Extremal metrics for λ_1

Dmitry Jakobson (McGill)

www.math.mcgill.ca/jakobson

Joint with M. Levitin, N. Nadirashvili, N. Nigam, I. Polterovich and I. Rivin

J-Na-P: "Extremal metric for the first eigenvalue on a Klein bottle," Canadian Jour. Math. 58 (2006), No. 2, 381-400.

J-L-Na-P: "Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond," to appear in Jour. of Computational and Applied Math.

J-L-Na-Ni-P: "How large can the first eigenvalue be on a surface of genus two?" IMRN 2005, 3967-3985.

J-R: "Extremal metrics on graphs I," Forum Math. 14(1), (2002), 147-163.

Preliminaries

 (M_{γ},g) closed surface of genus γ with metric g, Δ_g - Laplacian. Spectrum: $\Delta\phi_i=\lambda_i\phi_i$,

$$0 < \lambda_1 \le \lambda_2 \le \dots$$

Question: How large can λ_1 be on M_{γ} ? We consider upper bounds on λ_1 depending on the *topology* and the *area* of the surface.

What is known:

$$\lambda_1 \cdot Area(M_{\gamma}) \leq 8\pi \left[\frac{\gamma+3}{2}\right]$$

for orientable M (Hersch '70, Yang-Yau '80),

$$\lambda_1 \cdot Area(M_{\gamma}) \leq 24\pi \left[\frac{\gamma+3}{2}\right]$$

for non-orientable M (Li-Yau '82). In genus 0:

$$\lambda_1 \cdot Area(\mathbf{S}^2) \le 8\pi, \quad \lambda_1 \cdot Area(\mathbf{RP}^2) \le 12\pi.$$

Equalities achieved on round metrics.

Problem: sharp upper bounds on λ_1 for genus $\gamma \geq 1$. Apriori, methods of Hersch-Yang-Yau-Li do not provide *sharpness*. How to find $\sup_g \lambda_1 \cdot Area$? Is it attained on a smooth metric?

Remark: If dimension is $n \geq 3$,

$$\sup \lambda_1 \cdot Volume^{2/n} = \infty$$

Definition. A metric g on a surface is λ_1 -maximal if for any metric \tilde{g} of the same area $\lambda_1(g) \geq \lambda_1(\tilde{g})$. A λ_1 -maximal metric is global
maximum of the functional

$$\lambda_1:g\to\mathbf{R}_+$$

Consider critical points of this functional. They are called *extremal metrics*. g_t - analytic deformation of g_0 . Metric g_0 - extremal iff

$$\frac{d}{dt}\lambda_1|_{t=0^+}, \quad \frac{d}{dt}\lambda_1|_{t=0^-}$$

have opposite signs.

Properties of extremal metrics:

- $mult(\lambda_1) \geq 3$, equality only on (S^2, st) .
- a surface with an extremal metric admits a minimal isometric immersion by the first eigenfunctions into a sphere of certain dimension (Nadirashvili, '96).

To find extremal metrics - study minimal immersions into spheres.

Remark: Similar results for metrics on graphs were obtained in [J-R].

Examples of extremal metrics:

- 1) S^2 , round metric ($\longrightarrow S^2$)
- 2) $\mathbf{RP^2}$, round metric $(\longrightarrow S^4)$
- 3) T^2 , flat equilateral torus $(\longrightarrow S^5)$
- 4) T^2 , flat square torus $(\longrightarrow S^3)$

1–3 are λ_1 -maximal, 4 is a saddle. Maximality of 3) is Berger's conjecture, plan of the proof proposed by Nadirashivili '96 (cf. talk of Girouard!) There are no other extremal metrics on \mathbf{S}^2 , \mathbf{RP}^2 , \mathbf{T}^2 . (El Soufi-Ilias, '00).

What happens on other surfaces? We study the **Klein bottle** and the **surface of genus** 2.

Theorem (J-Na-P) An ${f S}^1$ -equivariant metric g_0 given by

$$\frac{9 + (1 + 8\cos^2 v)^2}{1 + 8\cos^2 v} \left(du^2 + \frac{dv^2}{1 + 8\cos^2 v} \right),$$

 $0 \le u < \pi/2$, $0 \le v < \pi$, is an extremal metric on a Klein bottle \mathbf{K} . The surface (\mathbf{K}, g_0) admits a minimal isometric embedding into \mathbf{S}^4 by the first eigenfunctions. λ_1 has multiplicity 5 and

$$\lambda_1 \cdot Area(K, g_0) = 12\pi E\left(\frac{2\sqrt{2}}{3}\right),$$

where
$$E(T) = \int_0^{\pi/2} \sqrt{1 - T^2 \sin^2 \alpha} \ d\alpha$$

is a complete elliptic integral of 2nd kind.

Theorem (J-Na-P/El Soufi-Giacomini-Jazar)

The metric g_0 is the unique extremal metric on the Klein bottle.

Remark: The metric (\mathbf{K}, g_0) has *variable* curvature, unlike other examples of extremal metrics. It is a *bipolar* (dual) surface for a Lawson torus (a minimally immersed torus in \mathbf{S}^3). Metric g_0 realizes the maximal possible multiplicity of λ_1 on a Klein bottle. All known λ_1 -maximal metrics maximize multiplicity of λ_1 .

Genus 2: Yang-Yau ⇒

$$\lambda_1 \operatorname{Area}(\mathcal{P}) \leq 16\pi$$
.

Conjecture (J-L-Na-Ni-P): The upper bound of Yang-Yau is sharp in genus 2. This bound is attained on a singular surface which is realized as a double branched covering of the round sphere, with six doubly ramified points located at the vertices of the octahedron (at the intersection of S^2 with the coordinate axes). This surface has a conformal type of the *Bolza* surface $w^2 = z^5 - z$.

It is known that Bolza surface has the largest symmetry group of all Riemann surfaces of genus 2.

Proofs:

Klein bottle: Study the minimal immersions into S^4 by first eigenfunctions, reduce to a completely integrable system of ODE-s, prove that there exists a unique periodic solution with required initial conditions and period.

Genus 2: Study *even* and *odd* spectrum on the surface with respect to the hyperelliptic involution. $\lambda_1^{even} = 2$ (same as S^2). Need to show $\lambda_1^{odd} \ge 2$ (\Rightarrow Conjecture).

 λ_1^{odd} is equal to the first eigenvalue in certain mixed Dirichlet-Neumann boundary value problem on a hemisphere. Numerically, $\lambda_1^{odd} > 2.26$.