Extremal metrics for λ_1 Dmitry Jakobson (McGill) www.math.mcgill.ca/jakobson Joint with M. Levitin, N. Nadirashvili, N. Nigam, I. Polterovich and I. Rivin J-Na-P: "Extremal metric for the first eigenvalue on a Klein bottle," Canadian Jour. Math. 58 (2006), No. 2, 381-400. J-L-Na-P: "Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond," to appear in Jour. of Computational and Applied Math. J-L-Na-Ni-P: "How large can the first eigenvalue be on a surface of genus two?" IMRN 2005, 3967-3985. J-R: "Extremal metrics on graphs I," Forum Math. 14(1), (2002), 147-163. #### **Preliminaries** (M_{γ},g) closed surface of genus γ with metric g, Δ_g - Laplacian. Spectrum: $\Delta\phi_i=\lambda_i\phi_i$, $$0 < \lambda_1 \le \lambda_2 \le \dots$$ **Question:** How large can λ_1 be on M_{γ} ? We consider upper bounds on λ_1 depending on the *topology* and the *area* of the surface. #### What is known: $$\lambda_1 \cdot Area(M_{\gamma}) \leq 8\pi \left[\frac{\gamma+3}{2}\right]$$ for orientable M (Hersch '70, Yang-Yau '80), $$\lambda_1 \cdot Area(M_{\gamma}) \leq 24\pi \left[\frac{\gamma+3}{2}\right]$$ for non-orientable M (Li-Yau '82). In genus 0: $$\lambda_1 \cdot Area(\mathbf{S}^2) \le 8\pi, \quad \lambda_1 \cdot Area(\mathbf{RP}^2) \le 12\pi.$$ Equalities achieved on round metrics. **Problem:** sharp upper bounds on λ_1 for genus $\gamma \geq 1$. Apriori, methods of Hersch-Yang-Yau-Li do not provide *sharpness*. How to find $\sup_g \lambda_1 \cdot Area$? Is it attained on a smooth metric? **Remark:** If dimension is $n \geq 3$, $$\sup \lambda_1 \cdot Volume^{2/n} = \infty$$ **Definition.** A metric g on a surface is λ_1 -maximal if for any metric \tilde{g} of the same area $\lambda_1(g) \geq \lambda_1(\tilde{g})$. A λ_1 -maximal metric is global maximum of the functional $$\lambda_1:g\to\mathbf{R}_+$$ Consider critical points of this functional. They are called *extremal metrics*. g_t - analytic deformation of g_0 . Metric g_0 - extremal iff $$\frac{d}{dt}\lambda_1|_{t=0^+}, \quad \frac{d}{dt}\lambda_1|_{t=0^-}$$ have opposite signs. Properties of extremal metrics: - $mult(\lambda_1) \geq 3$, equality only on (S^2, st) . - a surface with an extremal metric admits a minimal isometric immersion by the first eigenfunctions into a sphere of certain dimension (Nadirashvili, '96). To find extremal metrics - study minimal immersions into spheres. **Remark:** Similar results for metrics on graphs were obtained in [J-R]. ## **Examples of extremal metrics:** - 1) S^2 , round metric ($\longrightarrow S^2$) - 2) $\mathbf{RP^2}$, round metric $(\longrightarrow S^4)$ - 3) T^2 , flat equilateral torus $(\longrightarrow S^5)$ - 4) T^2 , flat square torus $(\longrightarrow S^3)$ 1–3 are λ_1 -maximal, 4 is a saddle. Maximality of 3) is Berger's conjecture, plan of the proof proposed by Nadirashivili '96 (cf. talk of Girouard!) There are no other extremal metrics on \mathbf{S}^2 , \mathbf{RP}^2 , \mathbf{T}^2 . (El Soufi-Ilias, '00). What happens on other surfaces? We study the **Klein bottle** and the **surface of genus** 2. **Theorem** (J-Na-P) An ${f S}^1$ -equivariant metric g_0 given by $$\frac{9 + (1 + 8\cos^2 v)^2}{1 + 8\cos^2 v} \left(du^2 + \frac{dv^2}{1 + 8\cos^2 v} \right),$$ $0 \le u < \pi/2$, $0 \le v < \pi$, is an extremal metric on a Klein bottle \mathbf{K} . The surface (\mathbf{K}, g_0) admits a minimal isometric embedding into \mathbf{S}^4 by the first eigenfunctions. λ_1 has multiplicity 5 and $$\lambda_1 \cdot Area(K, g_0) = 12\pi E\left(\frac{2\sqrt{2}}{3}\right),$$ where $$E(T) = \int_0^{\pi/2} \sqrt{1 - T^2 \sin^2 \alpha} \ d\alpha$$ is a complete elliptic integral of 2nd kind. ## Theorem (J-Na-P/El Soufi-Giacomini-Jazar) The metric g_0 is the unique extremal metric on the Klein bottle. **Remark:** The metric (\mathbf{K}, g_0) has *variable* curvature, unlike other examples of extremal metrics. It is a *bipolar* (dual) surface for a Lawson torus (a minimally immersed torus in \mathbf{S}^3). Metric g_0 realizes the maximal possible multiplicity of λ_1 on a Klein bottle. All known λ_1 -maximal metrics maximize multiplicity of λ_1 . **Genus** 2: Yang-Yau ⇒ $$\lambda_1 \operatorname{Area}(\mathcal{P}) \leq 16\pi$$. Conjecture (J-L-Na-Ni-P): The upper bound of Yang-Yau is sharp in genus 2. This bound is attained on a singular surface which is realized as a double branched covering of the round sphere, with six doubly ramified points located at the vertices of the octahedron (at the intersection of S^2 with the coordinate axes). This surface has a conformal type of the *Bolza* surface $w^2 = z^5 - z$. It is known that Bolza surface has the largest symmetry group of all Riemann surfaces of genus 2. ### **Proofs:** **Klein bottle:** Study the minimal immersions into S^4 by first eigenfunctions, reduce to a completely integrable system of ODE-s, prove that there exists a unique periodic solution with required initial conditions and period. **Genus 2:** Study *even* and *odd* spectrum on the surface with respect to the hyperelliptic involution. $\lambda_1^{even} = 2$ (same as S^2). Need to show $\lambda_1^{odd} \ge 2$ (\Rightarrow Conjecture). λ_1^{odd} is equal to the first eigenvalue in certain mixed Dirichlet-Neumann boundary value problem on a hemisphere. Numerically, $\lambda_1^{odd} > 2.26$.