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Abstract. We obtain an estimate from below for the remainder in Weyl’s law
on negatively curved surfaces. In the constant curvature case, such a bound
was proved independently by Hejhal and Randol in 1976 using the Selberg zeta
function techniques. Our approach works in arbitrary negative curvature, and
is based on wave trace asymptotics for long times, equidistribution of closed
geodesics and small-scale microlocalization.

1. Introduction and main results

1.1. Weyl’s law. Let X be a compact negatively curved surface of area A with the
Riemannian metric {gij}. We assume that the Gaussian curvature K(x) satisfies

(1.1.1) −K2
1 ≤ K(x) ≤ −K2

2

at every point x ∈ X. Let ∆ be the Laplacian on X with the eigenvalues 0 = λ0 <
λ1 ≤ λ2 ≤ . . . and the corresponding orthonormal basis {φi} of eigenfunctions:
∆φi = λiφi. Let N(λ) = #{√λi ≤ λ} be the eigenvalue counting function. The
asymptotic behavior of N(λ) is given by Weyl’s law ([Ho1]):

(1.1.2) N(λ) =
A

4π
λ2 + R(λ), R(λ) = O(λ).

It shown in [Ber] that on a nonpositively curved surface R(λ) = O
(

λ
ln λ

)
. In the

present paper we study lower bounds for R(λ). As in [J-P], one of our tools is
thermodynamic formalism for hyperbolic flows.

1.2. Thermodynamic formalism. Let Gt be the geodesic flow on the unit tan-
gent bundle SX and let Eu

ξ be the (one-dimensional) unstable subspace for Gt,
ξ ∈ SX. The Sinai-Ruelle-Bowen potential is a Hölder continuous function H :
SX → R which for any ξ ∈ SX is defined by the formula (see [B-R], [Sin])

(1.2.1) H(ξ) =
d

dt

∣∣∣∣
t=0

ln det dGt|Eu
ξ
,

For any continuous function f : SX → R one can define the topological pressure

(1.2.2) P (f) = sup
µ

(
hµ +

∫
fdµ

)
,
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where the supremum is taken over all Gt-invariant measures µ and hµ denotes the
measure-theoretical entropy of the geodesic flow (see [Bow]). In particular P (0) = h,
where h is the topological entropy of the flow. It is well-known that for the Sinai-
Ruelle-Bowen potential P (−H) = 0 and the corresponding equilibrium measure
(i.e. the measure on which the supremum is attained) is the Liouville measure µL

on the unit tangent bundle:

(1.2.3) hµL
=

∫

SX

HdµL

1.3. Main result. Recall that f1(λ) = Ω(f2(λ)) for a function f1 and a positive
function f2 means that lim supλ→∞ |f1(λ)|/f2(λ) > 0.

Theorem 1.3.1. Let X be a compact surface of negative curvature. Then

(1.3.2) R(λ) = Ω
(
(ln λ)

P (−H/2)
h −ε

)
∀ ε > 0.

As was shown in [J-P, section 1.4], the power of the logarithm in (1.3.2) is always
positive:

P (−H/2)
h

≥ K2

2K1
> 0.

Moreover, if the curvature is constant, the bound (1.3.2) reads

(1.3.3) R(λ) = Ω
(
(lnλ)

1
2−ε

)

for any ε > 0. The estimate (1.3.3) was obtained in [Ran] and, in a slightly stronger
form, in [Hej, section 17], using the Selberg zeta function techniques. Our approach,
based on the Duistermaat-Guillemin wave trace formula, thermodynamic formalism
and semiclassical analysis, allows us to treat the variable curvature case as well.

Theorem 1.3.1 agrees with a “folklore” conjecture that on a generic negatively
curved surface

(1.3.4) R(λ) = O(λε) ∀ ε > 0.

Genericity is important, since on arithmetic surfaces corresponding to quaternionic
lattices one can prove a much better lower bound R(λ) = Ω

(√
λ

ln λ

)
(see [Hej]).

Remark 1.3.5. One may compare Theorem 1.3.1 with the lower bound for the
pointwise error term obtained in [J-P]:

(1.3.6) Rx(λ) =
∑
√

λi≤λ

|φi(x)|2 − λ2

4π
= Ω

(√
λ (lnλ)

P (−H/2)
h −ε

)
∀ ε > 0.

Estimates (1.3.2) and (1.3.6) are independent, and, in particular, (1.3.2) can not
be deduced from (1.3.6). Indeed, cancellations may occur when Rx(λ) is integrated
over a negatively curved surface (for instance, according to the conjecture (1.3.4),√

λ should cancel out in the generic case). Also, the sequence of λ–s yielding the
Ω–bound (1.3.6) depends on the lengths of the geodesic loops at x (see [J-P, section
5.2]), and hence for each point x such a sequence is apriori different.
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1.4. Wave trace asymptotics for long times. Consider the spectral distribu-
tion

(1.4.1) Tr e(t) =
∞∑

i=0

cos(
√

λit)

which is the even part of the wave trace on X.
To prove Theorem 1.3.1 we use a modification of the Duistermaat-Guillemin

asymptotic formula for the wave trace [D-G]. Originally, this formula captures the
contribution of a single closed geodesic, however for the proof of Theorem 1.3.1
we need to take into account the contributions of all closed geodesics of length
T0 < L ≤ T (λ), where T0 > 0 is some constant (see Lemma 2.2.1), and T (λ) →∞
at an appropriate rate as the spectral parameter λ →∞.

Let χ(t, T ) be a cut-off function

(1.4.2) χ(t, T ) = (1− ψ(t)) ρ̂

(
t

T

)
,

where ρ ∈ S(R) is an even, non-negative Schwartz function such that supp ρ̂ ⊂
[−1, +1], and ψ(t) ∈ C∞0 (R) with ψ(t) ≡ 1 when t ∈ [−T0, T0] and ψ(t) ≡ 0 when
|t| ≥ 2T0.

The long-time version of the Duistermaat-Guillemin trace formula is given by

Theorem 1.4.3. Let T (λ) → ∞ as λ → ∞ with T (λ) ≤ ε ln λ for ε > 0 small
enough, and let Lγ (resp. L]

γ) denote the length (resp. the primitive period) of a
periodic geodesic γ. Then the asymptotics of the smoothed Fourier transform of the
wave trace is given by
(1.4.4)∫ ∞

−∞
Tr e(t)χ(t, T ) cos λt dt =

∑

Lγ∈Lsp,Lγ≤T (λ)

L]
γ cos(λLγ) χ(Lγ , T )√| det(I −Pγ)| +O (1) .

Here, Pγ is the linearized Poincaré map corresponding to γ.

The proof of Theorem 1.4.3 is the most technically difficult part of the paper. We
use semiclassical microlocal analysis on small scales, see section 3. In order to avoid
the “accumulation” of singularities in the wave trace and to make the stationary
phase method work, we separate the contributions of each closed geodesic using
Lemma 2.2.1. Although the idea of working to (suitably scaled) Ehrenfest times
T (λ) ∼ ε ln λ is well-established (see [Ber, Zel2, Fa]), rigorously separating out
large exponential sums with T (λ)-terms from the wave-trace using small-scale ~-
microlocalization appears to be a novel approach to estimating remainders in the
negatively-curved case.

The main term in the asymptotics proved in Theorem 1.4.3 is given by the sum
of the principal wave invariants at each closed geodesic. As follows from Lemma
2.1.6, to prove Theorem 1.3.1 it is sufficient to show that this sum grows at the rate
given by (1.3.2). First, we use the Parry-Pollicott equidistribution result [P-P] to
calculate the asymptotics of the sum not taking into account its oscillatory nature.
Then we deal with the oscillations in the wave invariants (the difficulty is that
oscillating terms may cancel out in the sum) using a “straightening the phases”
argument based on the Dirichlet box principle (cf. [J-P]).
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1.5. Lower bound for R(λ) in higher dimensions. Lower bounds for the error
term in Weyl’s law on higher-dimensional manifolds are in fact much simpler than
on surfaces. The reason is that the contribution from the “singularity at zero” to
the remainder dominates the contribution from the periodic geodesics.

We write f(λ) À λk for a function f(λ) if there exist a constant c0 > 0 and
a number λ0, such that f(λ) > c0λ

k for any λ > λ0. The following L1-estimate
(which is stronger than an Ω-bound) holds for the remainder in Weyl’s law on
a rather general class of Riemannian manifolds containing manifolds of negative
curvature.

Theorem 1.5.1. Let X be a manifold of dimension n ≥ 3, such that
∫

X
τ 6= 0,

where τ is the scalar curvature. Then,

(1.5.2)
1
λ

∫ λ

0

|R(t)|dt À λn−2,

Theorem 1.5.1 is proved using the asymptotics of the Riesz means (see [Saf]) in
section 5.1. One can also prove Theorem 1.5.1 using the standard t → 0+ heat
trace asymptotics, see [J-P, §2.1]. In order to get more refined information about
R(λ) on negatively curved manifolds of higher dimension it is natural to study the
oscillatory error term, Rosc(λ), see section 5.2.

2. Two auxiliary lemmas

2.1. Smoothed Fourier transform of the wave trace. In the notations of
section 1.4 let

(2.1.1) k(λ, T ) =
∫ ∞

−∞

ρ̂(t/T )
T

cos(λt) Tr e(t)dt,

where, T = T (λ) will be chosen appropriately later on. Substituting (1.4.1) into
(2.1.1) we obtain

(2.1.2) k(λ, T ) =
∞∑

i=0

Hλ,T (
√

λi),

where, for r ≥ 0,

(2.1.3) Hλ,T (r) =
∫ ∞

−∞

ρ̂(t/T )
T

cos(λt) cos(rt)dt =
ρ(T (λ− r)) + ρ(T (λ + r))

2
=

ρ(T (λ− r))
2

+O(λ−∞),

Here,

ρ̂(s) =
1
2π

∫ ∞

−∞
e−isζρ(ζ)dζ

is the Fourier transform of ρ and the O(λ−∞)-error in (2.1.3) follows from the fact
that ρ(λ + r) = O(λ−∞) uniformly for r ≥ 0, since ρ ∈ S(R). Replacing the sum
in (2.1.2) by an integral, we get the following representation of k(λ, T ):

(2.1.4) k(λ, T ) =
∫ ∞

0

ρ(T (λ− r)) + ρ(T (λ + r))
2

dN(r) =
∫ ∞

0

Hλ,T (r)dN(r)
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Formula (2.1.4) plays a key role in our analysis. We shall also use the following
notation:

(2.1.5)
∫ ∞

0

Hλ,T (r)dR(r) = κ(λ, T )

Note that the contribution of the main term in Weyl’s law has been subtracted
from k(λ, T ) to get κ(λ, T ).

We shall use the following:

Lemma 2.1.6. Let R(λ) = o((ln λ)b), b > 0. Then κ(λ, T ) = o((lnλ)b) uniformly
in T for T > T0, where T0 is an arbitrary positive number.

Proof. By the assumption of the lemma, for any ε > 0, R(λ) < ε(1 + ln λ)b for
large enough λ. Consider the left hand side of (2.1.5):

(2.1.7)
∫ ∞

0

Hλ,T (r)dR(r).

Taking into account (2.1.3) and integrating (2.1.7) by parts we obtain
(2.1.8)

κ(λ, T ) ≤ εT

2

∫ ∞

0

|ρ′(T (r−λ))|(ln(1+ r))bdr +
εT

2

∫ ∞

0

|ρ′(T (r +λ))|(ln(1+ r))bdr.

Since ρ′ is Schwartz class, the second term of (2.1.8) is O(1). Changing variables
in the first term of (2.1.8), we obtain

εT

2

∫ ∞

−λ

|ρ′(Ts)|(ln(1 + λ + s))bds =

ε(lnλ)b

2

∫ ∞

−λT

|ρ′(u)|
(

1 +
ln(1 + u+T

λT )
ln λ

)b

du ≤ Cε(lnλ)b

for some constant C > 0, where the last inequality again follows from the fact
that ρ′ is Schwartz class. Clearly, the constant C can be chosen uniformly in T for
T > T0 > 0. Since ε can be taken arbitrarily small, we get κ(λ, T ) = o((ln λ)b), and
this completes the proof of the lemma.

Remark 2.1.9. Lemma 2.1.6 is proved similarly to the results of [J-P, section 2.2],
see also [K]. One may also compare it to [Sar, Proposition 3.1]. Sarnak’s argument
gives the lower bound R(λ) = Ω(

√
λ) for the Weyl error on a surface under the

assumption that the geodesic flow Gt has a fixed point set of dimension two for
some t > 0. This condition holds, for example, when Gt is completely integrable,
but it is not satisfied on a negatively curved surface.

2.2. Separation of periodic orbits. In this section we shall prove the following
dynamical lemma:

Lemma 2.2.1. Let X be a negatively curved surface and let Ω(γ, ε) denote the
ε-neighborhood of a geodesic γ in SX with respect to the Sasaki metric. Then there
exist positive constants T0, B and δ′ (depending only on the injectivity radius inj(X)
and the lower curvature bound K1) such that for any T > T0 the sets Ω(γ, e−BT )
are disjoint for all pairs of closed geodesics γ on X with length Lγ ∈ [T − δ′, T ].

Note that since there are exponentially many closed geodesics on X of length
Lγ ∈ [T − δ′, T ], disjoint neighborhoods have to be of exponentially small size.
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Remark 2.2.2. Here and further on we write Ω(Y, d) for the d-neighborhood of the
set Y . It should not be confused with the Ω notation for the lower bounds.

Proof. Choose B ≥ 2K1, where K2
1 is the curvature bound and K1 is an upper

bound for Lyapunov exponents, cf. (4.1.4). Also, choose δ′ < inj(X)/3, and let T0

be such that 2e−K1T0 < δ′. Assume for contradiction that there exist two closed
geodesics γ1 and γ2 with T − δ′ ≤ Lγ1 ≤ Lγ2 ≤ T such that the corresponding
neighborhoods intersect, and that the geodesics are not inverses of each other (note
that due to the restriction Lγ ∈ [T − δ′, T ] in the conditions of the lemma, the
geodesics cannot be integer multiples of each other unless they are inverses).

Denote the geodesics on X by γj(t), 0 ≤ t ≤ Lγj , and their lifts to SX by
γ̃j(t) = (γj(t), γ′j(t)); γj(t) ⊆ X is sometimes called a footprint of γ̃j(t). Without
loss of generality we may assume that

distSX(γ̃2(0), γ̃1(0)) ≤ 2e−2K1T .

Since for any 0 ≤ t ≤ Lγ2

distSX(γ̃2(t), γ̃1(t)) = distSX(Gtγ̃2(0), Gtγ̃1(0)) ≤ 2e−2K1T eK1t ≤ 2e−K1T ,

and hence

(2.2.3) distX(γ2(t), γ1(t)) ≤ 2e−K1T .

In other words, the entire geodesic γ2 lies in the 2e−K1T -neighborhood of the geo-
desic γ1 and vice versa.

For convenience, we reparametrise γ1 and define

β1(s) := γ1(L1s/L2), 0 ≤ s ≤ L2.

By triangle inequality and the definition of β1,

(2.2.4)
dist(γ2(t), β1(t)) ≤ dist(γ2(t), γ1(t)) + dist(γ1(t), β1(t)) ≤

2e−K1t + t

(
1− L1

L2

)
≤ 2e−K1T + δ′ <

2 · inj(X)
3

.

Accordingly, for any 0 ≤ t ≤ L2 there exists a unique shortest geodesic αt(s)
in X connecting γ2(t) and β1(t). We shall choose the parameter s ∈ [0, 1] so that
αt(0) = γ2(t) and αt(1) = β1(t).

Define the mapping Φ(t, s) : [0, L2]× [0, 1] → X by the formula

Φ(t, s) = αt(s).

We claim that Φ defines a homotopy between γ2(t) and β1(t). Indeed, Φ(t, 0) =
γ2(t), Φ(t, 1) = β1(t). Moreover, since both γ2 and β1 have period L2, we have

α0(s) = αL2(s), ∀ s ∈ [0, 1],

and so Φ(·, s) is a closed curve in X. Finally, Φ(t, s) is continuous since the function
dist(γ2(t), β1(t)) is a continuous function of t.

On the other hand, β1 is just a reparametrization of γ1, hence γ1 and γ2 lie in the
same free homotopy class, contradicting the fact that on a negatively-curved surface
there is a unique closed geodesic in each free homotopy class. The contradiction
completes the proof of the lemma.
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Remark 2.2.5. Lemma 2.2.1 is proved for the tangent bundle. The tangent and the
cotangent bundles can be identified using the Riemannian metric, and therefore
Lemma 2.2.1 holds in the cotangent bundle as well. In this setting it will be used
in the next section.

Remark 2.2.6. The proof of Lemma 2.2.1 generalizes verbatim to higher dimensions.

Remark 2.2.7. In the literature on wave invariants [D-G, Don, Zel1] it is customary
to choose a cut-off function in trace formulas in the length spectrum so that only a
single length of a closed geodesic is contained in its support. Since we go to T (λ) ∼
ln ln λ times, it is not enough to localize exclusively in the length spectrum. Indeed,
when we localize around a geodesic(s) of length Li, error terms in expressions like
(3.2.2) are of the order O(1/|Li+1 − Li|), where . . . < Li < Li+1 < . . . denote
distinct lengths of closed geodesics on X (ignoring the multiplicity). Therefore, the
error would be large in the presence of “near-multiplicities”. We can not control
the gaps in the length spectrum on a generic negatively curved surface, and hence
we have to localize in the phase space as it is done in the next section.

3. Wave trace asymptotics and small-scale microlocalization

In this section we give a proof of Theorem 1.4.3 which is quite technical. Let
us note that assuming Proposition 3.2.1, the subsequent sections can be read inde-
pendently of section 3.

3.1. Plan of the argument. We choose a parameter T = T (λ) > 0 satisfying:
• (i) T (λ) →∞ as λ →∞
• (ii) T (λ) ≤ ε ln λ.

Here, ε > 0 is a small constant that will be chosen later on. For the applications in
this paper, it will only be necessary to take T (λ) of order ln ln λ, so we will not be
concerned with determining the best possible constant ε > 0 in (3.1).

To localize the contribution to the wave trace and to κ(λ, T ) from a given closed
geodesic γ of length Lγ ≤ T it is important to microlocalize the wave trace Tr e(t) to
a neighborhood of γ and then sum over all the different γ’s. The complication here
is that we want to take into account the contributions of all closed geodesics γ with
T0 < Lγ ≤ T (λ). Since T (λ) →∞ as λ →∞, the number of these geodesics blows
up. As a result, simply summing stationary phase expansions for each of the γ’s
(which is automatic when T = O(1)) is impossible when one needs to work with such
long period intervals. The way to deal with this is to microlocalize on neighborhoods
of the γ’s that shrink fast enough as λ →∞ (but not too fast) and then split up the
time interval [T0, T (λ)] into short “windows” of fixed size δ′ > 0. In this context, it is
natural to work with semiclassical pseudodifferential and Fourier integral operators.
The crucial dynamical result we need here is Lemma 2.2.1. Roughly speaking, this
lemma says that there exist neighborhoods Ω(γ, e−BT ) of γ of size e−BT in phase
space T ∗X with the property that, for appropriate geometric constant δ′ > 0,
no other periodic geodesic with period in the window [Lγ − δ′, Lγ + δ′] intersects
Ω(γ, e−BT ). Since T (λ) ≤ ε ln λ, this clearly suggests microlocalizing the trace to
e−Bε ln λ = λ−Bε-neighborhoods of γ.

3.2. A reformulation of Theorem 1.4.3. For the purposes of the proof of The-
orem 1.3.1, it is convenient for us to reformulate Theorem 1.4.3 in the following
equivalent form:
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Proposition 3.2.1. Let T (λ) →∞ as λ →∞ with T (λ) ≤ ε ln λ. Then, for ε > 0
small enough,

(3.2.2) κ(λ, T (λ)) =
∑

Lγ∈Lsp,Lγ≤T (λ)

L]
γ cos(λLγ)χ (Lγ , T (λ))

T (λ)
√| det(I − Pγ)| +O

(
1

T (λ)

)
.

Here, Pγ is the linearized Poincaré map corresponding to γ and χ(t, T ) is a cut-off
function defined by (1.4.2).

The proof of Proposition 3.2.1 is divided in several steps that are carried out in
sections 3.4–3.8.

Equivalence of Theorem 1.4.3 and Proposition 3.2.1 immediately follows from
the following

Lemma 3.2.3. Let T (λ) →∞ as λ →∞. Then

(3.2.4) κ(λ, T ) =
1

T (λ)

∫ ∞

−∞
Tr e(t) χ(t, T ) cos(λt) dt +O

(
1

T (λ)

)
.

Proof. Combining (2.1.1), (2.1.4), (2.1.5) and using that ρ is a Schwartz function
we get

(3.2.5) κ(λ, T ) =
∫ ∞

−∞

ρ̂(t/T )
T

cos(λt)Tr e(t)dt−

A

4π

∫ ∞

0

r(ρ(T (λ− r)) + ρ(T (λ + r)))dr =
∫ ∞

−∞

ρ̂(t/T )
T

cos(λt) Tr e(t)dt− A

4π

∫ ∞

0

rρ(T (λ− r))dr +O((λT )−∞) =
∫ ∞

−∞

ρ̂(t/T )
T

cos(λt)Tr e(t)dt− A

2T
λρ̂(0) +O

(
1

T 2

)
+O((λT )−∞).

Therefore, one may rewrite κ(λ, T ) as

(3.2.6) κ(λ, T ) =
1
T

∫ ∞

−∞
ρ̂(t/T )ψ(t) cos(λt)Tr e(t)dt+

1
T

∫ ∞

−∞
ρ̂(t/T )(1− ψ(t)) cos(λt)Tr e(t)dt− A

2T
λρ̂(0) +O

(
1

T 2

)

Consider now the first term on the right-hand side of (3.2.6):

(3.2.7)
1
T

∫ ∞

−∞
ρ̂(t/T )ψ(t) cos(λt)Tr e(t)dt

It follows from the trace formula [D-G] that the contributions to (3.2.7) from the
non-trivial periods t = Lγ 6= 0 with 0 < Lγ < T0 are O(1/T ). At the same time,
the wave trace at t = 0 has the singularity expansion [Zel1]: Tr e(t) = − 1

2π t−2 +
a1t

−1 + a2 + . . . , where the leading coefficient can be computed by integrating the
principal on-diagonal term of the parametrix for the wave kernel, see [J-P, section
3.1].

Taking the contribution of singularity at zero into account, we obtain that (3.2.7)
can be represented as

(3.2.8)
A

2T
ρ̂(0)λ +O

(
1
T

)
.
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Therefore, the leading term in (3.2.7) cancels the λ-term in (3.2.6) (cf. [J-P, Lemma
3.2.1] where a local analogue of such a result is established). To complete the proof
of the lemma we note that by definition χ(t, T ) = ρ̂(t/T )(1− ψ(t)).

3.3. Preliminaries and notations. We now briefly recall the calculus of small-
scale ~-pseudodifferential operators [D-S, Sj] that will be needed to carry out the
various microlocalizations. In the following we use the notation ~ = λ−1.

Given 0 ≤ δ < 1
2 , we say that a(x, ξ; ~) ∈ C∞0 (T ∗X × (0, ~0]) is in the symbol

class Sm
δ (T ∗X) provided

|∂α
x ∂β

ξ a(x, ξ; ~)| ≤ Cα,β~−m−δ(|α|+|β|).

Given a ∈ Sm
δ (T ∗X), one can define the corresponding ~-pseudodifferential opera-

tor Op~(a) invariantly in terms of the Schwartz kernel:

(3.3.1) Op~(a)(x, y) = (2π~)−n

∫

T∗x X

e−i exp−1
x (y)·ξ/~ a(x, ξ; ~) ζ(r2(x, y))dξ.

Here, exp : TxX → X is the geodesic exponential map, ξ ∈ T ∗x X, r(x, y) is ge-
odesic distance between x and y and ζ ∈ C∞0 (R) is supported in a ball Bε(0)
and equal to 1 in Bε/2(0) with ε > 0 sufficiently small (one can take here ε <

inj(X, g). Such operators form a calculus with Op~(Sm
δ )◦Op~(Sm′

δ ) ⊂ Op~(Sm+m′
δ ).

Calderon-Vaillancourt L2-boundedness and the ~-Egorov theorem also hold [Sj,
section 2]. Moreover, let x, y ∈ Rn be the coordinates of the points x, y ∈ X in
some local coordinate system (here we abuse notation slightly and denote points
on the manifold and their coordinates by the same letters). By using the Tay-
lor expansion − exp−1

x (y) = x − y + O(|x − y|2), to make the Kuranishi change
of variables ξ 7→ (1 + O(x − y))ξ in (3.3.1) and integrating by parts in ξ, one
can locally rewrite (3.3.1) in the somewhat more familiar form Op~(a)(x, y) =
(2π~)−n

∫
Rn ei〈x−y,ξ〉/~ a(x, ξ; ~)(1 + O(~1−2δ)) ζ(|x − y|2)dξ. However, it is useful

here to work with the invariantly defined operators in (3.3.1), and we will do so
without further comment.

We will also use the following geometric notations. Let M be the universal cover
of X. The fundamental group of X is denoted by Γ. For ω ∈ Γ, let Lω = Lγ be the
length of the unique closed geodesic γ on X that corresponds to the conjugacy class
[ω] ⊂ Γ. The lifted bicharacteristic curve in T ∗M projecting to γ is denoted by
γ̃ ⊂ T ∗M . The standard cotangent projection map is denoted by π : T ∗M → M .
We use analogous notation on T ∗X. We will also denote a periodic geodesic on X
(resp. T ∗X) and a choice of lift on M (resp. T ∗M) generally by the same letter
when the choice of lift is uniquely specified. Similarly, functions in C∞(T ∗X) will
be identified with their lifts to C∞(T ∗M).

3.4. Hadamard parametrix. One needs to get an asymptotic exponential sum
formula for the leading term in (3.2.4) just like in the standard case where T (~) ∼ 1.
As we have already indicated, we will need to microlocalize the wave trace on small-
scales with respect to ~ = λ−1, so it’s useful to introduce the parameter ~ in the
lifted wave operator. We do this by writing the real part of the wave operator on

M in the form ẽ(t) = cos t
√

∆̃ = cos t

(
~
√

∆̃
~

)
. Here we denote by ∆̃ the Laplacian

on M and by ẽ(t) the real part of the wave operator on M .
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Even though introducing ~ amounts to simply rescaling the Hadamard para-
metrix approximations ẼN (t) to ẽ(t) (see 3.4.1 below), it’s useful to think of
ẼN (x, y, t; ~); as the Schwartz kernels of a family of ~-Fourier integral operators
(albeit, with trivial dependence on ~) where ~

√
∆̃ is a classical ~-pseudodifferential

operator [D-S, chapter 7]. Since inj(M) = ∞, the Hadamard parametrix approxi-
mation ẼN (t, x, y; ~) is valid for all t > 0 and is given by the following well-known
formula: [Ber]:

(3.4.1) ẼN (t, x, y; ~) = ~−
1
2

∂

∂t

∫ ∞

0

eiθ[r2(x,y)−t2]/~
(

N∑

k=0

ak(x, y)θ−k−1/2
+ ~k

)
dθ,

In the last identity (3.4.1), ∂t is understood in the distributional sense. Also, for
α ∈ R, θα

± denote the standard homogeneous distributions [Ho2, section 3.2] and
ak ∈ C∞(M ×M); k = 0, 1, 2, .... It is also well-known (see [Ber, section 39]) that
for fixed y ∈ M, Ũ − ŨN ∈ CN (M × R+) and moreover, for any compact Y ⊂ M,
there exists C1, C2 > 0 such that

(3.4.2) sup
y∈Y

|ẽ(t, x, y; ~)− ẼN (t, x, y; ~)| ≤ C2e
C1|t| ~N .

In (3.4.2) the bound is uniform for (x, y) ∈ M × Y with d(x, y) ≤ d0, where d0 is
any constant, and Cj = Cj(d0, Y,N); j = 1, 2. Then [Ber, CdV], one can take

(3.4.3) EN (t, x, y; ~) =
∑

ω∈Γ;Lω≤T (~)
ẼN (t, x, ωy; ~),

to be the parametrix approximation to the wave operator e(t) = cos t
√

∆ on X.
Moreover, there exists an appropriate cutoff function η ∈ C∞0 (M ; [0, 1]) (see

[CdV, p. 94], [Ber, Lemma 34]) with diam(supp η) ≤ 2 diam(X) + 1 so that

(3.4.4) Tr e(t) =
∫

M

EN (t, x, x; ~) η(x) dvol(x) +O(eC|t| ~N ),

for an appropriate C > 0.
From now on we put

(3.4.5) EN,ω(t, x, y; ~) := ẼN (t, x, ωy; ~).
and so,

(3.4.6) EN (t, x, y; ~) :=
∑

ω∈Γ;Lω≤T (~)
EN,ω(t, x, y; ~).

Then, since |t| ≤ ε| ln ~|, the RHS in (3.4.2) is O(~N(1−C1ε)) and so, by choosing
ε < C−1

1 and N large enough, it follows from Lemma 3.2.3 that

κ(λ, T ) =
1

2T (~)
∑

id 6=ω∈Γ

∫ ∞

−∞

∫

M

EN,ω(t, x, x; ~) η(x)χ(t;T (~)) e−it/~ dvol(x)dt

+
1

2T (~)
∑

id6=ω∈Γ

∫ ∞

−∞

∫

M

EN,ω(t, x, x; ~) η(x)χ(t; T (~)) eit/~ dvol(x)dt

+O(T (~)−1).(3.4.7)

Remark 3.4.8. Note that here and further on the sum over ω ∈ Γ is finite due to the
presence of the cut-off function χ(t; T (~)): the summation is taken over elements
ω 6= id that such that Lω ≤ T (~).
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The integral in (3.4.7) with the the e±it/~ appearing has a total phase function:

φ±(t, θ; x, y) = (r2(x, y)− t2)θ ± t.

Since θ ≥ 0,
∂tφ

±(t, θ;x, y) = −2tθ ± 1,

and for any α ≥ 0,
∂α

t χ(t; T (~)) = Oα(1),
after first integrating by parts in θ for the k ≥ 1 terms in (3.4.1), followed by
repeated integration by parts in t one gets that

κ(λ, T ) =
1

2T (~)
∑

id6=ω∈Γ

∫ ∞

−∞

∫

M

E+
N,ω(t, x, x; ~) χ(t;T (~)) eit/~ dvol(x)dt

+
1

2T (~)
∑

id 6=ω∈Γ

∫ ∞

−∞

∫

M

E−
N,ω(t, x, x; ~) χ(t; T (~)) e−it/~ dvol(x)dt

+O(T (~)−1),(3.4.9)

where, E±
N,ω(t, x, y; ~) is defined to be

(3.4.10)

~−
1
2 η(x)

∂

∂t

∫ ∞

0

eiθ[r2(x,ωy)−t2]/~
(

N∑

k=0

ak(x, ωy) θ
−k−1/2
+ ~k

)
ψ(−2tθ ± 1) dθ.

From now on, we denote both the Schwartz kernel and the associated operator
by E±

N,ω. We note that the error term on the RHS of (3.4.9) is the sum of the
O(T (~)−1)-error in (3.4.7) and an O(~∞)-piece that arises from inserting the cutoff
function ψ(−2tθ ± 1). To see this, split the θ-integration into the regions where
|θ| ≤ 1 and |θ| ≥ 1. Integrating by parts in t over the first region contributes an
O(~∞)-error in (3.4.9). The same thing happens over the region where |θ| ≥ 1 by
noting that on this set

| − 2tθ ± 1|−1 ≤ |θ|−1

and that T (~) = O(| ln ~|).
The variables (t, θ) are roughly-speaking dual and the presence of the cutoffs

ψ(−2tθ ± 1) will be exploited later on when we will need to interchange orders of
integration in the expression for κ(λ, T ). The analysis for each of the two integral
sums in (3.4.9) is the same and amounts to time-reversal. We will denote the first
sum in (3.4.9) by κ+(λ, T ) and the second by κ−(λ, T ).

The next step is to microlocalize on shrinking ~-scales near individual lifts of
periodic geodesics. First, we microlocalize on shrinking scales near S∗X.

3.5. Small-scale microlocalization near S∗X. We will need to exploit the sep-
aration of geodesics in phase space given by the dynamical Lemma 2.2.1. Since the
latter result applies to unit speed geodesics on S∗X, we begin by ~-microlocalizing
the trace κ(λ, T ) near the co-sphere bundle S∗X on small-scales ∼ ~δ; 0 < δ < 1/2.
The argument here is quite standard, but for completeness, we sketch the proof.

Let d : T ∗X × T ∗X → R be the distance function defined by:

dT∗X((x1, ξ1), (x2, ξ2)) = dTX((x1, ξ
∗
1), (x2, ξ

∗
2)),

where ξ∗1 , ξ∗2 are dual vectors to ξ1, ξ2 and dTX is the Sasaki distance on TX.
Lemma 2.2.1 extends in a straightforward way to the cotangent bundle endowed
with such a distance function, see Remark 2.2.5.
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Let ζ ∈ C∞0 (R) be a cutoff function with ζ(x) = 1 for x near 0 and satisfying
supp ζ ⊂ [−1, 1]. For 0 < δ < 1/2 we define

χδ(x, ξ; ~) = ζ(~−2δd2((x, ξ), S∗X) ).

Then, since ρ ∈ S(R), it follows that, modulo O(λ−∞)-errors, in κ(λ, T ) one
can sum over only the eigenvalues λj satisfying |√λj − λ| ≤ λε for any ε > 0.
Write ~ = λ−1 and from now on, consider only such eigenfunctions, φj ; j = 1, 2, ....
Since (~

√
∆ − 1)φj = λj(~)φj ; j = 1, 2, 3, ..., where |λj(~) − 1| = Oε(~1−ε) and

the ~-pseudodifferential operator P (~) = ~
√

∆ − 1 is ~-microlocally elliptic off
S∗X = {(x, ξ) ∈ T ∗X; |ξ|g = 1}, by a parametrix construction in the calculus
Op~(S∗δ ), it follows that

(3.5.1) ‖Op~(1− χδ(x, ξ; ~))φj‖L2 = O(~∞).

Since
∑

j ρ(T (λ)(λj + λ)) = O(λ−∞), it then follows from (2.1.4) and (3.5.1) that

κ(λ, T ) =
1
2

∑

j

ρ(T (λ)(λj − λ))− Aλ

2T
ρ̂(0) +O(T−2)

=
1
2

∑

j

ρ(T (λ)(λj − λ)) · 〈Op~(χδ)φj , φj〉 − Aλ

2T
ρ̂(0) +O(T−2).(3.5.2)

In analogy with the construction of the small-cutoff function χδ ∈ C∞0 (T ∗X) we
choose ζ ∈ C∞0 (R) as above with ζ(u) = 1 near u = 0. We define
χ̃δ(x, ξ; ~) = ζ(~−2δd2((x, ξ), S∗M)) · χ̃R(x), where χ̃R ∈ C∞0 (M) with χ̃R = 1
on supp(η). Then, from Lemma 3.2.3 and (3.5.2) it follows that:

κ±(λ, T ) =
1

2T (~)
∑

id 6=ω∈Γ

∫ ∞

−∞

∫

M

[ Op∗~(χ̃
δ) · E±

N,ω ·Op~(χ̃δ) ](x, x, t; ~)

× e±it/~χ(t;T (~)) dvol(x) dt + O(T (~)−1).(3.5.3)

From now on, the cutoff χ̃δ will be included in all computations and for each
ω ∈ Γ, the operators E±

N,ω : C∞0 (M) → C∞0 (M) will be replaced by the microlo-
calizations Op∗~(χ̃

δ) ·E±
N,ω ·Op~(χ̃δ) : C∞0 (M) → C∞0 (M). To simplify the writing,

we will continue to denote the latter microlocalized operators simply by E±
N,ω.

3.6. Small-scale microlocalization near periodic geodesics. The second part
of the small-scale ~-microlocalization involves microlocalizing on shrinking ~-scales
near the lifts to T ∗M of individual periodic geodesics in T ∗X. In light of the
previous section it suffices to take γ ⊂ Ω(S∗M, ~δ) for any fixed δ ∈ (0, 1/2).

From Lemma 2.2.1, it follows that one can put disjoint tubular neighborhoods
Ω(γ, e−BT (~)) around all lifts of periodic geodesics γ with periods in the time win-
dows [t, t+ δ′];T0 ≤ t ≤ T (~). The constant B > 0 is uniform and depends only on
the curvature pinching condition (1.1.1) .

Fix the lift of a periodic geodesic γ0 on M and choose ε so that δ := Bε < 1
2 .

Then, for (x, ξ) ∈ T ∗M, we define the small-scale cutoff functions

(3.6.1) ζδ
γ0

(x, ξ; ~) = ζ
(
~−2δ d2((x, ξ), γ0))

)
.
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Clearly, ζδ
γ0
∈ S0

δ (T ∗M), where we have arranged that δ < 1/2. Then, for any
ω ∈ Γ, we write

E±
N,ω = Op∗~(ζ

δ
γ0

) · E±
N,ω ·Op~(ζδ

γ0
) + Op∗~(ζ

δ
γ0

) · E±
N,ω ·Op~(1− ζδ

γ0
)

+Op∗~(1− ζδ
γ0

)E±
N,ω ·Op~(ζδ

γ0
) + Op∗~(1− ζδ

γ0
) · E±

N,ω ·Op~(1− ζδ
γ0

),

and taking traces of both sides, we split the RHS of (3.4.7) into three different
integral sums. Taking into account that TrA = TrA∗ and TrAB = TrBA, it
follows that

(3.6.2) κ±(λ; T ) = κ±11(λ; T ) + 2κ±12(λ; T ) + κ22(λ;T ) + O(T (~)),

where,
(3.6.3)

κ±11(λ; T ) =
1

2T (~)
∑

id 6=ω∈Γ

∫ ∞

−∞
Tr[E±

N,ω ·Op~(ζδ
γ0

) ·Op∗~(ζ
δ
γ0

)] e±it/~χ(t; T (~)) dt,

(3.6.4)

κ±12(λ;T ) =
1

2T (~)
∑

id 6=ω∈Γ

∫ ∞

−∞
Tr[E±

N,ω ·Op~(ζδ
γ0

) ·Op∗~(1− ζδ
γ0

)] e±it/~χ(t; T (~)) dt,

and
(3.6.5)

κ±22(λ;T ) =
1

2T (~)
∑

id 6=ω∈Γ

∫ ∞

−∞
Tr[E±

N,ω·Op~(1−ζδ
γ0

)·Op∗~(1−ζδ
γ0

)] e±it/~χ(t; T (~)) dt.

We now estimate each of the integral sums in (3.6.3)-(3.6.5) separately. Roughly
speaking, one should think of the decomposition in (3.6.3)-(3.6.5) as follows: (3.6.3)
gives the microlocal contribution of single periodic geodesic γ0 to the trace, (3.6.4)
consists of cross-terms which we will show areO(~∞) and finally, (3.6.5) is estimated
in the same way as (3.6.3) by successively microlocalizing around all other periodic
geodesics γ 6= γ0 with Lγ ≤ T (~). Due to the small-scale microlocalizations and
ultimately, the splitting of the time scale into short time-windows, the expansions
in κ(λ, T ) are no longer classical polyhomogeneous in ~. For this reason, it is
necessary to give a somewhat different argument than in the classical T (~) = O(1)
case (see [Don]).

3.7. Studying κ±11(λ, T ) in normal coordinates. The goal of this section is to
prove the formula (3.7.8). For (x, y) ∈ supp(η)× supp(η) ⊂ M ×M, we have

(3.7.1) E±
N,ω ·Op~(ζδ

γ0
) ·Op∗~(ζ

δ
γ0

)(x, y; ~) =
∂

∂t
I±N,ω(x, y, t; ω, ~).

Here

I±N,ω(x, y, t;ω, ~) = (2π~)−2

∫ ∫ ∫
ei[−t2θ+r2(x,ωz)θ−exp−1

z (y)·ξ]/~aN (x, z, θ; ω, ~)

× η(x) ζ̃δ
γ0

(z, ξ; ~) ψ(−2tθ ± 1) ζ(r2(z, y)) dzdξdθ,

where aN (x, z, θ; ω, ~) = ~− 1
2 θ
− 1

2
+

∑N
k=0 ak(x, ωz)~kθ−k

+ . By symbolic calculus for
~-pseudodifferential operators, ζ̃δ

γ0
∈ S0

δ satisfies ([D-S, p. 78] )

(3.7.2) ζ̃δ
γ0

(z, ξ; ~) = |ζδ
γ0

(z, ξ)|2 + ~1−2δζδ,−1
γ0

(z, ξ; ~)
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with |ζδ
γ0
|2, ζδ,−1

γ0
∈ S0

δ . Since inj(M, g) = ∞, to simplify the writing somewhat, we
put here ζ(r2(z, y)) = 1 in the ~-pseudodifferential cutoffs (see (3.3.1)).

Since ω ∈ Γ acts by by isometries on (M, g), it follows that exp−1
ωz (ωy)·(dω−1)tξ =

exp−1
z (y) · ξ. and so the expression for I±N,ω(x, y, t; ω, ~) above can be rewritten as

(2π~)−2

∫ ∫ ∫
ei[−t2θ+r2(x,ωz)θ−exp−1

ωz (ωy)·(dω−1)tξ]/~aN (x, z, θ; ω, ~)

× η(x) ζ̃δ
γ0

(z, ξ; ~) ψ(−2tθ ± 1) dzdξdθ,

Changing the variables ωz 7→ z, (dω−1)tξ 7→ ξ and using that ω ∈ Γ acts by
isometries, one gets

I±N,ω(x, y, t;ω, ~) = (2π~)−2

∫ ∫ ∫
ei[−t2θ+r2(x,z)θ−exp−1

z (ωy)·ξ]/~aN (x, z, θ; ~)

(3.7.3) × η(x) ζ̃δ
γ0

(ω−1z, (dω)tξ; ~)ψ(−2tθ ± 1) dzdξdθ.

Here, ω has been scaled out of the amplitude aN so that aN (x, z, θ; ~) = ~− 1
2 θ
− 1

2
+ ·∑N

k=0 ak(x, z)~kθ−k
+ .

Let us now fix a global normal coordinate system centered at x ∈ M . With some
abuse of notation we identify a point z ∈ M and a vector of its coordinates in this
system: z = (z1, z2) ∈ TxM ∼= R2. For instance, in the following z − ωy means a
vector (z1 − (ωy)1, z2 − (ωy)2).

Writing the Taylor expansion

− exp−1
z (ωy) · ξ = (z − ωy) · (1 +O(z − ωy))ξ

and making the corresponding Kuranishi change of variables ξ 7→ ξ(1 +O(z−ωy))
in the above integral, we get a coordinate expression for (3.7.3):

I±N,ω(x, y, t; ω, ~) = (2π~)−2

∫ ∫ ∫
ei[−t2θ+r2(x,z)θ+(z−ωy)ξ]/~a′N (x, z, θ; ω, ~)

× η(x) ζ̃δ
γ0

(ω−1z, (dω)tξ; ~) ψ(−2tθ ± 1) dzdξdθ,(3.7.4)

where a′N (x, z, θ;ω, ~) = aN (x, z, θ; ~) · (1 +O(z − ωy)). Here ω (again, with some
abuse of notation) is understood as the transformation R2 → R2, mapping the
coordinates of z ∈ M to the coordinates of ωz ∈ M in the normal coordinate
system centered at x ∈ M ; dω is understood as the Jacobian of this mapping. Note
that in formula (3.7.5) and Lemma 3.7.6 below, ω and dω are also understood in
this sense.

Recall from (3.7.2) that one can write ζ̃δ
γ0

= |ζδ
γ0
|2+~1−2δζδ,−1

γ0
, where the second

term ζδ,−1
γ0

∈ S0
δ satisfies estimates of the form

(3.7.5) ∂α
z ∂β

ξ ζδ,−1
γ0

(ω−1z, (dω)tξ; ~) = Oα,β

(
eCLω~−δ(|α|+|β|)

)
.

Here, C denotes possibly different positive constants not depending on ω. The
constants C may depend on α and β, but this dependence can be ignored since we
need to take into account only a finite number of derivatives: |α + β| ≤ 2(m + 1),
where m is given by (3.8.4).

To prove (3.7.5) we first note that since ζδ,−1
γ0

∈ S0
δ , by the chain rule, differen-

tiating the symbol gives the negative powers of ~. The estimate then follows from
Lemma 3.7.6 below, since ω−1z ∈ π(supp ζδ,−1

γ0
) and therefore r(x, ω−1z) < C.
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Lemma 3.7.6. Let M and ω be as above. Fix a normal coordinate system centered
at x ∈ M , and let z ∈ M be such that r(x, ω−1z) < C. Let z = (z1, z2), ω−1z =
((ω−1z)1, (ω−1z)2) be, respectively, coordinates of z and ω−1z in this system, and let
ξ = (ξ1, ξ2) ∈ T ∗z M and dωtξ = ((dωtξ)1, (dωtξ)2) ∈ T ∗ω−1zM be the corresponding
covectors. Then ∂α

z (ω−1z) = Oα(eCLω ) and ∂β
ξ (dωtξ) = Oβ(eCLω ).

Proof. Since ω is an isometry, we can identify the tangent spaces TxM ∼= R2 and
TωxM ∼= R2 using dω, so that for any point y ∈ M , the coordinates of the point
y in a normal coordinate system centered at x coincide with the coordinates of ωy
in the normal coordinate system centered at ωx. Taking this identification into
account we obtain

(3.7.7) ((ω−1z)1, (ω−1z)2) = exp−1
ωx ◦ expx(z1, z2).

As was shown in [Ber, Appendix, Propositions 1 and 3], the Jacobian of the ex-
ponential map is bounded away from zero and the derivatives of the Jacobi fields
have at most exponential growth at infinity. At the same time, the derivatives of
the exponential map could be expressed in terms of the derivatives of the Jacobi
fields [Ch, p. 103], and hence also have at most exponential growth at infinity.
Therefore, the derivatives of the map exp−1

ωx in (3.7.7) are O(1) since by assump-
tion of the lemma r(z, ωx) < C. The derivatives of the map expx in (3.7.7) grow
exponentially in r(x, z) ≤ r(x, ωx) + r(ωx, z) ≤ r(x, ωx) + C. At the same time,
r(x, ωx) ≤ Lω + C by triangle inequality. This completes the proof of the first
estimate in Lemma 3.7.6.

Consider now the ξ-derivatives and let β = (β1, β2). Note that ∂β
ξ (dωtξ) = 0 if

β1 ≥ 2 or β2 ≥ 2. The first derivatives of dωtξ pull out components of dωt, which
is the transpose matrix of the differential dω. Let us recall in what sense dω is
understood here: it is the Jacobian of the map ω : R2 → R2 given by (3.7.7). But
we have already proved above that the derivatives of this map (in particular, the
first derivatives that are components of the Jacobian) grow at most exponentially
in Lω. This completes the proof of Lemma 3.7.6.

Let us go back to the formula (3.7.4). By integration by parts in ξ in (3.7.4),
modulo O(~∞)-errors, one can assume that r(z, ωy) = r(ω−1z, y) ≤ 1

C . By carrying
out the same argument as for the leading term |ζδ

γ0
|2 below and using the derivative

bounds (3.7.5), it follows that by taking δ > 0 sufficiently small, the contribution
to κ11(λ, T ) of the remainder term ~1−2δζδ,−1

γ0
(ω−1z, (dω)tξ; ~) is O(~C(δ)) for some

C(δ) > 0. From now on, with a slight abuse of notation, we ignore this remainder
and rewrite |ζδ

γ0
|2 as ζ̃δ

γ0
. So, from (3.7.4), we need to study the integral

I±N,ω(x, y, t; ω, ~) = (2π~)−2

∫ ∫ ∫
ei[−t2θ+r2(x,z)θ+(z−ωy)ξ]/~a′N (x, z, θ; ω, ~)

× η(x) ζ̃δ
γ0

(ω−1z, (dω)tξ; ~) ψ(−2tθ ± 1) dzdξdθ.(3.7.8)

By integration by parts in the θ-variable in (3.7.8) it suffices modulo O(~∞)-
errors to assume that for any fixed ε > 0,

(3.7.9) |r2(x, z)− t2| < ε.

3.8. Stationary phase in (z, ξ)-variables and an expansion for κ±11(λ, T ).
The goal of this section is to prove Lemma 3.8.9. We would like to apply sta-
tionary phase with parameters in the (z, ξ)-variables in (3.7.8) (see [Ho2] Theorem
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7.7.5). For this, we need the following estimates for derivatives of the phase function
φ(z, ξ;x, y, ω) := θr2(x, z)+(z−ωy)ξ. First, we have that for (ω−1z, dωtξ; x, y, ω) ∈
supp(ζ̃δ

γ0
)× supp(η)× supp(η)× {ω; Lω ≤ T (~)},

(3.8.1) ∂α
z ∂β

ξ φ(z, ξ; x, y, ω) = Oα,β(T (~)2).

The estimate (3.8.1) follows from the fact that T (~)−1 ≤ θ ≤ T−1
0 on supp ψ(−2tθ±

1) and the following bounds:

∂α
z φ(z, ξ; x, y, ω) = ∂α

z (θr2(x, z)) = θ∂α
z r2(x, z) = θ∂α

z (|z|2)

= Oα(θ r2(x, z)) = Oα(1)T (~)2; |α| ≥ 0.

Here, we have used (3.7.9) as well as the fact that r2(x, z) = z2
1 + z2

2 since the zj ’s
are geodesic normal coordinates at x ∈ M . The mixed (z, ξ)-derivatives of φ are
pointwise O(1). Finally,

∂ξφ(z, ξ; x, y, ω) = z − ωy = O(Lω) = O(T (~)),

where the last estimate follows from the triangle inequality for the distance function.
Moreover, the Oα,β(1)-constants appearing on the RHS in (3.8.1) are all uniform
in ω ∈ Γ.

The required lower bound on the norm of the gradient says that for (ω−1z, dωtξ, x, y, ω) ∈
supp(ζ̃δ

γ0
)×supp(η)×supp(η)×{ω; Lω ≤ T (~)}, there exists another constant C > 0

(uniform in all parameters including ω), such that

(3.8.2) |∂zφ|2(z, ξ; x, y) + |∂ξφ|2(z, ξ; x, y) ≥ 1
C

(|ξ + ∂zr
2(x, z)θ|2 + |z − ωy|2),

Indeed, the lower bound in (3.8.2) follows by Taylor expansion around the critical
point ξ = −∂zr

2(x, z)θ, z = ωy and the Hessian lower bound (∂2
z,ξφ) À Id. The

latter follows from the fact that ∂2
zφ = θ∂2

zr2(x, z)) = θ∂2
z (z2

1 + z2
2) = O(θ) =

O(1), ∂z∂ξφ = 1 and finally, ∂2
ξφ = 0. Given (3.8.1) and (3.8.2), by Hörmander’s

interpolation proof of stationary phase ([Ho2] Theorem 7.7.5),

(3.8.3)
I±N,ω(x, y, t; ~) = (2π~)−1/2

N∑

k=0

∫ ∞

0

ei[−t2+r2(x,ωy)]θ/~

× bk
N (x, y, θ; ω, ~) ψ(−2tθ ± 1) θ

−1/2−k
+ dθ.

Set

(3.8.4) m =
[

4
1− 2δ

]

In (3.8.3) we have

bk
N (x, y, θ;ω, ~) = ~k

m∑

j=0

~j(DzDξ)j

(j + 1)!
[ak(x, z) · ζ̃δ

γ0
(ω−1z, dωtξ)]|ξ=−∂zr2(x,z)θ,z=ωy

+O(~k+m−1 T (~)2 sup
|α+β|≤2(m+1)

|∂α
z ∂β

ξ (ak · ζ̃δ
γ0

)|).(3.8.5)

Let us now estimate the contribution to κ±11(λ, T ) coming from the error in
(3.8.5). Since it is well-known that ∂α

z ak = Oα(eCLω ) ([Ber, Appendix, Lemma 4]),
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we have that

~m−1 sup
|α+β|≤2(m+1)

|∂α
z ∂β

ξ (ak · ζ̃δ
γ0

)| ¿ eCLω~−2(m+1)δ+m−1)

¿ eCε| ln ~| ~(m+1)(1−2δ)−2 ¿ ~(m+1)(1−2δ)−2−Cε ¿ ~2−Cε(3.8.6)

Consequently, from (3.8.3), (3.7.8) and (3.6.3) it follows that the contribution to
κ±11(λ, T ) coming from the remainder in (3.8.5) for each k = 0, ..., N, is bounded by

(3.8.7)
T (~)2

T (~)
∑

T0≤Lω≤T (~)

∫ ∞

−∞

∫ ∞

0

|ψ(−2tθ±1)|χ(t; T (~))|∂te
±it/~|~2−Cε ~k θ

−1/2−k
+ dθdt

¿ ~k+1−CεT (~)
∑

Lω≤T (~)

∫ T (~)

T0

∫ 1/T0

1/T (~)
θ
−1/2−k
+ dθ dt

¿ ~k+1−Cε T (~) eC|T (~)|
∫ T (~)

T0

|T (~)|−1/2+k dt ¿ ~k+1−Cε |T (~)|3/2+k.

In the second to last estimate in (3.8.7) we have used the exponential bounds for
the growth of the number of periodic geodesics [M-S].

Choosing ε > 0 small enough and taking into account that T (~) ≤ ε| ln ~|, it
follows that the error terms for k ≥ 0 in (3.8.5) are O(~α1) for some α1 > 0. We
are only interested here in working up to such errors. So, it is enough to consider
only the principal term in (3.8.5). Next, note that for each j ≥ 1,
(3.8.8)

~j (DzDξ)j

(j + 1)!
[ak(x, z) · ζ̃δ

γ0
(ω−1z, dωtξ)]|ξ=−∂zr2(x,z)θ, z=ωy = O(~j(1−2δ)eCjLω ),

and so again after possibly shrinking ε > 0 in the T (~) ≤ ε ln ~, it suffices modulo
O(~α2) to restrict the analysis to the j = 0 case. By the same token, it suffices to
restrict to the k = 0 case in (3.8.3).

To get κ±11(λ, T ), we put y = x in (3.8.3), integrate over x ∈ supp(η) and sum
over ω ∈ Γ; T0 < Lω < T (~). Substituting the formula (3.8.3) in (3.6.3) and taking
into account the estimate in (3.8.8), for appropriate α3 > 0, we get the following

Lemma 3.8.9.

κ±11(λ, T ) =
1

2T (~)
∑

id 6=ω∈Γ

∫ ∞

0

∫

M

∫ ∞

−∞
eiθ[−t2+r2(x,ωx)]/~b0

N (x, x, θ; ω, ~)(~θ+)−
1
2

×η(x) ψ(−2tθ ± 1)
∂

∂t

[
e±it/~ χ(t; T (~))

]
dtdvol(x)dθ +O(~α3)

=
1

2~T (~)
∑

id6=ω∈Γ

∫ ∞

0

∫

M

∫ ∞

−∞
eiθ[−t2+r2(x,ωx)±t]/~b0

N (x, x, θ; ω, ~)(~θ+)−
1
2

×η(x)ψ(−2tθ ± 1)χ(t;T (~)) dtdvol(x)dθ +O(~α3).

In the last line in (3.8.9), we have used that the leading term comes from applying
∂t to the exponential e±it/~ since ∂tχ(t; T (~)) = ∂t[ρ̂(t/T ) (1− ψ)(t)] = O(1).

For a fixed ω ∈ Γ, every term in (3.8.9) can be represented as a sum using
the expansion (3.8.5) for b0

N . Let us estimate each term in this sum separately.
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Given the estimate in (3.8.8) the j = 0 – term dominates in (3.8.5) and so, up to
O(~α4)-errors, it suffices to estimate:

(3.8.10)
∫ ∫ ∫

eiθ[−t2+r2(x,ωx)]/~±it/~ ζ̃δ
γ0

(x,−dωt · ∂zr
2(x, z)|z=ωx θ)

×η(x) a0(x, ωx) (~θ+)−
1
2 χ(t; T (~)) ψ(−2tθ ± 1) dt dvol(x) dθ.

3.9. Splitting into short time-windows. The goal of this section is to prove
Lemma 3.9.6. We split up the iterated time integral in (3.8.10) into a sum over
’time-windows’ of size δ′

T (~) . The reason for this is that Lemma 2.2.1 only controls

the splitting of geodesics in a time interval of size δ′
T (~) (note that the original time

variable t has already been rescaled to t
T (~) at this point). Consider a covering of

[T0, T (~)] by open intervals Ij of length δ′, j = 0, . . . [T (~)−T0
δ′ ], and let ηj ∈ C∞0 (R)

be a partition of unity subordinate to this covering. For j = 0, ...., [T (~)−T0
δ′ ], we

will need the following cutoff functions:

χj(t;T (~)) = ηj(T (~)t) · χ(t; T (~))

(3.9.1) = ηj(T (~)t) · ρ̂(t/T (~)) · (1− ψ)(t).

Since we have already inserted the cutoff function ψ(−2tθ ± 1) in (3.8.10) this
allows us to apply Fubini and do the (t, θ)-iterated integrals in (3.8.10) first and
the x-integration last. Indeed, we just rewrite the total phase in (3.8.10) as a sum:

(3.9.2) r(x, ωx) + Φ±(t, θ;x, ω),

where,
Φ±(t, θ; x, ω) = (±t− r(x, ωx))− θ (t2 − r2(x, ωx)).

At this point, we would like to do stationary phase in (t, θ), treating (x, ω, ~) as pa-
rameters. Just as in (3.7.8) we need to establish a couple of estimates for derivatives
of the phase Φ±. The first estimate

(3.9.3) ∂α
θ ∂β

t Φ±(t, θ; x, ω) = Oα,β(r2(x, ωx))

with Oα,β-constants uniform in all parameters is immediate. Since ∂t∂θΦ± =
−2t, ∂2

θΦ± = 0 and ∂2
t Φ± = −2θ one gets the following lower bound for the (t, θ)-

Hessian of Φ±:
(∂2

t,θΦ
±)t · (∂2

t,θΦ
±) ≥ 1

C
Id,

and so, by Taylor expansion around the critical points t = ±r(x, ωx) and θ =
1

2r(x,ωx) , one gets the uniform lower bound

(3.9.4) |∂tΦ±|2 + |∂θΦ±|2 ≥ 1
C

(
|t± r(x, ωx)|2 + |θ − 1

2r(x, ωx)
|2

)
.

So, by [Ho2] Theorem 7.7.5, it follows that for the expression in (3.8.10):∫ ∫ ∫
eiθ[−t2+r2(x,ωx)]/~±it/~ ζ̃δ

γ0
(x,−dωt · ∂zr

2(x, z)|z=ωx θ) · η(x) a0(x, ωx)

×(~θ+)−
1
2 χ(t;T (~)) ψ(−2tθ ± 1) dt dθ dvol(x)

= 2π~1/2

∫

M

eir(x,ωx)/~η(x) a0(x, ωx) · ζ̃δ
γ0

(x,−dωt · ∂zr(x, z)|z=ωx) · r(x, ωx)−
1
2

×ψ(±r(x, ωx)/T ) (1− ψ)(±r(x, ωx)) dvol(x) +O(~2−2δ eCLω ).(3.9.5)
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In the last line of (3.9.5), we have again used the exponential bounds for the deriv-
atives of a0 [Ber] as well as the uniform lower bounds for Φ± in (3.9.4). The
contribution of the O(~2−2δ eCLω ) error term to κ11(λ, T ) is then

¿ ~2(1−δ)

~T (~)
∑

ω;Lω≤T (~)
eCLω ¿ ~1−2δeC|T (~)||T (~)|−2.

After possibly reducing the size of ε > 0 further, this term is then O(~α5) for some
α5 > 0.

We summarize what was shown so far in the following

Lemma 3.9.6.

κ±11(λ, T ) =
~−1/2

2T (~)
∑

id 6=ω∈Γ

[
T (~)−T0

δ′ ]∑

j=0

∫

M

eir(x,ωx)/~a0(x, ωx)ζ̃δ
γ0

(x,−dωt·∂zr(x, z)|z=ωx)

· χj(±r(x, ωx); T (~)) r(x, ωx)−
1
2 η(x) dvol(x) +O(~α5),

for some α5 > 0, where η ∈ C∞0 (M ; [0, 1]) is an appropriate cutoff function with
diam(supp η) ≤ 2 diam(X) + 1.

3.10. Stationary phase in the x-variables. The last step involves expanding
each term in the ω-sum in (3.9.6) separately. For fixed id 6= ω ∈ Γ, one carries out
stationary phase in (3.9.6) in the x-variables transverse to the lift of the periodic
geodesic on X given by

(3.10.1) γ(ω) = {x ∈ supp(η) ⊂ M ;∇xfω(x) = 0 },
where fω(x) = r(x, ωx) is the displacement function.

Since the dynamical Lemma 2.2.1 only controls separation of geodesics in time
intervals of size δ′

T (~) , we estimate the summands:

(3.10.2)
~−1/2

2T (~)
∑

id6=ω∈Γ

∫

M

eir(x,ωx)/~a0(x, ωx) · ζ̃δ
γ0

(x,−dωt · ∂zr(x, z)|z=ωx)

× χj(±r(x, ωkx); T (~)) r(x, ωx)−
1
2 η(x) dvol(x); j = 0, ..., [

T (~)− T0

δ′
]

separately. For fixed id 6= ω ∈ Γ and j ∈ {0, ..., [T (~)−T0
δ′ ], we introduce Fermi

coordinates (u, s) ∈ R × [0, L] in (3.10.2) (see [CdV]) centered on the geodesic
segment γ(ω) (i.e. u = 0 on γ(ω)) and apply stationary phase in the u-variables
just as in the T (~) ∼ 1 case (see [CdV, section 2]). In terms of the (u, s)-coordinates
on M

(3.10.3) dvol(x) = J(u, s; ω) duds,

where, |∂α
u ∂β

s J(u, s; ω)| = Oα,β(eC(α,β)Lω ) [CdV].
In the case at hand, it is necessary to control the dependence of the phase and

amplitude of (3.9.6) on the parameters, ω.
We now need the following estimates: The first is a (uniform) Hessian lower

bound ([CdV, Lemma 4]) which says that

(3.10.4) ∇2
ufω(u, s) ≥ C0 > 0.
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The constant C0 > 0 in (3.10.4) is uniform in the parameters ω ∈ Γ and depends
only the curvature pinching conditions −K2

1 ≤ K ≤ −K2
2 . In addition, one has the

upper bounds [Ber, CdV]:

(3.10.5) ∂α
u a0(x, ωx) = Oα(eCLω ), ∂α

u fω(u, s) = Oα(eC′Lω ),

∂α
u J(u, s) = Oα(eC′′Lω ),

where the estimates in (3.10.5) are all uniform in the Fermi coordinates (u, s) ∈
R× [0, L]. In order to apply stationary phase with parameters, we need to carefully
analyze the critical sets of the phase function fω(u, s) in (3.10.2) for all ω ∈ Γ with
Lω ¿ | ln ~|. We do this, by combining the estimates (3.10.4) and (3.10.5) with the
dynamical Lemma 2.2.1.

3.11. Application of Lemma 2.2.1. As above, let γ(ω) be the unique lifted
geodesic invariant under the action of ω ∈ Γ. As is well-known [B-O, Proposition
4.2], the displacement function fω(x) on a negatively curved surface is strictly
convex, except on γ(ω) where it is constant: fω(x) = Lω when x ∈ γ(ω). The
geodesic γ(ω) is also the critical set of fω(x), see (3.10.1).

Fix j = 0, ..., [T (~)−T0
δ′ ] and ω ∈ Γ and consider the corresponding summand in

(3.10.2) given by
(3.11.1)
~−1/2

2T (~)

∫

M

eir(x,ωx)/~a0(x, ωx) · ζ̃δ
γ0

(x,−dωt · ∂zr(x, z)|z=ωx)χj(±r(x, ωkx); T (~))

×r(x, ωx)−
1
2 η(x) dvol(x).

We now show that, the integral in (3.10.2) is O(~∞) unless ω = ω0, where the
latter group element fixes the lifted geodesic γ0(ω0). As before, π : T ∗M → M
denotes the standard cotangent projection map and γ̃ ⊂ T ∗M will denote the
bicharacteristic curve with π(γ̃) = γ.

To prove the above claim, we first note that on supp ζ̃δ
γ0

(x,−dωt∂zr(x, z)|z=ωx),

(3.11.2) d(x, π(γ̃0)) = d(x, γ0) = O(~δ).

Here, following our convention we write γ0 for γ0(ω0). Since dωt
0 · ∂zr(x, z)|z=ω0x

is the cotangent vector to γ̃0 at x ∈ π(γ̃0), it follows from the small-scale microlo-
calization in the ξ-variables that for any x ∈ γ0, we have that

(3.11.3) dωt · ∂zr(x, z)|z=ωx = dωt
0 · ∂zr(x, z)|z=ω0x +O(~δ).

From the exponential upper bounds for the derivatives of fω in (3.10.5) and by a
Taylor expansion around γ0, it follows that for any x ∈ M with d(x, γ0) = O(~δ),

(3.11.4) dωt · ∂zr(x, z)|z=ωx = dωt
0 · ∂zr(x, z)|z=ω0x +O(~δ0),

for some 0 < δ0 < δ.
On the other hand, by taking ε > 0 small enough, and again using the upper

bounds in (3.10.5), it follows by an integration by parts in (3.9.6) in the transversal
u-variable, that modulo O(~∞)-errors, one can cut off the integration to values of
x satisfying:

(3.11.5) ∂xfω(x) = O(~δ),
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for any 0 ≤ δ < 1/2. Then using (3.10.5) again together with the uniform Hessian
lower bound in (3.10.4), it follows by a Taylor expansion argument that

(3.11.6) d(γ0(ω0), γ(ω)) = O(~δ1).

Here, 0 < δ1 < δ0 is yet another, possibly smaller constant. But then, in view of
the estimate (3.11.4) we get that

(3.11.7) d(γ̃0(ω0), γ̃(ω)) = O(~δ1).

The presence of the time cutoff χj in (3.10.2) ensures that there is only one j-
summand in (3.10.2) that contributes in a non-negligible way to κ±11, namely, the
interval Ij containing Lγ0 .

Finally, by possibly shrinking ε > 0 further, it follows from (3.11.7) and the
dynamical Lemma 2.2.1 that, up to O(~∞)-error in κ±11(λ, T ), ω = ω0.

One can repeat the above argument for each j ∈ {0, ..., [T (~)−T0
δ′ ]} and id 6= ω ∈ Γ

separately in (3.11.1) and sum up. By taking the exponential bounds in (3.10.5) into
account and possibly further decreasing the size of ε in T (~) = ε| ln ~| if necessary, it
follows by applying stationary phase in u (see [CdV, Don, Sun]) that for appropriate
α6 > 0,

(3.11.8) κ±11(λ, T ) =
e±iLγ0/~

2T (~)
· L]

γ0
· χ (Lγ0 , T (~)) · | det(I − Pγ0)|−1/2 + E(~),

where,

(3.11.9) E(~) = O(~α6) +O
(

eCT (~)~∞

T (~)

)
= O(~α6).

The first term on the RHS of (3.11.9) gives the remainder produced by the sta-
tionary phase method for ω = ω0. The second term on the RHS of (3.11.9) follows
from the bound #{γ; Lγ ≤ T} = O(eCT (~)T (~)−1), and the estimate O(~∞) for
each summand in (3.10.2) corresponding to ω 6= ω0.

Estimate for κ±12(λ, T ): Lemma 2.2.1 implies that there are no periodic geodesics
in supp ( ζδ

γ0
· (1− ζδ

γ0
) ). So, by repeated integration by parts in the u-variable in

(the analogue of) (3.11.1), it follows that

(3.11.10) κ12(λ, T ) = O
(

eCT (~)~∞

T (~)

)
= O(~∞),

when T (~) = ε| ln ~|.
Estimate for κ±22(λ, T ): Here, repeat the microlocalization as in the estimate for
κ11(λ, T ) near each periodic geodesic γ 6= γ0 with 0 < Lγ ≤ ε| ln ~| separately
and sum up. By the same argument as for κ12(λ, T ), all cross terms give O(~∞)
contributions to κ(λ, T ). Also, we note that since the remainder term is O(~α6) for
some α6 > 0 in (3.11.8), after summing over all ω 6= ω0 in κ±22, it follows that, after
possibly shrinking ε > 0 further, the remainder in the latter is

O(eCT (~)T (~)−1~α6) = O(~α7),

for some α7 > 0. This finishes the proof of Proposition 3.2.1 since the O(~α7)-error
is absorbed in the O(T−1)-error in (3.2.4) for κ(λ, T ).
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4. Proof of Theorem 1.3.1

4.1. Application of thermodynamic formalism. The strategy of the proof of
Theorem 1.3.1 is to get a contradiction with Lemma 2.1.6 that gives an upper bound
for the quantity κ(λ, T ) defined in (2.1.4), (2.1.5); that bound holds for any λ, T . We
use the formula (3.2.2) and the estimate (4.1.3) below to obtain a lower bound for
κ(λ, T ) which holds for an infinite sequence of pairs (λ, T ) such that T ∼ 1

h ln ln λ,
where h is the topological entropy of the geodesic flow on X.

Consider the main term in the formula (3.2.2). This sum is a trigonometric
polynomial in λ, while the number of terms and the coefficients depend on T .

We would like to choose λ and T in such a way that the value of the polyno-
mial is large. We first study the rate of growth for the sum of coefficients of this
trigonometric polynomial as T →∞ not taking into account the oscillatory nature
of the terms. Let

(4.1.1) S(T ) =
∑

Lγ∈Lsp,Lγ≤T

Lγ√| det(I −Pγ)| ;

It turns out that the asymptotic rate of growth of S(T ) can be determined using
results from the theory of thermodynamic formalism for Anosov flows:

Proposition 4.1.2. There exists a constant C0 > 0 such that

(4.1.3) S(T ) = C0e
P(−H2 )·T (1 + o(1))

as T → ∞, where P is the topological pressure (1.2.2) and H is the Sinai-Ruelle-
Bowen potential (1.2.1).

It was shown in [J-P] that P
(−H

2

) ≥ K2/2, hence S(T ) grows exponentially
in T .
Proof of Proposition 4.1.2. Let ξγ ∈ Tγ(0)M be the tangent vector to γ. The
Poincaré map Pγ preserves the unstable subspace Eu

ξγ
and the stable subspace Es

ξγ
,

both of dimension one. The map Pγ is symplectic and has determinant equal to
one. The eigenvalues µ, 1/µ of Pγ , corresponding, respectively, to the unstable and
the stable directions, satisfy:

(4.1.4) ln |µ| ∈ [K2Lγ ,K1Lγ ].

It follows from (4.1.4) that

|det(I − Pγ)| = (|µ| − 1)(1− 1
|µ| ) = |µ| (1 + O(e−K2Lγ )

)
,

On the other hand, by definition of H

|µ| = exp

[∫ Lγ

0

H(Gsξγ)ds

]
,

so we have

(4.1.5) | det(I − Pγ)| = exp

[∫ Lγ

0

H(Gsξγ)ds

]
(
1 + O(e−K2Lγ )

)
.

Split the sum S(T ) into two parts:

S(T ) =
∑

Lγ≤T/2

+
∑

T/2<Lγ≤T

= S1(T ) + S2(T ).
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It follows from (4.1.1) and (4.1.5) that
(4.1.6)

S2(T ) =
∑

Lγ∈Lsp,T/2≤Lγ≤T

Lγ exp

[
−1

2

∫ Lγ

0

H(Gsξγ)ds

] (
1 + O(e−K2T/2)

)
,

and that

S1(T ) = O


 ∑

Lγ∈Lsp,Lγ≤T/2

Lγ exp

[
−1

2

∫ Lγ

0

H(Gsξγ)ds

]
 .

It follows easily from the results of [Par], [P-P, (7.1)], [M-S, p. 109] that

S2(T ) =
eP(−H2 )·T

P (−H/2)
(1 + o(1))

and that
S1(T ) = O

(
eP(−H2 )·T

2

)
.

This finishes the proof of the proposition
If follows easily from Proposition 4.1.2 that

(4.1.7) S̃(t) =
∑

Lγ∈Lsp,Lγ≤T

L]
γ√| det(I −Pγ)| = C0e

P(−H2 )·T (1 + o(1)).

Indeed, since each imprimitive geodesic is a multiple of some geodesic of at least
twice smaller length, the contribution of imprimitive geodesics into S(T ) is
O

(
eP(−H2 )·T

2

)
and hence could be neglected (cf. [J-P, p. 25]).

4.2. Preliminary estimates. We can now finish the proof of Theorem 1.3.1. As-
sume for contradiction that Theorem 1.3.1 doesn ’t hold. Then R(λ) satisfies

R(λ) = O
(
(lnλ)P (−H/2)(1−ε)/h

)

for some ε > 0. Let b = P (−H/2)(1 − ε)/h be the exponent ln λ in the previous
formula. Then by Lemma 2.1.6 we have

(4.2.1) κ(λ, T ) = O((ln λ)b).

We rewrite (4.2.1) as

(4.2.2) ln |κ(λ, T )| ≤ b ln lnλ + C1.

To finish the proof, it suffices to establish a contradiction with (4.2.2). This will be
done using Proposition 3.2.1 and the estimate (4.1.3) for a suitable choice of λ and
T . In the sequel, we shall let λ, T → ∞ while keeping T ∼ 1

h ln ln λ. This ensures
that the hypothesis T < ε ln λ of Proposition 3.2.1 is satisfied.

Denote the main term in the asymptotics of κ(λ, T ) by

Σ(λ, T ) =
∑

Lγ∈Lsp,Lγ≤T

L]
γ cos(λLγ)χ(Lγ , T )

T
√|det(I − Pγ)| .

It is a trigonometric polynomial in λ. According to (1.4.2), without loss of generality
we may assume that

(4.2.3) χ(Lγ , T ) ≥ 1/2, ∀ Lγ ∈ (T0, T (1− ε/2)].
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The condition Lγ > T0 is not essential because it rules out only a finite number of
closed geodesics, and their total contribution to (4.1.7) is O(1).

Next, we would like to choose λ so that all the terms cos(λLγ) will be (say)
≥ 1/2 for Lγ ∈ Lsp, T0 < Lγ ≤ T . Let ν(T ) be the number of distinct such Lγ-s,
and let L1, L2, . . . , Lν(T ) be the corresponding lengths. It suffices to choose λ so
that

(4.2.4) dist(λLj , 2πZ) ≤ 1/2, 1 ≤ j ≤ ν(T ).

Assuming (4.2.3) and (4.2.4), we get for large enough T

ln |Σ(λ, T )| ≥ C2 + ln |S̃(T )|.
Using the estimate (4.1.7) and Proposition 3.2.1 we conclude that

(4.2.5) ln |κ(λ, T )| ≥ P (−H/2)T (1− ε/2)− ln T + C3.

This formula will be used to get a contradiction with the upper bound (4.2.2) for
|κ(λ, T )|.
4.3. Dirichlet box principle. We next explain how to choose λ so that (4.2.4)
would hold. Let M1 be a large constant whose value will be specified later. Then
by Dirichlet box principle ([J-P], see also [P-Rud, Rub-S]) there exists

λ ∈ [M1, M12ν(T )]

such that (4.2.4) holds. Hence, for any choice of M1 there exists λ satisfying

ln ln M1 ≤ ln ln λ ≤ ln ln M1 + ln ν(T ) + ln ln 2.

for which (4.2.4) holds.
It follows from results of Margulis [M-S] that ν(T ) = ehT (1+o(1))/hT as T →∞.

Therefore, any λ satisfying the previous inequality would also satisfy

(4.3.1) ln ln M1 ≤ ln ln λ ≤ ln ln(M1) + hT − ln(hT )

We now choose

(4.3.2) M1 = exp(exp(αT )), where α <
hε

2(1− ε)
.

Then (4.3.1) becomes

(4.3.3) αT ≤ ln ln λ ≤ (h + α)T − ln(hT ).

The first inequality in (4.3.3) ensures that the hypothesis of Proposition 3.2.1 is
satisfied, implying (3.2.2). By the previous argument, we have shown that (4.3.3)
and (4.2.5) implies existence of λ such that the following estimate holds:

(4.3.4) ln |κ(λ, T )| ≥ P (−H/2)T (1− ε/2)− ln T + C3.

To establish a contradiction with the formula (4.2.2), it suffices to have

P (−H/2)T (1− ε/2)− ln T + C3 > b ln ln λ + C1 =
P (−H/2)(1− ε)

h
ln ln λ + C1

or

(4.3.5) ln lnλ ≤ h(1− ε/2)
1− ε

T +
h

P (−H/2)(1− ε)
(C4 − ln T )

If we could show that the inequality (4.3.3) implies the inequality (4.3.5), we
would be done. Indeed, by Dirichlet box principle there exists some λ satisfying
(4.3.3), and so (4.3.5) holds for that value of λ, establishing a contradiction. The
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linear function of T is the fastest-growing term in the right-hand side of both
inequalities, so it suffices to compare the coefficients of T . The coefficient in (4.3.3)
is equal to h + α, while that in (4.3.5) is equal to h(1− ε/2)/(1− ε). Accordingly,
it suffices to have

h + α < h(1− ε/2)/(1− ε),
and this is ensured by the choice of α in (4.3.2). This establishes the desired
contradiction and finishes the proof of Theorem 1.3.1.

5. Remainder estimates in higher dimensions

5.1. Proof of Theorem 1.5.1. In this section we assume that X is a compact
Riemannian manifold of dimension n ≥ 3. Recall that the Riesz mean of order k of
a function f(λ) is defined by

(5.1.1) Rkf(λ) =
k

λ

∫ λ

0

(
1− t

λ

)k−1

f(t)dt, k = 1, 2, . . .

As was shown in [Saf], on any smooth compact n-dimensional Riemannian manifold

(5.1.2) R2R(λ) = Ca1λ
n−2 + O(λn−3),

Here C is a non-zero constant depending on the dimension only, and a1 = 1
6

∫
X

τ ,
where τ is the scalar curvature of X. Note that a1 is the first heat invariant of X,
the coefficient in the short time asymptotics of the heat trace:

(5.1.3)
∑

i

e−λit ∼ 1
(4π)n/2

∞∑

j=0

aj tj−
n
2 .

Therefore, if a1 does not vanish (which is the assumption of Theorem 1.5.1),
R2R(λ) >> λn−2. Combining (5.1.1) and (5.1.2) we get

1
λ

∫ λ

0

|R(t)|dt >
1
λ

∫ λ

0

(
1− t

λ

)
R(t)dt =

1
2
R2R(λ) >> λn−2.

This completes the proof of Theorem 1.5.1.

Remark 5.1.4. As follows from results of [Saf], the first Riesz mean of R(λ) satisfies

1
λ

∫ λ

0

R(t)dt = O(λn−2).

At the same time, R(λ) = O(λn−1). Putting together these two upper bounds and
the lower bound (1.5.2) one gets an idea about the amount of cancelations occurring
when R(λ) is integrated over [0, λ].

5.2. Oscillatory error term. Following [J-P, section 1.2] one may introduce the
oscillatory error term Rosc(λ) in Weyl’s law:

(5.2.1) N(λ) =
1

(4π)n/2

[n−1
2 ]∑

j=0

aj

Γ
(

n
2 − j + 1

)λn−2j + Rosc(λ),

where aj are defined by (5.1.3). The expression (5.2.1) is not an asymptotic ex-
pansion, however it often appears in physics literature. Such a representation is
quite natural since it allows to separate the “mean smooth part” of the counting
function coming from the singularity of the heat trace at zero, and the “oscillating
part” produced by the singularities in the wave trace caused by closed geodesics.
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We believe that using essentially the same arguments as in the proof of Theorem
1.3.1, one can show that the oscillatory error term on an n-dimensional compact
negatively curved manifold satisfies:

(5.2.2) Rosc(λ) = Ω
(
(lnλ)

P (−H/2)
h −ε

)
∀ ε > 0.

In order to prove (5.2.2), one has to extend to dimensions n ≥ 3 the dynamical
part of the proof of Theorem 1.3.1, which is easy, and to generalize Theorem 1.4.3,
which requires some work. In particular, one needs higher-dimensional analogues
of the results of [CdV] that are used in section 3.9. We plan to carry out the details
of this argument elsewhere.
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[D-S] M. Dimassi and J. Sjöstrand. Spectral asymptotics in the semiclassical limit. Cambridge
University Press, 1999.

[Don] H. Donnelly. On the wave equation asymptotics of a compact negatively curved surface.
Invent. Math. 45 (1978), 115–137.

[D-G] J. Duistermaat and V. Guillemin. The spectrum of positive elliptic operators and periodic
bicharacteristics. Inventiones Math. 29 (1975), 39–75.

[Fa] F. Faure, Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace
formula. Annales de l’Institut Fourier (to appear).

[Hej] D. Hejhal. Selberg trace formula for PSL(2,R), Vol. I. Lecture Notes in Math. 548, Springer,
1976.
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