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The Laplacian ∆ of a function f is given by

∆f = div(gradf).

An eigenfunction φ with eigenvalue λ ≥ 0 sat-
isfies

∆f + λf = 0.

Example 1: R2.

∆f =
∂2f

∂x2
+

∂2f

∂y2
.

Periodic eigenfunctions on the 2-torus T2:
f(x± 2π, y ± 2π) = f(x, y). They are

sin(m ·x+n ·y), cos(m ·x+n ·y), λ = m2+n2.

Fact: any square-integrable function F (x, y)
on T2 (s.t.

∫
T2 |F (x, y)|2dxdy < ∞), can be

expanded into Fourier series,

F =
+∞∑

m,n=−∞
am,n sin(mx+ny)+bm,n cos(mx+ny).



Example 2: sphere S2 = {(x, y, z) : x2 + y2 +
z2 = 1}. Spherical coordinates: (φ, θ) ∈ [0, π]×
[0,2π], where x = sinφ cos θ, y = sinφ sin θ, z =
cosφ.

∆f =
1

sin2 φ
· ∂

2f

∂θ2
+

cosφ

sinφ
· ∂f

∂φ
+

∂2f

∂φ2

Eigenfunctions are called spherical harmonics:

Y m
l (φ, θ) = Pm

l (cosφ)(a cos(mθ) + b sin(mθ)).

Here λ = l(l + 1); Pm
l , |m| ≤ l is associated

Legendre function,

Pm
l (x) =

(−1)m

2l · l! (1− x2)
m
2

dl+m

dxl+m

(
(x2 − 1)l

)
.

Any square-integrable function F on S2 can be
expanded in a series of spherical harmonics.

The same is true on any compact (e.g. closed
and bounded) curved surface S: any square-
integrable function F on S can be expanded in
a series of eigenfunctions of ∆.

Similar results hold in higher dimensions, and
for domains with boundary.



Applications: Solving partial differential equa-
tions like heat equation ∂u(x, t)/∂t = c·∆xu(x, t)
and wave equation ∂2u(x, t)/∂t2 = c ·∆xu(x, t).

Stationary solutions of Schrödinger equation
or “pure quantum states.”

Inverse problems: suppose you know some eigen-
values and eigenfunctions; describe the domain
S (related problems appear in radar/remote
sensing, x-ray/MRI, oil/gas/metal exploration
etc).

Mathematical Problems:

• Determine the smallest λ > 0 for a given sur-
face S (its “bass note”), and the corresponding
eigenfunction.
• “Can you hear the shape of a drum:” can two
different domains S have the same spectrum,
e.g. the collection of all {0 ≤ λ1 ≤ λ2 ≤ . . .}?
• Count the eigenvalues: N(T ) = #{λj < T}.
How fast does N(T ) grow as T →∞?



Example: 2-torus T2: λm,n = m2 + n2. Let
T = R2. Then

N(R2) = #{(m, n) : m2 + n2 < R2} =

#{(m, n) :
√

m2 + n2 < R}.
How many lattice points are inside the circle of
radius R? Leading term is given by the area:

N(R2) = πR2 + E(R), (1)

where E(R) is the remainder.

Question: How big is E(R)? Conjecture (Hardy):
for any δ > 0,

E(R) < C(δ) ·R1/2+δ, as R →∞.

Best known estimate (Huxley, 2003):

E(R) < C ·R131/208(logR)2.26.

Note: 131/208 = 0.629807....

An analogue of (1) holds for very general do-
mains; it is called Weyl’s law (Weyl, 1911).
Much less is known about E(R).



Questions about eigenfunctions: Let

∆f + λf = 0, λ-large (“high energy”).

•Where is f concentrated, i.e. describe {(x, y) :

|f(x, y)| is large}?
Ex: on some domains with boundary, “whis-

pering gallery” eigenfunctions concentrate near

the boundary.

• Nodal sets: study {(x, y) : f(x, y) = 0}. This

will generally be a curve, or a union of curves.

First pictures: Chladni plates (E. Chladni, 18th

century; see google video links on my home

www-page).

Ex: On T2, function f(x, y) = sin(mx) sin(ny)

vanishes on a rectangular grid:

{(x, y) : x = πj/m, or y = πk/n}.
In general, much less is known about nodal

sets.


