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X" n > 2 - compact. A - Laplacian. Spec-
trum: A¢;, +M\jo; =0, O0=XAg< A1 <\ < ...

Eigenvalue counting function:

N = #{,/x; <A}

Weyl's law: N(\) = Cp,VA" + R(N\), R(\) =
o™ 1. R()\) - remainder.

Spectral function: Let z,y € X.
Nzy(A) =2 o<n i(2)0i(y).

Local Weyl’s law:
Ny y(X) = O(A"1), T 7y,

Nz(\) = Co\™ 4+ Rz (), R:(\) = o\ 1):

Rz(M\) - local remainder. We study lower
bounds for R(\), Rx(A) and Nz y(N).



Notation: f1(\) = Q(f2(N\)), fo > O iff
limsupy o |f1(N)|/f2(X) > 0.

Theorem 1[JP] If x,y € X are not conjugate
along any shortest geodesic joining them, then

Noy(A) = Q (/\”T_l) |

Theorem 2[JP] If z € X is not conjugate to
itself along any shortest geodesic loop, then

Ro(\) = Q(\"2)

Other results in dimension n > 2 involve heat
invariants.

Example: flat square 2-torus
Aj = 47r2(n% —I—n%), ni,no € 7
¢;(x) = 2milmeitnora) g = (z1,25)

[9j(z)] =1 = N(A) = Nz(X)



Gauss circle problem: estimate R()\).
Theorem 2 = R\ = Q(V)) -
Hardy—Landau bound. Theorem 2 general-
izes that bound for the local remainder.

Hardy’s conjecture: R()\) < \1/2t¢€ ve > 0.
11 2.26
Huxley: R()\) < A208 (log \)<<°.

Negative curvature. Suppose sectional cur-
vature satisfies
-K{ < K(¢,n) < -K3

Theorem (Berard): R,(\) = O\ 1/log))
Conjecture (Randol): On a negatively-curved

1
surface, R(\) = O(\2T9). Randol proved an
integrated (in X\) version for Nz ().



Theorem (Karnaukh) On a negatively curved
surface

-+ logarithmic improvements discussed below.
Karnaukh'’s results (unpublished 1996 Prince-
ton Ph.D. thesis under the supervision of P.
Sarnak) served as a starting point and a moti-
vation for our work.

Thermodynamic formalism: G! - geodesic
flow on SX, £ € SX, Tg(SX) = Eg @EE‘@EO,
e dim Eg = n — 1 : stable subspace, exponen-
tially contracting for GU:

e dim Eg — n—1 : unstable subspace, exponen-
tially contracting for G~ ¢;

e dim E¢ = 1: tangent subspace to Gt

Sinai-Ruelle-Bowen potential ' H: SM — R:

d
H(E) = | _ Indet th|Eg



Topological pressure P(f) of a Holder func-
tion f: SX — R satisfies (Parry, Pollicott)

()T

P(f)
~ - geodesic of length I(v). P(f) is defined as

> U(y)exp M f(v(S),v’(S))deS] ~

I(v)<T

P(f) =sup (hu+ [ fdu),

p is Gl-invariant, h;, - (measure-theoretic) en-
tropy.

Ex 1. P(0) = h - topological entropy of
Gt. Theorem (Margulis): #{v : I(y) < T} ~
el /nT.

Ex. 2: P(—H) = 0.

Theorem 3[JP] If X is negatively-curved then
for any 6 >0 and z # y

n—1 P(=H/2)
Nzy(N) = Q (/\T (log\) ™~ % —5)



Here P(—H/2)/h > K>/(2K1) > 0.

Theorem 4a[JP] X - negatively-curved. For
any 6 >0

P(— H/2) _5
Rx(A)=Q<>\ = (log \) ) n=23
Results for n > 4 involve heat invariants.
n—1 1
K=-1 = R;(\) = <>\T (log A)§_5)

Karnaukh, n = 2: estimate above + weaker
estimates in variable negative curvature.

Global results: R(\)

Randol, n = 2:

K=-1=R(\) =0 ((Iog /\)%—5) Vs> o.

Theorem 4b[JPT] X - negatively-curved sur-
face (n =2). For any § >0

R(\) =Q ((IogA) 2 5).




Conjecture (folklore). On a generic nega-
tively curved surface

R(\) = 0()\9) Ve > 0.

Selberg, Hejhal: On compact arithmetic sur-
faces that correspond to quaternionic lattices

R\ =Q (lo\g\). Reason: exponentially high

multiplicities in the length spectrum; generi-
cally, X has simple length spectrum.

Proof of Theorem 4b: (about R()\)). X-
compact, negatively-curved surface.

Wave trace on X (even part):

e(t) = icos(@t).
1=0



Cut-off: x(¢t,7) = (1 — ¢(t>)p( )
e peS(R), suppp C [-1,4+1], p > 0, even;
c [-T;

o Y(t) € C°(R), o(t) = 1,t
¢(t) =0, |t| > 21p.

In the sequel, T =T(\) — oo as A — oco. Let

KOLT) = % |7 etyx(t, T cos(rty

— OO
Key microlocal result:

Proposition 5. Let T=T()\) <elogA. Then

> (7)) cos(A\(7)) - x(U(7), T)
[())<T T\/I det(l — Py)|

+0O(1), where
e v - closed geodesic; I(y) - length; I(y)#-
primitive period; P~ - Poincare map.

k(A T) =

LLong-time version of the “wave trace’” for-
mula of Duistermaat and Guillemin, microlo-
calized to shrinking neighborhoods of closed



geodesics. Allows to isolate contribution from
a growing number of closed geodesics with
I(v) <T(A) to k(\,T) as A\, T(\) — oo.

Proof - separation of closed geodesics in phase
space 4+ small-scale microlocalization near closed
geodesics.

Dynamical result (‘“spaghetti lemma”): Let
X - compact, negatively curved manifold. Q(v,r)
- neighborhood of ~ in §*X of radius r. There
exist constants B > 0,a > 0 s.t. for all closed
geodesics on X with I(v) € [T'—a,T], the neigh-
borhoods Q2(~, e~ BT are disjoint, provided T >
To.

Radius r = e 51 is exponentially small in T,
since the number of closed geodesic grows ex-
ponentially.



Question: is Lemma true without assuming
that I(v) € [T — a,T], i.e. that the lengths are
close to each other?

Lemma 6. If R(\) = o((logA\)?), b> 0 then

k(N T) = o((log \)?).

Goal: estimate «(\,T) from below. Need to
extract long exponential sums as the leading
asymptotics of the long-time wave trace ex-
pansion.

Consider the sum

[(y)
S(T) =
MZST Jldet(I —Py)|

P~ preserves stable and unstable subspaces.
Dimension 2: eigenvalues are

exp [+ [, H(v(s),~(s))ds] .



P — Id is conjugate to
exp [fv H} —1 0
0 exp |- [, H| -1

Thus, S(T) is asymptotic to

> I(y)exp [—%LH] .

I(v)T

Results of Parry and Pollicott =
Theorem 7. As T — oo,

Here P (—%) > (n— 1)Ko/2.

Dirichlet box principle = ‘“straighten the phases:”
A s.t.

cos(Al(v)) >v >0, Vy:Il(y) <T.



(Ml () close to 27Z). This combined with The-
orem 7 shows that d\, T s.t.

exp[P (—%) T(1 —§/2)]

T
This leads to contradiction with Lemma 6.

Q.E.D.

k(A T) ~

For Dirichlet principle need T' < Inln X\, S0, get
logarithmic lower bound in Theorem 4b.



Proof of Theorem 3: N(z,y,\)

Wave kernel on X:

e(tiy) = 3 cos(y/Nt)pi(x)bi(y).
1=0

fundamental solution of the wave equation
(02/0t? — A)e(t,z,y) = 0, e(0,z,y) = §(z —y),
(0/0t)e(0,z,y) = 0.

kxr(z,y) = /_O; (/1)

T

cos(At)e(t, z,y)dt

Lemma 5a If N ,()\) = o(\%(log \)?)), where
a>0,b> 0 then

kx(z,y) = o(A*(log \)")).

Pretrace formula. M - universal cover of X,
no conjugate points, E(t,x,y) be the wave ker-
nel on M. Then for z,y € X, we have

e(t,z,y) = > E(t,z,wy)
wemy(X)



Hadamard Parametrix for E(t,z,y) =

n—1

Ky 1(%,Y) ~aboo Q1A 2 X >
wem1(X):d(x,wy)<T

¥ (A5 sin(d(z, wy) + 0n)
VTg(z,wy) d(z, wy)™

Here g = ,/detg;; in normal coordinates,
0n, = (7/4)(3 — (nmod 8)), and Q1 # 0.

+ O [)\%GO(T)] .

Pointwise analog of the sum S(T):

Sey(T) = 3 1

w:d(x,wy)<T \/g(xa Wy) d(az, wy)n—l

where g = ,/det g;; in normal coordinates at x.
Szy(T) grows at the same rate as S(7T).

Reason: let z,y € M, v - geodesic from x
to y, € = (x,~'(0)), and dist(x,y) = r. Then

\/g(w,y)r”_l L Jacy )G




Here Vert(€) € T:SM - vertical subspace; Eg C
TgsM - unstable subspace at €.

By properties of Anosov flows,

Dist[DG" (Vert(£)), DGT(Eg)] < Ce .

T herefore,

Jacvert(g)GT K JacEquT = exp [[y H]

Our local estimates are not uniform in z,y.
Need Proposition 5 to prove global estimates.

Heat trace asymptotics:

—Ait —5 +
Ze (47r)”/2 Za, 2, t— 0

1

Local Kt,z,z) = ZZ _>‘it¢i2(:v) ~

(4w )n/2 Z] =0 J<w)t



a;(x) - local heat invariants, a; = [y a;(z)dz.

ao(@) = 1, ag = vol(X). a1(z) = &, 7(a) -
scalar curvature.

‘“‘Heat kernel” estimates:

Theorem 2b[JP] If the scalar curvature
m(z) # 0,== Rx()\) = Q(\"~2).
Global:[JPT] If [y 7 # 0,= R()\) = Q(\"2).

Remark: if 7(z) =0, let k = k(x) be the first
positive number such that the k-th local heat
invariant ai(z) # 0. If n — 2k(z) > 0, then

Rz()\) = QA 2k(2)y,

Similar result holds for R(\): if [ap(x)dx #= O
and n — 2k > 0, then

R\ = QA" 2k,



Oscillatory error term: subtract [(n — 1)/2]
terms coming from the heat trace:

R IO + Ro%C(N)

Ni(N) = _ T
N) 2.j=0 (4m)2r (B—j+1)

Warning:. not an asymptotic expansion!

Physicists: subtract the “mean smooth part”
of Nz()\).

Theorem 2c[JP] If x € X is not conjugate to
itself along any shortest geodesic loop, then

RO*(N) = QA7)

Theorem 4c[JP] X - negatively-curved. For
any 6 >0
RO%¢()\) = Q ()\ > (log \)— h

P(— H/2) 5)
, any mn.

If n > 4 then Theorem 2b, Rz(\) = Q(\"~2)
gives a better bound for R;()\).



Global Conjecture: X - negatively-curved.
For any § > 0O
P(—H/2)

ROS¢(A\) = Q ((Iog A R _5> , any n.




