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X" n > 2 - compact.

A - Laplacian, A¢; + A\;¢; = 0 - spectrum.
O=X <A1 <X <...

Spectral function: Let x,y € X.

Nzy(A) =3 /<y ¢i(2)di(y)

If =y, let Ngy(A) ;= Nz(N).

Weyl’s law: N(\) = CpoVA" 4+ R(A),R(\) =
O(Xn—l)

Local Weyl’s law:
Nzy(A) = 0" 1), T 7Y,

Nz(A\) = Cu A" + Rz (), R:(\) = o\ 1);



R, (M) - local remainder. We study lower bounds
for Nz y(A) and Rg(\).

Notation: f1(A) = Q(f>(N)), fo > 0 iff

limsupy_ o0 [f1(A)|/f2(X) > 0.

Theorem 1 If x,y € X are not conjugate along
any shortest geodesic joining them, then

Ney(A) = Q (AnT) .



On-diagonal (z = y):

Theorem 2 If the scalar curvature 7(x) # 0,
then

Rz(\) = QA" 2).

Also, if X has no conjugate points, then
n—1
Rge(A) = QN 2)

Remark: if r(x) = 0, let k be such that u;(x, x)
is the first nonvanishing local heat invariant
(u1(z,z) = TE). Then Ry(A) = Q(A"~2he),



Negative curvature. Suppose sectional cur-
vature satisfies

-K7 < K(§,n) < —K3
Theorem (Berard): R;(\) = O(\""1/log)\)

Conjecture (Randol): On a negatively-curved
1

surface, R(\) = O(A§+€). Randol proved an

integrated (in \) version for Nz 4(A)

Thermodynamic formalism: Gt - geodesic
flow on SX. £ € SM, U(£) - unstable subspace
of T;SM for for G*.

Sinai-Ruelle-Bowen potential H: SM — R:

d
H(E) = o In det dG*| ¢y



Topological pressure P(f) of a Holder func-
tion f: SX — R satisfies

, PNT
PO [ G as| ~

~ - geodesic of length I(v). P(f) is defined as
P(H) = sup (hu+ [ fdu).
p is Gt-invariant, hy, - (measure-theoretic) en-

tropy.

Ex 1: P(0) = h, h - topological entropy of
Gt.

Ex. 2: P(—H) = 0. The equilibrium measure
(attaining the supremum) for H is the Liouville
measure py, on SX, thus hy, = [¢x Hdur,.



Theorem 3. If X is negatively-curved then for
any 6 >0 and x # y

P(— 7{/2)
Nzy(\) =Q (A 7 (log\)~ 5)

Theorem 4. X - negatively-curved. For any
>0

Rz(\) = Q ()\ 5 (log /\)P( = 5)

If n > 4 then Theorem 2, R:(\) = Q(\"~2)
gives a better bound. The power of the loga-
rithm £ Z{/Q) is > K2 > 0, SO

K=-1 = Ry(\) =Q (,\% (log A)%—fs)

Karnaukh, n = 2: estimate above 4+ weaker
estimates in variable negative curvature.



Proofs, r = y. Theorems 1 and 3.

Wave kernel on X:

e(t,z,y) = 3 cos(y/Ait)ei(@)ei(y),
1=0

fundamental solution of the wave equation
(02/0t2 — N)e(t,z,y) =0, e(0,z,y) = §(z —y),
(0/0t)e(0,z,y) = 0.

Y € C5°([-1,1]), even, monotone decreasing
on [0,1], ¥ > 0O, ¥(0) = 1. Fix A\, T > 0, con-
sider the function

(1/T)yp(t/T) cos(At).
We let
bar@ ) = [~ PY cosane(t,z, yya



Pretrace formula. If X has no conjugate
points, let E(t,z,y) be the wave kernel on M,
the universal cover of X. Then for z,y € X,

we have

e(t,z,y) = )  E( zwy)
wel=m1(X)

Given z,y € M, define K r(x,y) by

Ka(ey) = [~ YYD cosOny Bt 2,y

Then for z,y € X

(*) k)\,T(xay) — Z K)\,T(xawy)
wel

The following lemma is used in the proofs:

V

Lemma 5 If Ny,(\) = o(A%(log\)?)), a
0,b > 0 then

kxr(z,y) = o(A*(log \)®)).



Leading term asymptotics.
Hadamard Parametrix for E(t,z,y) =

Proposition 6 Let x # y € M,r = d(z,y).
Then K) r(x,y) satisfies as A — oo:

Y(r/T)
T/ g(z, y)r"=?

Kyp(z,y) = QIA"Z sin(Ar+-6,) +

O(A"2>) 4 exp(O(T)).

Here g = ,/detg;; in normal coordinates 6, =
(r/4)(3 — (nmod 8)) and Q1 # 0.

Proof by contradiction: Assume Ng () is
small. Lemma 5 = k) 7(z,y) is small.

Use pretrace formula and Proposition 6 to show
that ky 7(z,y) is large. Contradiction!



Proof of Theorem 1 Assume that Ngy(A) =
n—1 n—1
o(A 2 ). Lemma 5 = k) r(x,y) =o(X 2 ).

x,y € X - not conjugate along any shortest
geodesic, = finitely many shortest geodesics
of length r = d(z,y); no geodesics from x to y
of length [ €]r,r + €], some € > 0.

Let T" = r + ¢/2. Pretrace formula (*) and
Proposition 6 =

bar(z,y) = QX2 Y sin (A + 02)+0(A"2),

rw=—r

where Q #= 0.
Choose a sequence A\ — oo such that
|sin(Agr +6n)| >v >0

Contradiction. Q.E.D.



Proof of Theorem 3. Assume for contradic-
tion that for some ¢ > O,

P(- 7—[/2)
Nzy(A) = o ()\ 7 (log\)~ h 5)

Lemma 5 implies a similar bound for k) r(z,y).

Proposition 6 = k) r(x,y) =

n—1 Y ()
QXNZ Y =
rw<T \/ gz, wy)rl™

+ON'Z) exp(O(T)).

- sin(Arw + 65)

Consider the sum

ro<t \/g(z,wy) r=1

1

It follows from results of Parry and Pollicott
that



Theorem 7 As T — oo,

Say(T) > 006P<_%)°T

Here P (—%) > (n—1)K5/2.
Suppose n # 3(mod 4). Then 6, # 0(mod «).

Dirichlet box principle = 3\ so that

sin(Ary, +60n) >v >0, Vw:ry, <T.

(Ary close to 2wZ). This combined with The-
orem 7 contradicts Lemma 5. Q.E.D.

For Dirichlet principle need

T <Inln ).

So, get logarithmic improvement in Theorem
3 compared with Theorem 1.



If n = 3(mod 4) then 6, = 0(mod 7). Need a
separate argument to establish that

v T

dA :sin(A > —, Yw : —
(Arw) > Y

This combined with Theorem 7 contradicts
Lemma 5 and proves Theorem 3 in all dimen-

sions. Q.E.D.

<rw ST

On-diagonal case, r = y. Theorems 2 is
proved by an easy heat kernel argument. Proof
of Theorem 4 uses Theorem 7 and an on-
diagonal counterpart of Proposition 6. The
O-th term of the wave parametrix on the di-
agonal cancels out with the main term in the
Weyl’'s law.



Proof of Theorem 7

Step 1: From vertical to unstable subspaces.
x,y € M, ~v - dgeodesic from x to y. ¢ =
(z,7'(0)). Vert(¢) € TeSM - vertical subspace
(tangent vectors to the unit sphere in T,M);
U(¢) € T;SM - unstable subspace at &.

Lemma 8.

\/9(337y)?“n_1 < (C -det dGT|U(§) = C . Ja’CU(f)Gr

Proof: \/g(:c,y)r”_l < C-Jacvert(g)Gr. ASr —
o0,

Dist[DG"(Vert(£)), DG"(U(£))] < Ce "

by properties of Anosov flows, hence

Ja’cVert €9 G"

JaCU(g)GT



remains bounded as r — c0. Q.E.D.

Let v,(s),0 < s < r, - geodesic from z to wy,

5(57“}) L= (’Yw(s)vf)/({u(s)) c SM, and §(w) =
(z,7.,(0)). By definition of SRB measure H,

In JacU(g(w))er = /Ow’;’-t(fj(s,w))ds.

Corollary 9.

Sey(T)>C Y exp (_71 /Om H(g(s,w))ds>

ro<T

Step 2: From loops to closed geodesics.

Lemma 10. Geodesics ~1,vo both start at
x € M, and disty;(71(7r),v2(r)) < D,r > 1. Let

& = (x,7(0)) € SM. Then

JCLCU(&)GT

C.
JacU(£2)Gr <



Proof: Let &;(s) := (vj(s),vé(s)) € SM, where
0<s<r. Then

In JacU(gj)GT X/O H(;(s))ds.
Fact:

Distgar(£1(s), &2(s)) < CePl—m),

Lemma 10 follows from HOlder continuity of
H. Q.E.D.

Consider a primitive closed geodesic v on X
of length I(v). It corresponds to a conjugacy
class [w(v)] e ' = 71 (X).

D - diameter of the Poincare fundamental do-
main for I" in M. Choose generators {a;} for
[, and let w(vy) be the corresponding word in
a;-s of word length I(w(v)) > I(v)/D.

Theorem (Preissman) = all I(w(v)) cyclic shifts
of of w(v) are distinct elements of I'.



Key step: Group w € into conjugacy classes
[w(v)] parametrized by closed geodesics v on
X.

Lemma 11. to each primitive v corresponds
at least I(v)/D elements w;(y) € I such that
the conclusion of Lemma 10 applies to v =
[z,w;y] (geodesic segment from z to w;y) and

72 =7-

Proof: Can choose z; € v so that

distpys(z, 2;) < D, distpy(wiy, w;2;) < D,

and [z;,w;z;] =~. Then apply Lemma 10 twice.
Q.E.D.



Step 3: For a closed geodesic v on X, let
£(s,7) = (7(8),7'(s)) € SM.

Corollary 9, Lemmas 10 and 11 =

Corollary 12.

C
Sa:,y(T) Z B X

> e (G [0 Het ).

~:1(y)LT

By results of Parry (1986) and Parry-Pollicott
(1990), the sum above is asymptotic to

CeP<_%> o C > 0.

Y

This finishes the proof of Theorem 7. Q.E.D.



