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Abstract. We give upper and lower bounds on the volume of a tubular neigh-
borhood of the nodal set of an eigenfunction of the Laplacian on a real analytic
closed Riemannian manifold M . As an application we consider the question of
approximating points on M by nodal sets, and explore analogy with approxi-
mation by rational numbers.

1. Introduction and Main Results

Let (M, g) be a real analytic closed Riemannian manifold. In the first part of
this paper we give upper and lower bounds on the volume of tubular neighborhoods
of nodal sets. Consider the eigenequation

∆φµ + µ2φµ = 0,

where ∆ is the Laplace–Beltrami operator on M . We denote the nodal set {φµ = 0}
by Nµ. Consider the tubular neighborhood of the nodal set

(1.1) Tµ,δ = {x ∈M : dist(x,Nµ) < δ} .
We prove

Theorem 1.2. Let (M, g) be a real analytic closed Riemannian manifold. Then
there exist C1, C2, C3 > 0 such that

C1µδ ≤ Vol(Tµ,δ) ≤ C2µδ,

whenever µδ ≤ C3.

To put Theorem 1.2 in the right context we recall

Theorem 1.3 ([DF88, Theorem 1.2]). Let (M, g) be a closed real analytic Riemann-
ian manifold. Then, there exist C4, C5 > 0 such that C4µ ≤ Voln−1(Nµ) ≤ C5µ,
where Voln−1 is the (n− 1)-dimensional Hausdorff measure on M .

From this perspective, we see that Theorem 1.2 describes a regularity property
of the nodal set. For example, the upper bound implies that the nodal set does not
have too many needles or very narrow branches, while the lower bound says that
the nodal set doesn’t curve too much.

For the proof of Theorem 1.2 we need to study the behavior of eigenfunctions in
all scales 0 < δ ≤ 1/µ (1/µ is called the wavelength). Roughly, we show that for
most points x, φµ(x) is comparable to the average of φµ on a ball of radius δ centered
at x. This study is the content of Sections 2-6, and it extends the work of Donnelly
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and Fefferman in Section 5 of [DF88], where they consider scales comparable to the
wavelength C1/µ ≤ δ ≤ C2/µ.

Donnelly and Fefferman showed that by considering an analytic continuation
of φµ, one can treat our problem by studying polynomials in dimension one, and
then applying an induction argument. We adopt this approach here. The key
proposition is Proposition 4.4. Most of its proof goes without change from the
proof of Proposition 5.11 in [DF88]. We had to adjust the arguments from [DF88]
in two main points. The first is the proof in dimension one, where we added the
parameter δ to the proofs in [DF88], and showed that everything goes through. The
second is in the proof of Proposition 3.7 where the change of variables argument is
different and more subtle than the parallel argument in [DF88].

The proof of the lower bound in Theorem 1.2 is given in Section 7. It is based
on the behavior of eigenfunctions in scales comparable to the wavelength and on
the Brunn-Minkowski inequality.

The idea of the proof of the upper bound in Theorem 1.2 was suggested to the
authors by C. Fefferman. We give the proof in Section 8. A proof of the upper
bound by different methods can be found in [Yom08]. Our proof is based on the
upper bound in Theorem 1.3 and our study of eigenfunctions in all scales δ ≤ C/µ.

In Section 10 we consider the special case where dim(M) = 2. We show that
the lower bound is true for any smooth surface and the upper bound is true for any
smooth surface which satisfies Yau’s conjecture.

In the second part of the paper we make an attempt to look simultaneously on
the ensemble of nodal sets which belong to different eigenvalues. Consider first a
simple example: Eigenfunctions on M = [0, π] with the standard metric and (say)
with Dirichlet boundary conditions. Then

µk = k, φk(x) = sin(kx), Nk =

{

πj

k
: 0 ≤ j ≤ k

}

.

Accordingly, the set Nk is π/(2k)-dense in M . Interestingly, a similar result holds
on any smooth Riemannian manifold (see e.g. [Brü78]):

Proposition 1.4. There exists C > 0 (which depends only on M, g) such that

B(x,C/µ) ∩ N (φµ) 6= ∅
for any x ∈M and µ > 0.

Here B(x, r) denotes the ball of radius r centered at x ∈ M . Thus Nµ is C/µ-
dense in M .

To study the rate of approximation by Nµ as µ → ∞ in more detail, consider
again the case of M = [0, π] where approximating by points in Nk is equivalent
(after rescaling by π) to approximating by rationals with denominator k. It is
well-known (see e.g. [Khi97]) that the distance from any x ∈ [0, 1] to the m-th
convergent of its continued fraction expansion pm/qm is O(1/q2m). However, the
denominator qm of the m-th continued fraction grows exponentially in m for x /∈ Q

([Khi97]).
Denote by ||x|| the distance from x ∈ R to the nearest integer. The following

proposition can be found in [Khi97] and is proved by an application of the Borel-
Cantelli Lemma.

Proposition 1.5. If
∑

q ψ(q) converges, then for Lebesgue-almost all x, there exist

only finitely many q such that ||qx|| < ψ(q).
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Taking ψ(q) = C/q1+ε in Proposition 1.5 we conclude that

Corollary 1.6. Given C, ε > 0, for Lebesgue-almost all x ∈ [0, 1] the inequality

|x− p/q| < C/q2+ε

has finitely many integer solutions (p, q).

Equivalently, almost all x ∈ M = [0, π] cannot be approximated by points in Nk

to within C/k2+ε infinitely often. We prove an analogous statement for any real
analytic manifold M .

To characterize the rate of approximation by nodal sets, we make the following
definition:

Definition 1.7. Given b > 0 (exponent), and C > 0 (constant), let M(b, C) be the
set of all x ∈ M such that there exists an infinite sequence of eigenvalues µk → ∞
for which

B

(

x,
C

µb
k

)

∩ N (φµk
) 6= ∅.

For example, Proposition 1.4 implies that M(1, C) = M for some C > 0. Also,
Corollary 1.6 implies that for M = [0, π], we have Vol(M(2 + ε, C)) = 0 ∀C, ε > 0.
We prove

Theorem 1.8. Let (M, g) be a closed real analytic Riemannian manifold of dimen-
sion n. Then for any C > 0, ε > 0,

Vol(M(n+ 1 + ε, C)) = 0.

The proof consists of Theorem 1.2, the Borel–Cantelli Lemma and Weyl’s asymp-
totics of eigenvalues.

1.1. A Reader’s Guide. In Sections 2-4 we study eigenfunctions in small scales.
The key proposition is Proposition 4.4, which roughly shows that for most points
x, φµ(x) is comparable to the average of φµ on a ball of radius δ. On a first
reading one may assume this proposition. In Section 5 we show how Proposition 4.4
implies geometric information on the nodal set and its neighborhood. Section 6 is a
technical section which helps us treat the scales δ = C1/µ with C1 large. The results
of Sections 4, 5 and 6 are combined in Section 7 in order to prove the lower bound in
Theorem 1.2. Section 8 gives the line of proof of the upper bound in Theorem 1.2.
On a first reading one may start with this section and move to sections 4 and 5
when necessary. In Section 9 we combine the upper bound in Theorem 1.2 with
Weyl’s Law and the Borel-Cantelli Lemma in order to establish Theorem 1.8. In
Section 10 we discuss Theorem 1.2 for smooth surfaces. In Section 11 we discuss
possible extensions of the approximation result.
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2. Holomorphic Functions in Small Scales - dimension 1

In this section we describe the behavior of holomorphic functions of one variable
in small scales. The proofs in this section follow closely the proofs in section 5
of [DF88].

We denote by Br ⊂ C the disk |z| ≤ r. Suppose F is holomorphic on B3 and
satisfies the following growth assumption:

(2.1) sup
B2

|F | ≤ |F (0)|eC1µ .

Let I ⊂ R denote the interval [−1, 1]. Let 0 < δ < 1/µ be given. We decompose
I into disjoint subintervals of sizes δ < |Iν | < 2δ. Given x ∈ I , we denote by Ix
the subinterval to which x belongs (Ix is defined outside a set of measure 0). We
denote by AvIxF the average of F on Ix. The main proposition of this section is

Proposition 2.2. Assume F satisfies (2.1). For all ε > 0 there exists a subset
Eε ⊆ I of measure |Eε| ≤ C2εµδ such that

1

C3(ε)
≤ |F (x)|

AvIx |F |
≤ C3(ε) ∀x ∈ I \Eε ,

with C3(ε) = e11/ε2

.

Proposition 2.2 generalizes Proposition 5.1 from [DF88]. The main new point
here is the introduction of the parameter δ of the subdivision, while in [DF88] the
size of the subdivision is taken to be comparable to 1/µ. A minor technical differ-
ence is that here we also allow subdivisions with non-fixed size of the subintervals.
This will serve us in the change of variable argument in the proof of Proposition 3.7.

The first step we make is a reduction to polynomials. It is shown in Section 5
of [DF88]

Lemma 2.3 ([DF88, Lemma 5.2]). F has at most C4µ zeroes in B3/2.

Denote the set of zeroes of F in Br by Zr(F ). Fix r < 3/2 close to 3/2 so that F
does not have zeroes on |z| = r. Let P (z) :=

∏

α∈Zr(F )(z−α). P is a polynomial of

degree d ≤ C4µ. Let f(z) = log |P (z)|. The next lemma shows that we can assume
F (z) = P (z).

Lemma 2.4. (i)

|(log |F (x)| − log |F (y)|) − (f(x) − f(y))| ≤ C5 ∀ν∀x, y ∈ Iν .
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(ii)

C6
|P (x)|

AvIx |P |
≤ |F (x)|

AvIx |F |
≤ C7

|P (x)|
AvIx |P |

.

Proof. Let

Br(z, α) =
(z − α)/r

1 − ᾱz/r2

be the Blaschke factor. We write

F (z) = eg(z)
∏

α∈Zr(F )

Br(z, α) .

We calculate

(2.5) log |F (x)| − log |F (y)| = <(g(x) − g(y))+

(log |P (x)| − log |P (y)|) −
∑

α∈Zr(F )

(log |r2 − αx| − log |r2 − αy|) .

The first term on the right hand side of (2.5) is handled by Lemma 5.3 (iii) of [DF88]:

|<(g(x) − g(y))| ≤ max
Iν

|∇<(g)||x− y| ≤ C8µδ .

To bound the third term in the right hand side of (2.5) one should only check
by direct computation that

sup
|x|≤1

|(log |r2 − αx|)′| = sup
|x|≤1

∣

∣

∣

∣

(

< −α
r2 − αx

)∣

∣

∣

∣

≤ 1

r − 1
= C9 .

The conclusion of part (i) of the Lemma follows.
Part (i) says that

∀y ∈ Ix, e−C5
|P (y)|
|P (x)| ≤

|F (y)|
|F (x)| ≤ eC5

|P (y)|
|P (x)| .

It only remains to integrate over Ix in order to conclude part (ii).

We now turn to bound |f(x) − f(y)|. For each ν we decompose f into a good
part and a bad part. Let Aν be the set of all roots α for which dist(α, Iν) < δ.

gν :=
∑

α6∈Aν
log |x− α|, bν :=

∑

α∈Aν
log |x− α|.

We now define bad subsets Ej,ε:

E1,ε := {x ∈ I : |f ′(x)| > 1/(εδ)} , E2,ε := {x ∈ I : ∃α, |x− α| < εδ} ,
E3,ε := ∪{Iν : |Aν | > 1/ε} , E4,ε := ∪{Iν :

∫

Iν
|g′′ν (x)| dx > 1/(εδ)} ,

E5,ε := E1,ε ∪E2,ε ∪ E3,ε ∪ E4,ε , E6,ε := ∪{Iν : |Iν ∩ E5,ε|/|Iν | > 1/2} ,
Eε := E5,ε ∪ E6,ε .

Lemma 2.6. Let x ∈ Iν \ (E2,ε ∪ E3,ε). Then,

∀y ∈ Iν , bν(x) − bν(y) ≥ −1

ε
log

3

ε
.

Proof. For all y ∈ Iν

bν(y) =
∑

α∈Aν

log |y − α| ≤ (log 3δ)/ε ,

while bν(x) ≥ (log(εδ))/ε.
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Lemma 2.7. Let x ∈ Iν \ (E2,ε ∪ E3,ε). Then, |b′ν(x)| ≤ 1/(ε2δ).

Proof. Since x 6∈ E2,ε ∪E3,ε. |b′ν(x)| ≤ ∑

α∈Aν

1
|x−α| ≤ (1/ε) · 1/(εδ) .

Lemma 2.8. Let x ∈ Iν \ (E1,ε ∪ E2,ε ∪ E3,ε). Then,

|g′ν(x)| ≤ 2/(ε2δ) .

Proof. Since x 6∈ E1,ε, |f ′(x)| ≤ 1/(εδ). By Lemma 2.7

|b′ν(x)| ≤ 1/(ε2δ) .

It only remains to observe that |g′ν | ≤ |f ′| + |b′ν |.
Lemma 2.9. Suppose Iν 6⊆ E5,ε. Then maxIν |g′ν | ≤ 3/(ε2δ).

Proof. By Lemma 2.8 ∃xν ∈ Iν such that

|g′ν(xν)| ≤ 2/(ε2δ) .

Also, from the definition of E4,ε and the fundamental theorem of calculus

∀x ∈ Iν |g′ν(x) − g′ν(xν)| ≤ 1/(εδ) .

Together we obtain ∀x ∈ Iν |g′ν(x)| ≤ 3/(ε2δ).

Lemma 2.10. Suppose Iν 6⊆ E5,ε. Then

∀x, y ∈ Iν |gν(x) − gν(y)| ≤ 6/ε2 .

Proof. The proof is an immediate corollary of Lemma 2.9.

Lemma 2.11. Let x ∈ Iν \E5,ε.

∀y ∈ Iν , f(x) − f(y) ≥ −9/ε2 .

Proof. f(x)− f(y) = (gν(x)− gν(y)) + (bν(x)− bν(y)). It only remains to combine
Lemmas 2.6 and 2.10.

Lemma 2.12. Let x ∈ Iν \Eε. Then

e−9/ε2

/4 ≤ ef(x)

AvIν ef
≤ 4e9/ε2

Proof. On the one hand, Lemma 2.11 gives

ef(x)

(
∫

Iν
ef dx)/|Iν |

≤ ef(x)

(
∫

Iν\Eε
ef dx)/|Iν |

=

ef(x)−maxIνf

(
∫

Iν\Eε
ef(x)−maxIν f dx)/|Iν |

≤ ef(x)−maxIν f

(|Iν \Eε|/|Iν |)e−9/ε2/2
≤ 1

e−9/ε2/4
= 4e9/ε2

.

On the other hand, Lemma 2.11 also gives

ef(x)

(
∫

Iν
ef dx)/|Iν |

≥ ef(x)

emaxIν f
= ef(x)−maxIν f ≥ e−9/ε2

.

We now turn to estimating the size of the bad subset Eε.

Lemma 2.13. |E1,ε| < C9εµδ
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Proof. This follows from the properties of the Hilbert Transform. We imitate the
proof of Lemma 5.4 in [DF88] with a little more details.

We recall the definition and some basic properties of the Hilbert Transform. Let
u ∈ L2(R). Let sgn be the sign function on R. Let F be the Fourier Transform on
L2(R). Define the Hilbert Transform Hu by

F(Hu) =
i

2
sgn · F(u) .

From this definition it is clear that H is a bounded operator on L2(R). Observe
that

f ′(x) =
∑

α

<
(

1

x− α

)

.

We may assume ∀α, =α ≤ 0. Consider first the case where ∀α, α 6∈ R. Let
qα(x) = −=(1/(x−α)), and q =

∑

α qα. Then, q ∈ L1(R)∩L2(R) and by Theorem 3
in III.2.3 of [Ste70] Hq = f ′. From the fact that sgn′ = 2δ0 and by basic properties
of the Fourier Transform one sees that if u ∈ L2(R) has a compact support and
x 6∈ Suppu, then

(Hu)(x) =

∫

R

u(y)

x− y
dy

(See also exc. 1.9 in [GS94] and Theorem 5 in III.3.3 of [Ste70]). We have veri-
fied that the conditions of Theorem 3 in I.5 of [Ste93] are fulfilled for the Hilbert
Transform. We conclude that the Hilbert Transform is of weak type (1,1) and we
get

(2.14) |{|f ′| > 1/(εδ)}| ≤ C10εδ‖q‖1 ≤ C11εµδ .

Finally, we move to the case where ∃α ∈ R. Define gt(x) := f ′(x − it). A
small calculation shows that gt → f ′ in measure as t → 0. Since we can apply the
considerations above to gt we conclude that the assertion in the lemma is true with
C9 = 2C11.

Lemma 2.15.

|E2,ε| ≤ C12εµδ .

Proof. Proof is obvious.

Lemma 2.16.

|E3,ε| ≤ C13εµδ .

Proof. This is an immediate corollary of Lemma 2.3.

Lemma 2.17. |E4,ε| ≤ C14εµδ.

Proof. We observe that

g′′ν (x) = −
∑

α6∈Aν

<
(

1

(x− α)2

)

.

Hence,

∑

ν

∫

Iν

|g′′ν (x)| dx ≤
∑

ν

∑

α6∈Aν

∫

Iν

1

|x− α|2 dx =

∑

α

∑

ν,α6∈Aν

∫

Iν

1

|x− α|2 dx ≤
∑

α

∫

|x−α|>δ

1

|x− α|2 dx ≤ µ/δ.
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On the other hand
∑

ν

∫

Iν

|g′′ν (x)| dx ≥
∑

ν,Iν⊆E4,ε

∫

Iν

|g′′ν (x)| dx ≥ #{ν : Iν ⊆ E4,ε}1/(δε) .

Together, we get that #{ν : Iν ⊆ E4,ε} ≤ εµ. Hence, |Eε,4| ≤ C14εµδ.

Lemma 2.18. |E6,ε| ≤ C15εµδ

Proof. Let N be the number of intervals Iν for which |Iν ∩ E5,ε|/|Iν | > 1/2. We
have

C16εµδ ≤ |E5,ε| =
∑

ν

|Iν ∩ E5,ε| ≥ N |Iν |/2 ≥ Nδ/2 .

Hence, N ≤ 2C16εµ. It follows that |E6,ε| ≤ 4C16εµδ.

This completes the proof of Proposition 2.2.

3. Holomorphic Functions in Small Scales - dimension n > 1

In this section we prove an analog of Proposition 2.2 in dimension n > 1. We
adjust the proof of Proposition 5.11 in [DF88].

Let F be a holomorphic function defined in the polydiskBn
3 = B3×. . .×B3 ⊆ Cn.

Let I = [−1, 1] ⊆ R and Q = In. Assume F satisfies

(3.1) sup
Bn

2

|F | ≤ |F (0)|eC1µ .

Given 0 < δ < C2/µ, decompose Q into subboxes Qν in the following way: First, we

define n decompositions of I into intervals {I (k)
l } where δ < |I(k)

l | < 2δ 1 ≤ k ≤ n
and 1 ≤ l ≤ N(k). Given a multi-index ν = (ν1, . . . , νn), 1 ≤ νk ≤ N(k), we set

Qν = I
(1)
ν1 × . . . × I

(n)
νn . Given x ∈ Q, we denote by Qx the subbox which contains

x. We prove

Proposition 3.2. Let F satisfy (3.1) and F ≥ 0 on Q. Assume that F ≡ 1 on
each of the hyperplanes zi = 0. For all ε > 0 there exists a subset Eε ⊆ Q of
measure |Eε| ≤ C3εµδ such that

(3.3)
1

C4(ε)
≤ F (x)

AvQxF
≤ C4(ε) ∀x ∈ Q \Eε,

with C4(ε) → ∞ as ε→ 0.

Proof. For n = 1, the proposition reduces to Proposition 2.2. For n > 1, let Eε

be the subset of all x ∈ Q for which the inequalities in (3.3) are not true with

C4(ε) = e11n/ε2

. Given z′ = (z1, . . . zn−1) ∈ Bn−1
3 we define

Fz′(z) = F (z′, z) .

Fz′ has the following properties:

• Fz′ is defined in B3.
• If z′ ∈ Bn−1

2 , then supB2
|Fz′ | ≤ eC1µ.

• Let Q′ = In−1. If x′ ∈ Q′ then Fx′ ≥ 0 on the interval [−1, 1].
• If x′ ∈ Q′ then Fx′(0) = 1.
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We have checked that for x′ ∈ Q′, Fx′ satisfies the conditions in Proposition 2.2.
Let Eε(Fx′) ⊆ I be the corresponding bad subset. We let Ex′

ε := {x′} × Eε(Fx′).

Let E
(n)
ε := ∪x′∈Q′Ex′

ε . E
(n)
ε might not be measurable, but it intersects every line

parallel to the xn-axis in a measurable set.
Given 1 ≤ l ≤ N(n), z′ ∈ Bn−1

3 define,

Gl(z
′) := Av

I
(n)
l

Fz′ .

It is easy to check that

• Gl is defined in Bn−1
3 .

• supBn−1
2

|Gl| ≤ eC1µ.

• Gl(x
′) ≥ 0 for x′ ∈ Q′.

• Gl(z
′) = 1 whenever one of the coordinates zi = 0.

Thus, by the induction hypothesis applied to Gl and the decomposition Q′
ν′

we get a corresponding bad subset Eε(Gl). We set El
ε := Eε(Gl) × I

(n)
l . Let

E′
ε := ∪1≤l≤N(n)E

l
ε.

Claim 3.4. Eε ⊆ E′
ε ∪ E(n)

ε .

Proof. Let x ∈ Qν \ (E′
ε ∪ E(n)

ε ). Since x′ 6∈ Eε(Gνn) we have

(3.5) e−11(n−1)/ε2 ≤ Gνn(x′)

AvQ′

ν′
Gνn

≤ e11(n−1)/ε2

.

Since xn 6∈ Eε(Fx′) we have

(3.6) e−11/ε2 ≤ Fx′(xn)

Av
I
(n)
νn
Fx′

≤ e11/ε2

.

Now recall that
Fx′(xn) = F (x), Av

I
(n)
νn
Fx′ = Gνn(x′),

and observe that AvQ′

ν′
Gνn = AvQνF . To complete the proof of Claim 3.4 we

multiply (3.5) by (3.6).

It only remains to check that the size of Eε is not too big: By Claim 3.4 we
know that Eε \E′

ε is a measurable set all of whose intersections with lines parallel
to the xn-axis are measurable sets of sizes ≤ C5εµδ. By Fubini’s Theorem, we get
|Eε \ E′

ε| ≤ C6εµδ. |E′
ε| ≤

∑

l 2|Eε(Gl)|δ ≤ C7N(n)εδ2µ. But N(n) ≤ 2/δ. This
completes the proof of Proposition 3.2, since |Eε| ≤ |Eε \E′

ε| + |E′
ε|.

We now remove the technical assumption in proposition 3.2. The main proposi-
tion of this section is

Proposition 3.7. Let F satisfy (3.1) and F ≥ 0 on Q. There exists a cube R ⊆ Q
independent of F with the following property: Suppose µδ < C8. We decompose R

into boxes Rν of sides δ < l
(k)
ν < 2δ. Then, there exists a subset Eε ⊆ R of measure

|Eε| ≤ C9εµδ such that

(3.8)
1

C10(ε)
≤ F (x)

AvRxF
≤ C10(ε) ∀x ∈ R \Eε,

with C10(ε) → ∞ as ε→ 0.

Proof. We construct R in the same way as in [DF88]:
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Lemma 3.9 ([DF88, Lemma 5.10]). There exists a map W : Rn → Rn which

extends to a map Ŵ : Cn → Cn. with the following properties:

(1) W is a polynomial map.

(2) Ŵ (Bn
3 ) ⊆ Bn

3 .

(3) Ŵ (Bn
2 ) ⊆ Bn

2 .
(4) W (Q) ⊆ Q.
(5) W maps the hyperplanes xi = 0 to 0.
(6) W is a local diffeomorphism outside the hyperplanes xi = 0.

Let U ⊆ Q be an open set which is mapped diffeomorphically onto W (U) and
has a positive distance from any hyperplane xi = 0. We let R ⊆W (U) be any cube
with sides parallel to the sides of Q.

Let us now describe the bad subset Eε. We begin with

Lemma 3.10. There exists a finite number of subdivisions Di of Q into boxes Qν,i

of sides δ < |I(k)
l,i | < 2δ such that every set of diameter < δ/2 is contained in a box

Qν,i for some ν and i.

The function F̃ = F ◦ Ŵ/F (0) satisfies the conditions of Proposition 3.2. So,
given any of the subdivisions Di of Lemma 3.10 we can find an exceptional set
Ẽε,i ⊆ Q corresponding to F̃ . Let Ẽε = ∪iẼε,i. Set E0

ε = W (Ẽε ∩ U) ∩R.
Call Rα ε-bad if |E0

ε ∩ Rα|/|Rα| > 1/2. Let Bε be the union of all ε-bad Rα’s.
Finally, set Eε = E0

ε ∪ Bε. We now estimate the size of Eε.

Lemma 3.11. |Eε| ≤ C11εµδ.

Proof of Lemma. Since the Jacobian of the map W is bounded on U , and |Ẽε| ≤
C12εµδ we conclude that |E0

ε | ≤ C13εµδ. We estimate |Bε|:

C13εµδ ≥ |E0
ε | ≥

∑

bad Rα’s

|E0
ε ∩ Rα| ≥ (1/2)#(bad Rα’s)|Rα| ≥ C14|Bε| .

We got |Eε| ≤ |E0
ε | + |Bε| ≤ C11εµδ.

The last step is to check that (3.8) is true: Let Rα be a subbox of R with sides

C15δ ≤ l
(k)
α ≤ 2C15δ, where C15 is small enough. Look at R̃α = W−1(Rα). Since

W−1 has a bounded Jacobian on R, R̃α is a set of diameter < δ/2. Let D be one

of the subdivisions of Q from Lemma 3.10 whose one of its boxes Qν contains R̃α.
It follows from Proposition 3.2 that F̃ (y1)/F̃ (y2) ≤ C4(ε)

2 ∀y1, y2 ∈ Qν \ Ẽε.

Hence, if we let x0 ∈ Rα \Eε and y0 = W−1(x0), then y0 ∈ R̃α \ Ẽε and we obtain

(3.12) AvRαF =
1

|Rα|

∫

Rα

F (x) dx ≥ 1

|Rα|

∫

Rα\Eε

F (x) dx =

1

|Rα|

∫

R̃α\Ẽε

F̃ (y)|JW | dy ≥ 1

C4(ε)2|Rα|

∫

R̃α\Ẽε

F̃ (y0)|JW | dy =

|Rα \Eε|
C4(ε)2|Rα|

F (x0) ≥ F (x0)/(2C4(ε)
2).
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On the other hand,

(3.13) AvRαF =
1

|Rα|

∫

Rα

F (x) dx =
1

|Rα|

∫

R̃α

F̃ (y)|JW | dy ≤

1

|Rα|

∫

Qν

F̃ (y)|JW | dy ≤

C16|Qν |
|Rα|

1

|Qν |

∫

Qν

F̃ (y) dy ≤ C17AvQν F̃ ≤ C17C4(ε)F̃ (y0) = C18(ε)F (x0).

Inequalities (3.12) and (3.13) complete the proof of Proposition 3.7.

4. Eigenfunctions in Small Scales on Real Analytic Manifolds

Let φµ be an eigenfunction. Let V be a small open set in which the metric g can
be developed in power series. We identify V with a ball B(0, ρ0) ⊆ Rn. We prove

Proposition 4.1. There exists a cube R ⊆ V with the following property: Suppose

µδ < C1. We subdivide R into boxes Rν of sides δ < l
(k)
ν < 2δ. Then for all ε > 0

there exists a subset Eε ⊆ R of measure |Eε| ≤ C2εµδ such that

1

C3(ε)
≤ φµ(x)2

AvRxφ
2
µ

≤ C3(ε) ∀x ∈ R \Eε,

with C3(ε) → ∞ as ε→ 0.

Proof. We consider an analytic continuation of φµ. In order to avoid confusion we
denote by BR, BC balls in Rn,Cn respectively.

Lemma 4.2 ([DF88, Lemma 7.3]). φµ|BR(0,ρ0) has an analytic continuation F

defined on BC(0, ρ1) for some ρ1 < ρ0. Moreover, the function F satisfies

sup
BC(0,ρ1)

|F | ≤ eC4µ sup
BR(0,ρ0)

|φµ| .

The crucial point is that the domain to which the function φµ can be continued
is independent of µ.

Let ρ2 = ρ1/C5 with C5 large so that the polydisk Bn
2ρ2

⊆ BC(0, ρ1). We now
recall the Donnelly-Fefferman Growth Bound

Theorem 4.3.

sup
BR(0,ρ0)

|φµ| ≤ eC6(ρ0/ρ2)µ sup
B(0,ρ2)

φµ .

Lemma 4.2 and Theorem 4.3 give

sup
Bn

2ρ2

|F | ≤ eC7µ sup
B(0,ρ2)

φµ .

Now, shift the coordinate system to be centered on the point x ∈ B(0, ρ2) for which
φµ(x) = supB(0,ρ2) φµ. We get that

supBn
ρ2
|F | ≤ eC7µ|F (0)| .

Hence, we can conclude the proof by applying Proposition 3.7 to F 2.
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We need a slightly different version of this proposition. We say that Rα touches
Rβ if they have at least one vertex in common. Each box Rα touches at most 3n

boxes. Let us denote by R∗
α the union of the box Rα with all boxes which touch

Rα. There exist 3n subdivisions Di of R such that each box of Di is equal to R∗
α

for some α. Let Eε = ∪iEε,i where Eε,i is the bad subset corresponding to the
subdivision Di according to Proposition 4.1. |Eε| ≤ C8εµδ. These considerations
prove the following version of Proposition 4.1.

Proposition 4.4. There exists a cube R ⊆ V with the following property: Suppose

µδ < C9. We subdivide R into boxes Rν of sides δ < l
(k)
ν < 2δ. There exists a

subset Eε ⊆ R of measure |Eε| ≤ C8εµδ such that

1

C10(ε)
≤ φµ(x)2

AvR∗

x
φ2

µ

≤ C10(ε) ∀x ∈ R \E,

with C10(ε) → ∞ as ε→ 0.

5. Good Boxes - Bad Boxes

Let F be a nonnegative function defined on a cube R. Let D be a subdivision
of R. We divide the boxes Rν into good and bad. We show that in a vicinity of a
good box we have a bounded L2-growth, and that the geometry is under control.
We show that the proportion of bad boxes is small.

We always assume that the sides of all boxes of a subdivision are of comparable
sizes. Moreover, we assume that any two boxes Rν1 , Rν2 satisfy

max side(Rν1)

min side(Rν2)
≤ 5 .

We recall that R∗
ν denotes the union of Rν with its 3n − 1 neighbors.

Definition 5.1. Let E ⊆ R be such that

1

A
≤ F (x)

AvR∗

ν
F

≤ A ∀ν ∀x ∈ Rν \E .

We say that (F,D, E,A) is true.

Definition 5.2. Given E ⊆ R, we say that Rν is E-good if |E ∩ Rν |/|Rν | <
ωn10−2n, where ωn is the volume of the unit ball in Rn. Otherwise Rν is called
E-bad.

The next lemma shows that in the vicinity of any good box we have bounded
growth. 2Q denotes a box concentric with Q, whose sides are parallel to the sides
of Q and twice as large.

Lemma 5.3. Suppose that (F,D, E,A) is true. Let Rν be E-good. Let B ⊆ Rν be
a ball such that 2B ⊆ R∗

ν and whose radius r ≥ side(Rν)/20. Then,

∫

B

F dx ≥ C1A
−1

∫

2B

F dx
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Proof.

∫

B

F (x) dx ≥
∫

B\E

F (x) dx ≥ A−1

∫

B\E

AvR∗

ν
F dx =

A−1 |B \E|
|R∗

ν |

∫

R∗

ν

F dx ≥ A−1 |B| − |E ∩Rν |
|R∗

ν |

∫

2B

F dx ≥

ωn(20−n − 10−2n)A−1 |Rν |
|R∗

ν |

∫

2B

F dx ≥ C1A
−1

∫

2B

F dx .

The next proposition shows that the geometry in good cubes is controlled.

Proposition 5.4. Suppose (φ2
µ,D, E,A) is true. Let Rν be E-good. Let B =

B(o, 2r) ⊆ Rν be a ball of radius 2r, with r > side(Rν)/20. Let B+ = B∩{φµ > 0}.
Similarly, define B−. Suppose φµ(o) = 0. Then

1

C2(logA)n−1
≤ Vol(B+)

Vol(B−)
≤ C2(logA)n−1 .

Proof. After rescaling the ball B to the unit ball, φµ becomes a solution ϕ of an
elliptic equation

(5.5) −∂i(a
ij∂jϕ) − (2rµ)2qϕ = 0 .

It’s important to observe that the coefficients are bounded independently of µ, and
the zero order coefficient is small. Thus, by Lemma 5.3 and by elliptic regularity

(5.6) sup
B3/4

|ϕ| ≤ C3‖ϕ‖L2(B1) ≤ C4A
1/2‖ϕ‖L2(B1/2) ≤ C5A

1/2 sup
B1/2

|ϕ| .

Recall now

Theorem 5.7 ([Man08, Theorem 4.7]). Let ϕ satisfy equation (5.5) in the unit
ball B1. Suppose ϕ(0) = 0 and satisfies (5.6). Then

(5.8)
Vol(B1 ∩ {ϕ > 0})

Vol(B1)
≥ C6

(logA)n−1
.

By symmetry, we have a lower bound also on Vol(B1∩{ϕ < 0})/Vol(B1). Thus,
we get upper and lower bounds on the ratio between the volumes of the positivity
and the negativity sets of ϕ.

The last lemma in this section shows that the proportion of bad cubes is small.

Lemma 5.9.
#(E-bad boxes)

#(all boxes)
≤ C7|E| .

Proof.

|E| ≥
∑

bad Rν ’s

|E ∩ Rν | ≥ ωn10−n#(bad Rν ’s)|Rν | ≥ C8
#(bad Rν ’s)

#(all boxes)
.
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6. Refinements of subdivisions

In this section we analyze what happens when we pass from a fine subdivision
D1 to a subdivision D of whose D1 is a refinement. We show, roughly, that if a box
of D is composed of smaller good boxes then it is also good. The results in this
section are applied in the the proof of the lower bound in Theorem 1.2.

Let D1 be a subdivision of a cube R obtained by a refinement of D. If the sides
of every box in D are partitioned into ≤ M intervals, we write [D : D1] ≤ M . Let
D2 be the subdivision of R which is formed by taking the centers of the boxes in
D1.

Throughout this section F is a nonnegative function defined on R. In the next
proposition we use the terminology from Definitions 5.1 and 5.2.

Proposition 6.1. Suppose that (F,D1, E1, A) and (F,D2, E2, A) are true. Let B
be the union of all boxes Rν of D for which R∗

ν contains an E1-bad box of D1 or an
E2-bad box of D2. Assume [D : D1] ≤M . Then, (F,D, E1 ∪E2 ∪ B,C1A

8M+1) is
true.

Proof. Let us denote the boxes of D by Rν , and the boxes of D1 by Rα. Let
E = E1 ∪ E2 ∪B.

Lemma 6.2. For all x ∈ Rν \E, y ∈ R∗
ν \E there exists a sequence of 4M points

x = x1, . . . , x4M = y in R∗
ν \E such that any consecutive pair xk, xk+1 is contained

in a box of D1 or is contained in a box of D2.

Proof of Lemma. The only point to observe is that if Rν 6⊆ E then all boxes Rα

contained in R∗
ν are E1-good. So |E1 ∩ Rα|/|Rα| < ωn10−2n < 2−n/2. Similarly

for E2.

Let x ∈ Rν \ E. For any y ∈ R∗
ν \ E, let x1, . . . , x4M be a sequence of

points as in Lemma 6.2. Since (F,D1, E1, A) and (F,D2, E2, A) are true we have
F (xk)/F (xk+1) ≤ A2, and we get F (x)/F (y) ≤ A8M .

Now,

1

|R∗
ν |

∫

R∗

ν

F (y) dy ≥ 1

|R∗
ν |

∫

R∗

ν\E

F (y) dy ≥

|R∗
ν \E|
|R∗

ν |
F (x)

A8M
≥ 3−n(1 − 2ωn10−2n)

F (x)

A8M
.

The last inequality is true since Rν contains no E1-bad boxes neither E2-bad boxes.
Conversely, let x ∈ Rν and let J be the set of α’s for which Rα ⊆ R∗

ν . For all
α ∈ J , let xα ∈ Rα \ (E1 ∪ E2). Such points exist, since Rν 6⊆ B. Then,

1

|R∗
ν |

∫

R∗

ν

F (y) dy =
1

|R∗
ν |

∑

α∈J

∫

Rα

F (y) dy ≤

1

|R∗
ν |

∑

α∈J

AF (xα)|R∗
α| ≤ 3nA8M+1F (x) .

7. Proof of the Lower Bound in Theorem 1.2

First, we prove the following proposition which is announced in the introduction
of [DF88].
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Proposition 7.1. There exists a finite collection of balls Bi = B(xi, r) centered at
xi of radius r = C1/µ which satisfy

(i) φµ(xi) = 0,
(ii) their doubles 2Bi = B(xi, 2r) are pairwise disjoint,
(iii) Denote by B+

i the set {φµ > 0} ∩ Bi. Similarly, we define B−
i . Then

C2 <
Vol(B+

i )

Vol(B−
i )

< C3 ,

(iv)
∑

i Vol(Bi) > C4 Vol(M).

Proof. It is enough to prove the proposition in a coordinate neighborhood V . It
is well known that there exists a constant C5 such that every cube of side C5/µ
contains a zero of φµ (see [Brü78]). We can decompose V into small cubes Rν whose
side is of size δ = 3C5/µ. We call this subdivision D. Each cube Rν contains a zero
xν of φµ in its middle third. We now take a refinement D1 of D: We partition each
side of a cube Rν into M intervals of equal sizes, where µδ/M is small enough in
order to apply Proposition 4.4. We deduce that (φ2

µ,D1, E1
ε , C6(ε)) is true (cf. def-

initions 5.1 & 5.2). If D2 is the subdivision obtained by taking the centers of cubes
belonging to D1, then the same proposition gives that (φ2

µ,D2, E2
ε , C6(ε)) is true.

Let B be as in Proposition 6.1, and let E = E1
ε ∪ E2

ε ∪ B. Then, (φ2
µ,D, E, C7(ε))

is true.
For each E-good cube Rν we pick a ball Bν ⊂ Rν whose center is xν and whose

radius = δ/6. By Proposition 5.4

1

C8(ε)
≤ Vol(B+

ν )

Vol(B−
ν )

≤ C8(ε) .

The crucial point is to estimate the number of E-good cubes. By Lemma 5.9, the
proportion of E-good cubes is ≥ (1 − C9|E|) (which can be negative). It only
remains to estimate |E|: |E1

ε | ≤ C10εµδ, |E2
ε | ≤ C11εµδ and

|B| ≤ δn3n(#(E1
ε )-bad cubes + #(E2

ε )-bad cubes) ≤ C12(|E1
ε | + |E2

ε |) ≤ C13εµδ .

So |E| ≤ C14εµδ. To conclude, we take ε small enough in order that the proportion
of good cubes is ≥ 70%.

Proof of Theorem 1.2 - Lower Bound. The next proposition gives a lower bound in
a good ball.

Proposition 7.2. Let B(x, r) be one of the balls described above. Then we have
Vol(Tµ,δ ∩ 2B) ≥ C15r

n−1δ, whenever µδ < C16.

Proof. Let (B+)δ be a δ-neighborhood of B+, and similarly for (B−)δ . Since
Tµ,δ ∩ 2B ⊇ (B+)δ ∩ (B−)δ , it is clear that

Vol(Tµ,δ ∩ 2B) ≥ Vol(B+)δ + Vol(B−)δ − Vol(B(x, r + δ)) .

Assume first that the metric g is flat on 2B. By the Brunn-Minkowski Inequal-
ity [Fed69, §3.2.41] we know

Vol(B+)δ ≥ Vol(B+) + nω1/n
n δVol(B+)1−1/n ,
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where ωn is the volume of the n-dimensional unit ball. We have the same inequality
for (B−)δ . Set Vol(B+) = αVol(B), and Vol(B−) = (1 − α) Vol(B). We have

(7.3) Vol(Tµ,δ ∩ 2B) ≥ Vol(B) − Vol(B(x, r + δ))+

nω1/n
n δVol(B)1−1/n

(

α1−1/n + (1 − α)1−1/n
)

≥

ωn(rn − (r + δ)n) + nωnr
n−1δ

(

α1−1/n + (1 − α)1−1/n
)

.

At this point one observes that when α is bounded away from 0 and 1 we have
α1−1/n + (1 − α)1−1/n > 1 + C17. So, if we take δ/r = C18µδ small enough then
the last expression in (7.3) is positive and we obtain

Vol(Tµ,δ ∩ 2B) ≥ C19nωnr
n−1δ .

Finally, since the metric g is comparable to a flat metric on a small ball, we have
a similar inequality also for g.

To conclude the proof of the lower bound in Theorem 1.2 we observe that due
to Proposition 7.1 (iv) the number of balls in Proposition 7.1 is > C20µ

n. So, by
Proposition 7.2 Vol(Tµ,δ) > C21δ/µ

n−1 · µn = C22µδ .

8. Proof of the Upper Bound in Theorem 1.2

In this section we estimate from above the volume of a tubular neighborhood of
the nodal set. The proof is based on the study in Section 4 of eigenfunctions in
small scales.

Let V = {Vk} be a covering of M by small open sets. Let Rk ⊆ Vk be a cube
preferred by Proposition 4.4. The next lemma shows that it is enough to estimate
the volume of Tµ,δ in preferred cubes.

Lemma 8.1. There exists a covering V = {Vk} on M with the following properties

(a) V is a finite covering.
(b) the metric g can be developed in power series in each chart Vk.
(c) M = ∪kRk for some choice of cubes Rk ⊆ Vk preferred by Proposition 4.4.

We defer the proof of this Lemma to Section 8.1.
Now, let R ⊆ V be a preferred cube. We decompose it into boxes Rν , where the

sides of Rν are of sizes δ < l
(k)
ν < 2δ. We will denote this subdivision by D.

Definition 8.2. We call Rν a nodal box if Nµ ∩ Rν 6= ∅.
Let us denote the set of nodal boxes Rν by Nod. Recall that R∗

ν denotes the
union of Rν with its 3n − 1 neighbors.

Lemma 8.3. Tµ,δ ⊆ ∪Rν∈NodR
∗
ν .

It remains to estimate the number of nodal boxes. Fix ε = 1. Proposition 4.4
tells us that (φ2

µ,D, E, C1) is true (cf. Def. 5.1 & 5.2).

Lemma 8.4. The number of E-good nodal cubes is ≤ C2 Voln−1(Nµ)/δn−1.

Proof. We begin by

Claim 8.5. Let Rν be an E-good nodal cube. Then

(8.6) Voln−1(Nµ ∩ R∗
ν) ≥ C3δ

n−1 .
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Proof of Claim. First we see from the Brunn-Minkowski Inequality as in Proposi-
tion 7.2 that

(8.7) lim inf
t→0

Vol(Tµ,t)

t
≥ C3δ

n−1.

Since Nµ is an analytic set, it is rectifiable ([Fed69, Theorem 3.4.8 (13)]) and thus
([Fed69, Theorem 3.2.39]), the limit in (8.7) exists and equals Voln−1(Nµ ∩ R∗

ν).

Summing up (8.6) over all good nodal cubes we arrive at

(8.8) 3n Voln−1(Nµ) ≥
∑

ν

Voln−1(Nµ ∩ R∗
ν) ≥

∑

good nodal Rν’s

Voln−1(Nµ ∩R∗
ν) ≥ C4#(good nodal Rν ’s)δn−1 .

Proof of Theorem 1.2. By Lemma 5.9 we know that the number of E-bad nodal
cubes is ≤ C5µ/δ

n−1. By Lemma 8.4 and Theorem 1.3 the number of E-good
nodal cubes is ≤ C6µ/δ

n−1. Together, we get that the number of nodal cubes is
≤ C7µ/δ

n−1. By Lemma 8.3 Vol(Tµ,δ) ≤ C8#(Nod)δn ≤ C9µδ .

8.1. Proof of Lemma 8.1. The following lemma is clear by compactness of M .

Lemma 8.9. There exists ρ0 > 0 such that for all p, the metric g can be developed
in power series in B(p, ρ0).

Let ρ1 = ρ0/C with C large enough.

Lemma 8.10. Every ball B(p, ρ1) contains a preferred cube R which contains p.

Proof. We identify B(p, ρ) with the Euclidean ball B(0, ρ) by working in geodesic
coordinates. Suppose that the point x0 ∈ R ⊆ B(0, ρ0). Let x1 ∈ B(0, ρ0) with
|x1| = |x0| =: r. From proposition 4.4 we know that R is independent of µ. By
symmetry considerations, or just by examining the proof of Proposition 3.7 we see
that any orthogonal transformation in B(0, ρ0) takes R to another preferred cube.

Now, given p, let q be any point on M such that dist(p, q) = r. The geodesic
ball B(q, ρ0) contains a preferred cube R1 which contains p. Take a cube R in
R1 ∩ B(p, ρ1) which contains p.

Proof of Lemma 8.1. By lemma 8.10 we can cover M by preferred cubes. Then by
compactness of M we can extract a finite covering by preferred cubes.

9. Approximation by Nodal Sets

Proof of Theorem 1.8. The proof proceeds similarly to the proof of Corollary 1.6.
Fix C, ε > 0. Let Tk,δ be the tubular neighborhood of N (φk) of radius δk =

C/µn+1+ε
k . By Theorem 1.2 Vol(Tk,δk

) ≤ C/µn+ε
k . We conclude that

(9.1)
∑

k

Vol (Tk,δk
) ≤ C

∑

k

µ−n−ε
k .

By Weyl’s Law [Wey12, Hör68] we know that

µk � Ck1/n.
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Hence
∑

k

Vol (Tk,δk
) ≤ C

∑

k

k−1−ε/n

is finite. So, by the Borel-Cantelli Lemma (see e.g. [Fel68]) we obtain

Vol(∩∞
j=1 ∪∞

k=j Tk,δk
) = 0 .

10. Dimension two

Theorem 10.1. Let (Σ, g) be a smooth (i.e. C∞) closed Riemannian surface. Then
there exist C1, C2 > 0 such that

C1µδ ≤ Vol(Tµ,δ) ≤ C2 length(Nµ)δ .

In particular, Theorem 1.2 is true for surfaces which satisfy Yau’s conjecture.
We recall from [DF90] that for any smooth surface length(Nµ) ≤ C3µ

3/2. Hence,
if we modify the proof of Theorem 1.8 according to Theorem 10.1 we obtain

Proposition 10.2. Let (Σ, g) be a closed compact surface with a smooth metric g.
Then we have Vol(M(7/2 + ε, C)) = 0 for all C, ε > 0.

10.1. Lower Bound in Theorem 10.1. This is basically Brüning’s argument.
We can cover a fixed portion of Σ with pairwise disjoint balls Bi = B(xi, r) of
radius r = c/µ and such that φµ(xi) = 0. The set Nµ ∩ B(xi, r) is of length ≥ r.
Moreover, in local coordinates it has a projection of length ≥ cr on one of the axes.
This implies that Tµ,δ ∩B(xi, r) has area ≥ crδ. Summing up over all the balls Bi

we obtain

Vol(Tµ,δ) ≥ c1µ
2 · c2δ/µ = c3µδ .

10.2. Upper Bound in Theorem 10.1- First Proof. Let an eigenfunction φµ

have nodal domains Ω1, . . . ,ΩN(µ). Given ∂Ωj ⊂ Nµ, let Lj(t) denote the interior
parallel of ∂Ωk at the distance t inside Ωj . It is clear that

(10.3) area(Aµ) =

N
∑

j=1

∫ δ

t=0

length(Lj(t)) dt.

The following inequality can be found in [Sav01, Proposition A.1.iv]:

(10.4) length(Lj(t)) ≤ length(∂Ωj) +R(Ωj) max

{

∫

Ωj

K+ − 2πχ(Ωj), 0

}

.

Here K+ denotes the positive part of the Gauss curvature, χ(Ωj) is proportional
to the number mj = mj(µ) of connected components of ∂Ωj , and R(Ωj) denotes
the inner radius of Ωj . We substitute (10.4) into (10.3) and sum over 1 ≤ j ≤ N .
By Proposition 1.4 we know that R(Ωj) ≤ C/µ. We get the estimate

(10.5)
area(Aµ)

δ
≤ 2 · length(Nµ) +

C
∫

M
K+

µ
+

4πC

µ

N(µ)
∑

j=1

mj(µ)
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As µj = µ → ∞, the second term goes to zero. It remains to estimate the third
term. One can construct a connected graph on M whose edges will include all arcs
of Nµ, and show using Euler’s formula that

N
∑

j=1

mj ≤ 2(N + g − 1),

where g denotes the genus of the surface M . Also, by Courant’s nodal domain
theorem

N = N(µk) ≤ k + 1.

We recall that by [Wey12, Hör68] in dimension two µk � C
√
k, hence N(µk) ≤

Cµ2
k. It follows that the third term in the right-hand side of (10.5) is less than

Cµ. Substituting everything back into (10.5) and recalling that length(Nµ) ≥ Cµ
(see [Brü78]) we get the desired estimate.

10.3. Upper Bound in Theorem 10.1- Second Proof. This proof was com-
municated by M. Sodin.

It suffices to give a proof for the neighborhood of Nµ of size δ/3. We cover M
with cubes of side Cδ (large cubes), as well as by cubes of side Cδ/3 (small cubes).
One can easily arrange that each cube intersects a bounded number of other cubes.
For every small cube, there exists a unique concentric large cube whose side is three
times larger. To estimate the area of Tµ,δ, it suffices to estimate the volume of the
union Bj of all small cubes which intersect the nodal set Nµ. Indeed, if x ∈ Tµ,δ,
then Nµ intersects either the small cube containing x, or one of the 8 neighboring
small cubes, so the volume of Tµ,δ is at most 9 · vol(Bj).

We distinguish several cases

i) Nµ intersects a small cube Q, but any connected component of Nµ ∩ Q
doesn’t intersect the boundary of the big concentric cube Q′.

ii) Nµ intersects a small cube Q, and there exists a connected component of
Nµ ∩Q that intersects the boundary of the big concentric cube Q′.

In case (i) there is at least one nodal domain contained in Q′, so by the Faber-
Krahn Inequality (see [EK96, Ch. 7, Th. 1]) we get that the area of this nodal
domain is > C/µ2. By the Isoperimetric Inequality, the length of Nµ ∩ Q′ is at
least C/µ ≥ Cδ.

In case (ii), the length of Nj ∩Q′ is at least δ/3.
Hence, we conclude that the number of Q′ for which Q satisfies case (i) or case (ii)

is � length(Nµ)/δ. Accordingly, the sum of the areas of those cubes is

(10.6) � length(Nµ)/δ · δ2 ≤ C length(Nµ)δ.

11. Discussion

For a given M it seems interesting to find

E(M) := sup{b : vol(M(b, C)) > 0 for some C > 0}.
Theorem 1.8 implies that on real-analytic n-dimensional manifolds, E(M) ≤ n+1.
In dimension one, it follows from the theory of continued fractions that E(M) = 2
for M = [0, π]. In fact, M(2, π) = M while Vol(M(2 + ε, C)) = 0 ∀ε > 0.
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The same result likely holds for separable systems (Examples include surfaces of
revolution, Liouville tori and quantum completely integrable systems [TZ02]). In
such systems one can separate variables and choose a basis of eigenfunctions that
(in appropriate coordinates) have the form φ(x1, . . . , xn) =

∏

ψj(xj), where ψj are
solutions of 2nd order differential equations. Accordingly, N (φ) forms a “grid” of
hypersurfaces determined by zeros of ψj-s, and approximation by N (φ) reduces to
a series of one-dimensional problems.

As a model example we consider an n-dimensional cube

M(n) =

n
∏

j=1

[0, π/αj ],

with Dirichlet boundary conditions, where for simplicity we assume {α2
j}n

j=1 are

linearly independent over Q. Then the eigenvalues have the form
∑n

j=1 α
2
jm

2
j (where

mj ∈ N) and are simple, while the corresponding eigenfunctions have the form

φ(m1, . . . ,mn;x1, . . . , xn) =
∏

j: mj 6=0

sin(mjαjxj).

Proposition 11.1. E(M(n)) = 2 for all n.

Proof of Proposition 11.1.

We first make a change of variables yj = παjxj . This change of variables will
only affect constants in the rate of approximation by nodal sets; it won’t affect the
exponent. In the rescaled coordinates, nodal sets have the form

(11.2) N (φ(m1, . . . ,mn)) = ∪j:mj 6=0Aj ,

where Aj := {(y1, . . . , yn) : yj = kj/mj , 0 ≤ kj ≤ mj}. We first show that

Claim 11.3. E(M(n)) ≥ 2.

Proof. Let (y1, . . . , yn) ∈ M be an arbitrary point on M ; we have 0 ≤ yj ≤ 1. We
can assume without loss of generality that yj /∈ Q, ∀1 ≤ j ≤ n, since the set of such
points has the full measure. Consider next the continued fraction expansion of its
first (say) coordinate,

y1 = [0; a1, a2, . . .],

where we use the notation of [Khi97]. Let pk/qk, k = 1, 2, . . . be the corresponding
continued fractions. Then the points (pk/qk, y2, . . . , yn) ∈ N (φ(qk , 0, . . . , 0)), and
the Claim follows from the well-known inequality [Khi97]

|y1 − pk/qk| < 1/q2k.

We next show that

Claim 11.4. E(M(n)) ≤ 2.

Proof. It suffices to show that Vol(M(2 + ε, C)) = 0 for all C, ε > 0. Let y =
(y1, . . . , yn) ∈M(2 + ε, C). As before, we may assume that yj /∈ Q. We know that

there exists a sequence of eigenvalues µk → ∞ such that d(y,N (φµk
)) < C/µ2+ε

k .
Since all distances on [0, 1]n are equivalent, we may define d(x,y) = max1≤j≤n |xj−
yj |.

In view of (11.2), it follows that for some 1 ≤ j ≤ n (say, for j = 1), there exists
a sequence of integers qk, k = 1, 2, . . ., such that qk → ∞ and |y1−pk/qk| < C/q2+ε

k
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for some 0 ≤ pk ≤ qk. The Claim now follows from Corollary 1.6. This also finishes
the proof of Proposition 11.1.

For manifolds with ergodic geodesic flows (e.g. in negative curvature), eigen-
function behavior has been studied using random wave model [Ber77]. In addition,
percolation model [BS02] has been used to study the statistics of nodal domains in
chaotic systems. We refer the reader to [FGS04] and references therein for a nice
discussion about applicability of those models for studying various questions about
eigenfunctions of chaotic systems.

In the opinion of the authors, it would be difficult to use these models directly to
predict the “best possible” rate of approximation by nodal sets. The reason is that
these models describe a single eigenfunction on a scale of C/µ (several wavelengths).
However (as shown by the example of M = [0, π]) for a given x ∈ M the values
of µ giving the best approximation of x by N (φµ) can grow exponentially. It thus
seems difficult to take into account simultaneous behavior of all eigenfunctions in
such a large energy range. However, one can probably expect that E(M) > 2 for
such manifolds (in contrast to the integrable case), due to irregularity of nodal lines
for such systems.

It also seems interesting to study “level sets” M(b) for the approximation expo-
nent b, e.g. defined by

M(b) := ∪CM(b, C) \ (∪a<b ∪C M(a, C)) .

Remark 11.5. It should follow from the results of [JL99] that the conclusion of
Theorem 1.8 should also hold for level sets of eigenfunctions (since the level set of
an eigenfunction is a nodal set of a linear combination of that eigenfunction with
a constant eigenfunction). It seems interesting to determine which level sets are
C/µ-dense (like nodal sets).
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