» Topological pressure P(f) of a Hélder function
f . SX — R satisfies (Parry, Pollicott)

eP(NT

5 i | [ 102(s) 7/ ()es| ~ gy

I(v)<T




e ~ - geodesic of length /(v). P(f) is defined as

Negative

Curvature P(f) - Sup <hu + / fdM) ’
w

w is Gl-invariant, h, - (measure-theoretic) entropy.
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w is Gl-invariant, h, - (measure-theoretic) entropy.

e Ex 1: P(0) = h - topological entropy of G!. Theorem
(Margulis): #{vy: I(y) < T} ~ e"T/hT.
Ex. 2: P(—H) = 0.



e ~ - geodesic of length /(v). P(f) is defined as
Negative
Curvature P(f) — Sup <hu + / fdM) ’
w

w is Gl-invariant, h, - (measure-theoretic) entropy.

e Ex 1: P(0) = h - topological entropy of G!. Theorem
(Margulis): #{vy: I(y) < T} ~ e"T/hT.
Ex. 2: P(—H) = 0.

e Theorem 3[JP] If X is negatively-curved then for any
d>0and x #y

Nx,y(A):Q(A%( ogA) 2 5)

Here P(—H/2)/h > Ka/(2K) > 0.



Negative
Curvature

Theorem 4a[JP] X - negatively-curved. For any § > 0

Rx(\) =@ (A" (log A)P(’Z‘”)—é) , n=2,3.
Results for n > 4 involve heat invariants.
K=-1= B\ =2 (A% (log A)H)

Karnaukh, n = 2: estimate above + weaker estimates in
variable negative curvature.



o Global results: R()\)
Negafive Randol, n = 2:

Curvature
K=-1=RM)=2((logn)z™),  vi>0.

Theorem 4b[JPT] X - negatively-curved surface
(n=2). Forany s >0

R(\) = 9 ((log )\)w“s) .



o Global results: R()\)
Negafive Randol, n = 2:

Curvature
K=-1=RM)=2((logn)z™),  vi>0.

Theorem 4b[JPT] X - negatively-curved surface
(n=2). Forany s >0

R(\) = 9 ((log z) 2’—5) .
e Conjecture (folklore). On a generic negatively curved

surface
R()\) = O(X9) Ve > 0.



Negative o Selberg, Hejhal: On general compact hyperbolic
Curvature SurfaceS,
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RO = (m) |
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e On compact arithmetic surfaces that correspond to
quaternionic lattices R(\) = Q (%) Reason:
exponentially high multiplicities in the length spectrum;
generically, X has simple length spectrum.



Negative o Selberg, Hejhal: On general compact hyperbolic
Curvature SurfaceS,

RO =0 ((lg») |
\/loglog A

e On compact arithmetic surfaces that correspond to
quaternionic lattices R(\) = Q % . Reason:
exponentially high multiplicities in the length spectrum;
generically, X has simple length spectrum.

¢ In [UN], similar ideas are used to obtain lower bounds
for resonances of infinite area hyperbolic surfaces.



Resonances

We describe lower bounds for resonances obtained in [JN].
Let I be a geometrically finite subgroup of PSL(2, R) without
elliptic elements. Fundamental domain X = N\H? has
finitely many sides. Assume that X has infinite hyperbolic
area: X decomposes into a finite area surface N (called
Nielsen region or convex core) to which finitely many infinite
area half-cylinders (funnels) are glued.

If I has parabolic elements, then N has cusps (parabolic
vertices); a surface without cusps is called convex
co-compact; then I has no parabolic elements.



o The spectrum of A = y?(9?/0x? + 9%/9y?) on X
consists of the continuous spectrum [1/4, +o0] (no
embedded eigenvalues) plus possibly a finite set of

Resonances eigenvalues.
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embedded eigenvalues) plus possibly a finite set of

Resonances eigenvalues.

e The first nonzero eigenvalue A = §(1 — §), where ¢ is

the Hausdorff dimension of the limit set A(I') ¢ S' for
the action of I', provided § > 1/2 (Patterson, Sullivan).



Resonances

e The spectrum of A = y2(92/9x2 + 82/9y?) on X

consists of the continuous spectrum [1/4, +o0] (no
embedded eigenvalues) plus possibly a finite set of
eigenvalues.

The first nonzero eigenvalue A = §(1 — 0), where § is
the Hausdorff dimension of the limit set A(I') ¢ S' for
the action of I', provided § > 1/2 (Patterson, Sullivan).

The resolvent
1

R(\) = (AX . )\2> T 12(X)

is well-defined and analytic in {(\) < 0}, except for
finitely many poles corresponding to the finite point
spectrum.



» Resonances are the poles of the resolvent R(\) in the
whole C. Their set is denoted by R x. Guillopé and
Zworski showed that 3C > 0 such that

Resonances

1/C<#{zeRx:|zZ|<R}/R?<C, R— .
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e Finer asymptotics: let

Ne(T) = #{ze Rx :3(2) < C,[R(2)| < T}



» Resonances are the poles of the resolvent R(\) in the
whole C. Their set is denoted by R x. Guillopé and
Zworski showed that 3C > 0 such that

Resonances

1/C<#{zeRx:|zZ|<R}/R?<C, R— .
e Finer asymptotics: let
Ne(T)=#{zeRx:3(2) < C,|R(2)| < T}.

e Zworski, Guillopé and Lin: “fractal” upper bound
Theorem 5. For convex co-compact X,
Nc(T) = O(T'*9); where C is fixed, and T — .
They conjectured the upper bound is sharp.



e Lower bounds: Guillopé, Zworski: Ve > 03C, > 0,
such that

Resonances
Ne, (T) = Q(T'9).

The proof uses a wave trace formula for resonances on

X and takes into account contributions from a single

closed geodesic on X.
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e Question: Can one improve lower bounds taking into
account contributions from many closed geodesics on
X?



e Lower bounds: Guillopé, Zworski: Ve > 03C, > 0,
such that

Resonances
Ne, (T) = Q(T'9).

The proof uses a wave trace formula for resonances on

X and takes into account contributions from a single

closed geodesic on X.

e Question: Can one improve lower bounds taking into
account contributions from many closed geodesics on
X?

e Answer: Yes, this is done in [UN].



e Guillopé, Lin, Zworski: let

Dz)={ NeRx:|A—2z] <1}

Resonances

Then for all z: 3(z) < C, we have D(z) = O(|R(2)°).
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Dz)={ NeRx:|A—2z] <1}
Resonances

Then for all z: 3(z) < C, we have D(z) = O(|R(2)°).

e Let A> 0, and let W, denote the logarithmic
neighborhood of the real axis:

Wi={\eC:3A<Alog(1+|RA)}



e Guillopé, Lin, Zworski: let

Dz)={ eRx:|AN—2z| <1}

Resonances

Then for all z: 3(z) < C, we have D(z) = O(|R(2)°).

e Let A> 0, and let W, denote the logarithmic
neighborhood of the real axis:

Wi={\eC:3A<Alog(1+|RA)}

e Theorem 6. Let X be a geometrically finite hyperbolic
surface of infinite area, and let § > 1/2. Then there
exists a sequence {z;} € Wy, R(z;) — oo such that

s—1/2

D(zj) = (log [R(z;)[) 7.



e Corollary: If § > 1/2, then Wy N Ry is different from a
lattice.
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e Corollary: If § > 1/2, then Wy N Ry is different from a
lattice.

e Examples of ' such that (') > 1/2 are easy to
construct. Pignataro, Sullivan: fix the topology of X.
Denote by /(X) the maximum length of the closed
geodesics that form the boundary of N. Then
Ao(X) < C(X)I(X), where C = C(X) depends only on
the topology of X. By Patterson-Sullivan,

X <1/4<6>1/2,s0 letting I(X) — 0 gives many
examples.

Resonances



Resonances

e Corollary: If § > 1/2, then Wy N Ry is different from a

lattice.

Examples of I such that (') > 1/2 are easy to
construct. Pignataro, Sullivan: fix the topology of X.
Denote by /(X) the maximum length of the closed
geodesics that form the boundary of N. Then

Ao(X) < C(X)I(X), where C = C(X) depends only on
the topology of X. By Patterson-Sullivan,

X <1/4< 6> 1/2, s0 letting /(X) — 0 gives many
examples.

Proof of Theorem 6 uses (a version of Selberg) trace
formula due to Guillopé and Zworski, and Dirichlet box
principle.



e Theorem 6 gives a logarithmic lower bound
D(z;) > (log |3‘E(z,-)|)5%s1/2‘5 for an infinite sequence of
disks D(z;, 1). Conjecture of Guillopé and Zworski
Resonances would imply that Ve > 0 3{z;} such that
D(z;) > |R(z)|°.
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Resonances would imply that Ve > 0 3{z;} such that

D(z) > [R(z)]°~.

e Question: can one get polynomial lower bounds for
some particular groups '?
Answer: Yes. Idea: look at infinite index subgroups of
arithmetic groups a la Selberg-Hejhal.



Resonances

e Theorem 6 gives a logarithmic lower bound

D(z;) > (log |3‘E(z,-)|)5%s1/2‘5 for an infinite sequence of
disks D(z;, 1). Conjecture of Guillopé and Zworski
would imply that Ve > 0 3{z;} such that

D(z) > [R(z)]°~.

Question: can one get polynomial lower bounds for
some particular groups '?

Answer: Yes. Idea: look at infinite index subgroups of
arithmetic groups a la Selberg-Hejhal.

Theorem 7. Let I be an infinite index geom. finite
subgroup of an arithmetic group Iy derived from a
quaternion algebra. Let §(I') > 3/4. Then
Ve > 0,VA > 0, there exists {z;} C Wy, R(z;) — oo,
such that

D(z)) > [R(z)[?°~%2 .



Proof:
Arithmetic
case

Key ideas:

e Number of closed geodesics on X:

oT

#{v: () < T}~ %,

T — oo.



Key ideas:
e Number of closed geodesics on X:
e
#{7:/(7)<T}Nﬁ, T — oo.

Proof: e Number of distinct closed geodesics in the arithmetic
Arithmetic H i
case case: for I' derived from a quaternion algebra, one has

#H{L<T: L=I())<el2

Accordingly, for § > 1/2, there exists exponentially
large multiplicities in the length spectrum.



Key ideas:
e Number of closed geodesics on X:

oT

e
o T~ — T .
#Fy o l) < T~ 57 — 00
Proof: e Number of distinct closed geodesics in the arithmetic
S case: for I' derived from a quaternion algebra, one has

#H{L<T: L=I())<el2

Accordingly, for § > 1/2, there exists exponentially
large multiplicities in the length spectrum.

¢ Distinct lengths are well-separated in the arithmetic
case: for lj # b, we have

|/1 _ /2| > e max(l1,l2)/2.

Ex: M, s M, e SL(27 Z)7 trMy 7& trM» then
|trMy — trMs| = 2| cosh(/y/2) — cosh(k/2)| > 1.



Trace formula (Guillopé, Zworski): Let ¢ € C5°((0, +00)),
and N - Nielsen region. Then (in case there are no cusps)

~ .« V(N) [T cosh(t/2)
2 V= 47T/o sinz(t/Z)w(t)dt

Proof:
Arithmetic AERx

case )
+ Z Z 23|nh /2)

YEP k>1

where P = {primitive closed geodesics on X}.
For o, t > 0, we take

Yra(X) = € Pyo(x — ),
where v € C3°([-1,1]),v > 0,and o = 1 on [-1/2,1/2].



e Geometric side (sum over closed geodesics):

(M bo(KI(Y) = @) —iniy
Sat= 2, 23in0h(kl(fy)/2) e .

Proof:
Arithmetic a—1<kl(v)<a+1
case



e Geometric side (sum over closed geodesics):

(M bo(KI(Y) = @) —iniy
Sat= 2, 23in0h(kl(fy)/2) e .

Proof:
Arithmetic a—1<kl(v)<a+1
case

e Lemma8: JA>0s.t. VT > 0,ifweleta=2log T — A,
and -
-2T
o= [ (1) st
T T

02 T4672
(log T)?

then

J(T) >



Proof:
Arithmetic
case

Lemma 8 = Theorem 7: Assume for contradiction that for
all z € Wy, R(2) > Ry we have D(z) < |R(2)|°. Let
a=2log T — A. We have

Co T1+45-38
(log T)?

3T
<J(T)< /T .72t
Assumption implies that
So7 =01+t + T#73).
Integrating, we find that
J(T) = O(T?1),

This leads to a contradictionif 26 +1<1+46—3, or
B < 25 —3/2, proving Theorem 7.



Proof:
Arithmetic
case

Proof of Lemma 8 uses the fact that geodesic lengths on X
have exponentially high multiplicities and their lengths are
well-separated.

After expanding |S2 T‘z and integrating, we write
J(T)=Ji(T) + J2(T) where J;(T) is the diagonal term

_ (I ()28 (1 — @)
AT =T 3 4sinh2(1/2)

Y

leL(T)

where L denotes set of distinct lengths of closed
geodesics on X; u(/) is the multiplicity of /; I the primitive
length of a closed geodesic.

J1(T) >0, and Jg(T) denotes the off-diagonal term. Jo(T)
involves integrals [3 (1 — |t — 27|/ T)e/h—R)dt, where

I < k. Since distinct /i-s are well-separated, we get
cancellation in J>(T). One can show that | (T)| < Ji(T)/2
with o, T chosen as in Lemma.



e It remains to bound J;(T) from below. io(/ — «) is
supported on [« — 1, a + 1]. The denominator
4sinh?(//2) is of order e*. We find that

Jh(T) > C3Te® > (u(1))?.
Proof: leLrn[a—1/2,a+1/2]

Arithmetic
case



e It remains to bound J;(T) from below. io(/ — «) is
supported on [« — 1, a + 1]. The denominator
4sinh?(//2) is of order e*. We find that

Ji(T) > C3Te™® > (u(1)).
o e leLrnla=1/2,041/2]

e Callthe last sum S. Then

2
(Zleﬁrﬁ[a—1/2,a+1/2] M(I))

(Z/egrm[aq/aaﬂ/a 1)

The numerator is > [€°®/a]? by the prime geodesic
theorem. The denominator is O(e*/?) (since the
lengths are well-separated). Hence S > e(29-1/2)a /2,
Substituting J(T) > S- T/e*,a =2log T — A, we get
J(T) > T%~2/(log T)?, proving Lemma 8.



e Examples of an “arithmetic” groups 'y with § > 3/4 are
case subgroups of index 2 of the groups Ay constructed by A.
Gamburd in 2002. Gamburd showed that 6(Ay) — 1 as

N — oo, hence 6(I'y) > 3/4 for large enough N.



Proof: Weyl's
Law

Proof of Theorem 4b: (about R()\)). X-compact,
negatively-curved surface.
Wave trace on X (even part):

Cut-off: (t,7) = (1 — @Z)(t))ﬁ(%),where
e pcS(R), suppp C
U(

* Y(t) € Cg°(R),
P(t)=0,[t] > 2T,.
In the sequel, T = T(\) — oo as A — oo. Let

k(A T) = T/ x(t, T)cos(\t)dt



¢ Key microlocal result:
Proposition 9. Let T = T(\) < elog A. Then

AT = 3 1()* cos(M() xUG). T) - 4

IG=T T/|det(I —Py)|

Pl where
7 - closed geodesic; /() - length; /(v)#-primitive
period; P, - Poincaré map.



Proof: Weyl's
Law

¢ Key microlocal result:

Proposition 9. Let T = T(\) < elog A. Then

AT = 3 1()* cos(M() xUG). T) - 4

IG=T T/|det(I —Py)|

where

7 - closed geodesic; /() - length; /(v)#-primitive
period; P, - Poincaré map.

Long-time version of the “wave trace” formula of
Duistermaat and Guillemin, microlocalized to shrinking
neighborhoods of closed geodesics. Allows to isolate
contribution from a growing number of closed
geodesics with /() < T(A) to k(A\, T) as A, T(A\) — oc.



e Proof - separation of closed geodesics in phase space
+ small-scale microlocalization near closed geodesics.

Proof: Weyl's
Law



e Proof - separation of closed geodesics in phase space
+ small-scale microlocalization near closed geodesics.

e Dynamical lemma: Let X - compact, negatively curved

manifold. (v, r) - neighborhood of v in S*X of radius r
fEaBLES (cylinder). There exist constants B > 0, a > 0 s.t. for all

closed geodesics on X with /(y) € [T — a, T], the

neighborhoods Q(v, e~ 87) are disjoint, provided

T> To.

Radius r = e BT is exponentially small in T, since the

number of closed geodesic grows exponentially.



o Lemma 10. If R()\) = o((log \)?), b > 0 then
k(A T) = o((log \)P).

Goal: estimate (A, T) from below. Need to extract
long exponential sums as the leading asymptotics of

Froo WesTs the long-time wave trace expansion.

Law



o Lemma 10. If R()\) = o((log \)?), b > 0 then
k(A T) = o((log \)P).

Goal: estimate (A, T) from below. Need to extract
long exponential sums as the leading asymptotics of
the long-time wave trace expansion.

e Consider the sum

Proof: Weyl's
Law

ZW



o Lemma 10. If R()\) = o((log \)?), b > 0 then

k(\, T) = o((log \)P).

Goal: estimate (A, T) from below. Need to extract
long exponential sums as the leading asymptotics of
the long-time wave trace expansion.

e Consider the sum

Proof: Weyl's
Law

ZW

» P, preserves stable and unstable subspaces.
Dimension 2: eigenvalues are

exp | [, H(3(s).7/(s))ds|



e P, — Id is conjugate to

exp {fv H] —1 0
0 exp {— J H} -1
Thus, S(T) is asymptotic to

1
Proof: Weyl's Z / eXp[ 2/H:| .
y

Law ’y)<T

Results of Parry and Pollicott =



Proof: Weyl's
Law

e P, — Id is conjugate to
exp {fv H] —1 0
0 exp {— J H} -1
Thus, S(T) is asymptotic to

> Iy exp[ ;/WH}

I(M<T

Results of Parry and Pollicott =
e Theorem 11. As T — oo,

FH)T

X Pz

Here P (%) > (n—1)Kz/2.



Proof: Weyl's
Law

Dirichlet box principle = “straighten the phases:” 3\ s.t.
cos(AM(v)) >v>0,Vy:I(y)<T.

(Al(7) close to 27Z). This combined with Theorem 11 shows
that I\, T s.t.

exp[P (%) T(1 —6/2)]
T

KA, T) ~

This leads to contradiction with Lemma 10. Q.E.D.
For Dirichlet principle need T =< InIn A, So, get logarithmic
lower bound in Theorem 4b.



Proof:
Spectral
Function

Proof of Theorem 3: N(x,y, \)
Wave kernel on X:

e(t, x, y) Zcosftgb,

fundamental solution of the wave equation
(82/at2 - A)e(ta X7.y) = 07 e(O,X,y) = 5(X - .y)7
(9/0t)e(0,x,y) = 0.

ky1(x,y) = /oo w(t7/_T) cos(At)e(t, x, y)dt

where ¢ € C3°([—1, 1]), even, monotone decreasing on

[0,1], % > 0, ¥(0) =



Lemma 10a If Ny ,()\) = o(A\?(log \)?)), where a > 0,b > 0
then
ko, 7(x.y) = 0(\(log A)?)).

Proof:
Spectral
Function



¢ Pretrace formula. M - universal cover of X, no
conjugate points, E(t, x, y) be the wave kernel on M.
Then for x, y € X, we have

e(t,x,y)= Y E(tx,wy)
wemy(X)

Proof:
Spectral
Function



¢ Pretrace formula. M - universal cover of X, no
conjugate points, E(t, x, y) be the wave kernel on M.
Then for x, y € X, we have

e(t,x,y)= Y E(tx,wy)
wemy(X)
e Hadamard Parametrix for E(t,x,y) =

Proof:

n—1
Spectrel K\ 7(X,¥) ~am00 QiA 2 X

Function

wemy (X):d(x,wy)<T

" (M) sin(\d(x, wy) + 0n)

VTa(x,wy) d(x,wy)"

Here g = ,/det g; in normal coordinates,
0n = (7/4)(3 — (nmod 8)), and Qy # 0.

o) {)\%3 eO(T)] .



« Pointwise analog of the sum S(T):

1
w d()%:y)<T \/g x,wy) d(x,wy)n=1

where g = /det g;; in normal coordinates at x. Sy ,(T)
grows at the same rate as S(T).
Proof:

Spectral
Function



« Pointwise analog of the sum S(T):

1
w: d()%:}’KT \/g x,wy) d(x,wy)"1

where g = /det g;; in normal coordinates at x. Sy ,(T)
grows at the same rate as S(T).

e Reason: let x,y € M, ~ - geodesic from x to y,

Proof:

szl ¢ = (x,7/(0)), and dist(x, y) = r. Then
VX, y)rn-t < JaCyert(c) G'-

Here Vert(¢) € T¢SM - vertical subspace; E;' € T;SM -
unstable subspace at &.

By properties of Anosov flows,

Dist[DG'(Vert(§)), DG'(E{')] < Ce™°". Therefore,

Jacye(e)G" < JacgqwG" = exp [ f,y H}



Subtracting
heat kernel
terms

Our local estimates are not uniform in x, y. Need
Proposition 9 to prove global estimates.
Heat trace asymptotics:

1 oo .
© (4m)n/2 Zaf £z, t—0
i =0

Local: K(t, x,x) = >, e g2 (x) ~

@ Lo g2,

aj(x) - local heat invariants, a; = [, a;(x)dx.
ap(x) =1, ag = vol(X). a1(x) = %, 7(x) - scalar
curvature.




“Heat kernel” estimates:

Theorem 2b[JP] If the scalar curvature

7(X) # 0,= Ryx()\) = Q(\"2).

Global:[JPT] If [, 7 # 0,= R(\) = Q(A"2).

Remark: if 7(x) = 0, let k = k(x) be the first positive
number such that the k-th local heat invariant a,(x) # 0. If
n—2k(x) > 0, then

Ry(\) = Q(A"~2K()),
Subtracting
heat kernel

terms Similar result holds for R(\): if [ ax(x)dx # 0 and
n— 2k > 0, then
R()\) = Q(A"~2K).



» Oscillatory error term: subtract [(n — 1)/2] terms

coming from the heat trace
-2

)2 F(——j+1)
Wam/ng not an asymptotlc expansion!
Physicists: subtract the “mean smooth part” of Ny()\).

Subtracting
heat kernel
terms



» Oscillatory error term: subtract [(n — 1)/2] terms
coming from the heat trace:
Ny(A) = Z[ 2 ] a,( )A"A + ROsS()\)
4m2r(g-j+1) "
Warning: not an asymptotlc expansion!
Physicists: subtract the “mean smooth part” of Ny()\).

e Theorem 2c[JP] If x € X is not conjugate to itself along
any shortest geodesic loop, then

n—1

RYC(N) = Q(A"2)

Subiacing Theorem 4c[JP] X negatively -curved. Forany § >0
eat kernel
terms RY°(\) = Q ()\ (log \) 72 5) , any n.

If n > 4 then Theorem 2b, Ry()\) = Q(\"2) gives a
better bound for Rx(\).




» Oscillatory error term: subtract [(n — 1)/2] terms
coming from the heat trace:
Ny(A) = Z[ 2 ] a,( )A"A + ROsS()\)
4m2r(g-j+1) "
Warning: not an asymptotlc expansion!
Physicists: subtract the “mean smooth part” of Ny()\).

e Theorem 2c[JP] If x € X is not conjugate to itself along
any shortest geodesic loop, then

n—1

RYC(N) = Q(A"2)

Subiracting Theorem 4c[JP] X negatively -curved. Forany § >0

heat kernel
toms Ro5°()\) = Q ()\ (log )\) = 5) , any n.

If n > 4 then Theorem 2b, Ry()\) = Q(\"2) gives a
better bound for Rx(\).
e Global Conjecture: X - negatively-curved. For any

0>0 .
Rose()) = 2 ((log A) =

H/2) -5
h , any n.



The behavior of N(x, y, \)/(A\("~1)/2) was studied by
Lapointe, Polterovich and Safarov.

[LPS] Average growth of the spectral function on a
Riemannian manifold. arXiv:0803.4171, to appear in Comm.
PDE.
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