
Spectra, dynamical systems, and geometry

SMS, Geometric and Computational Spectral
Theory CRM, Montreal

Tuesday, June 23, 2015

Dmitry Jakobson

June 24, 2015



M = S1 = R/(2πZ) - a circle. f (x) - a periodic function,
f (x + 2π) = f (x).
Laplacian ∆ is the second derivative: ∆f = f ′′. Eigenfunction
φ = φλ with eigenvalue λ ≥ 0 satisfies ∆φ+ λφ = 0. On the
circle, such functions are constants (eigenvalue 0), sin(nx) and
cos(nx), where n ∈ N. Eiegvalues:

(sin(nx))′′ + n2 sin(nx) = 0, (cos(nx))′′ + n2 cos(nx) = 0.

Fact: every periodic (square-integrable) function can be
expanded into Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos(nx) + bn sin(nx)).

Can use them to solve heat and wave equations:



Heat equation describes how heat propagates in a solid body.
Temperature u = u(x , t) depends on position x and time t .

∂u
∂t
− ∂2u
∂x2 = 0.

The initial temperature is

u(x ,0) = f (x) = a0 +
∞∑

n=1

(an cos(nx) + bn sin(nx)).



One can check that
u0(x , t) = a0

and

un(x , t) = (an cos(nx) + bn sin(nx)) · e−n2t , n ≥ 1

are solutions to the heat equation. The general solution with
initial temperature f (x) is given by

∞∑
n=0

un(x , t).



One can also use Fourier series to solve the wave equation

∂2u
∂t2 −

∂2u
∂x2 = 0.

The “elementary” solutions will be

un(x , t) = (an cos(nx) + bn sin(nx))(cn cos(nt) + dn sin(nt)).

This equation also describes the vibrating string (where u is the
amplitude of vibration). Musicians playing string instruments
(guitar, violin) knew some facts about eigenvalues a long time
ago (that’s how music scale was invented).



In Quantum mechanics, eigenfunctions sin(nx) and cos(nx)
describe “pure states” of a quantum particle that lives on the
circle S1. Their squares sin2(nx) and cos2(nx) describe the
“probability density” of the particle.
The probability Pn([a,b]) that the particle φn(x) =

√
2 sin(nx)

lies in the interval [a,b] ⊂ [0,2π] is equal to

1
2π

∫ b

a
|φn(x)|2dx .

Question: How does Pn([a,b]) behave as n→∞?
Answer:

Pn([a,b])→ |b − a|
2π

The particle φn(x) becomes uniformly distributed in [0,2π], as
n→∞.
This is the Quantum Unique Ergodicity theorem on the circle!



Proof: Let h(x) be an observable (test function). To “observe”
the particle φn, we compute the integral

Pn(h) :=
1

2π

∫ 2π

0
h(x)φ2

n(x)dx =
1

2π

∫ 2π

0
h(x) · 2 sin2(nx)dx .

We know that 2 sin2(nx) = 1− cos(2nx). The integral is
therefore equal to

1
2π

∫ 2π

0
h(x)dx − 1

2π

∫ 2π

0
h(x) cos(2nx)dx .

The second integral is proportional to the 2n-th Fourier
coefficient of the function h, and goes to zero by
Riemann-Lebesgue lemma in analysis, as n→∞. Therefore,

Pn(h)→ 1
2π

∫ 2π

0
h(x)dx , as n→∞.



To complete the proof, take h = χ([a,b]), the characteristic
function of the interval [a,b].
Q.E.D.
What happens in higher dimensions, for example if M is a
surface?



Example 1: M is the flat 2-torus T2 = R2/(2πZ)2.

∆f =
∂2f
∂x2 +

∂2f
∂y2 .

Periodic eigenfunctions on the 2-torus T2:
φλ(x ± 2π, y ± 2π) = φλ(x , y). They are

sin(mx) sin(ny), sin(mx) cos(ny),

cos(mx) sin(ny), cos(mx) cos(ny), λ = m2 + n2.



Example 2: M is a domain in the hyperbolic plane H2:

{(x , y) : y > 0}.

The Laplacian is given by

∆f = y2
(
∂2f
∂x2 +

∂2f
∂y2

)
.

Eigenfunctions are functions on H2 periodic with respect to
several isometries of H2 (motions that preserve lengths in the
H2).



Geodesics are shortest paths from one point to another. They
are straight lines in R2, and vertical lines and semicircles with
the diameter on the real axis in H2.



M is a hyperbolic polygon whose sides are paired by
isometries. Here are eigenfunctions of the hyperbolic Laplacian
on the modular surface H2/PSL(2,Z), Hejhal:



I Curvature: Take a ball B(x , r) centred at x of radius r in
M. Then as r → 0, its area satisfies

Area(B(x , r)) = πr2
[
1− K (x)r2

12
+ ...

]
The number K (x) is called the Gauss curvature at x ∈ M.

I Flat: In R2, we have K (x) = 0 for every x .
I Negative curvature: In H2, K (x) = −1 for every x . So, in

H2 circles are bigger than in R2.
I Positive curvature: On the round sphere S2, K (x) = +1

for all x . So, in S2 circles are smaller than in R2.
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I Geodesic flow: start at x ∈ M, go with unit speed along
the unique geodesic γv in a direction v for time t ; stop at a
point y on γv . Let w be the tangent vector to γv at y . Then
by definition the geodesic flow Gt is defined by

Gt (x , v) = (y ,w).

I Negative curvature: geodesics never focus: if v1, v2 are
two directions at x , and
Gt (x , v1) = (y1,w1),Gt (x , v2) = (y2,w2), then the distance
between w1(t) and w2(t) grows exponentially in t .

I If K < 0 everywhere, then geodesic flow is “chaotic:” small
changes in initial direction lead to very big changes after
long time. It is ergodic: “almost all” trajectories become
uniformly distributed.

I Weather prediction is difficult since the dynamical systems
arising there are chaotic!

I Positive curvature: If K > 0 everywhere, the light rays will
focus (like through a lens).
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I Quantum ergodicity theorem (Shnirelman, Zelditch,
Colin de Verdiere): If K < 0 (and the geodesic flow is
ergodic), then “almost all” eigenfunctions of ∆ become
uniformly distributed. Further work by
Helffer-Martinez-Robert and many others.
There may be exceptional sequences of eigenfunctions
that do not become uniformly distributed (“strong scars”),
but these sequences are “thin.”

I If all eigenfunctions become uniformly distributed (no
exceptions!), then quantum unique ergodicity (or QUE)
holds. Example: S1.

I Conjecture (Rudnick, Sarnak): QUE holds on
negatively-curved manifolds; this includes hyperbolic
surfaces.
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Theorem (Lindenstrauss; Soundararajan, Holowinsky): QUE
holds for arithmetic hyperbolic surfaces.
Arithmetic hyperbolic surfaces are very symmetric hyperbolic
polygons M, coming from very special hyperbolic isometries.
Strong results for non-arithmetic manifolds established by
Anantharaman, Nonnenmacher, Koch, Riviere, and others.

Eisenstein series are (averaged) hyperbolic plane waves on
non-compact hyperbolic surfaces.
QE for Eisenstein series on non-compact finite area hyperbolic
surfaces: Zelditch. QUE on arithmetic finite area hyperbolic
surfaces: Luo, Sarnak, Jakobson.
Infinite area hyperbolic surfaces: Guillarmou, Naud, Dyatlov.



Billiards:
QE theorem holds for billiards (bounded domains in R2); proved
by Gerard-Leichtnam, Zelditch-Zworski. Geodesic flow is
replaced by the billiard flow: move along straight line until the
boundary; at the boundary, angle of incidence equals angle of
reflection.



Ergodic planar billiards: Sinai billiard and Bunimovich stadium



Ergodic eigenfunction on a cardioid billiard.



Ergodic eigenfunction on the stadium billiard:



Theorem (Hassell): QUE conjecture does not hold for the
(Bunimovich) stadium billiard.
Exceptions: “bouncing ball” eigenfunctions, (they have density
0 among all eigenfunctions, so QE still holds).



Random wave conjectures for high energy eigenfunctions on
negatively curved manifolds : value distribution (suitably
normalized) converges to the standard Gaussian. Equivalently,
after normalizing

∫
M φ2

λ = 1, we have∫
M

(φλ)2k+1 → 0, as λ→∞

and ∫
M

(φλ)2k → 1√
2π

∫ ∞
−∞

x2k e−x2/2dx .

Numerical studies: Hejhal-Rackner, Steiner et al, Barnett, ...
Arithmetic hyperbolic surfaces: Sarnak, Watson, Spinu.



Eisenstein series for Fuchsian groups of the 2nd kind: Patrick
Munroe.
General compact manifolds, supporting results: Canzani,
Eswarathasan, Jakobson, Toth, Riviere. Many proofs use
averaging over spaces of operators.



I Nodal set N (φλ) = {x ∈ M : φλ(x) = 0}, codimension 1 is
M. On a surface, it’s a union of curves.
First pictures: Chladni plates. E. Chladni, 18th century. He
put sand on a plate and played with a violin bow to make it
vibrate.



I Chladni patterns are still used to tune violins.



Rudnick showed that if certain complex-valued eigenfunctions
become equidistributed on hyperbolic surfaces (as in QE), then
the same holds for their nodal sets (which are points). The
question about nodal sets of real-valued eigenfunctions (lines)
is more difficult, and is unsolved.
We end with a movie showing nodal sets.
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