Estimates from below for the spectral function and for the remainder in Weyl's law

D. Jakobson (McGill) email: jakobson@math.mcgill.ca

I. Polterovich (Université de Montréal)

email: iossif@dms.umontreal.ca

J. Toth (McGill)

email: jtoth@math.mcgill.ca

math.SP/0505400, [JP]: to appear in GAFA. Announced in ERA-AMS 11 (2005), 71-77.

math.SP/0612250, [JPT]: submitted for publication.

September 24, 2007

 $X^n, n \geq 2$ - compact. Δ - Laplacian. Spectrum: $\Delta \phi_i + \lambda_i \phi_i = 0$, $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \dots$

Eigenvalue counting function:

$$N(\lambda) = \#\{\sqrt{\lambda_j} \le \lambda\}.$$

Weyl's law: $N(\lambda) = C_n V \lambda^n + R(\lambda)$, $R(\lambda) = O(\lambda^{n-1})$. $R(\lambda)$ - remainder.

Spectral function: Let $x, y \in X$.

$$N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \le \lambda} \phi_i(x) \phi_i(y).$$

If x = y, let $N_{x,y}(\lambda) := N_x(\lambda)$.

Local Weyl's law:

$$N_{x,y}(\lambda) = O(\lambda^{n-1}), \quad x \neq y;$$

 $N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \quad R_x(\lambda) = O(\lambda^{n-1});$

 $R_x(\lambda)$ - **local remainder**. We study **lower** bounds for $R(\lambda), R_x(\lambda)$ and $N_{x,y}(\lambda)$.

Notation: $f_1(\lambda) = \Omega(f_2(\lambda)), f_2 > 0$ iff $\limsup_{\lambda \to \infty} |f_1(\lambda)|/f_2(\lambda) > 0$.

Theorem 1[JP] If $x, y \in X$ are not conjugate along any shortest geodesic joining them, then

$$N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right).$$

Theorem 2[JP] If $x \in X$ is not conjugate to itself along any shortest geodesic loop, then

$$R_x(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Other results in dimension n > 2 involve heat invariants.

Example: flat square 2-torus

$$\lambda_j = 4\pi^2 (n_1^2 + n_2^2), \quad n_1, n_2 \in \mathbf{Z}$$
 $\phi_j(x) = e^{2\pi i (n_1 x_1 + n_2 x_2)}, \quad x = (x_1, x_2)$
 $|\phi_j(x)| = 1 \implies N(\lambda) \equiv N_x(\lambda)$

Gauss circle problem: estimate $R(\lambda)$.

Theorem 2
$$\Rightarrow$$
 $R(\lambda) = \Omega(\sqrt{\lambda})$ -

Hardy–Landau bound. Theorem 2 generalizes that bound for the *local* remainder.

Hardy's conjecture: $R(\lambda) \ll \lambda^{1/2+\epsilon} \ \forall \epsilon > 0$.

Huxley: $R(\lambda) \ll \lambda^{\frac{131}{208}} (\log \lambda)^{2.26}$.

Negative curvature. Suppose sectional curvature satisfies

$$-K_1^2 \le K(\xi, \eta) \le -K_2^2$$

Theorem (Berard): $R_x(\lambda) = O(\lambda^{n-1}/\log \lambda)$

Conjecture (Randol): On a negatively-curved surface, $R(\lambda) = O(\lambda^{\frac{1}{2}+\epsilon})$. Randol proved an integrated (in λ) version for $N_{x,y}(\lambda)$.

Theorem (Karnaukh) On a negatively curved surface

$$R_x(\lambda) = \Omega(\sqrt{\lambda})$$

+ logarithmic improvements discussed below. Karnaukh's results (unpublished 1996 Princeton Ph.D. thesis under the supervision of P. Sarnak) served as a starting point and a motivation for our work.

Thermodynamic formalism: G^t - geodesic flow on SX, $\xi \in SX$, $T_{\xi}(SX) = E^s_{\xi} \oplus E^u_{\xi} \oplus E^o_{\xi}$,

- \bullet dim $E_{\xi}^s=n-1$: stable subspace, exponentially contracting for G^t ;
- \bullet dim $E^u_\xi=n-1$: unstable subspace, exponentially contracting for $G^{-t};$
- ullet dim $E_{\xi}^o=1$: tangent subspace to G^t .

Sinai-Ruelle-Bowen potential $\mathcal{H}:SM \to \mathbf{R}$:

$$\mathcal{H}(\xi) = \frac{d}{dt}\Big|_{t=0} \ln \det dG^t|_{E^u_{\xi}}$$

Topological pressure P(f) of a Hölder function $f: SX \to \mathbf{R}$ satisfies (Parry, Pollicott)

$$\sum_{l(\gamma) \leq T} l(\gamma) \exp \left[\int_{\gamma} f(\gamma(s), \gamma'(s)) ds \right] \sim \frac{e^{P(f)T}}{P(f)}.$$

 γ - geodesic of length $l(\gamma)$. P(f) is defined as

$$P(f) = \sup_{\mu} \left(h_{\mu} + \int f d\mu \right),\,$$

 μ is G^t -invariant, h_μ - (measure-theoretic) entropy.

Ex 1: P(0) = h - topological entropy of G^t . Theorem (Margulis): $\#\{\gamma: l(\gamma) \leq T\} \sim e^{hT}/hT$.

Ex. 2: $P(-\mathcal{H}) = 0$.

Theorem 3[JP] If X is negatively-curved then for any $\delta > 0$ and $x \neq y$

$$N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right)$$

Here $P(-\mathcal{H}/2)/h \ge K_2/(2K_1) > 0$.

Theorem 4a[JP] X - negatively-curved. For any $\delta > 0$

$$R_x(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right), \ n = 2, 3.$$

Results for $n \ge 4$ involve heat invariants.

$$K = -1 \Rightarrow R_x(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{1}{2} - \delta}\right)$$

Karnaukh, n = 2: estimate above + weaker estimates in variable negative curvature.

Global results: $R(\lambda)$

Randol, n = 2:

$$K = -1 \Rightarrow R(\lambda) = \Omega\left((\log \lambda)^{\frac{1}{2} - \delta}\right), \quad \forall \delta > 0.$$

Theorem 4b[JPT] X - negatively-curved surface (n=2). For any $\delta > 0$

$$R(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right).$$

Conjecture (folklore). On a generic negatively curved surface

$$R(\lambda) = O(\lambda^{\epsilon}) \qquad \forall \epsilon > 0.$$

Selberg, Hejhal: On compact arithmetic surfaces that correspond to quaternionic lattices $R(\lambda) = \Omega\left(\frac{\sqrt{\lambda}}{\log \lambda}\right)$. **Reason:** exponentially high multiplicities in the length spectrum; generically, X has simple length spectrum.

Proof of Theorem 4b: (about $R(\lambda)$). X-compact, negatively-curved surface.

Wave trace on X (even part):

$$e(t) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i}t).$$

Cut-off: $\chi(t,T) = (1 - \psi(t))\hat{\rho}\left(\frac{t}{T}\right)$, where

- $\rho \in \mathcal{S}(\mathbf{R})$, supp $\widehat{\rho} \subset [-1, +1]$, $\widehat{\rho} \geq 0$, even;
- $\psi(t) \in C_0^{\infty}(\mathbf{R})$, $\psi(t) \equiv 1, t \in [-T_0, T_0]$, and $\psi(t) \equiv 0, |t| \geq 2T_0$.

In the sequel, $T = T(\lambda) \to \infty$ as $\lambda \to \infty$. Let

$$\kappa(\lambda, T) = \frac{1}{T} \int_{-\infty}^{\infty} e(t) \chi(t, T) \cos(\lambda t) dt$$

Key microlocal result:

Proposition 5. Let $T = T(\lambda) \le \epsilon \log \lambda$. Then

$$\kappa(\lambda, T) = \sum_{l(\gamma) \le T} \frac{l(\gamma)^{\#} \cos(\lambda l(\gamma)) \cdot \chi(l(\gamma), T)}{T \sqrt{|\det(I - \mathcal{P}_{\gamma})|}}$$

+O(1), where

• γ - closed geodesic; $l(\gamma)$ - length; $l(\gamma)^{\#}$ - primitive period; \mathcal{P}_{γ} - Poincaré map.

Long-time version of the "wave trace" formula of Duistermaat and Guillemin, microlocalized to shrinking neighborhoods of closed geodesics. Allows to isolate contribution from a **growing number** of closed geodesics with $l(\gamma) \leq T(\lambda)$ to $\kappa(\lambda, T)$ as $\lambda, T(\lambda) \to \infty$.

Proof - separation of closed geodesics in phase space + small-scale microlocalization near closed geodesics.

Dynamical result ("spaghetti lemma"): Let X - compact, negatively curved manifold. $\Omega(\gamma,r)$ - neighborhood of γ in S^*X of radius r. There exist constants B>0, a>0 s.t. for all closed geodesics on X with $l(\gamma)\in [T-a,T]$, the neighborhoods $\Omega(\gamma,e^{-BT})$ are disjoint, provided $T>T_0$.

Radius $r=e^{-BT}$ is exponentially small in T, since the number of closed geodesic grows exponentially.

Question: is Lemma true without assuming that $l(\gamma) \in [T-a,T]$, i.e. that the lengths are close to each other?

Lemma 6. If
$$R(\lambda) = o((\log \lambda)^b)$$
, $b > 0$ then $\kappa(\lambda, T) = o((\log \lambda)^b)$.

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

Consider the sum

$$S(T) = \sum_{l(\gamma) \le T} \frac{l(\gamma)}{\sqrt{|\det(I - \mathcal{P}_{\gamma})|}}$$

 \mathcal{P}_{γ} preserves stable and unstable subspaces. Dimension 2: eigenvalues are $\exp\left[\pm\int_{\gamma}\mathcal{H}(\gamma(s),\gamma'(s))ds\right]$.

$$\mathcal{P}_{\gamma}-Id$$
 is conjugate to
$$\left(egin{array}{ccc} \exp\left[\int_{\gamma}\mathcal{H}
ight]-1 & 0 \ 0 & \exp\left[-\int_{\gamma}\mathcal{H}
ight]-1 \end{array}
ight)$$

Thus, S(T) is asymptotic to

$$\sum_{l(\gamma) \leq T} l(\gamma) \exp \left[-\frac{1}{2} \int_{\gamma} \mathcal{H} \right].$$

Results of Parry and Pollicott ⇒

Theorem 7. As $T \to \infty$,

$$S(T) \sim \frac{e^{P\left(-\frac{\mathcal{H}}{2}\right) \cdot T}}{P(-\mathcal{H}/2)}$$

Here
$$P\left(-\frac{\mathcal{H}}{2}\right) \geq (n-1)K_2/2$$
.

Dirichlet box principle \Rightarrow "straighten the phases:" $\exists \lambda$ s.t.

$$cos(\lambda l(\gamma)) > \nu > 0, \ \forall \gamma : l(\gamma) \leq T.$$

 $(\lambda l(\gamma))$ close to $2\pi \mathbf{Z}$. This combined with Theorem 7 shows that $\exists \lambda, T$ s.t.

$$\kappa(\lambda, T) \sim \frac{\exp[P\left(-\frac{\mathcal{H}}{2}\right)T(1-\delta/2)]}{T}$$

This leads to contradiction with Lemma 6. Q.E.D.

For Dirichlet principle need $T \simeq \ln \ln \lambda$, So, get logarithmic lower bound in Theorem 4b.

Proof of Theorem 3: $N(x, y, \lambda)$

Wave kernel on X:

$$e(t, x, y) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i} t) \phi_i(x) \phi_i(y),$$

fundamental solution of the wave equation $(\partial^2/\partial t^2 - \Delta)e(t,x,y) = 0$, $e(0,x,y) = \delta(x-y)$, $(\partial/\partial t)e(0,x,y) = 0$.

$$k_{\lambda,T}(x,y) = \int_{-\infty}^{\infty} \frac{\psi(t/T)}{T} \cos(\lambda t) e(t,x,y) dt$$

Lemma 5a If $N_{x,y}(\lambda) = o(\lambda^a (\log \lambda)^b)$, where a > 0, b > 0 then

$$k_{\lambda,T}(x,y) = o(\lambda^a(\log \lambda)^b).$$

Pretrace formula. M - universal cover of X, no conjugate points, E(t,x,y) be the wave kernel on M. Then for $x,y \in X$, we have

$$e(t, x, y) = \sum_{\omega \in \pi_1(X)} E(t, x, \omega y)$$

Hadamard Parametrix for $E(t, x, y) \Rightarrow$

$$K_{\lambda,T}(x,y) \sim_{\lambda \to \infty} Q_1 \lambda^{\frac{n-1}{2}} \times \sum_{\omega \in \pi_1(X): d(x,\omega y) \le T}$$

$$\frac{\psi\left(\frac{d(x,\omega y)}{T}\right)\sin(\lambda d(x,\omega y)+\theta_n)}{\sqrt{Tg(x,\omega y)\,d(x,\omega y)^{n-1}}}+O\left[\lambda^{\frac{n-3}{2}}e^{O(T)}\right].$$

Here $g = \sqrt{\det g_{ij}}$ in normal coordinates, $\theta_n = (\pi/4)(3 - (n \mod 8))$, and $Q_1 \neq 0$.

Pointwise analog of the sum S(T):

$$S_{x,y}(T) = \sum_{\omega: d(x,\omega y) \le T} \frac{1}{\sqrt{g(x,\omega y) d(x,\omega y)^{n-1}}},$$

where $g = \sqrt{\det g_{ij}}$ in normal coordinates at x. $S_{x,y}(T)$ grows at the same rate as S(T).

Reason: let $x,y \in M$, γ - geodesic from x to y, $\xi = (x, \gamma'(0))$, and $\mathrm{dist}(x,y) = r$. Then $\sqrt{g(x,y)r^{n-1}} \ll Jac_{Vert(\xi)}G^r$.

Here $Vert(\xi)\in T_\xi SM$ - vertical subspace; $E^u_\xi\in T_\xi SM$ - unstable subspace at $\xi.$

By properties of Anosov flows,

$$\operatorname{Dist}[DG^r(Vert(\xi)), DG^r(E^u_{\xi})] \le Ce^{-\alpha r}.$$

Therefore,

$$Jac_{Vert(\xi)}G^r \ll Jac_{E\xi^u}G^r = \exp\left[\int_{\gamma} \mathcal{H}\right]$$

Our **local** estimates are not uniform in x, y. Need Proposition 5 to prove **global** estimates.

Heat trace asymptotics:

$$\sum_{i} e^{-\lambda_{i}t} \sim \frac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_{j} t^{j-\frac{n}{2}}, \qquad t \to 0^{+}$$

Local:
$$\mathcal{K}(t, x, x) = \sum_{i} e^{-\lambda_{i} t} \phi_{i}^{2}(x) \sim \frac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_{j}(x) t^{j-\frac{n}{2}},$$

 $a_j(x)$ - local heat invariants, $a_j = \int_X a_j(x) dx$.

 $a_0(x)=1$, $a_0=\operatorname{vol}(X)$. $a_1(x)=\frac{\tau(x)}{6}$, $\tau(x)$ -scalar curvature.

"Heat kernel" estimates:

Theorem 2b[JP] If the scalar curvature $\tau(x) \neq 0, \Longrightarrow R_x(\lambda) = \Omega(\lambda^{n-2}).$ **Global:**[JPT] If $\int_X \tau \neq 0, \Longrightarrow R(\lambda) = \Omega(\lambda^{n-2}).$

Remark: if $\tau(x) = 0$, let k = k(x) be the first positive number such that the k-th local heat invariant $a_k(x) \neq 0$. If n - 2k(x) > 0, then

$$R_x(\lambda) = \Omega(\lambda^{n-2k(x)}).$$

Similar result holds for $R(\lambda)$: if $\int a_k(x)dx \neq 0$ and n-2k>0, then

$$R(\lambda) = \Omega(\lambda^{n-2k}).$$

Oscillatory error term: subtract [(n-1)/2] terms coming from the heat trace:

$$N_x(\lambda) = \sum_{j=0}^{\left[\frac{n-1}{2}\right]} \frac{a_j(x)\lambda^{n-2j}}{(4\pi)^{\frac{n}{2}}\Gamma(\frac{n}{2}-j+1)} + R_x^{osc}(\lambda)$$

Warning: not an asymptotic expansion!

Physicists: subtract the "mean smooth part" of $N_x(\lambda)$.

Theorem 2c[JP] If $x \in X$ is not conjugate to itself along any shortest geodesic loop, then

$$R_x^{osc}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})$$

Theorem 4c[JP] X - negatively-curved. For any $\delta>0$

$$R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right), \ any \ n.$$

If $n \geq 4$ then Theorem 2b, $R_x(\lambda) = \Omega(\lambda^{n-2})$ gives a better bound for $R_x(\lambda)$.

Global Conjecture: X - negatively-curved.

For any $\delta > 0$

$$R^{osc}(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right), \ any \ n.$$