Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

Estimates from below: spectral function, remainder in Weyl's law and resonances

D. Jakobson (McGill), jakobson@math.mcgill.ca Joint work with F. Naud (Avignon), I. Polterovich (Univ. de Montreal), J. Toth (McGill)

• [JP]: GAFA, 17 (2007), 806-838. Announced: ERA-AMS 11 (2005), 71–77. math.SP/0505400

- [JPT]: IMRN Volume 2007: article ID rnm142. math.SP/0612250
 - [JN]: http://www.math.mcgill.ca/jakobson/ papers/resonance-lowbd.pdf

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • $X^n, n \ge 2$ - compact. Δ - Laplacian. Spectrum: $\Delta \phi_i + \lambda_i \phi_i = 0, \quad 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$ **Eigenvalue counting function:** $N(\lambda) = \#\{\sqrt{\lambda_j} \le \lambda\}.$ **Weyl's law:** $N(\lambda) = C_n V \lambda^n + R(\lambda), \quad R(\lambda) = O(\lambda^{n-1}).$ $R(\lambda)$ - remainder.

• Spectral function: Let $x, y \in X$. $N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \le \lambda} \phi_i(x)\phi_i(y)$. If x = y, let $N_{x,y}(\lambda) := N_x(\lambda)$. Local Weyl's law: $N_{x,y}(\lambda) = O(\lambda^{n-1}), \quad x \neq y$; $N_x(\lambda) = C_n\lambda^n + R_x(\lambda), \quad R_x(\lambda) = O(\lambda^{n-1}); R_x(\lambda)$ local remainder.

• We study **lower** bounds for $R(\lambda)$, $R_x(\lambda)$ and $N_{x,y}(\lambda)$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • $X^n, n \ge 2$ - compact. Δ - Laplacian. Spectrum: $\Delta \phi_i + \lambda_i \phi_i = 0, \quad 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$ **Eigenvalue counting function:** $N(\lambda) = \#\{\sqrt{\lambda_j} \le \lambda\}.$ **Weyl's law:** $N(\lambda) = C_n V \lambda^n + R(\lambda), \quad R(\lambda) = O(\lambda^{n-1}).$ $R(\lambda)$ - remainder.

• Spectral function: Let $x, y \in X$.

$$\begin{split} &N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x) \phi_i(y). \\ &\text{If } x = y, \text{ let } N_{x,y}(\lambda) := N_x(\lambda). \\ &\text{Local Weyl's law:} \\ &N_{x,y}(\lambda) = O(\lambda^{n-1}), \quad x \neq y; \\ &N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \quad R_x(\lambda) = O(\lambda^{n-1}); \ R_x(\lambda) - \\ &\text{local remainder.} \end{split}$$

• We study **lower** bounds for $R(\lambda)$, $R_x(\lambda)$ and $N_{x,y}(\lambda)$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • $X^n, n \ge 2$ - compact. Δ - Laplacian. Spectrum: $\Delta \phi_i + \lambda_i \phi_i = 0, \quad 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$ **Eigenvalue counting function:** $N(\lambda) = \#\{\sqrt{\lambda_j} \le \lambda\}.$ **Weyl's law:** $N(\lambda) = C_n V \lambda^n + R(\lambda), \quad R(\lambda) = O(\lambda^{n-1}).$ $R(\lambda)$ - remainder.

• Spectral function: Let $x, y \in X$.

$$\begin{split} & \mathsf{N}_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x) \phi_i(y). \\ & \text{If } x = y, \text{ let } \mathsf{N}_{x,y}(\lambda) := \mathsf{N}_x(\lambda). \\ & \text{Local Weyl's law:} \\ & \mathsf{N}_{x,y}(\lambda) = O(\lambda^{n-1}), \qquad x \neq y; \\ & \mathsf{N}_x(\lambda) = C_n \lambda^n + R_x(\lambda), \qquad R_x(\lambda) = O(\lambda^{n-1}); \ R_x(\lambda) - \\ & \text{local remainder} \end{split}$$

• We study **lower** bounds for $R(\lambda)$, $R_x(\lambda)$ and $N_{x,y}(\lambda)$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Notation: $f_1(\lambda) = \Omega(f_2(\lambda)), f_2 > 0$ iff $\limsup_{\lambda \to \infty} |f_1(\lambda)| / f_2(\lambda) > 0$. Equivalently, $f_1(\lambda) \neq o(f_2(\lambda))$.

 Theorem 1[JP] If x, y ∈ X are not conjugate along any shortest geodesic joining them, then

$$N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right).$$

• **Theorem 2**[JP] If *x* ∈ *X* is not conjugate to itself along any shortest geodesic loop, then

$$R_{X}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- Notation: $f_1(\lambda) = \Omega(f_2(\lambda)), f_2 > 0$ iff $\limsup_{\lambda \to \infty} |f_1(\lambda)| / f_2(\lambda) > 0$. Equivalently, $f_1(\lambda) \neq o(f_2(\lambda))$.
- **Theorem 1**[JP] If *x*, *y* ∈ *X* are not conjugate along any shortest geodesic joining them, then

$$N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right).$$

 Theorem 2[JP] If x ∈ X is not conjugate to itself along any shortest geodesic loop, then

$$R_{X}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- Notation: $f_1(\lambda) = \Omega(f_2(\lambda)), f_2 > 0$ iff $\limsup_{\lambda \to \infty} |f_1(\lambda)| / f_2(\lambda) > 0$. Equivalently, $f_1(\lambda) \neq o(f_2(\lambda))$.
- **Theorem 1**[JP] If *x*, *y* ∈ *X* are not conjugate along any shortest geodesic joining them, then

$$N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right).$$

 Theorem 2[JP] If x ∈ X is not conjugate to itself along any shortest geodesic loop, then

$$R_{x}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- Notation: $f_1(\lambda) = \Omega(f_2(\lambda)), f_2 > 0$ iff $\limsup_{\lambda \to \infty} |f_1(\lambda)| / f_2(\lambda) > 0$. Equivalently, $f_1(\lambda) \neq o(f_2(\lambda))$.
- **Theorem 1**[JP] If *x*, *y* ∈ *X* are not conjugate along any shortest geodesic joining them, then

$$N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right).$$

 Theorem 2[JP] If x ∈ X is not conjugate to itself along any shortest geodesic loop, then

$$R_{x}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Example: flat square 2-torus $\lambda_j = 4\pi^2(n_1^2 + n_2^2), \quad n_1, n_2 \in \mathbb{Z}$ $\phi_j(x) = e^{2\pi i (n_1 x_1 + n_2 x_2)}, \quad x = (x_1, x_2)$

$$|\phi_j(x)| = 1 \Rightarrow N(\lambda) \equiv N_x(\lambda)$$

Gauss circle problem: estimate $R(\lambda)$. Theorem 2 \Rightarrow $R(\lambda) = \Omega(\sqrt{\lambda})$ -**Hardy–Landau bound**. Theorem 2 generalizes that bound for the *local* remainder. **Soundararajan** (2003):

$$R(\lambda) = \Omega\left(\frac{\sqrt{\lambda}(\log\lambda)^{\frac{1}{4}}(\log\log\lambda)^{\frac{3(2^{4/3}-1)}{4}}}{(\log\log\log\lambda)^{5/8}}\right)$$

• Hardy's conjecture: $R(\lambda) \ll \lambda^{1/2+\epsilon} \forall \epsilon > 0$. Huxley (2003): $R(\lambda) \ll \lambda^{\frac{131}{208}} (\log \lambda)^{2.26}$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Example: flat square 2-torus $\lambda_j = 4\pi^2(n_1^2 + n_2^2), \quad n_1, n_2 \in \mathbb{Z}$ $\phi_j(x) = e^{2\pi i (n_1 x_1 + n_2 x_2)}, \quad x = (x_1, x_2)$

$$|\phi_j(x)| = 1 \Rightarrow N(\lambda) \equiv N_x(\lambda)$$

Gauss circle problem: estimate $R(\lambda)$. Theorem 2 \Rightarrow $R(\lambda) = \Omega(\sqrt{\lambda})$ -**Hardy–Landau bound**. Theorem 2 generalizes that bound for the *local* remainder.

$$\mathsf{R}(\lambda) = \Omega\left(rac{\sqrt{\lambda}(\log\lambda)^{rac{1}{4}}(\log\log\lambda)^{rac{3(2^{4/3}-1)}{4}}}{(\log\log\log\lambda)^{5/8}}
ight)$$

• Hardy's conjecture: $R(\lambda) \ll \lambda^{1/2+\epsilon} \forall \epsilon > 0$. Huxley (2003): $R(\lambda) \ll \lambda^{\frac{131}{208}} (\log \lambda)^{2.26}$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Negative curvature. Suppose sectional curvature satisfies

 $-K_1^2 \leq K(\xi, \eta) \leq -K_2^2$ **Theorem (Berard)**: $R_x(\lambda) = O(\lambda^{n-1}/\log \lambda)$ **Conjecture (Randol)**: On a negatively-curved surface, $R(\lambda) = O(\lambda^{\frac{1}{2}+\epsilon})$. Randol proved an integrated (in λ) version for $N_{x,y}(\lambda)$.

• Theorem (Karnaukh) On a negatively curved surface

 $R_{X}(\lambda) = \Omega(\sqrt{\lambda})$

+ logarithmic improvements discussed below. Karnaukh's results (unpublished 1996 Princeton Ph.D. thesis under the supervision of P. Sarnak) served as a starting point and a motivation for our work.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Negative curvature. Suppose sectional curvature satisfies

 $-K_1^2 \leq K(\xi, \eta) \leq -K_2^2$ **Theorem (Berard)**: $R_x(\lambda) = O(\lambda^{n-1}/\log \lambda)$ **Conjecture (Randol)**: On a negatively-curved surface, $R(\lambda) = O(\lambda^{\frac{1}{2}+\epsilon})$. Randol proved an integrated (in λ) version for $N_{x,y}(\lambda)$.

• Theorem (Karnaukh) On a negatively curved surface

$$R_x(\lambda) = \Omega(\sqrt{\lambda})$$

+ logarithmic improvements discussed below. Karnaukh's results (unpublished 1996 Princeton Ph.D. thesis under the supervision of P. Sarnak) served as a starting point and a motivation for our work.

- General Results
- Negative Curvature
- Resonances
- Proof: Arithmetic case
- Proof: Weyl's Law
- Proof: Spectral Function
- Subtracting heat kerne terms

- Thermodynamic formalism: G^t geodesic flow on $SX, \xi \in SX, T_{\xi}(SX) = E^s_{\xi} \oplus E^u_{\xi} \oplus E^o_{\xi}$,
 - dim $E_{\xi}^{s} = n 1$: stable subspace, exponentially contracting for G^{t} ;
 - dim $E_{\xi}^{u} = n 1$: unstable subspace, exponentially contracting for G^{-t} ;
 - dim $E_{\varepsilon}^{o} = 1$: tangent subspace to G^{t} .
 - Sinai-Ruelle-Bowen potential $\mathcal{H}: SM \to R$:

$$\mathcal{H}(\xi) = \left. rac{d}{dt}
ight|_{t=0} \ln \det dG^t |_{E^u_{\xi}}$$

• **Topological pressure** *P*(*f*) of a Hölder function *f* : *SX* → **R** satisfies (Parry, Pollicott)

$$\sum_{I(\gamma) \leq T} I(\gamma) \exp\left[\int_{\gamma} f(\gamma(s), \gamma'(s)) ds\right] \sim \frac{e^{P(f)T}}{P(f)}.$$

- General Results
- Negative Curvature
- Resonances
- Proof: Arithmetic case
- Proof: Weyl's Law
- Proof: Spectral Function
- Subtracting heat kerne terms

- Thermodynamic formalism: G^t geodesic flow on $SX, \xi \in SX, T_{\xi}(SX) = E^s_{\xi} \oplus E^u_{\xi} \oplus E^o_{\xi}$,
 - dim $E_{\xi}^{s} = n 1$: stable subspace, exponentially contracting for G^{t} ;
 - dim $E_{\xi}^{u} = n 1$: unstable subspace, exponentially contracting for G^{-t} ;
 - dim $E_{\varepsilon}^{o} = 1$: tangent subspace to G^{t} .
 - Sinai-Ruelle-Bowen potential $\mathcal{H}: SM \to R$:

$$\mathcal{H}(\xi) = \left. rac{d}{dt}
ight|_{t=0} \ln \det dG^t |_{E^u_{\xi}}$$

• **Topological pressure** *P*(*f*) of a Hölder function *f* : *SX* → **R** satisfies (Parry, Pollicott)

$$\sum_{I(\gamma) \leq T} I(\gamma) \exp\left[\int_{\gamma} f(\gamma(s), \gamma'(s)) ds\right] \sim \frac{e^{P(f)T}}{P(f)}.$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • γ - geodesic of length $I(\gamma)$. P(f) is defined as

$${\cal P}(f) = \sup_{\mu} \left(h_{\mu} + \int f {oldsymbol d} \mu
ight),$$

 μ is G^{t} -invariant, h_{μ} - (measure-theoretic) entropy.

- Ex 1: P(0) = h topological entropy of G^t. Theorem (Margulis): #{γ : l(γ) ≤ T} ~ e^{hT}/hT.
 Ex. 2: P(−H) = 0.
- **Theorem 3**[JP] If X is negatively-curved then for any $\delta > 0$ and $x \neq y$

$$N_{X,Y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} \left(\log \lambda\right)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right)$$

Here $P(-\mathcal{H}/2)/h \ge K_2/(2K_1) > 0$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • γ - geodesic of length $I(\gamma)$. P(f) is defined as

$$\mathsf{P}(f) = \sup_{\mu} \left(h_{\mu} + \int f d\mu
ight),$$

 μ is G^{t} -invariant, h_{μ} - (measure-theoretic) entropy.

- Ex 1: P(0) = h topological entropy of G^t. Theorem (Margulis): #{γ : I(γ) ≤ T} ~ e^{hT}/hT.
 Ex. 2: P(-H) = 0.
- **Theorem 3**[JP] If X is negatively-curved then for any $\delta > 0$ and $x \neq y$

$$N_{X,Y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} \left(\log \lambda\right)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right)$$

Here $P(-H/2)/h \ge K_2/(2K_1) > 0$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • γ - geodesic of length $I(\gamma)$. P(f) is defined as

$$\mathsf{P}(f) = \sup_{\mu} \left(h_{\mu} + \int f d\mu
ight),$$

 μ is G^{t} -invariant, h_{μ} - (measure-theoretic) entropy.

- Ex 1: P(0) = h topological entropy of G^t. Theorem (Margulis): #{γ : I(γ) ≤ T} ~ e^{hT}/hT.
 Ex. 2: P(-H) = 0.
- Theorem 3[JP] If X is negatively-curved then for any δ > 0 and x ≠ y

$$N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} \left(\log \lambda\right)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right)$$

Here $P(-H/2)/h \ge K_2/(2K_1) > 0$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms **Theorem 4a**[JP] X - negatively-curved. For any $\delta > 0$

$$\mathcal{R}_{X}(\lambda) = \Omega\left(\lambda^{rac{n-1}{2}}\left(\log\lambda\right)^{rac{P(-\mathcal{H}/2)}{h}-\delta}
ight), \ n=2,3.$$

Results for $n \ge 4$ involve heat invariants.

$$\mathcal{K} = -1 \ \Rightarrow \mathcal{R}_{x}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{1}{2}-\delta}\right)$$

Karnaukh, n = 2: estimate above + weaker estimates in variable negative curvature.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kerne terms • Global results: $R(\lambda)$ Randol, n = 2:

$$\mathcal{K} = -1 \ \Rightarrow \mathcal{R}(\lambda) = \Omega\left((\log \lambda)^{\frac{1}{2}-\delta}\right), \qquad \forall \delta > 0.$$

Theorem 4b[JPT] *X* - negatively-curved surface (n = 2). For any $\delta > 0$

$$R(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}
ight).$$

 Conjecture (folklore). On a generic negatively curved surface

 $R(\lambda) = O(\lambda^{\epsilon}) \qquad \forall \epsilon > 0.$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kerne terms • Global results: $R(\lambda)$ Randol, n = 2:

$$\mathcal{K} = -1 \ \Rightarrow \mathcal{R}(\lambda) = \Omega\left((\log \lambda)^{\frac{1}{2}-\delta}\right), \qquad \forall \delta > 0.$$

Theorem 4b[JPT] *X* - negatively-curved surface (n = 2). For any $\delta > 0$

$$R(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h}-\delta}\right)$$

 Conjecture (folklore). On a generic negatively curved surface

$$R(\lambda) = O(\lambda^{\epsilon}) \qquad orall \epsilon > 0.$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Selberg, Hejhal: On general compact hyperbolic surfaces,

$$R(\lambda) = \Omega\left(rac{(\log\lambda)^{rac{1}{2}}}{\sqrt{\log\log\lambda}}
ight)$$

- On compact arithmetic surfaces that correspond to quaternionic lattices $R(\lambda) = \Omega\left(\frac{\sqrt{\lambda}}{\log \lambda}\right)$. **Reason:** *exponentially high* multiplicities in the length spectrum; generically, X has *simple* length spectrum.
- In [JN], similar ideas are used to obtain lower bounds for resonances of infinite area hyperbolic surfaces.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Selberg, Hejhal: On general compact hyperbolic surfaces,

$$\mathsf{R}(\lambda) = \Omega\left(rac{\left(\log\lambda
ight)^{rac{1}{2}}}{\sqrt{\log\log\lambda}}
ight).$$

- On compact arithmetic surfaces that correspond to quaternionic lattices $R(\lambda) = \Omega\left(\frac{\sqrt{\lambda}}{\log \lambda}\right)$. **Reason:** *exponentially high* multiplicities in the length spectrum; generically, X has *simple* length spectrum.
- In [JN], similar ideas are used to obtain lower bounds for resonances of infinite area hyperbolic surfaces.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Selberg, Hejhal: On general compact hyperbolic surfaces,

$$\mathsf{P}(\lambda) = \Omega\left(rac{(\log\lambda)^{rac{1}{2}}}{\sqrt{\log\log\lambda}}
ight).$$

- On compact arithmetic surfaces that correspond to quaternionic lattices $R(\lambda) = \Omega\left(\frac{\sqrt{\lambda}}{\log \lambda}\right)$. **Reason:** *exponentially high* multiplicities in the length spectrum; generically, *X* has *simple* length spectrum.
- In [JN], similar ideas are used to obtain lower bounds for resonances of infinite area hyperbolic surfaces.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms We describe lower bounds for resonances obtained in [JN]. Let Γ be a *geometrically finite* subgroup of PSL(2, **R**) without elliptic elements. Fundamental domain $X = \Gamma \setminus \mathbf{H}^2$ has finitely many sides. Assume that X has *infinite* hyperbolic area: X decomposes into a finite area surface N (called *Nielsen region* or *convex core*) to which finitely many infinite area half-cylinders (*funnels*) are glued. If Γ has parabolic elements, then N has *cusps* (parabolic vertices); a surface without cusps is called *convex*

co-compact; then Γ has no parabolic elements.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • The spectrum of $\Delta = y^2(\partial^2/\partial x^2 + \partial^2/\partial y^2)$ on X consists of the continuous spectrum $[1/4, +\infty]$ (no embedded eigenvalues) plus possibly a finite set of eigenvalues.

 The first nonzero eigenvalue λ = δ(1 − δ), where δ is the Hausdorff dimension of the limit set Λ(Γ) ⊂ S¹ for the action of Γ, provided δ > 1/2 (Patterson, Sullivan).

The resolvent

$$R(\lambda) = \left(\Delta_X - \frac{1}{4} - \lambda^2\right)^{-1} : L^2(X) \to L^2(X)$$

is well-defined and analytic in $\{\Im(\lambda) < 0\}$, except for finitely many poles corresponding to the finite point spectrum.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- The spectrum of Δ = y²(∂²/∂x² + ∂²/∂y²) on X consists of the continuous spectrum [1/4, +∞] (no embedded eigenvalues) plus possibly a finite set of eigenvalues.
- The first nonzero eigenvalue λ = δ(1 − δ), where δ is the Hausdorff dimension of the limit set Λ(Γ) ⊂ S¹ for the action of Γ, provided δ > 1/2 (Patterson, Sullivan).
- The resolvent

$$R(\lambda) = \left(\Delta_X - \frac{1}{4} - \lambda^2\right)^{-1} : L^2(X) \to L^2(X)$$

is well-defined and analytic in $\{\Im(\lambda) < 0\}$, except for finitely many poles corresponding to the finite point spectrum.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- The spectrum of Δ = y²(∂²/∂x² + ∂²/∂y²) on X consists of the continuous spectrum [1/4, +∞] (no embedded eigenvalues) plus possibly a finite set of eigenvalues.
- The first nonzero eigenvalue λ = δ(1 − δ), where δ is the Hausdorff dimension of the limit set Λ(Γ) ⊂ S¹ for the action of Γ, provided δ > 1/2 (Patterson, Sullivan).
- The resolvent

$$R(\lambda) = \left(\Delta_X - \frac{1}{4} - \lambda^2\right)^{-1} : L^2(X) \to L^2(X)$$

is well-defined and analytic in $\{\Im(\lambda) < 0\}$, except for finitely many poles corresponding to the finite point spectrum.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Resonances are the poles of the resolvent R(λ) in the whole C. Their set is denoted by R_X. Guillopé and Zworski showed that ∃C > 0 such that

 $1/C < \#\{z \in \mathcal{R}_X : |z| < R\}/R^2 < C, \qquad R \to \infty.$

Finer asymptotics: let

 $N_C(T) = \#\{z \in \mathcal{R}_X : \Im(z) \le C, |\Re(z)| \le T\}.$

• Zworski, Guillopé and Lin: "fractal" upper bound **Theorem 5.** For convex co-compact *X*, $N_C(T) = O(T^{1+\delta})$; where *C* is fixed, and $T \to \infty$. They conjectured the upper bound is sharp.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Resonances are the poles of the resolvent R(λ) in the whole C. Their set is denoted by R_X. Guillopé and Zworski showed that ∃C > 0 such that

 $1/C < \#\{z \in \mathcal{R}_X : |z| < R\}/R^2 < C, \qquad R \to \infty.$

· Finer asymptotics: let

 $N_{\mathcal{C}}(T) = \#\{z \in \mathcal{R}_X : \Im(z) \leq \mathcal{C}, |\Re(z)| \leq T\}.$

 Zworski, Guillopé and Lin: "fractal" upper bound Theorem 5. For convex co-compact X, N_C(T) = O(T^{1+δ}); where C is fixed, and T → ∞. They conjectured the upper bound is sharp.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Resonances are the poles of the resolvent R(λ) in the whole C. Their set is denoted by R_X. Guillopé and Zworski showed that ∃C > 0 such that

 $1/C < \#\{z \in \mathcal{R}_X : |z| < R\}/R^2 < C, \qquad R \to \infty.$

• Finer asymptotics: let

 $N_{\mathcal{C}}(T) = \#\{z \in \mathcal{R}_X : \Im(z) \leq \mathcal{C}, |\Re(z)| \leq T\}.$

• Zworski, Guillopé and Lin: "fractal" upper bound **Theorem 5.** For convex co-compact *X*, $N_C(T) = O(T^{1+\delta})$; where *C* is fixed, and $T \to \infty$. They conjectured the upper bound is sharp.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Lower bounds: Guillopé, Zworski: ∀ε > 0∃Cε > 0, such that

$$N_{C_{\epsilon}}(T) = \Omega(T^{1-\epsilon}).$$

The proof uses a wave trace formula for resonances on X and takes into account contributions from a *single* closed geodesic on X.

- Question: Can one improve lower bounds taking into account contributions from *many* closed geodesics on X?
- Answer: Yes, this is done in [JN].

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Lower bounds: Guillopé, Zworski: ∀ε > 0∃Cε > 0, such that

$$N_{C_{\epsilon}}(T) = \Omega(T^{1-\epsilon}).$$

The proof uses a wave trace formula for resonances on X and takes into account contributions from a *single* closed geodesic on X.

 Question: Can one improve lower bounds taking into account contributions from *many* closed geodesics on X?

• Answer: Yes, this is done in [JN].

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Lower bounds: Guillopé, Zworski: ∀ε > 0∃Cε > 0, such that

$$N_{C_{\epsilon}}(T) = \Omega(T^{1-\epsilon}).$$

The proof uses a wave trace formula for resonances on X and takes into account contributions from a *single* closed geodesic on X.

- Question: Can one improve lower bounds taking into account contributions from *many* closed geodesics on X?
- Answer: Yes, this is done in [JN].

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Guillopé, Lin, Zworski: let

$$\mathcal{D}(\boldsymbol{z}) = \{\lambda \in \mathcal{R}_{\boldsymbol{X}} : |\lambda - \boldsymbol{z}| \leq 1\}$$

Then for all $z : \Im(z) \leq C$, we have $\mathcal{D}(z) = O(|\Re(z)|^{\delta})$.

• Let *A* > 0, and let *W*_A denote the logarithmic neighborhood of the real axis:

 $W_{\mathcal{A}} = \{\lambda \in \mathbf{C} : \Im \lambda \le \mathcal{A} \log(1 + |\Re \lambda|)\}$

Theorem 6. Let X be a geometrically finite hyperbolic surface of infinite area, and let δ > 1/2. Then there exists a sequence {z_i} ∈ W_A, ℜ(z_i) → ∞ such that

$$\mathcal{D}(z_i) \geq (\log |\Re(z_i)|)^{\frac{\delta-1/2}{\delta}-\epsilon}.$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Guillopé, Lin, Zworski: let

$$\mathcal{D}(\boldsymbol{z}) = \{\lambda \in \mathcal{R}_{\boldsymbol{X}} : |\lambda - \boldsymbol{z}| \leq 1\}$$

Then for all $z : \Im(z) \leq C$, we have $\mathcal{D}(z) = O(|\Re(z)|^{\delta})$.

• Let *A* > 0, and let *W*_A denote the logarithmic neighborhood of the real axis:

 $W_{A} = \{\lambda \in \mathbf{C} : \Im \lambda \leq A \log(1 + |\Re \lambda|)\}$

Theorem 6. Let X be a geometrically finite hyperbolic surface of infinite area, and let δ > 1/2. Then there exists a sequence {z_i} ∈ W_A, ℜ(z_i) → ∞ such that

$$\mathcal{D}(z_i) \geq (\log |\Re(z_i)|)^{\frac{\delta-1/2}{\delta}-\epsilon}.$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Guillopé, Lin, Zworski: let

$$\mathcal{D}(z) = \{\lambda \in \mathcal{R}_X : |\lambda - z| \le 1\}$$

Then for all $z : \Im(z) \leq C$, we have $\mathcal{D}(z) = O(|\Re(z)|^{\delta})$.

 Let A > 0, and let W_A denote the logarithmic neighborhood of the real axis:

$$W_{A} = \{\lambda \in \mathbf{C} : \Im \lambda \leq A \log(1 + |\Re \lambda|)\}$$

Theorem 6. Let X be a geometrically finite hyperbolic surface of infinite area, and let δ > 1/2. Then there exists a sequence {z_i} ∈ W_A, ℜ(z_i) → ∞ such that

$$\mathcal{D}(z_i) \geq (\log |\Re(z_i)|)^{\frac{\delta-1/2}{\delta}-\epsilon}.$$
Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

Corollary: If δ > 1/2, then W_A ∩ R_X is different from a lattice.

- Examples of Γ such that δ(Γ) > 1/2 are easy to construct. Pignataro, Sullivan: fix the topology of *X*. Denote by *I*(*X*) the maximum length of the closed geodesics that form the boundary of *N*. Then λ₀(*X*) ≤ *C*(*X*)*I*(*X*), where *C* = *C*(*X*) depends only on the topology of *X*. By Patterson-Sullivan, λ₀ < 1/4 ⇔ δ > 1/2, so letting *I*(*X*) → 0 gives many examples.
- Proof of Theorem 6 uses (a version of Selberg) trace formula due to Guillopé and Zworski, and Dirichlet box principle.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- Corollary: If δ > 1/2, then W_A ∩ R_X is different from a lattice.
- Examples of Γ such that δ(Γ) > 1/2 are easy to construct. Pignataro, Sullivan: fix the topology of *X*. Denote by *I*(*X*) the maximum length of the closed geodesics that form the boundary of *N*. Then λ₀(*X*) ≤ *C*(*X*)*I*(*X*), where *C* = *C*(*X*) depends only on the topology of *X*. By Patterson-Sullivan, λ₀ < 1/4 ⇔ δ > 1/2, so letting *I*(*X*) → 0 gives many examples.
- Proof of Theorem 6 uses (a version of Selberg) trace formula due to Guillopé and Zworski, and Dirichlet box principle.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- Corollary: If δ > 1/2, then W_A ∩ R_X is different from a lattice.
- Examples of Γ such that δ(Γ) > 1/2 are easy to construct. Pignataro, Sullivan: fix the topology of *X*. Denote by *I*(*X*) the maximum length of the closed geodesics that form the boundary of *N*. Then λ₀(*X*) ≤ *C*(*X*)*I*(*X*), where *C* = *C*(*X*) depends only on the topology of *X*. By Patterson-Sullivan, λ₀ < 1/4 ⇔ δ > 1/2, so letting *I*(*X*) → 0 gives many examples.
- Proof of Theorem 6 uses (a version of Selberg) trace formula due to Guillopé and Zworski, and Dirichlet box principle.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Theorem 6 gives a *logarithmic* lower bound $\mathcal{D}(z_i) \ge (\log |\Re(z_i)|)^{\frac{\delta-1/2}{\delta}-\epsilon}$ for an infinite sequence of disks $D(z_i, 1)$. Conjecture of Guillopé and Zworski would imply that $\forall \epsilon > 0 \exists \{z_i\}$ such that $\mathcal{D}(z_i) \ge |\Re(z_i)|^{\delta-\epsilon}$.

- Question: can one get *polynomial* lower bounds for some particular groups Γ?
 Answer: Yes. Idea: look at infinite index subgroups of arithmetic groups a la Selberg-Hejhal.
- Theorem 7. Let Γ be an infinite index geom. finite subgroup of an arithmetic group Γ₀ derived from a quaternion algebra. Let δ(Γ) > 3/4. Then ∀ε > 0, ∀A > 0, there exists {z_i} ⊂ W_A, ℜ(z_i) → ∞, such that

 $\mathcal{D}(z_i)) \geq |\Re(z_i)|^{2\delta - 3/2 - \epsilon}.$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Theorem 6 gives a *logarithmic* lower bound

 $\mathcal{D}(z_i) \ge (\log |\Re(z_i)|)^{\frac{\delta-1/2}{\delta}-\epsilon}$ for an infinite sequence of disks $D(z_i, 1)$. Conjecture of Guillopé and Zworski would imply that $\forall \epsilon > 0 \exists \{z_i\}$ such that $\mathcal{D}(z_i) \ge |\Re(z_i)|^{\delta-\epsilon}$.

 Question: can one get *polynomial* lower bounds for some particular groups Γ?
 Answer: Yes. Idea: look at infinite index subgroups of arithmetic groups a la Selberg-Hejhal.

Theorem 7. Let Γ be an infinite index geom. finite subgroup of an arithmetic group Γ₀ derived from a quaternion algebra. Let δ(Γ) > 3/4. Then ∀ε > 0, ∀A > 0, there exists {z_i} ⊂ W_A, ℜ(z_i) → ∞, such that

 $\mathcal{D}(z_i)) \geq |\Re(z_i)|^{2\delta - 3/2 - \epsilon}.$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Theorem 6 gives a *logarithmic* lower bound

 $\mathcal{D}(z_i) \ge (\log |\Re(z_i)|)^{\frac{\delta^{-1/2}}{\delta} - \epsilon}$ for an infinite sequence of disks $D(z_i, 1)$. Conjecture of Guillopé and Zworski would imply that $\forall \epsilon > 0 \exists \{z_i\}$ such that $\mathcal{D}(z_i) \ge |\Re(z_i)|^{\delta - \epsilon}$.

 Question: can one get *polynomial* lower bounds for some particular groups Γ?
 Answer: Yes. Idea: look at infinite index subgroups of arithmetic groups a la Selberg-Hejhal.

 Theorem 7. Let Γ be an infinite index geom. finite subgroup of an arithmetic group Γ₀ derived from a quaternion algebra. Let δ(Γ) > 3/4. Then ∀ε > 0, ∀A > 0, there exists {z_i} ⊂ W_A, ℜ(z_i) → ∞, such that

$$\mathcal{D}(z_i)) \geq |\Re(z_i)|^{2\delta - 3/2 - \epsilon}.$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Key ideas:

• Number of closed geodesics on *X*:

$$\#\{\gamma: I(\gamma) < T\} \sim \frac{e^{\delta T}}{\delta T}, \qquad T \to \infty.$$

 Number of *distinct* closed geodesics in the arithmetic case: for Γ derived from a quaternion algebra, one has

$$\#\{L < T : L = I(\gamma)\} \ll e^{T/2}.$$

Accordingly, for $\delta > 1/2$, there exists *exponentially large* multiplicities in the length spectrum.

Distinct lengths are well-separated in the arithmetic case: for *l*₁ ≠ *l*₂, we have

$$|l_1 - l_2| \gg e^{-\max(l_1, l_2)}/2.$$

Ex: $M_1, M_2 \in SL(2, \mathbb{Z}), trM_1 \neq trM_2$ then $|trM_1 - trM_2| = 2|\cosh(l_1/2) - \cosh(l_2/2)| \ge 1.$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Key ideas:

• Number of closed geodesics on X:

$$\#\{\gamma: I(\gamma) < T\} \sim rac{e^{\delta T}}{\delta T}, \qquad T o \infty.$$

 Number of *distinct* closed geodesics in the arithmetic case: for Γ derived from a quaternion algebra, one has

$$\#\{L < T : L = I(\gamma)\} \ll e^{T/2}.$$

Accordingly, for $\delta > 1/2$, there exists *exponentially large* multiplicities in the length spectrum.

Distinct lengths are well-separated in the arithmetic case: for *l*₁ ≠ *l*₂, we have

$$|l_1 - l_2| \gg e^{-\max(l_1, l_2)}/2.$$

Ex: $M_1, M_2 \in SL(2, \mathbb{Z}), trM_1 \neq trM_2$ then $|trM_1 - trM_2| = 2|\cosh(l_1/2) - \cosh(l_2/2)| \ge 1.$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kerne terms Key ideas:

• Number of closed geodesics on X:

$$\#\{\gamma: I(\gamma) < T\} \sim rac{e^{\delta T}}{\delta T}, \qquad T o \infty.$$

 Number of *distinct* closed geodesics in the arithmetic case: for Γ derived from a quaternion algebra, one has

$$\#\{L < T : L = I(\gamma)\} \ll e^{T/2}.$$

Accordingly, for $\delta > 1/2$, there exists *exponentially large* multiplicities in the length spectrum.

Distinct lengths are well-separated in the arithmetic case: for *l*₁ ≠ *l*₂, we have

$$|l_1 - l_2| \gg e^{-\max(l_1, l_2)}/2.$$

Ex: $M_1, M_2 \in SL(2, \mathbb{Z}), trM_1 \neq trM_2$ then $|trM_1 - trM_2| = 2|\cosh(l_1/2) - \cosh(l_2/2)| \ge 1.$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Trace formula (Guillopé, Zworski): Let $\psi \in C_0^{\infty}((0, +\infty))$, and *N* - Nielsen region. Then (in case there are no cusps)

$$\sum_{\lambda \in \mathcal{R}_{X}} \widehat{\psi}(\lambda) = -\frac{V(N)}{4\pi} \int_{0}^{+\infty} \frac{\cosh(t/2)}{\sin^{2}(t/2)} \psi(t) dt$$
$$+ \sum_{\gamma \in \mathcal{P}} \sum_{k \ge 1} \frac{I(\gamma)\psi(kI(\gamma))}{2\sinh(kI(\gamma)/2)},$$

where $\mathcal{P} = \{ \text{primitive closed geodesics on } X \}.$ For $\alpha, t \gg 0$, we take

$$\psi_{t,\alpha}(\mathbf{x}) = \mathbf{e}^{-it\mathbf{x}}\psi_0(\mathbf{x}-\alpha),$$

where $\psi_0 \in C_0^{\infty}([-1,1]), \psi \ge 0$, and $\psi_0 = 1$ on [-1/2, 1/2].

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Geometric side (sum over closed geodesics):

$$S_{\alpha,t} = \sum_{\alpha-1 \le kl(\gamma) \le \alpha+1} \frac{l(\gamma)\psi_0(kl(\gamma) - \alpha)}{2\sinh(kl(\gamma)/2)} e^{-itkl(\gamma)}.$$

• Lemma 8: $\exists A > 0$ s.t. $\forall T > 0$, if we let $\alpha = 2 \log T - A$, and

$$J(T) = \int_T^{ST} \left(1 - \frac{|t-2T|}{T}\right) |S_{\alpha,t}|^2 dt,$$

then

$$J(T) \geq \frac{C_2 T^{4\delta-2}}{(\log T)^2}.$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Geometric side (sum over closed geodesics):

$$S_{\alpha,t} = \sum_{\alpha-1 \le kl(\gamma) \le \alpha+1} \frac{l(\gamma)\psi_0(kl(\gamma) - \alpha)}{2\sinh(kl(\gamma)/2)} e^{-itkl(\gamma)}.$$

• Lemma 8: $\exists A > 0$ s.t. $\forall T > 0$, if we let $\alpha = 2 \log T - A$, and

$$J(T) = \int_{T}^{3T} \left(1 - \frac{|t-2T|}{T}\right) |S_{\alpha,t}|^2 dt,$$

then

$$J(T) \geq \frac{C_2 T^{4\delta-2}}{(\log T)^2}.$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Lemma 8 \Rightarrow Theorem 7: Assume for contradiction that for all $z \in W_A$, $\Re(z) \ge R_0$ we have $\mathcal{D}(z) \le |\Re(z)|^{\beta}$. Let $\alpha = 2 \log T - A$. We have

$$\frac{C_2 T^{1+4\delta-3}}{(\log T)^2} \leq J(T) \leq \int_T^{3T} |S_{\alpha,T}|^2 dt.$$

Assumption implies that

$$S_{\alpha,T}=O(1+t^{\beta}+T^{2\delta-3}).$$

Integrating, we find that

$$J(T) = O(T^{2\beta+1}).$$

This leads to a contradiction if $2\beta + 1 < 1 + 4\delta - 3$, or $\beta < 2\delta - 3/2$, proving Theorem 7.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Proof of Lemma 8 uses the fact that geodesic lengths on *X* have exponentially high multiplicities and their lengths are well-separated.

After expanding $|S_{\alpha,T}^2|^2$ and integrating, we write $J(T) = J_1(T) + J_2(T)$, where $J_1(T)$ is the *diagonal* term

$$J_{1}(T) = T \sum_{l \in \mathcal{L}(\Gamma)} \frac{(l^{\#} \mu(l))^{2} \psi_{0}^{2}(l-\alpha)}{4 \sinh^{2}(l/2)},$$

where \mathcal{L}_{Γ} denotes set of distinct lengths of closed geodesics on *X*; $\mu(I)$ is the multiplicity of *I*; $I^{\#}$ the primitive length of a closed geodesic.

 $J_1(T) \ge 0$, and $J_2(T)$ denotes the off-diagonal term. $J_2(T)$ involves integrals $\int_T^{3T} (1 - |t - 2T|/T)e^{i(l_1 - l_2)t} dt$, where $l_1 \le l_2$. Since distinct l_j -s are well-separated, we get cancellation in $J_2(T)$. One can show that $|J_2(T)| \le J_1(T)/2$ with α , T chosen as in Lemma.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms It remains to bound J₁(T) from below. ψ₀(I − α) is supported on [α − 1, α + 1]. The denominator 4 sinh²(I/2) is of order e^α. We find that

$$J_1(T) \geq C_3 T e^{-\alpha} \sum_{l \in \mathcal{L}_{\Gamma} \cap [\alpha - 1/2, \alpha + 1/2]} (\mu(l))^2.$$

Call the last sum S. Then

$$S \geq \frac{\left(\sum_{l \in \mathcal{L}_{\Gamma} \cap [\alpha - 1/2, \alpha + 1/2]} \mu(l)\right)^{2}}{\left(\sum_{l \in \mathcal{L}_{\Gamma} \cap [\alpha - 1/2, \alpha + 1/2]} 1\right)}$$

The numerator is $\gg [e^{\delta \alpha}/\alpha]^2$ by the prime geodesic theorem. The denominator is $O(e^{\alpha/2})$ (since the lengths are well-separated). Hence $S \gg e^{(2\delta-1/2)\alpha}/\alpha^2$. Substituting $J(T) \gg S \cdot T/e^{\alpha}$, $\alpha = 2 \log T - A$, we get $J(T) \gg T^{4\delta-2}/(\log T)^2$, proving Lemma 8.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms It remains to bound J₁(T) from below. ψ₀(I − α) is supported on [α − 1, α + 1]. The denominator 4 sinh²(I/2) is of order e^α. We find that

$$J_1(T) \geq C_3 T e^{-\alpha} \sum_{l \in \mathcal{L}_{\Gamma} \cap [\alpha - 1/2, \alpha + 1/2]} (\mu(l))^2.$$

• Call the last sum S. Then

$$S \geq \frac{\left(\sum_{l \in \mathcal{L}_{\Gamma} \cap [\alpha - 1/2, \alpha + 1/2]} \mu(l)\right)^{2}}{\left(\sum_{l \in \mathcal{L}_{\Gamma} \cap [\alpha - 1/2, \alpha + 1/2]} 1\right)}$$

The numerator is $\gg [e^{\delta \alpha}/\alpha]^2$ by the prime geodesic theorem. The denominator is $O(e^{\alpha/2})$ (since the lengths are well-separated). Hence $S \gg e^{(2\delta - 1/2)\alpha}/\alpha^2$. Substituting $J(T) \gg S \cdot T/e^{\alpha}$, $\alpha = 2 \log T - A$, we get $J(T) \gg T^{4\delta-2}/(\log T)^2$, proving Lemma 8.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Examples of an "arithmetic" groups Γ_N with $\delta > 3/4$ are subgroups of index 2 of the groups Λ_N constructed by A. Gamburd in 2002. Gamburd showed that $\delta(\Lambda_N) \rightarrow 1$ as $N \rightarrow \infty$, hence $\delta(\Gamma_N) > 3/4$ for large enough *N*.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms **Proof of Theorem 4b:** (about $R(\lambda)$). *X*-compact, negatively-curved surface. **Wave trace** on *X* (even part):

$$e(t) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i}t).$$

Cut-off: $\chi(t, T) = (1 - \psi(t))\hat{\rho}\left(\frac{t}{T}\right)$, where • $\rho \in S(\mathbf{R})$, supp $\hat{\rho} \subset [-1, +1]$, $\rho \ge 0$, even; • $\psi(t) \in C_0^{\infty}(\mathbf{R})$, $\psi(t) \equiv 1, t \in [-T_0, T_0]$, and $\psi(t) \equiv 0, |t| \ge 2T_0$. In the sequel, $T = T(\lambda) \to \infty$ as $\lambda \to \infty$. Let

$$\kappa(\lambda, T) = \frac{1}{T} \int_{-\infty}^{\infty} \boldsymbol{e}(t) \chi(t, T) \cos(\lambda t) dt$$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Key microlocal result: Proposition 9. Let $T = T(\lambda) \le \epsilon \log \lambda$. Then

$$\kappa(\lambda, T) = \sum_{I(\gamma) \le T} \frac{I(\gamma)^{\#} \cos(\lambda I(\gamma)) \cdot \chi(I(\gamma), T)}{T \sqrt{|\det(I - \mathcal{P}_{\gamma})|}} + O(1)$$

where

 γ - closed geodesic; $I(\gamma)$ - length; $I(\gamma)^{\#}$ -primitive period; \mathcal{P}_{γ} - Poincaré map.

 Long-time version of the "wave trace" formula of Duistermaat and Guillemin, microlocalized to shrinking neighborhoods of closed geodesics. Allows to isolate contribution from a growing number of closed geodesics with *l*(γ) ≤ *T*(λ) to κ(λ, *T*) as λ, *T*(λ) → ∞.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Key microlocal result: Proposition 9. Let $T = T(\lambda) \le \epsilon \log \lambda$. Then

$$\kappa(\lambda, T) = \sum_{I(\gamma) \le T} \frac{I(\gamma)^{\#} \cos(\lambda I(\gamma)) \cdot \chi(I(\gamma), T)}{T \sqrt{|\det(I - \mathcal{P}_{\gamma})|}} + O(1)$$

where

 γ - closed geodesic; $I(\gamma)$ - length; $I(\gamma)^{\#}$ -primitive period; \mathcal{P}_{γ} - Poincaré map.

 Long-time version of the "wave trace" formula of Duistermaat and Guillemin, microlocalized to shrinking neighborhoods of closed geodesics. Allows to isolate contribution from a growing number of closed geodesics with *I*(γ) ≤ *T*(λ) to κ(λ, *T*) as λ, *T*(λ) → ∞.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- **Proof** separation of closed geodesics in phase space + small-scale microlocalization near closed geodesics.
- **Dynamical lemma**: Let *X* compact, negatively curved manifold. $\Omega(\gamma, r)$ neighborhood of γ in *S***X* of radius *r* (cylinder). There exist constants B > 0, a > 0 s.t. for all closed geodesics on *X* with $I(\gamma) \in [T a, T]$, the neighborhoods $\Omega(\gamma, e^{-BT})$ are disjoint, provided $T > T_0$.

Radius $r = e^{-BT}$ is exponentially small in T, since the number of closed geodesic grows exponentially.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

- **Proof** separation of closed geodesics in phase space + small-scale microlocalization near closed geodesics.
- **Dynamical lemma**: Let *X* compact, negatively curved manifold. $\Omega(\gamma, r)$ neighborhood of γ in *S***X* of radius *r* (cylinder). There exist constants B > 0, a > 0 s.t. for all closed geodesics on *X* with $I(\gamma) \in [T a, T]$, the neighborhoods $\Omega(\gamma, e^{-BT})$ are disjoint, provided $T > T_0$.

Radius $r = e^{-BT}$ is exponentially small in *T*, since the number of closed geodesic grows exponentially.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Lemma 10. If
$$R(\lambda) = o((\log \lambda)^b), \ b > 0$$
 then $\kappa(\lambda, T) = o((\log \lambda)^b).$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

Consider the sum

$$S(T) = \sum_{I(\gamma) \leq T} rac{I(\gamma)}{\sqrt{|\det(I - \mathcal{P}_{\gamma})|}}$$

• \mathcal{P}_{γ} preserves stable and unstable subspaces. Dimension 2: eigenvalues are $\exp\left[\pm \int_{\gamma} \mathcal{H}(\gamma(s), \gamma'(s)) ds\right]$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kerne terms

• Lemma 10. If
$$R(\lambda) = o((\log \lambda)^b), \ b > 0$$
 then $\kappa(\lambda, T) = o((\log \lambda)^b).$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

Consider the sum

$$\mathcal{S}(\mathcal{T}) = \sum_{I(\gamma) \leq \mathcal{T}} rac{I(\gamma)}{\sqrt{|\det(I - \mathcal{P}_{\gamma})|}}$$

• \mathcal{P}_{γ} preserves stable and unstable subspaces. Dimension 2: eigenvalues are $\exp\left[\pm \int_{\gamma} \mathcal{H}(\gamma(s), \gamma'(s)) ds\right]$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

• Lemma 10. If
$$R(\lambda) = o((\log \lambda)^b), \ b > 0$$
 then $\kappa(\lambda, T) = o((\log \lambda)^b).$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

Consider the sum

$$\mathcal{S}(\mathcal{T}) = \sum_{I(\gamma) \leq \mathcal{T}} rac{I(\gamma)}{\sqrt{|\det(I - \mathcal{P}_{\gamma})|}}$$

• \mathcal{P}_{γ} preserves stable and unstable subspaces. Dimension 2: eigenvalues are $\exp\left[\pm \int_{\gamma} \mathcal{H}(\gamma(s), \gamma'(s)) ds\right]$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

$$\mathcal{P}_{\gamma} - \mathbf{id} \text{ is conjugate to} \\ \begin{pmatrix} \exp\left[\int_{\gamma} \mathcal{H}\right] - 1 & 0 \\ 0 & \exp\left[-\int_{\gamma} \mathcal{H}\right] - 1 \end{pmatrix} \\ \text{Thus, } S(T) \text{ is asymptotic to} \\ \sum_{\mathbf{i}(\gamma) \leq T} \mathbf{i}(\gamma) \exp\left[-\frac{1}{2}\int_{\gamma} \mathcal{H}\right].$$

Results of Parry and Pollicott \Rightarrow

• Theorem 11. As $T o \infty$,

$$S(T) \sim rac{e^{P\left(-rac{\mathcal{H}}{2}
ight)\cdot T}}{P(-\mathcal{H}/2)}$$

Here $P(-\frac{H}{2}) \ge (n-1)K_2/2$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

$$\begin{aligned} \mathcal{P}_{\gamma} &- \textit{Id} \text{ is conjugate to} \\ \begin{pmatrix} \exp\left[\int_{\gamma}\mathcal{H}\right] - 1 & 0 \\ 0 & \exp\left[-\int_{\gamma}\mathcal{H}\right] - 1 \end{pmatrix} \\ \text{Thus, } \mathcal{S}(T) \text{ is asymptotic to} \\ & \sum_{\textit{I}(\gamma) \leq T}\textit{I}(\gamma) \exp\left[-\frac{1}{2}\int_{\gamma}\mathcal{H}\right]. \end{aligned}$$

Results of Parry and Pollicott \Rightarrow

• Theorem 11. As $T \to \infty$,

$$S(T) \sim rac{e^{P\left(-rac{\mathcal{H}}{2}
ight)\cdot T}}{P(-\mathcal{H}/2)}$$

Here $P\left(-\frac{\mathcal{H}}{2}\right) \geq (n-1)K_2/2$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms **Dirichlet box principle** \Rightarrow "straighten the phases:" $\exists \lambda$ s.t.

$$\cos(\lambda I(\gamma)) >
u > 0, \; \forall \gamma : I(\gamma) \leq T.$$

 $(\lambda I(\gamma) \text{ close to } 2\pi \mathbf{Z})$. This combined with Theorem 11 shows that $\exists \lambda, T \text{ s.t.}$

$$\kappa(\lambda, T) \sim \frac{\exp[P\left(-\frac{\mathcal{H}}{2}\right)T(1-\delta/2)]}{T}$$

This leads to contradiction with Lemma 10. Q.E.D. For Dirichlet principle need $T \simeq \ln \ln \lambda$, So, get logarithmic lower bound in Theorem 4b.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms

Proof of Theorem 3: $N(x, y, \lambda)$ **Wave kernel** on *X*:

$$e(t, x, y) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i}t)\phi_i(x)\phi_i(y),$$

fundamental solution of the wave equation $(\partial^2/\partial t^2 - \Delta)e(t, x, y) = 0, \ e(0, x, y) = \delta(x - y),$ $(\partial/\partial t)e(0, x, y) = 0.$

$$k_{\lambda,T}(x,y) = \int_{-\infty}^{\infty} \frac{\psi(t/T)}{T} \cos(\lambda t) e(t,x,y) dt$$

where $\psi \in C_0^{\infty}([-1, 1])$, even, monotone decreasing on $[0,1], \psi \ge 0, \psi(0) = 1$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Lemma 10a If $N_{x,y}(\lambda) = o(\lambda^a (\log \lambda)^b))$, where a > 0, b > 0then $k_{\lambda T}(x, y) = o(\lambda^a (\log \lambda)^b)).$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kerne terms Pretrace formula. *M* - universal cover of *X*, no conjugate points, *E*(*t*, *x*, *y*) be the wave kernel on *M*. Then for *x*, *y* ∈ *X*, we have

$$e(t, x, y) = \sum_{\omega \in \pi_1(X)} E(t, x, \omega y)$$

• Hadamard Parametrix for $E(t, x, y) \Rightarrow$

$$K_{\lambda,T}(x,y) \sim_{\lambda \to \infty} Q_1 \lambda^{\frac{n-1}{2}} \times \sum_{\omega \in \pi_1(X): d(x,\omega y) \leq T}$$

$$\frac{\psi\left(\frac{d(x,\omega y)}{T}\right)\sin(\lambda d(x,\omega y)+\theta_n)}{\sqrt{Tg(x,\omega y)\,d(x,\omega y)^{n-1}}} + O\left[\lambda^{\frac{n-3}{2}}e^{O(T)}\right]$$

Here $g = \sqrt{\det g_{ij}}$ in normal coordinates, $\theta_n = (\pi/4)(3 - (n \mod 8))$, and $Q_1 \neq 0$.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kerne terms Pretrace formula. *M* - universal cover of *X*, no conjugate points, *E*(*t*, *x*, *y*) be the wave kernel on *M*. Then for *x*, *y* ∈ *X*, we have

$$e(t, x, y) = \sum_{\omega \in \pi_1(X)} E(t, x, \omega y)$$

• Hadamard Parametrix for $E(t, x, y) \Rightarrow$

$$\mathcal{K}_{\lambda,\mathcal{T}}(x,y)\sim_{\lambda\to\infty}Q_1\lambda^{\frac{n-1}{2}}\times\sum_{\omega\in\pi_1(X):d(x,\omega y)\leq T}$$

$$\frac{\psi\left(\frac{d(x,\omega y)}{T}\right)\sin(\lambda d(x,\omega y)+\theta_n)}{\sqrt{Tg(x,\omega y)d(x,\omega y)^{n-1}}} + O\left[\lambda^{\frac{n-3}{2}}e^{O(T)}\right]$$

Here $g = \sqrt{\det g_{ij}}$ in normal coordinates, $\theta_n = (\pi/4)(3 - (n \mod 8))$, and $Q_1 \neq 0$.

- General Results
- Negative Curvature
- Resonances
- Proof: Arithmetic case
- Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Pointwise analog of the sum S(T):

$$S_{x,y}(T) = \sum_{\omega: d(x,\omega y) \leq T} \frac{1}{\sqrt{g(x,\omega y) d(x,\omega y)^{n-1}}},$$

where $g = \sqrt{\det g_{ij}}$ in normal coordinates at *x*. $S_{x,y}(T)$ grows at the same rate as S(T).

• **Reason:** let $x, y \in M, \gamma$ - geodesic from x to y, $\xi = (x, \gamma'(0))$, and dist(x, y) = r. Then $\sqrt{g(x, y)r^{n-1}} \ll Jac_{Vert(\xi)}G^r$. Here $Vert(\xi) \in T_{\xi}SM$ - vertical subspace; $E_{\xi}^u \in T_{\xi}SM$ unstable subspace at ξ . By properties of Anosov flows, Dist[$DG^r(Vert(\xi)), DG^r(E_{\xi}^u)$] $\leq Ce^{-\alpha r}$. Therefore, $Jac_{Vert(\xi)}G^r \ll Jac_{E\xi^u}G^r = \exp\left[\int_{\gamma}\mathcal{H}\right]$

- General Results
- Negative Curvature
- Resonances
- Proof: Arithmetic case
- Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms • Pointwise analog of the sum S(T):

$$S_{x,y}(T) = \sum_{\omega: d(x,\omega y) \leq T} \frac{1}{\sqrt{g(x,\omega y) d(x,\omega y)^{n-1}}},$$

where $g = \sqrt{\det g_{ij}}$ in normal coordinates at *x*. $S_{x,y}(T)$ grows at the same rate as S(T).

• **Reason:** let $x, y \in M, \gamma$ - geodesic from x to y, $\xi = (x, \gamma'(0))$, and dist(x, y) = r. Then $\sqrt{g(x, y)r^{n-1}} \ll Jac_{Vert(\xi)}G^r$. Here $Vert(\xi) \in T_{\xi}SM$ - vertical subspace; $E_{\xi}^u \in T_{\xi}SM$ unstable subspace at ξ . By properties of Anosov flows, Dist[$DG^r(Vert(\xi)), DG^r(E_{\xi}^u)$] $\leq Ce^{-\alpha r}$. Therefore, $Jac_{Vert(\xi)}G^r \ll Jac_{E\xi^u}G^r = \exp\left[\int_{\gamma}\mathcal{H}\right]$

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Our **local** estimates are not uniform in x, y. Need Proposition 9 to prove **global** estimates. Heat trace asymptotics:

$$\sum_{i} e^{-\lambda_{i}t} \sim rac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_{j} t^{j-rac{n}{2}}, \qquad t o 0^{+}$$

Local: $\mathcal{K}(t, x, x) = \sum_{i} e^{-\lambda_{i}t} \phi_{i}^{2}(x) \sim \frac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_{j}(x) t^{j-\frac{n}{2}},$ $a_{j}(x)$ - local heat invariants, $a_{j} = \int_{X} a_{j}(x) dx.$ $a_{0}(x) = 1, a_{0} = \operatorname{vol}(X). a_{1}(x) = \frac{\tau(x)}{6}, \tau(x)$ - scalar curvature.

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms "Heat kernel" estimates: Theorem 2b[JP] If the scalar curvature $\tau(x) \neq 0, \Longrightarrow R_x(\lambda) = \Omega(\lambda^{n-2}).$ Global:[JPT] If $\int_X \tau \neq 0, \Rightarrow R(\lambda) = \Omega(\lambda^{n-2}).$ Remark: if $\tau(x) = 0$, let k = k(x) be the first positive

number such that the *k*-th local heat invariant $a_k(x) \neq 0$. If n - 2k(x) > 0, then

$$R_{x}(\lambda) = \Omega(\lambda^{n-2k(x)}).$$

Similar result holds for $R(\lambda)$: if $\int a_k(x) dx \neq 0$ and n - 2k > 0, then

$$R(\lambda) = \Omega(\lambda^{n-2k}).$$
General Results

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms Oscillatory error term: subtract [(n - 1)/2] terms coming from the heat trace:

$$N_{x}(\lambda) = \sum_{j=0}^{\left[rac{n-1}{2}
ight]} rac{a_{j}(x)\lambda^{n-2j}}{(4\pi)^{rac{n}{2}}\Gamma\left(rac{n}{2}-j+1
ight)} + R_{x}^{osc}(\lambda)$$

Warning: **not** an asymptotic expansion! Physicists: subtract the "mean smooth part" of $N_x(\lambda)$.

• **Theorem 2c**[JP] If *x* ∈ *X* is not conjugate to itself along any shortest geodesic loop, then

$$R_{X}^{osc}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Theorem 4c[JP] *X* - negatively-curved. For any $\delta > 0$ $R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right)$, any *n*. If $n \ge 4$ then Theorem 2b, $R_x(\lambda) = \Omega(\lambda^{n-2})$ gives a better bound for $R_x(\lambda)$.

• **Global Conjecture:** *X* - negatively-curved. For any $\delta > 0$ $R^{osc}(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{\hbar} - \delta}\right)$, any *n*.

- General Results
- Negative Curvature
- Resonances
- Proof: Arithmetic case
- Proof: Weyl's Law
- Proof: Spectral Function
- Subtracting heat kernel terms

 Oscillatory error term: subtract [(n - 1)/2] terms coming from the heat trace:

$$N_{x}(\lambda) = \sum_{j=0}^{\left[\frac{n-1}{2}\right]} \frac{a_{j}(x)\lambda^{n-2j}}{(4\pi)^{\frac{n}{2}}\Gamma(\frac{n}{2}-j+1)} + R_{x}^{osc}(\lambda)$$

Warning: **not** an asymptotic expansion! Physicists: subtract the "mean smooth part" of $N_x(\lambda)$.

 Theorem 2c[JP] If x ∈ X is not conjugate to itself along any shortest geodesic loop, then

$$R_{x}^{osc}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Theorem 4c[JP] *X* - negatively-curved. For any $\delta > 0$ $R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right)$, any *n*. If $n \ge 4$ then Theorem 2b, $R_x(\lambda) = \Omega(\lambda^{n-2})$ gives a better bound for $R_x(\lambda)$.

• Global Conjecture: X - negatively-curved. For any $\delta > 0$ $R^{osc}(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-H/2)}{h} - \delta}\right)$, any n.

- General Results
- Negative Curvature
- Resonances
- Proof: Arithmetic case
- Proof: Weyl's Law
- Proof: Spectral Function
- Subtracting heat kernel terms

 Oscillatory error term: subtract [(n - 1)/2] terms coming from the heat trace:

$$N_{x}(\lambda) = \sum_{j=0}^{\left[\frac{n-1}{2}\right]} \frac{a_{j}(x)\lambda^{n-2j}}{(4\pi)^{\frac{n}{2}}\Gamma(\frac{n}{2}-j+1)} + R_{x}^{osc}(\lambda)$$

Warning: **not** an asymptotic expansion! Physicists: subtract the "mean smooth part" of $N_x(\lambda)$.

 Theorem 2c[JP] If x ∈ X is not conjugate to itself along any shortest geodesic loop, then

$$R_{x}^{osc}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Theorem 4c[JP] *X* - negatively-curved. For any $\delta > 0$ $R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right)$, any *n*. If $n \ge 4$ then Theorem 2b, $R_x(\lambda) = \Omega(\lambda^{n-2})$ gives a better bound for $R_x(\lambda)$.

• Global Conjecture: X - negatively-curved. For any $\delta > 0$ $R^{osc}(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-H/2)}{h} - \delta}\right)$, any n. General Results

Negative Curvature

Resonances

Proof: Arithmetic case

Proof: Weyl's Law

Proof: Spectral Function

Subtracting heat kernel terms The behavior of $N(x, y, \lambda)/(\lambda^{(n-1)/2})$ was studied by Lapointe, Polterovich and Safarov.

[LPS] Average growth of the spectral function on a Riemannian manifold. arXiv:0803.4171, to appear in Comm. PDE.