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Let Γ be a geometrically finite subgroup of PSL(2, R) without
elliptic elements. Fundamental domain X = Γ\H2 has
finitely many sides. Assume that X has infinite hyperbolic
area: X decomposes into a finite area surface N (called
Nielsen region or convex core) to which finitely many infinite
area half-cylinders (funnels) are glued.
If Γ has parabolic elements, then N has cusps (parabolic
vertices); a surface without cusps is called convex
co-compact; then Γ has no parabolic elements.
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• The spectrum of ∆ = y2(∂2/∂x2 + ∂2/∂y2) on X
consists of the continuous spectrum [1/4, +∞] (no
embedded eigenvalues).

• δ is the Hausdorff dimension of the limit set Λ(Γ) ⊂ S1.
If δ > 1/2, ∆ has finitely many eigenvalues in (0, 1/4);
the first nonzero eigenvalue λ0 = δ(1− δ). Point
spectrum is empty if δ ≤ 1/2 (Lax, Phillips, Patterson,
Sullivan).

• The resolvent

R(λ) =

(
∆X −

1
4
− λ2

)−1

: L2(X ) → L2(X )

is well-defined and analytic in {=(λ) < 0}, except for
finitely many poles corresponding to the finite point
spectrum.
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• Resonances are the poles of meromorphic continuation
of the resolvent R(λ) : C∞

0 (X ) → C∞(X ) to the whole
complex plane C. Their set is denoted by RX . Guillopé
and Zworski showed that ∃C > 0 such that

1/C < #{z ∈ RX : |z| < R}/R2 < C, R →∞.

• Finer asymptotics: let

NC(T ) = #{z ∈ RX : =(z) ≤ C, |<(z)| ≤ T}.

• Zworski, Guillopé and Lin: “fractal” upper bound
Theorem 1. For convex co-compact X ,
NC(T ) = O(T 1+δ); where C is fixed, and T →∞.
They conjectured the upper bound is sharp.
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• Lower bounds: Guillopé, Zworski: ∀ε > 0, ∃Cε > 0,
such that

NCε
(T ) = Ω(T 1−ε).

The proof uses a wave trace formula for resonances on
X and takes into account contributions from a single
closed geodesic on X .

• Question: Can one improve lower bounds taking into
account contributions from many closed geodesics on
X?

• Answer: Yes, this is done in [JN1].
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• Guillopé, Lin, Zworski: let

D(z) = {λ ∈ RX : |λ− z| ≤ 1}

Then for all z : =(z) ≤ C, we have D(z) = O(|<(z)|δ).
• Let A > 0, and let WA denote the logarithmic

neighborhood of the real axis:

WA = {λ ∈ C : =λ ≤ A log(1 + |<λ|)}

• Theorem 2. Let X be a geometrically finite hyperbolic
surface of infinite area, and let δ > 1/2. Then there
exists a sequence {zi} ∈ WA,<(zi) →∞ such that

D(zi) ≥ (log |<(zi)|)
δ−1/2

δ
−ε.
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• Corollary: If δ > 1/2, then WA ∩RX is different from a
lattice.

• Examples of Γ such that δ(Γ) > 1/2 are easy to
construct. Pignataro, Sullivan: fix the topology of X .
Denote by l(X ) the maximum length of the closed
geodesics that form the boundary of N. Then
λ0(X ) ≤ C(X )l(X ), where C = C(X ) depends only on
the topology of X . By Patterson-Sullivan,
λ0 < 1/4 ⇔ δ > 1/2, so letting l(X ) → 0 gives many
examples.

• Proof of Theorem 2 uses (a version of Selberg) trace
formula due to Guillopé and Zworski, and Dirichlet box
principle.
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• Theorem 2 gives a logarithmic lower bound
D(zi) ≥ (log |<(zi)|)

δ−1/2
δ

−ε for an infinite sequence of
disks D(zi , 1). Conjecture of Guillopé and Zworski
would imply that ∀ε > 0 ∃{zi} such that
D(zi) ≥ |<(zi)|δ−ε.

• Question: can one get polynomial lower bounds for
some particular groups Γ?
Answer: Yes. Idea: look at infinite index subgroups of
arithmetic groups, and use methods of Selberg-Hejhal.

• Theorem 3. Let Γ be an infinite index geom. finite
subgroup of an arithmetic group Γ0 derived from a
quaternion algebra. Let δ(Γ) > 3/4. Then
∀ε > 0, ∀A > 0, there exists {zi} ⊂ WA,<(zi) →∞,
such that

D(zi)) ≥ |<(zi)|2δ−3/2−ε.
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Key ideas:

• Number of closed geodesics on X :

#{γ : l(γ) < T} ∼ eδT

δT
, T →∞.

• Number of distinct closed geodesics in the arithmetic
case: for Γ derived from a quaternion algebra, one has

#{L < T : L = l(γ)} ¿ eT/2.

Accordingly, for δ > 1/2, there exists exponentially
large multiplicities in the length spectrum.

• Distinct lengths are well-separated in the arithmetic
case: for l1 6= l2, we have

|l1 − l2| À e−max(l1,l2)/2.

Ex: M1, M2 ∈ SL(2, Z), trM1 6= trM2 then
|trM1 − trM2| = 2| cosh(l1/2)− cosh(l2/2)| ≥ 1.
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Trace formula (Guillopé, Zworski): Let ψ ∈ C∞
0 ((0, +∞)),

and N - Nielsen region. Then (in case there are no cusps)

∑

λ∈RX

ψ̂(λ) = −V (N)

4π

∫ +∞

0

cosh(t/2)

sin2(t/2)
ψ(t)dt

+
∑

γ∈P

∑

k≥1

l(γ)ψ(kl(γ))

2 sinh(kl(γ)/2)
,

where P = {primitive closed geodesics on X}.
For α, t À 0, we take

ψt ,α(x) = e−itxψ0(x − α),

where ψ0 ∈ C∞
0 ([−1, 1]), ψ ≥ 0, and ψ0 = 1 on [−1/2, 1/2].



General
Results

Lower bounds

Proof:
Arithmetic
case

Strips with
infinitely many
resonances

Lattice points

Proof of
Theorem 5

• Geometric side (sum over closed geodesics):

Sα,t =
∑

α−1≤kl(γ)≤α+1

l(γ)ψ0(kl(γ)− α)

2 sinh(kl(γ)/2)
e−itkl(γ).

• Lemma 4: ∃A > 0 s.t. ∀T > 0, if we let α = 2 log T − A,
and

J(T ) =

∫ 3T

T

(
1− |t − 2T |

T

)
|Sα,t |2dt ,

then

J(T ) ≥ C2T 4δ−2

(log T )2 .
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Lemma 4 ⇒ Theorem 3: Assume for contradiction that for
all z ∈ WA,<(z) ≥ R0 we have D(z) ≤ |<(z)|β. Let
α = 2 log T − A. We have

C2T 1+4δ−3

(log T )2 ≤ J(T ) ≤
∫ 3T

T
|Sα,T |2dt .

Assumption implies that

Sα,T = O(1 + tβ + T 2δ−3).

Integrating, we find that

J(T ) = O(T 2β+1).

This leads to a contradiction if 2β + 1 < 1 + 4δ − 3, or
β < 2δ − 3/2, proving Theorem 3.
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Proof of Lemma 4 uses the fact that geodesic lengths on X
have exponentially high multiplicities and their lengths are
well-separated.
After expanding |S2

α,T |2 and integrating, we write
J(T ) = J1(T ) + J2(T ), where J1(T ) is the diagonal term

J1(T ) = T
∑

l∈L(Γ)

(l#µ(l))2ψ2
0(l − α)

4 sinh2(l/2)
,

where LΓ denotes set of distinct lengths of closed
geodesics on X ; µ(l) is the multiplicity of l ; l# the primitive
length of a closed geodesic.
J1(T ) ≥ 0, and J2(T ) denotes the off-diagonal term. J2(T )

involves integrals
∫ 3T

T (1− |t − 2T |/T )ei(l1−l2)tdt , where
l1 ≤ l2. Since distinct lj -s are well-separated, we get
cancellation in J2(T ). One can show that |J2(T )| ≤ J1(T )/2
with α, T chosen as in Lemma.
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• It remains to bound J1(T ) from below. ψ0(l − α) is
supported on [α− 1, α + 1]. The denominator
4 sinh2(l/2) is of order eα. We find that

J1(T ) ≥ C3Te−α
∑

l∈LΓ∩[α−1/2,α+1/2]

(µ(l))2.

• Call the last sum S. Then

S ≥

(∑
l∈LΓ∩[α−1/2,α+1/2] µ(l)

)2

(∑
l∈LΓ∩[α−1/2,α+1/2] 1

)

The numerator is À [eδα/α]2 by the prime geodesic
theorem. The denominator is O(eα/2) (since the
lengths are well-separated). Hence S À e(2δ−1/2)α/α2.
Substituting J(T ) À S · T/eα, α = 2 log T − A, we get
J(T ) À T 4δ−2/(log T )2, proving Lemma 4.
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It follows from a recent result of Lewis Bowen that in every
co-finite or co-compact arithmetic Fuchsian group, one can
find infinite index convex co-compact subgroups with δ
arbitrarily close to 1 (and in particular > 3/4). A. Gamburd
considered infinite index subgroups of SL2(Z) and
constructed subgroups ΛN such that δ(ΛN) → 1 as N →∞.
It was shown in [JN1] that subgroups ΓN of ΛN (of index two)
provide examples of “arithmetic” groups with δ(ΓN) > 3/4
for large enough N. Related questions were also
considered by Bourgain and Kantorovich.
The results of [JN1] can also be generalized to hyperbolic
3-manifolds (work in progress).
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We describe some results in [JN2]. Let λ = s(1− s), s ∈ C.
• If X has finite area, then all resonances lie in the strip

0 < <(s) < 1/2.
• If X has infinite area, then resonances are spread all

over the half plane {<(s) < 1/2}. We study
resonances with the largest real part.

• If δ > 1/2, then all but finitely many resonances lie in
the plane {<(s) < 1/2}. If δ ≤ 1/2, F. Naud showed
that there exists ε > 0 such that

RX ∩ {<(s) ≥ δ − ε} = {δ}.

Constant ε is not effective (follows from a Dolgopyat
type estimate).

• We want to find “essential spectral gap”

G(Γ) := inf {σ < δ : {<(s) ≥ σ} ∩ RX is finite} .
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the plane {<(s) < 1/2}. If δ ≤ 1/2, F. Naud showed
that there exists ε > 0 such that

RX ∩ {<(s) ≥ δ − ε} = {δ}.

Constant ε is not effective (follows from a Dolgopyat
type estimate).

• We want to find “essential spectral gap”

G(Γ) := inf {σ < δ : {<(s) ≥ σ} ∩ RX is finite} .
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• Conjecture: G(Γ) = δ/2 (known for finite volume X ,
Selberg).

• Theorem 5: Γ - convex co-compact Fuchsian group.

• If 0 < δ ≤ 1/2, then we have G(Γ) ≥ δ(1−2δ)
2 .

• If δ > 1/2 and Γ is a convex co-compact subgroup of an
arithmetic group, then G(Γ) ≥ δ

2 − 1
4 .

• As δ → 0, we have δ(1−2δ)
2 = δ

2 + O(δ2), close to the
conjectured bound δ/2.
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We next discuss connections to lattice point counting
problems.
• Lax-Phillips: Let δ > 1/2. Given z, z ′ ∈ H, let

N(T ; z, z ′) := #{γ ∈ Γ : d(z, γz ′) ≤ T}. Then

N(T ; z, z ′) =
∑

j

Cj(z, z ′)eδj T + O
(

T 5/6e(δ+1)T/3
)

,

where δj ∈ (1/2, δ], δj(1− δj) = λj ∈ [0, 1/4], δ0 = δ.

• Conjecture: optimal error term should be O(e(δ/2+ε)T );
expansion may contain additional terms.
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Theorem 6: Γ convex co-compact subgroup of an
arithmetic group with δ > 1/2. There exists a full measure
subset G ⊂ H× H such that for all (z, z ′) ∈ G and all finite
expansion of the form

∑
j Qj(T ; z, z ′)eδj T , where δj ∈ C and

Qj(T ; z, z ′) ∈ C[T ], then for all ε > 0
∣∣∣∣∣∣
N(T ; z, z ′)−

∑

j

Qj(T ; z, z ′)eδj T

∣∣∣∣∣∣
= Ω

(
e(δ/2−1/4−ε)T

)
.

Here Ω(•) means not a O(•).
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Approximate trace formula: let ϕ ∈ C∞
0 (R). Let

ψ(s) :=

∫ +∞

−∞
esuϕ(u)du = ϕ̂(is),

where ϕ̂ F.T. of ϕ.
Proposition 7. Let ρ < δ, and assume

#Fρ := #RX ∩ {<(s) > ρ} < ∞.

Then ∀ε > 0 small enough, ∃ε ≤ ε̃ ≤ 2ε s.t.

∑

k∈N0

∑

γ∈P

l(γ)

1− e−kl(γ)
ϕ(kl(γ)) =

∑

λ∈Fρ

ψ(λ)

+O
(∫ +∞

−∞
(1 + |x |)δ|ψ(ρ + ε̃ + ix)|dx

)
.

Here P - primitive closed geodesics. Constant depends on
ε, ρ and Γ.
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Lower bound on multiplicities for arithmetic groups: For all
` ∈ LΓ, let

m(`) := #{(k , γ) ∈ N0 × P : ` = kl(γ)}.

Lemma 8. Assume δ(Γ) > 1/2. Then ∃AΓ > 0 such that for
all T large, we have

∑
T−1≤`≤T+1

`∈LΓ

m2(`) ≥ AΓ
e(2δ−1/2)T

T 2 .

Proof uses bounded clustering property of Γ (Luo, Sarnak).



General
Results

Lower bounds

Proof:
Arithmetic
case

Strips with
infinitely many
resonances

Lattice points

Proof of
Theorem 5

Proof of Theorem 5. Test functions: Let ξ ∈ R, T À 0, and

ϕξ,T (x) := e−iξxϕ(x − T ),

where

ϕ ∈ C∞
0 ([−2, 2]);ϕ ≥ 0; ϕ(x) = 1, x ∈ [−1, 1].

Let A ≥ <(s) ≥ 0, then

ψξ,T (s) := ϕ̂ξ,T (is) = e−iξT esT ϕ̂(ξ + is).
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Let

Sξ,T :=
∑

k∈N0

∑

γ∈P

l(γ)

1− e−kl(γ)
e−iξkl(γ)ϕ(kl(γ)− T ).

Approximate trace formula (Prop. 7) implies

Sξ,T=

∑

λ∈Fρ

ψξ,T (λ) + E(ξ, T ),

where
E(ξ, T ) = O

(
e(ρ+eε)T |ξ|δ

)
.
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Consider

G(σ, T ) :=
√

σ

∫ +∞

−∞
e−σξ2 |Sξ,T |2dξ,

where σ = σ(T ) > 0 - small. One can show that

G(σ, T ) =
√

π
∑

`,`′∈LΛ

a`,`′ϕ(`− T )ϕ(`′ − T )e−
(`−`′)2

4σ ,

where

a`,`′ :=
˜̀̀̃ ′m(`)m(`′)

(1− e−`)(1− e−`′)
.

It follows that

G(σ, T ) ≥ C
∑

T−1≤`≤T+1
`∈LΓ

m2(`).
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Proposition 7 allows to bound G(σ,T )
2
√

σ
by

∫ +∞

−∞
e−σξ2

∣∣∣∣∣∣
∑

λ∈Fρ

ψξ,T (λ)

∣∣∣∣∣∣

2

dξ

︸ ︷︷ ︸
I1(σ,T )

+

∫ +∞

−∞
e−σξ2 |E(ξ, T )|2dξ

︸ ︷︷ ︸
I2(σ,T )

.

We assume that Fρ is finite, hence

I1(σ, T ) = O
(

e2δT
)

,

uniformly in σ. Also, one can show

I2(σ, T ) = O
(

e2(ρ+eε)T σ−δ−1/2
)

.
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Concluding the proof: δ ∈ (0, 1/2): Cannot use Lemma 8.
Use

G(σ, T ) ≥ C
∑

T−1≤`≤T+1
`∈LΓ

m(`) ≥ B
eδT

T
,

(using prime geodesic theorem), for B > 0. Let
T À 0, σ ¿ 1.

B
eδT

T
= O

(√
σe2δT

)
+ O

(
e2(ρ+eε)T σ−δ

)
.

Let σ = e−αT ; get a contradiction as T → +∞ if

α > 2δ and ρ <
δ(1− α)

2
− ε̃,

hence infinitely many resonances in
{<(s) ≥ δ(1−2δ)

2 − ε}, ∀ε > 0.
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Concluding the proof: δ ∈ (1/2, 1):
Use Lemma 8:

B
e(2δ−1/2)T

T 2 = O
(√

σe2δT
)

+ O
(

e2(ρ+eε)T σ−δ
)

,

which if σ = e−αT produces a contradiction whenever α > 1
and

ρ <
δ(2− α)

2
− 1

4
− ε̃.

Hence, infinitely many resonances in the strip

{<(s) ≥ δ

2
− 1

4
− ε}, ∀ε > 0.
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Questions:
Lower bound for δ = 1/2?
Lower bounds for “non-arithmetic” groups if δ > 1/2?
Effective upper bounds for the essential spectral gap?


