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General
Results

Let I be a geometrically finite subgroup of PSL(2, R) without
elliptic elements. Fundamental domain X = '\H? has
finitely many sides. Assume that X has infinite hyperbolic
area: X decomposes into a finite area surface N (called
Nielsen region or convex core) to which finitely many infinite
area half-cylinders (funnels) are glued.

If I has parabolic elements, then N has cusps (parabolic
vertices); a surface without cusps is called convex
co-compact; then I has no parabolic elements.



| o The spectrum of A = y2(92/0x? + 9?/dy?) on X
Reaulo consists of the continuous spectrum [1/4, +o0] (no
embedded eigenvalues).
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Results

o The spectrum of A = y?(9?/0x? + 92/9y?) on X

consists of the continuous spectrum [1/4, +o0] (no
embedded eigenvalues).

§ is the Hausdorff dimension of the limit set A(") ¢ S'.
If 6 > 1/2, A has finitely many eigenvalues in (0,1/4);
the first nonzero eigenvalue Ay = 6(1 — ¢). Point
spectrum is empty if § < 1/2 (Lax, Phillips, Patterson,
Sullivan).
The resolvent

1

R(\) = (AX i )\2> a L2(X) — L2(X)

is well-defined and analytic in {3(\) < 0}, except for
finitely many poles corresponding to the finite point
spectrum.



SETE e Resonances are the poles of meromorphic continuation
of the resolvent R(\) : Cg°(X) — C>°(X) to the whole
complex plane C. Their set is denoted by R x. Guillopé
and Zworski showed that 3C > 0 such that
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SETE e Resonances are the poles of meromorphic continuation
of the resolvent R(\) : Cg°(X) — C>°(X) to the whole
complex plane C. Their set is denoted by R x. Guillopé
and Zworski showed that 3C > 0 such that

1/C<#{zeRx:|zZ|<R}/R?<C, R— .
e Finer asymptotics: let
Ne(T) = #{z € Rx : 3(2) < C,[R(2)| < T}.

e Zworski, Guillopé and Lin: “fractal” upper bound
Theorem 1. For convex co-compact X,
Nc(T) = O(T'*9); where C is fixed, and T — .
They conjectured the upper bound is sharp.
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such that
Ne, (T) = Q(T'9).

The proof uses a wave trace formula for resonances on
X and takes into account contributions from a single
closed geodesic on X.
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Lower bounds e Lower bounds: Guillopé, Zworski: Ve > 0, 3C, > 0,
such that
Ne, (T) = Q(T'9).

The proof uses a wave trace formula for resonances on
X and takes into account contributions from a single
closed geodesic on X.

e Question: Can one improve lower bounds taking into
account contributions from many closed geodesics on
X?

e Answer: Yes, this is done in [UN1].
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e Guillopé, Lin, Zworski: let
Lower bounds D(Z):{AERX|>\—Z’§1}

Then for all z: 3(z) < C, we have D(z) = O(|R(2)°).

e Let A> 0, and let W, denote the logarithmic
neighborhood of the real axis:

Wi={\eC:3A<Alog(1+|RA)}

e Theorem 2. Let X be a geometrically finite hyperbolic
surface of infinite area, and let § > 1/2. Then there
exists a sequence {z;} € Wy, R(z;) — oo such that

s—1/2

D(zj) = (log [R(z;)[) 7.
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e Examples of ' such that (') > 1/2 are easy to
construct. Pignataro, Sullivan: fix the topology of X.
Denote by /(X) the maximum length of the closed
geodesics that form the boundary of N. Then
Ao(X) < C(X)I(X), where C = C(X) depends only on
the topology of X. By Patterson-Sullivan,

X <1/4<6>1/2,s0 letting I(X) — 0 gives many
examples.



Lower bounds

e Corollary: If § > 1/2, then Wy N Ry is different from a

lattice.

Examples of I such that (') > 1/2 are easy to
construct. Pignataro, Sullivan: fix the topology of X.
Denote by /(X) the maximum length of the closed
geodesics that form the boundary of N. Then

Ao(X) < C(X)I(X), where C = C(X) depends only on
the topology of X. By Patterson-Sullivan,

X <1/4< 6> 1/2, s0 letting /(X) — 0 gives many
examples.

Proof of Theorem 2 uses (a version of Selberg) trace
formula due to Guillopé and Zworski, and Dirichlet box
principle.
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Lower bounds

e Theorem 2 gives a logarithmic lower bound

D(z;) > (log |3‘E(z,-)|)5%s1/2‘5 for an infinite sequence of
disks D(z;, 1). Conjecture of Guillopé and Zworski
would imply that Ve > 0 3{z;} such that

D(z) > [R(z)]°~.

Question: can one get polynomial lower bounds for
some particular groups '?

Answer: Yes. Idea: look at infinite index subgroups of
arithmetic groups, and use methods of Selberg-Hejhal.

Theorem 3. Let I be an infinite index geom. finite
subgroup of an arithmetic group Iy derived from a
quaternion algebra. Let §(I') > 3/4. Then
Ve > 0,VA > 0, there exists {z;} C Wy, R(z;) — oo,
such that

D(z)) > [R(z)[?°~%2 .
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Key ideas:
e Number of closed geodesics on X:

oT

e
- #{’)/ : /(")/) < T} ~ ﬁ, T — OQ.

Arithmetic
case

e Number of distinct closed geodesics in the arithmetic
case: for I derived from a quaternion algebra, one has

#H{L<T: L=I())<el2

Accordingly, for § > 1/2, there exists exponentially
large multiplicities in the length spectrum.

¢ Distinct lengths are well-separated in the arithmetic
case: for lj # b, we have

|I1 o /2| > e max(l1,lg)/2.

Ex: M, s M, e SL(27 Z)7 trMy 7& trM> then
|trMy — trMs| = 2| cosh(/y/2) — cosh(k/2)| > 1.



Trace formula (Guillopé, Zworski): Let ¢ € C5°((0, +00)),
and N - Nielsen region. Then (in case there are no cusps)

Armetc ~  V(N) [+ cosh(t/2)
A;;XMA)_ - /o S?(1/2) P(t)dt
7))
+g}; 2smh /2)

where P = {primitive closed geodesics on X}.
For o, t > 0, we take

Yra(X) = € Pyo(x — ),
where v € C3°([-1,1]),v > 0,and o = 1 on [-1/2,1/2].



e Geometric side (sum over closed geodesics):

Proof: /(W)Zbo(k/(’}/) ) _.
Arithmetic == Itkl(,Y)
case Sa,t Z 23|nh(k/(7)/2) © .

a—1<kl(y)<a+1



e Geometric side (sum over closed geodesics):

Proof: /(W)Zbo(k/(’y) ) _.
Arithmetic == Itkl(,Y)
case Sa,t Z 23|nh(k/(7)/2) © .

a—1<kl(y)<a+1

e Lemma4: 3A>0s.t. VT > 0,ifweleta=2log T — A,
and -
-2T
o= [ (1) st
T T

02 T4672
(log T)?

then

J(T) >



Proof:
Arithmetic
case

Lemma 4 = Theorem 3: Assume for contradiction that for
all z € Wy, R(2) > Ry we have D(z) < |R(2)|°. Let
a=2log T — A. We have

Co T1+45-38
(log T)?

3T
<J(T)< /T .72t
Assumption implies that
So7 =01+t + T#73).
Integrating, we find that
J(T) = O(T?1),

This leads to a contradictionif 26 +1<1+46—3, or
B < 25 —3/2, proving Theorem 3.



Proof:
Arithmetic
case

Proof of Lemma 4 uses the fact that geodesic lengths on X
have exponentially high multiplicities and their lengths are
well-separated.

After expanding |S2 T‘z and integrating, we write
J(T)=Ji(T) + J2(T) where J;(T) is the diagonal term

_ (I ()28 (1 — @)
AT =T 3 4sinh2(1/2)

Y

leL(T)

where L denotes set of distinct lengths of closed
geodesics on X; u(/) is the multiplicity of /; I the primitive
length of a closed geodesic.

J1(T) >0, and Jg(T) denotes the off-diagonal term. Jo(T)
involves integrals [3 (1 — |t — 27|/ T)e/h—R)dt, where

I < k. Since distinct /i-s are well-separated, we get
cancellation in J>(T). One can show that | (T)| < Ji(T)/2
with o, T chosen as in Lemma.



e It remains to bound J;(T) from below. io(/ — «) is
supported on [« — 1, a + 1]. The denominator
4sinh?(//2) is of order e*. We find that

4 MT)zCTe > (u))
case leLrnla—1/2,a+1/2]



e It remains to bound J;(T) from below. io(/ — «) is
supported on [« — 1, a + 1]. The denominator
4sinh?(//2) is of order e*. We find that

et Ji(T) > C3Te™® > (u(1))?.
o leLrna—1/2,a+1/2]

e Callthe last sum S. Then

2
(Zleﬁrﬁ[a—1/2,a+1/2] M(I))

(Z/egrm[aq/aaﬂ/a 1)

The numerator is > [€°®/a]? by the prime geodesic
theorem. The denominator is O(e*/?) (since the
lengths are well-separated). Hence S > e(29-1/2)a /2,
Substituting J(T) > S- T/e*,a =2log T — A, we get
J(T) > T*~2/(log T)?, proving Lemma 4.



Proof:
Arithmetic
case

It follows from a recent result of Lewis Bowen that in every
co-finite or co-compact arithmetic Fuchsian group, one can
find infinite index convex co-compact subgroups with §
arbitrarily close to 1 (and in particular > 3/4). A. Gamburd
considered infinite index subgroups of SL»(Z) and
constructed subgroups Ay such that 6(Ay) — 1 as N — oc.
It was shown in [UN1] that subgroups I'y of Ay (of index two)
provide examples of “arithmetic” groups with 6(I'y) > 3/4
for large enough N. Related questions were also
considered by Bourgain and Kantorovich.

The results of [UN1] can also be generalized to hyperbolic
3-manifolds (work in progress).
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We describe some results in [UN2]. Let A = s(1 — s),s € C.
e If X has finite area, then all resonances lie in the strip
0<R(s)< 1/2.
e If X has infinite area, then resonances are spread all

over the half plane {R(s) < 1/2}. We study
resonances with the largest real part.

nfntely many o If 6 > 1/2, then all but finitely many resonances lie in
e the plane {R(s) < 1/2}. If § < 1/2, F. Naud showed

that there exists ¢ > 0 such that
RxN{R(s)>0—¢€} ={0}.

Constant ¢ is not effective (follows from a Dolgopyat
type estimate).

o We want to find “essential spectral gap”

Gl :=inf{oc <d : {R(s) > o} NRx is finite} .
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e Conjecture: G(I') = §/2 (known for finite volume X,

Selberg).
ﬁ?ﬁin"ifeﬂ"ﬂany e Theorem 5: I - convex co-compact Fuchsian group.
o If 0 < 6 < 1/2, then we have G(I') > 2152,

e If0 > 1/2and T is a convex co-compact subgroup of an

arithmetic group, then G(I') > § — 1.

e As § — 0, we have 20220 — 2 4 O(62), close to the

conjectured bound 4/2.
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We next discuss connections to lattice point counting
problems.

o Lax-Phillips: Let § > 1/2. Given z,Z' € H, let
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We next discuss connections to lattice point counting
problems.

o Lax-Phillips: Let § > 1/2. Given z,Z' € H, let
N(T;z,2'):=#{y €Tl : d(z,vZ') < T}. Then

Lattice points T Z Z Z C Z Z jT + O (T5/66(6+1)T/3) ,

where §; € (1/2,6],6;(1 —6;) = \j € [0,1/4], 60 = 0.

o Conjecture: optimal error term should be O(e(?/2+)T);
expansion may contain additional terms.



Lattice points

Theorem 6: I' convex co-compact subgroup of an
arithmetic group with § > 1/2. There exists a full measure
subset G C H x H such that for all (z,Z’) € G and all finite
expansion of the form 3=, Q/(T; z, z')e%T, where §; € C and
Q(T;z,72") € C[T], thenforall e > 0

N(T;z, 2) ZQ, (T;z,2) =0 (e(5/2*1/4*€)T).

Here Q(e) means not a O(e).



Proof of
Theorem 5

Approximate trace formula: let ¢ € C3°(R). Let
+oo
u(s) = [ e®p(uau = 50s)
where ¢ F.T. of ¢.
Proposition 7. Let p < 4, and assume

#F, = #Rx N{R(s) > p} < 0.

Then Ve > 0 small enough, 3¢ < £ < 2¢ s.t.

2.2 _k, — D ek() = > v

keNg 7679 AEF,

+0 (/+O°(1 + X% (p 4 & + ix)|dx> .

—00

Here P - primitive closed geodesics. Constant depends on
g, pandT.



Proof of
Theorem 5

Lower bound on multiplicities for arithmetic groups: For all
{eLr,let

m(e) = #{(k,v) € Ng x P : £ =ki(7)}.

Lemma 8. Assume §(I") > 1/2. Then JAr > 0 such that for
all T large, we have

g(20-1/2)T
> m() = A
T—1<6<T+1
CeLr

Proof uses bounded clustering property of I' (Luo, Sarnak).



Proof of Theorem 5. Test functions: Let¢ € R, T > 0, and
we T(X) = e Xp(x —T),
where

e C([-2,2]);¢ > 0;p(x) =1,  xe[-1,1].

Proof of
Theorem 5

Let A> R(s) > 0, then

Ve 7(8) i= per(is) = e T eSTH(¢ + is).



Let

Ser= > - _k, e MO (ki() -

keNy 7673

Approximate trace formula (Prop. 7) implies

":F,Ir’]z%frgrf“ns SS,T: Z ¢§,T()\) + E(f, T)7
AEF,

where

E(s, T)= 097 |e*).

T).



Consider
“+oo )
Gl T)i= ﬁ/ e~ |Se 717de,

where o = o(T) > 0 - small. One can show that

G(o.T) =V 3 auwplt—T)e(d = The™ 5"

L0eL

Proof of

Theorem 5 Where B
g, = LemOm()
T e e

It follows that

T—1<e<TH1
ety



Proposition 7 allows to bound %20 py

2o
/+°° et
—0o0

We assume that 7, is finite, hence

2

Z Ve, 7(A)

\EF,

+oo
dé + / e 7| E(¢. T)2de .

o0

T,(0,T) Te(o,T)

Proof of
Theorem 5

T1(0,T) = O (e2”) ,
uniformly in o. Also, one can show

To(0,T) = O (92(p+E)T0_—6—1/2> ‘



Concluding the proof: ¢ € (0,1/2): Cannot use Lemma 8.

Use
eéT
> -
Glo.T)=C >, m(l)> B,
T—1<<T+H1
eeLlr

(using prime geodesic theorem), for B > 0. Let
T>00<1.

Proof of Bﬂ O (\/7 25T) + O( (p+€)T 75)
Theorem 5 T -
Let o = e “T; get a contradiction as T — +oc if

(1 —a) -

a>26and p < 5 — €,

hence infinitely many resonances in
{R(s) > 2022 _ ¢} ve > 0.



Concluding the proof: 6 € (1/2,1):
Use Lemma 8:

e(20-1/2)T

_ 25T (p+&)T ;—6
= 0(vaeT) + 0 (&),
which if ¢ = e=*T produces a contradiction whenever o > 1

and 52
_d@-a) 1

2 4
Hence, infinitely many resonances in the strip




Questions:

Lower bound for § = 1/2?

Lower bounds for “non-arithmetic” groups if 6 > 1/2?
Proof of Effective upper bounds for the essential spectral gap?

Theorem 5



