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Xn, n ≥ 2 - compact. ∆ - Laplacian. Spec-

trum: ∆φi + λiφi = 0, 0 = λ0 < λ1 ≤ λ2 ≤ . . .

φ = φλ-eigenfunction. Nodal set N (φ) := {x ∈
X : φ(x) = 0}. Critical set Σ(φ) := {x ∈
X : ∇φ(x) = 0} (gradient vanishes). Σ0(φ) =

N (φ) ∩Σ(φ).

Σ0(φ) has locally finite (n−2)-dimensional Haus-

dorff measure (Hardt, M. and T. Hoffmann-

Ostenhof, Nadirashvili, 1999). The set N (φ) \
Σ0(φ) is (n−1)-dimensional submanifold of X.

Theorem 1 (Donnelly, Fefferman, 1988). (X, g)

real-analytic, then ∃c1, c2 > 0 s.t.

c1 ≤
Hn−1(N (φλ))√

λ
≤ c2. (1)

Conjecture (Yau). The same estimate should

hold for smooth metrics g. In dimension 2,



c1
√

λ ≤ Hn−1(N (φλ)) ≤ c2λ3/4 (Brüning, 1978;
D-F, 1990).

Conjecture holds for random linear combina-
tions of eigenfunctions (Berard, Rudnick-Wigman).

N (φλ) is (C/
√

λ)-dense: ∃C > 0 s.t.

∀y ∈ X, B(y, C/
√

λ) ∩N (φλ) 6= ∅.
C/
√

λ-“wavelength.”

What about neighborhoods of nodal sets? A
δ-neighborhood of N (φλ) is the set

T (λ, δ) := {x ∈ X : dist(x,N (φλ)) < δ}.
Theorem 2 (J-Mangoubi, 2007). (M, g)-real-
analytic. ∃c1, c2, c3 > 0 s.t.

∀δ <
c3√
λ

, c1 ≤
vol(T (λ, δ))

δ
√

λ
≤ c2.

Proof: in dimension 2 (M. Sodin); easier
than n > 2. Cover X by “small” cubes Aj of



size δ/3 and “large” cubes Bj of size δ; every

cube intersects a bounded number of other

cubes.

areaT (λ, δ) ≤ C
∑

Aj∩N (φλ) 6=∅
area(Aj).

Q-small cube, Q1-concentric large cube, Q ∩
N (φλ) 6= ∅. Two cases:

(i) all connected components of N (φλ) ∩ Q

don’t intersect ∂Q′;
(ii) some connected component of N (φλ) ∩ Q

intersects ∂Q′.

In case (ii), length(N (φλ) ∩ Q′) ≥ δ/3. So,

number of small cubes is ¿ length(Nλ)/δ ≤
C
√

λ/δ, hence the sum of their areas is ≤ C
√

λδ

by [D-F].

In case (i), Q′ contains at least one nodal do-

main D of φλ, whose area is ≥ C/λ by Faber-



Krahn inequality. By the isoperimetric inequal-
ity, the length(∂D) ≥ C/

√
λ ≥ Cδ. By the pre-

vious argument, the sum of the areas of cubes
of type (i) is ≤ C

√
λδ. QED

For n ≥ 3, the proof is more difficult, involves
carefully adapting the proof in [D-F].

Application to approximation by nodal sets:
How fast can one approximate a “typical” point
on X by nodal sets of eigenfunctions?

Number theory motivation: X = [0, π] with
Dirichlet b.c. φk(x) = sin(kx), λk = k2. Nodal
set: N (φk) = {πj/k,0 ≤ j ≤ k}. Approxima-
tion (after rescaling by π) reduces to approxi-
mating real numbers by rational numbers.

Prop. Let x ∈ [0,1], p/q-continued fraction of
x. Then |x − p/q| < 1/q2. Also, ∀ε > 0 and
∀C > 0,

meas {x :

∣∣∣∣∣x−
pj

qj

∣∣∣∣∣ <
C

q2+ε
j

, q1 < q2 < . . . } = 0.



Want: analogue of the previous estimate for

nodal sets.

Proof for S1: Fix C, ε > 0. Then

meas Aq := meas

{
x :

∣∣∣∣∣x−
p

q

∣∣∣∣∣ <
C

q2+ε

}
=

2C

q1+ε
.

Then since
∑

q meas(Aq) < ∞, by Borel-Cantelli

lemma

meas{x : x ∈ Aq for inf. many q} = 0.

On a manifold: fix a basis {φλ} of L2(X).

Theorem 3 (J-Mangoubi, 2007): (X, g) real-

analytic. Then ∀C > 0, ∀ε > 0,

vol {x ∈ X : B

(
x,

C

λ(n+1+ε)/2

)
∩N (φλ) 6= ∅

for inf. many λ} = 0.



Proof. Let δ(λ) = C/λ(n+1+ε)/2 in Theorem

2. Then by Theorems 1 and 2,

c1

λ(n+ε)/2
≤ vol T (λ, δ(λ)) ≤ c2

λ(n+ε)/2

Weyl’s law ⇒ λk ∼ ck2/n as k →∞. So,

∑

λ

vol T (λ, δ(λ)) ≤
∞∑

k=1

C

k1+ε/n
< ∞.

Application of Borel-Cantelli lemma finishes the

proof.

Remark. For smooth metrics in dimension 2,

it follows from [D-F], 1990 that

area {x ∈ X : B

(
x,

C

λ7/4+ε

)
∩N (φλ) 6= ∅

for inf. many λ} = 0.

Further problems:

• Study curvature of N (φ).

• Determine the rate of approximation by nodal



set for a typical point x ∈ X, i.e. find E =

sup b > 0 s.t.

vol{x ∈ X : d(x,N (φλ)) < C/λb inf. often} > 0.

Theorem 3 ⇒ on real-analytic (X, g), 1/2 ≤
E ≤ (n + 1)/2.

Conjecture. If we can separate variables on X

(e.g. completely integrable systems: surface

of revolution, Liouville torus etc), then E =

1. Explanation: if dimX = 1, then E = 2

(continued fractions). For separable systems,

after a change of coordinates nodal sets form a

grid of hyperplanes, so approximation reduces

to 1-dimensional problems. Can prove for the

case of generic rectangular torus with Dirichlet

b.c.

Nodal domain of φλ is a connected component

of X \ N (φλ).



Theorem (Courant). Let ∆φk+λkφk = 0,0 <

λ1 ≤ λ2 ≤ . . . Then the number of nodal do-

mains of φk is ≤ k + 1.

The constant was improved by Pleijel (1956).

Examples with few nodal domains: Courant,

[0,1] × [0,1] with Dirichlet b.c; T2, sin(nx +

y), n → ∞; S2, H. Lewy (1977): 2 nodal do-

mains for spherical harmonics of odd degree,

and 3 nodal domains for for spherical harmon-

ics of even degree.

Random spherical harmonic has disjoint nodal

lines (Neuheisel, 1994). Also, N (φλ) is invari-

ant under the antipodal map on S2.

Theorem 4 (Eremenko-J-Nadirashvili, 2006).

Let 0 < m ≤ n, and let n−m be even. For every

set of m disjoint closed curves on the sphere,

whose union E is invariant with respect to the



antipodal map, there exists an spherical har-

monic of degree n whose zero set is equivalent

(homeomorphic) to E.

Remark: It is interesting to determine the

smallest degree n for which a given configu-

ration of m nodal lines appears. Can probably

expect m ∼ √
n, since e.g. random spherical

harmonic of degree n has ∼ cn2 nodal domains

(Nazarov-Sodin, 2006).

Proof uses a related result about nodal sets

of harmonic polynomials. A nodal set N (P ) is

an embedded forest in R2 (existence of a cycle

would contradict maximum principle). Also, all

finite vertices have even degrees (count sign

changes of P as you go around a vertex).



Theorem 5 (E-J-N, 2006). Let F be an em-

bedded forest with 2n leaves and such that all

its vertices in the plane are of even degrees.

Then there exists a harmonic polynomial P of

degree n whose zero set is equivalent to F .

Theorem 4 follows from a special case when

every tree has only one edge. This case can

be derived from Belyi’s theorem.

Theorem 5 ⇒ Theorem 4: choose a harmonic

whose nodal set in the upper hemisphere is

equivalent to the nodal set of P .

Proof of Theorem 5 uses methods due to Ere-

menko and Gabrielov.

Question: φ-spherical harmonic of degree n.

How many disjoint components can N (φ) have?

In standard examples, N (φ) is connected.



There are examples (E-J-N, 2006) with ∼ n2/4

disjoint components. Example (even n):

North  Pole

South  Pole

Y 3
6 + εY 6

6 ◦R; • denotes positive sign of Y 6
6 ◦R

at singular points of Y 3
6 .

Function on a wavelength scale.

Let ∆φ + λφ = 0. After a (local) change of

variables y = x
√

λ, we get a function ψ sat-

isfying ∆ψ + ψ = 0, where ∆ is the planar



Laplacian. Nodal structure of ψ models that

of φ on a scale of several wavelengths.

Theorem 6 (E-J-N, 2006). There exists a

solution ψ with exactly two nodal domains in

the whole R2.

Proof. In polar coordinates x = r cos θ, y =

r sin θ, let f(x, y) := J1(r) sin θ and let g(x, y) :=

f(x − δ1, y − δ2), where 0 < δ2 < δ1 are small.

Then f(x, y)+ εg(x, y) has two nodal domains.

(0,0)
+

• denotes positive sign of g at singular points

of f , ◦ denotes negative sign of g at singular

points of f .


