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X" n > 2 - compact. A - Laplacian. Spec-
trum: A¢;, +\io; =0, O0=XAg< A1 << ...

» = ¢y-eigenfunction. Nodal set N(¢) ;= {x €
X  ¢(x) = 0}. Critical set X(¢) = {x €
X : Vo(x) = 0} (gradient vanishes). >q(¢) =
N(p) N ().

> o(¢) has locally finite (n—2)-dimensional Haus-
dorff measure (Hardt, M. and T. Hoffmann-
Ostenhof, Nadirashvili, 1999). The set N(¢) \
> o(¢) is (n—1)-dimensional submanifold of X.

Theorem 1 (Donnelly, Fefferman, 1988). (X, g)
real-analytic, then dcq,co > 0 s.t.
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Conjecture (Yau). The same estimate should
hold for smooth metrics g. In dimension 2,



VA < HP LNV ())) < eaX3/4 (Briining, 1978;
D-F, 1990).

Conjecture holds for random linear combina-
tions of eigenfunctions (Berard, Rudnick-Wigman).

N(¢y) is (C/v/N)-dense: 3C > 0 s.t.

Vy e X, B(y,C/VA)NN(y) # 0.
C/+v/X-"“wavelength.”

What about neighborhoods of nodal sets? A
d-neighborhood of N (¢)) is the set

T(X\,0) :={z € X : dist(z,N(9))) < d}.

Theorem 2 (J-Mangoubi, 2007). (M, g)-real-
analytic. decqi,cp,c3 > 0 s.t.
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Proof: in dimension 2 (M. Sodin); easier
than n > 2. Cover X by “small” cubes A; of



size /3 and “large” cubes B; of size ¢; every
cube intersects a bounded number of other
cubes.

areaT'(\,8) < C > area(A;).
ANN (¢))ZE0

@-small cube, @q-concentric large cube, Q@ N
N(¢y) = 0. Two cases:
(i) all connected components of N(¢)) N Q
don’'t intersect 0Q’;
(ii) some connected component of N(¢,) NQ
intersects 9Q’.

In case (ii), length(N (o)) N Q") > §/3. So,
number of small cubes is <« length(WN,)/§ <
C+v/)\/8, hence the sum of their areas is < CvVAS
by [D-F].

In case (i), Q' contains at least one nodal do-
main D of ¢, whose area is > C/\ by Faber-



Krahn inequality. By the isoperimetric inequal-
ity, the length(oD) > C/v/X > C4§. By the pre-
vious argument, the sum of the areas of cubes
of type (i) is < CV)\J. QED

For n > 3, the proof is more difficult, involves
carefully adapting the proof in [D-F].

Application to approximation by nodal sets:
How fast can one approximate a “typical’ point
on X by nodal sets of eigenfunctions?

Number theory motivation: X = [0, n] with
Dirichlet b.c. ¢.(z) = sin(kz), A\, = k2. Nodal
set: N(¢r) = {nj/k,0 < j < k}. Approxima-
tion (after rescaling by ) reduces to approxi-
mating real numbers by rational numbers.

Prop. Let x € [0, 1], p/g-continued fraction of
z. Then |z —p/q| < 1/¢°. Also, Ve > 0 and
vC > 0,

Pj C
meas {z : |z — L <5ron<@e<..}=0
qj 4;



Want: analogue of the previous estimate for
nodal sets.

Proof for S1: Fix C,e > 0. Then
c )| 2c
q2—|-e T ql—l—e'

b
x PR —
q
Then since 3, meas(Ay) < oo, by Borel-Cantelli

lemma

<

meas Aq := meas {a: :

meas{z : x € Ay for inf. many q} = 0.

On a manifold: fix a basis {¢,} of L?(X).

Theorem 3 (J-Mangoubi, 2007): (X, g) real-
analytic. Then VC > 0,Ve > 0,

C
"\(n+14¢€)/2

vol{azeX:B<a: )ﬂN(qﬁA)#@

for inf. many A} = 0.



Proof. Let §()\) = C/A("t1+6)/2 in Theorem
2. Then by Theorems 1 and 2,

Cc1 c2
A(n+e)/2 A(n+e)/2

Weyl's law = A\ ~ ck?/™ as k — co. SO,

<volT(A6(N)) <

Zvol TN, 5(N)) < Z kl—l—e/n < 00.

Appllcatlon of BoreI-Cantelll lemma finishes the
proof.

Remark. For smooth metrics in dimension 2,

it follows from [D-F], 1990 that
C
area {xeX:B( 7/4+>HN(¢>\)7&®

for inf. many A} = 0.

Further problems:
e Study curvature of N (o).
e Determine the rate of approximation by nodal



set for a typical point x € X, i.e. find EF =
supb > 0 s.t.

vol{z € X : d(z,N($))) < C/N° inf. often} > 0.

Theorem 3 = on real-analytic (X,g), 1/2 <
E<(n4+1)/2

Conjecture. If we can separate variables on X
(e.g. completely integrable systems: surface
of revolution, Liouville torus etc), then EF =
1. Explanation: if dimX = 1, then £ = 2
(continued fractions). For separable systems,
after a change of coordinates nodal sets form a
grid of hyperplanes, so approximation reduces
to 1-dimensional problems. Can prove for the
case of generic rectangular torus with Dirichlet
b.cC.

Nodal domain of ¢, is a connected component

of X\N(¢)\)



Theorem (Courant). Let A¢p+ Ao = 0,0 <
A1 < A < ... Then the number of nodal do-
mains of ¢, is <k 4+ 1.

The constant was improved by Pleijel (1956).

Examples with few nodal domains: Courant,
[0,1] x [0,1] with Dirichlet b.c; T2, sin(nz +
y),n — oo; 52, H. Lewy (1977): 2 nodal do-
mains for spherical harmonics of odd degree,
and 3 nodal domains for for spherical harmon-
ics of even degree.

Random spherical harmonic has disjoint nodal
lines (Neuheisel, 1994). Also, N(¢,) is invari-
ant under the antipodal map on S<.

Theorem 4 (Eremenko-J-Nadirashvili, 2006).
Let 0O < m < n, and let n—m be even. For every
set of m disjoint closed curves on the sphere,
whose union FE is invariant with respect to the



antipodal map, there exists an spherical har-
monic of degree n whose zero set is equivalent
(homeomorphic) to FE.

Remark: It is interesting to determine the
smallest degree n for which a given configu-
ration of m nodal lines appears. Can probably
expect m ~ 4/n, since e.g. random spherical
harmonic of degree n has ~ cn? nodal domains
(Nazarov-Sodin, 2006).

Proof uses a related result about nodal sets
of harmonic polynomials. A nodal set N(P) is
an embedded forest in R? (existence of a cycle
would contradict maximum principle). Also, all
finite vertices have even degrees (count sign
changes of P as you go around a vertex).



Theorem 5 (E-J-N, 2006). Let F' be an em-
bedded forest with 2n leaves and such that all
its vertices in the plane are of even degrees.
Then there exists a harmonic polynomial P of
degree n whose zero set is equivalent to F.

Theorem 4 follows from a special case when
every tree has only one edge. This case can
be derived from Belyi's theorem.

Theorem 5 = Theorem 4: choose a harmonic
whose nodal set in the upper hemisphere is
equivalent to the nodal set of P.

Proof of Theorem 5 uses methods due to Ere-
menko and Gabrielov.

Question: ¢-spherical harmonic of degree n.
How many disjoint components can N (¢) have?
In standard examples, N (¢) is connected.



There are examples (E-J-N, 2006) with ~ n?/4
disjoint components. Example (even n):
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South Pole

Y + Y9 o R; o denotes positive sign of Yo R
at singular points of Yg.

Function on a wavelength scale.

Let A¢d + Ao = 0. After a (local) change of
variables y = zv/\, we get a function ¢ sat-
isfying Ay + ¢ = 0, where A is the planar



Laplacian. Nodal structure of ¢ models that
of ¢ on a scale of several wavelengths.

Theorem 6 (E-J-N, 2006). There exists a
solution ¥ with exactly two nodal domains in
the whole R2.

Proof. In polar coordinates * = rcosf,y =
rsind, let f(x,y) ;= J1(r)sinf and let g(x,y) =
f(x — 81,y — 62), where 0 < d» < 1 are small.
Then f(z,y) +eg(x,y) has two nodal domains.

e denotes positive sign of g at singular points
of f, o denotes negative sign of g at singular
points of f.



