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Abstract. We relate high-energy limits of Laplace-type and Dirac-
type operators to frame flows on the corresponding manifolds, and
show that the ergodicity of frame flows implies quantum ergodicity
in an appropriate sense for those operators. Observables for the
corresponding quantum systems are matrix-valued pseudodifferen-
tial operators and therefore the system remains non-commutative
in the high-energy limit. We discuss to what extent the space of
stationary high-energy states behaves classically.

1. Introduction and main results

If X is an oriented closed Riemannian manifold and ∆ the Laplace
operator on X, then a complete orthonormal sequence of eigenfunctions
φj ∈ L2(X) with eigenvalues λj ↗ ∞ is known to converge in the mean
to the Liouville measure, in the sense that

lim
N→∞

1

N

∑

j≤N

〈φj, Aφj〉 =

∫

T ∗

1 X

σA(ξ)dL(ξ),

for any zero order pseudodifferential operator A, where integration is
with respect to the normalized Liouville measure on the unit cotan-
gent bundle T ∗

1 X, and σA is the principal symbol of A. In particular,
A might be a smooth function on X and the above implies that the
sequence

1

N

∑

j≤N

|φj(x)|2
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converges to the normalized Riemannian measure in the weak topology
of measures. In case the geodesic flow on T1X is ergodic it is known
that the following stronger result holds.

lim
N→∞

1

N

∑

j≤N

|〈φj, Aφj〉 −

∫

T ∗

1 X

σA(ξ)dL(ξ)| = 0.

This property is commonly referred to as quantum ergodicity and it is
equivalent to the existence of a density-one-subsequence φ′

j such that

lim
j→∞

〈φ′
j, Aφ′

j〉 =

∫

T ∗

1 X

σA(ξ)dL(ξ),

for any zero order pseudodifferential operator A (see [Shn74, Shn93,
CV85, Zel87]).

We show in this paper that the high energy behavior of the Dirac
operator D acting on spinors on a closed spin manifold X is determined
by the frame flow in the same manner, as the geodesic flow determines
the high energy limit of the Laplace operator. If FkX is the bundle
of oriented orthonormal k-frames in T ∗X, then projection to the first
vector makes FkX → T ∗

1 X into a fiber bundle. In particular for k = n
this is the full frame bundle and FX = FnX is a principal fiber bundle
over T ∗

1 X with structure group SO(n − 1). Transporting covectors
parallel along geodesics extends the Hamiltonian flow on T ∗

1 X to a
flow on FkX. This is the so-called k-frame flow. In case k = n we
will refer to it simply as the frame flow. Of course ergodicity of the
k-frame flow for any k implies ergodicity of the geodesic flow, whereas
the conclusion in the other direction is not always true (cf. section 2).
Still there are many examples investigated in the literature when the
frame flow is ergodic. Our first main result is, that quantum ergodicity
holds for eigensections of the Dirac operator in case the frame flow is
ergodic.

Theorem 1.1. Let X be a closed Riemannian spin manifold of di-
mension n ≥ 3 with Dirac operator D acting on sections of the spinor
bundle. Suppose that φj ∈ L2(X; S) is an orthonormal sequence of
eigensections of D with eigenvalues λk ↗ ∞ such that the φk span1

the positive energy subspace of D. Then, if the frame flow on FX is
ergodic, we have

lim
N→∞

1

N

∑

j≤N

|〈φj, Aφj〉 −
1

2[n
2
]

∫

T ∗

1 X

Tr((1 + γ(ξ))σA(ξ))dL(ξ)| = 0,

1in the sense that the linear hull is dense
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for all A ∈ ΨDO0
cl(X, S). Here γ(ξ) denotes the operator of Clifford

multiplication with ξ. In particular there is a density one subsequence
φ′

j such that

〈φ′
j, Aφ′

j〉 →
1

2[n
2
]

∫

T ∗

1 X

Tr((1 + γ(ξ))σA(ξ))dL(ξ).

A similar statement holds for the negative energy subspace.

Another result is that the (2 min(p, n − p))-frame flow determines
the high energy behavior of the Laplace-Beltrami operator ∆p acting
on the space C∞(X, Λp

C
X) of complex-valued p-forms. Note that the

Hodge decomposition implies that there are three invariant subspaces
for ∆p, namely the closures of dC∞(X, Λp−1

C
X), δC∞(X, Λp+1

C
X) and

the finite dimensional space of harmonic forms The latter subspace
plays no role for the high energy behavior. The eigenspaces of the first
subspace consist of exterior derivatives of p − 1 eigenforms their high
energy behavior is therefore determined by the high energy behavior
of ∆p−1. In particular the high energy behavior of ∆1 restricted to
dC∞(X) is controlled by the geodesic flow. We therefore look at the
second subspace only. Note that any coclosed form which is a nonzero
eigenvalue to ∆p is coexact. Hence, to investigate the high energy
behavior of ∆p we have to look at the system

∆pφj = λjφj,

δφj = 0.

In case p = 1 such systems appear in physics if one investigates electro-
magnetic fields (Maxwell’s equations) or the Proca equation for spin 1
particles. The restriction to the coclosed forms corresponds to a gauge
condition which restricts to the transversal subspaces. Our result is,
that this system is quantum ergodic, if the 2 min(p, n − p)-frame flow
is ergodic.

Theorem 1.2. Let X be an oriented closed Riemannian manifold of
dimension n ≥ 3 and let 0 < p < n. Suppose that φk is an orthonormal
sequence of eigen-p-forms satisfying

∆pφk = λkφk,

δφk = 0,

such that the φk span ker(δ) and with λk ↗ ∞. Suppose that p 6=
n−1

2
. Then, if the (2 min(p, n − p))-frame flow is ergodic, the system is
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quantum ergodic in the sense that

lim
N→∞

1

N

∑

k≤N

|〈φk, Aφk〉 − ωt(σA)| = 0,

for all A ∈ ΨDO0
cl(X; Λp

C
X). In particular there is a density one sub-

sequence φ′
k such that

lim
k→∞

〈φ′
k, Aφ′

k〉 = ωt(σA), for all A ∈ ΨDO0
cl(X; Λp

C
X).

Here ωt is a state on the C∗-algebra of continuous End(Λp
C
X)-valued

functions on T ∗
1 X which is defined by

ωt(a) :=

(

n − 1

p

)−1 ∫

T ∗

1 X

Tr (i(ξ)i∗(ξ)a(ξ)) dL(ξ),

where i(ξ) is the operator of interior multiplication with ξ, and the
adjoint i∗(ξ) is the operator of exterior multiplication with ξ.

Note that the system

∆kφj = λjφj,

dφj = 0.

is equivalent to our system with p = n−k via the Hodge star operator.
The restriction p 6= n−1

2
is necessary since if p = n−1

2
the operator

i p+1δ∗ leaves the space Rg(δ) invariant and commutes with ∆p (∗ is
the Hodge star operator). In this case our result is

Theorem 1.3. Let X be an oriented closed Riemannian manifold of
odd dimension n ≥ 3. Let p = n−1

2
and suppose that φk is an orthonor-

mal sequence of eigen-p-forms satisfying

∆pφk = λkφk,

δφk = 0,

i p+1δ ∗ φk = ±
√

λkφk

such that the φk span Ran(δ ± i p+1∆
−1/2
p δ ∗ δ) and with λk ↗ ∞.

Then, if the (n−1)-frame flow is ergodic, the system is quantum ergodic
in the sense that

lim
N→∞

1

N

∑

k≤N

|〈φk, Aφk〉 − ω±(σA)| = 0,

for all A ∈ ΨDO0
cl(X; Λp

C
X). In particular there is a density one sub-

sequence φ′
k such that

lim
k→∞

〈φ′
k, Aφ′

k〉 = ω±(σA), for all A ∈ ΨDO0
cl(X; Λp

C
X).
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Here the states ω± are defined by

ω±(a) :=
(p!)2

(2p)!

∫

T ∗

1 X

Tr ((1 ± i pi(ξ)∗) i(ξ)i∗(ξ)a(ξ))dL(ξ).

As the example of Kähler manifolds (see section 2) show the above
theorems do not hold if we assume ergodicity of the geodesic flow only.

Our analysis is based on a version of Egorov’s theorem for ma-
trix valued operators. A second order differential operator P act-
ing on sections of a vector bundle E is said to be of Laplace type
if σP (ξ) = g(ξ, ξ) idE, i.e. if in local coordinates it is of the form
P = −

∑

i,k gik∂i∂k + lower order terms. Examples are the Laplace-

Beltrami operator ∆p acting on p-forms or the square D2 of the Dirac
operator on a Riemannian spin manifold. For such operators the first
order term (the subprincipal symbol) defines a connection ∇E on the
bundle E. We will prove a Egorov theorem for matrix-valued pseu-
dodifferential operators acting on sections of E. More precisely, for
A ∈ ΨDO0

cl(X, E), a zero order classical pseudodifferential operator,
the principal symbol σA is an element in C∞(T ∗

1 X, End(π∗(E))), where
π∗(E) is the pull-back of the bundle E → X under the projection
π : T ∗

1 X → X. Note that the connection ∇E determines a connection
∇ on End(π∗(E)). Parallel transport along the Hamiltonian flow of σP

then determines a flow βt acting on C∞(T ∗
1 X, End(π∗(E))). Our ver-

sion of Egorov’s theorem specialized to Laplace type operators reads
as follows.

Theorem 1.4. If A ∈ ΨDO0
cl(X, E) and if P is a positive second order

differential operator of Laplace type then for all t ∈ R the operators

At := e+ i tP 1/2
Ae− i tP 1/2

are again in ΨDO0
cl(X, E) and σAt = βt(σA).

We actually prove a more general version of this theorem which ap-
plies to flows generated by first order pseudodifferential operators with
real scalar principal symbols. Note that unlike in the scalar case the
first order terms are needed to determine the flow. We show that
for pseudodifferential operators with real scalar principal part the sub-
principal symbol is invariantly defined as a partial connection along the
Hamiltonian vector field, thus allowing us to define all flows without
referring to local coordinate systems.

1.1. Discussion. Dirac equation on R3 (and, more generally, on Rd)
has been studied from the semiclassical point of view in the papers
[BoK98, BoK99, Bol01, BoG04, BoG04.2] of Bolte, Glaser and Kep-
peler. The authors would like to thank J. Bolte for bringing to their
attention this problem on manifolds. Unlike in the works of Bolte,
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Glaser and Keppeler we investigate the high energy limit rather than
the semiclassical limit. Therefore, all nontrivial dynamical effects are
due to the nontrivial curvature of the spin-connection. This is con-
ceptually different from the stated previous results where quantum
ergodicity is due to a spin precession in an external magnetic field.
External fields are not seen in the high energy limit and therefore the
strict analog of the result of Shnirelman, Colin de Verdière and Zelditch
[Shn74, Shn93, CV85, Zel87] can not be expected to hold in Rn or on
manifolds with integrable geodesic flow.

Apart from working on manifolds our methods also differ from those
previously employed as we take the absolute value of the Dirac operator
instead of the Dirac operator itself as the generator of the dynamics.
This has the advantage of allowing for the full algebra of matrix valued
functions as the observable algebra rather than a subalgebra. One
can also justify this from a physical point of view. Namely, in a fully
quantized theory the generator of the time evolution on the 1-particle
Hilbert spaces is the absolute value of the Dirac operator. Furthermore,
on the electron 1-particle subspace these two operators coincide.

Our theorem 1.3 for n = 3 and k = 1 deals with the electromagnetic
field on a 3-dimensional compact manifold. The statement of theorem
1.3 means that quantum ergodicity holds for circular polarized photons
if the 2-frame flow is ergodic.

We would also like to mention that the Egorov theorem as we state
it is related to a work of Dencker ([D82]), who proved a propagation of
singularity theorem for systems of real principal type. It follows from
his work that the polarization set of solutions to the Dirac equation is
invariant under a certain flow similar to ours. We also refer the reader
to [EW96], [GMMP97] and references therein, and [San99] for discus-
sion of semiclassical limits for matrix-valued operators, and relations
to parallel transport.

Since the high energy limit of the Quantum system associated to
Laplace type operators on vector bundles is non-commutative the apro-
priate language to investigate questions of ergodicity is the language of
C∗-dynamical systems and states (see Appendix A). This was already
advertized by S. Zelditch in [Zel96] and it is shown there that for a
large class of abstract C∗-dynamical systems classical ergodicity implies
quantum ergodicity. The assumptions under which the theorems are
stated in [Zel96] (G-abelianness or classical abelianness) are in general
not satisfied in the examples we study. The method of the proof can be
adapted to our situation, however. In our work we identify the classi-
cal flows corresponding to the Dirac operator and the Hodge Laplacian
as frame flows, which allows us to use the results obtained by Brin,
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Arnold, Pesin, Gromov, Karcher, Burns and Pollicott to exhibit many
examples of manifolds where quantum ergodicity holds for Dirac opera-
tor, see Corollary 2.1. The connection to their work has not been made
before in the literature on quantum ergodicity. Finally, our results on
quantum ergodicity for p-eigenforms for Hodge Laplacian, and the role
played by 2 min(p, n−p)-frame flow seem to be completely new. It is a
hope of the authors that their results will stimulate further studies of
relationship between ergodic theory of partially hyperbolic dynamical
systems, and high energy behavior of eigenfunctions of matrix-valued
operators.

2. Ergodic frame flows: known examples

The k-frame flow Φt, k ≥ 2 is defined as follows: let (v1, . . . , vk) be an
ordered orthonormal set of k unit vectors in TpX. Then Φtv1 = Gtv1,
where Gt is the geodesic flow. Φtvj, 2 ≤ j ≤ k translates vj by the
parallel translation at distance t along the geodesic determined by v1.
Here we summarize the cases when the frame flow is known to be
ergodic. A k-frame flow is a SO(k − 1)-extension of the geodesic flow;
on an n-dimensional manifold, k-frame flow is a factor of the n-frame
flow for 2 ≤ k < n, so ergodicity of the latter implies ergodicity of
the former. Frame flow preserves orientation, so in dimension 2 its
ergodicity (restricted to positively-oriented frames, say) is equivalent
to the ergodicity of the geodesic flow.

Frame flows were considered by Arnold in [Arn61]. In negative cur-
vature, they were studied by Brin, together with Gromov, Karcher and
Pesin, in a series of papers [BrP74, Br75, Br76, BrG80, Br82, BrK84].
Recently, a lot of progress was made in understanding ergodic behavior
of general partially hyperbolic systems, including frame flows. In the
current paper, the authors are primarily interested in the ergodicity
of the flow; the most recent paper dealing with that question appears
to be [BuP03] by Burns and Pollicott, where the authors establish er-
godicity under certain pinched curvature assumptions in “exceptional”
dimensions 7 and 8, see below.

In the sequel, we shall assume that M is negatively curved with
sectional curvatures satisfying

−K2
2 ≤ K ≤ −K2

1 .

The frame flow is known to be ergodic and have the K property

1) if M has constant curvature [Br76, BrP74];
2) for an open and dense set of negatively curved metrics (in the

C3 topology) [Br75];
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3) if n is odd, but not equal to 7 [BrG80]; or if n = 7 and K1/K2 >
0.99023... [BuP03];

4) if n is even, but not equal to 8, and K1/K2 > 0.93, [BrK84]; or
if n = 8 and K1/K2 > 0.99023... [BuP03].

By Theorem 4.4 and results of section 5, we have the following

Corollary 2.1. Quantum ergodicity for Dirac operator and for Hodge
Laplacian (conclusions of Theorems 1.1, 1.2 and 1.3) hold in each of
the cases (1)-(4).

The frame flow is not ergodic on negatively-curved Kähler mani-
folds, since the almost complex structure J is preserved. This is the
only known example in negative curvature when the geodesic flow is
ergodic, but the frame flow is not. In fact, given an orthonormal k-
frame (v1, . . . , vk), the functions (vi, Jvj), 1 ≤ i, j ≤ k are first integrals
of the frame flow, and in some cases it is possible to describe the er-
godic components, [Br82, BrP74, BrG80]. Note that the conclusion of
Theorem 1.2 is false in the Kähler case, because the decomposition into
(p, q)-forms is a decomposition into invariant subspaces of the Laplace-
Beltrami operator. The Kähler case is interesting in its own right and
will be discussed in a forthcoming paper.

The frame flow is conjectured to be ergodic whenever the curvature
satisfies −1 < K < −1/4, cf. [Br82]. That conjecture is still open.

3. Microlocal analysis for operators on vector bundles

3.1. The subprincipal symbol. Let X be a closed manifold. Sup-
pose that P ∈ ΨDOm

cl (X, Λn/2X). Then the principal symbol σP is well
defined as a function on the cotangent bundle Ṫ ∗X = T ∗X\0 which
is smooth and positively homogeneous of degree m. The subprincipal
symbol sub(P ) is defined in local coordinates by

sub(P ) := pm−1 −
1

2 i

∑

j

∂2pm

∂xj∂ξj
(1)

where the functions pm are the terms homogeneous of degree m in
the asymptotic expansion of the full symbol of P . Surprisingly, the
subprincipal symbol turns out to be well defined as a function on
Ṫ ∗X (see [DH72], ch 5.2). However, the situation changes if we have
P ∈ ΨDOm

cl (X, Λn/2X ⊗ E) for some vector bundle E. In this case
the principal symbol σP is in C∞(Ṫ ∗X, End(π∗(E))), whereas the sub-
principal symbol has a more complicated transformation law under a
change of a bundle chart. More explicitly we have with φ(x, ξ) = (x, ξ)
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for some section w ∈ C∞(X; E) using local coordinates and a local
trivialization (see [DH72], Equ. 5.2.2)

e− i φP (e iφw) = p(x, φ′
x)w −

1

2 i

∑

j

∂2p

∂xj∂ξj
w(2)

+
∑

j

(

p(j)
m (x, φ′

x)
1

i

∂w

∂xj
+

1

2 i

∂p
(j)
m (x, φ′

x)

∂xj
w

)

mod Sm−2,

where p
(j)
m = ∂pm

∂ξj
. Suppose now that pm = σP is scalar and real, i.e.

σP (x, ξ) = h(x, ξ)idEx for some h ∈ C∞(Ṫ ∗X, R). The Hamiltonian
vector field associated with the principal symbol σP of P is a vector
field on Ṫ ∗X and defined in local coordinated by

HP =
∑

j

(

∂σP

∂ξj

∂

∂xj
−

∂σP

∂xj

∂

∂ξj

)

.(3)

Now p
(j)
m (x, φ′

x) has a nice interpretation in terms of HP . Namely, if

(x, ξ) ∈ Ṫ ∗X, then p
(j)
m (x, ξ) is the push forward of HP (x, ξ) under the

projection π : Ṫ ∗X → X expressed in local coordinates, i.e.
∑

j

p(j)(x, ξ)
∂

∂xj
= π∗(HP (x, ξ)).(4)

Therefore, in case E is trivial the last sum in (2) is exactly the Lie De-
rivative − iLvw of half densities along the vector field v = π∗(HP (x, φ′

x)),
which is defined without reference to the local coordinate system and
depends on the function φ only. Hence, if we fix a local trivializa-
tion of E and change coordinates on the base manifold only, σP and
sub(P) transform as functions in C∞(Ṫ ∗X, End(π∗(E))). Note that
∑

j p
(j)
m (x, φ′

x)
1
i

∂w
∂xj is the only term in (2) which depends on the deriva-

tive of w. Hence, under a change of bundle charts by the local function
A ∈ C∞(X, GL(E)) we get the transformation law

sub(P ) → A−1sub(P )A + A−1p(j)∂jA =(5)

= A−1sub(P )A + A−1 1

i
HP A

whereas σP transforms as a function in C∞(Ṫ ∗X, End(π∗(E))). If the
principal symbol is scalar and real (5) is the transformation law of
a partial connection 2 along the vector field HP . Hence, by ∇HP

:=

2A partial connection along a vector field v can be defined by its covariant deriva-
tive which is a map ∇v : C∞(X ; E) → C∞(X ; E) satisfying ∇v(fg) = v(f)g+f∇vg
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HP + i sub(P ) a covariant derivative is defined. We have therefore
proved the following proposition.

Proposition 3.1. Let E be a vector bundle and suppose that P ∈
ΨDOm

cl (X, Λn/2X ⊗ E) has real scalar principal symbol. Then the sub-
principal symbol of sub(P ) defined locally by (1) is invariantly defined
as a partial connection on π∗E along the Hamiltonian vector field HP .

Let X be an oriented closed n-dimensional Riemannian manifold, let
E → X be a hermitian vector bundle and suppose that P : C∞(X; E) →
C∞(X; E) is a formally selfadjoint second order differential operator of
Laplace type, i.e. σP (ξ) = g(ξ, ξ) · 1. Then there exists a hermitian
connection (see e.g. [BGV92] ch. 2.1)

∇ : C∞(X; E) → C∞(X; E ⊗ T ∗X)

and a potential V ∈ C∞(X; End(E)) such that

P = ∇∗∇ + V

The connection and the potential are uniquely determined by these
properties. The operator P is essentially selfadjoint on C∞(X; E) and
in case it is positive we may define the square root P 1/2 by functional
calculus. By Seeley ([See67]) we know that P 1/2 is a classical pseu-
dodifferential operator of order 1 and its principal symbol is given by
σP 1/2(ξ) = ||ξ||g · 1. We use the metric to identify the bundle Λn/2X
with the trivial bundle and in this way we understand P and P 1/2 as
operators acting on C∞(X; E ⊗ Λn/2X). Since P is of Laplace type
the Hamiltonian vector field HP 1/2 when restricted to the unit tangent
bundle T ∗

1 X coincides with the geodesic spray. We will therefore write
Hg for HP 1/2 in order to emphasize the dependence from the metric.

Now ∇ determines uniquely a hermitian partial connection ∇̃Hg

along Hg on π∗E which satisfies
(

∇̃Hgπ
∗(f)

)

(x, ξ) = ∇π∗(Hg(x,ξ))f for all f ∈ C∞(X, E),(6)

where π∗(f) ∈ C∞(T ∗X; π∗(E)) is the pull back of a section f ∈
C∞(X; E). If we fix a local trivialization of E we have

(∇̃Hgf)(x, ξ) − (Hgf)(x, ξ) =
i

||ξ||

∑

i,k

gikAiξk,(7)

where ∇i = ∂i + i Ai. The geometric meaning of this partial connection
is as follows. The vector field Hg generates the geodesic flow. Hence, a
partial connection along Hg allows to transport vectors along geodesics.

for all f ∈ C∞(X), g ∈ C∞(X ; E). Hence, parallel transport is defined along v only.
Moreover, where v vanishes this is a bundle homomorphism.
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The partial connection (6) is chosen in such a way that v ∈ π∗(E)(x,ξ) =
Ex gets transported along the geodesic with the original connection ∇
on E. We have

Proposition 3.2. For P = ∇∗∇ + V as above the partial connection
determined by the subprincipal symbol sub(P 1/2) of P 1/2 coincides with
∇̃Hg .

Proof. We calculate everything in local coordinates where |g| = 1 to
keep the formulas as simple as possible. In such local coordinates we
have ∇i = ∂i + i Ai. Then one easily calculates

sub(P )(ξ) =
∑

i,k

2 i gikAi ξk.

Since the principal symbol of P is scalar the formula as proved in
[DG75]

sub(P 1/2)(ξ) =
1

2
σ
− 1

2
P sub(P ),(8)

continues to hold and we obtain

sub(P 1/2)(ξ) = i ||ξ||−1
∑

i,k

gikAi ξk.

This coincides with the claimed formula. �

3.2. Egorov’s theorem. Suppose that A ∈ ΨDO1
cl(X; E ⊗ Λn/2) has

real scalar principal part, let HA be the associated Hamiltonian vector
field on Ṫ ∗X and let ∇HA

= HA + i sub(A) be the partial connection
on π∗E defined by the subprincipal symbol. Then this determines a
geometric flow αt on the vector bundle π∗E such that the flow lines
(x(t), ξ(t), v(t)) consists of the orbits (x(t), ξ(t)) of the Hamiltonian
flow and v(t) expressed in coordinates of a local bundle chart satisfies

dv(t)

dt
= i sub(A)v(t).(9)

Note that αt lifts the Hamiltonian flow ht on Ṫ ∗X and makes π∗E an
R-equivariant vector bundle. The induced flow α∗

t on C∞(Ṫ ∗X, π∗E)
satisfies

d

dt
α∗

t f = ∇HA
f,(10)

which shows that the flow is defined independent of a choice of local
coordinates. Hence, there is also an action Ad(αt) of R on π∗End(E)
which extends the Hamiltonian flow and is compatible with αt. This
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defines a flow on C∞(Ṫ ∗X, π∗End(E)) which we denote by Ad(αt)
∗.

Clearly, if f ∈ C∞(Ṫ ∗X, π∗End(E))

d

dt
Ad(αt)

∗f = [∇HA
, f ].(11)

In local coordinates one has

[∇HA
, f ] = HAf + i [sub(A), f ].(12)

Egorov’s theorem now reads as follows.

Proposition 3.3. Let A ∈ ΨDO1
cl(X; E ⊗ Λn/2) and suppose that the

principal symbol of A is of real scalar type, i.e. σA(ξ) = h(ξ) · 1,

where h ∈ C∞(Ṫ ∗M, R). Then, if B is in ΨDOm
cl (X; E ⊗ Λn/2), also

Bt := e+ i tABe− i tA is in ΨDOm
cl (X; E). Moreover,

σBt = Ad(αt)
∗(σB).

Proof. As usual we have

d

dt
Bt = i [A, B].(13)

The right hand side is a pseudodifferential operator in ΨDOn
cl(X; E ⊗

Λn/2) and its principal symbol is given by

σ i [A,B] = {σA, σB} + i [sub(A), B].(14)

This follows immediately from the formulas for the asymptotic expan-
sion of products of pseudodifferential operators. By (11) and (12)
equation (13) is on the level of principal symbols the flow equation
for Ad(αt)

∗. This equation can be solved on the symbol level order
by order and one can construct a classical symbol for Bt in the usual
way (as for example carried out in [Tay81], Ch VIII, §1). The only
difference to the scalar case is the second term in (14) which causes the
Hamiltonian flow to be replaced by Ad(αt)

∗. �

Suppose now that X is an oriented Riemannian manifold and let
A = P 1/2, where P = ∇∗∇ + V is a positive Laplace type opera-
tor. We may use the metric to identify Λ1/2X with the trivial bundle.
Moreover, the Hamiltonian vector field HA restricted to the unit cotan-
gent bundle T ∗

1 X coincides with the geodesic spray. In this case it is
convenient to identify positively homogeneous functions on Ṫ ∗X with
smooth functions on T ∗

1 X by restriction. Hence, the principal symbol
of an operator in ΨDOm

cl (X; E ⊗ Λn/2) is in C∞(T ∗
1 X, π∗End(E)). In

this case the Egorov theorem says, that the flow αt transports vectors
in π∗E parallel with respect to the connection ∇ along the geodesic
flow on T ∗

1 X.
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4. The Dirac operator and the frame flow

In this section (X, g) is a compact oriented Riemannian manifold of
dimension n ≥ 3. A spin structure (see e.g. [LM89, Fri]) on X is an
Spin(n)-principal bundle P over X together with a smooth covering η
from P onto the bundle FX of oriented orthonormal frames, such that
the following diagram is commutative.

(15)

P × Spin(n) −−−→ P −−−→ X




y

η×λ





y

η

∥

∥

∥

FX × SO(n) −−−→ FX −−−→ X

Here λ denotes the covering map Spin(n) → SO(n). The (complexified)
Clifford algebra Clc(R

n) is isomorphic to Mat(2[n
2
], C) if n is even and

to Mat(2[n
2
], C)⊕Mat(2[n

2
], C) if n is odd. The Clifford modules ∆n are

then defined by the action of this matrix algebra on C2[ n
2 ]

, where in case
n is odd we project onto the first summand. Hence, ∆n is an irreducible
module for the Clifford algebra Clc(R

n). Since Spin(n) ⊂ Clc(R
n) the

Clifford modules ∆n are also modules for the group Spin(n). The
corresponding representation ρ : Spin(n) → Aut(∆n) is called the
spinor representation of Spin(n). This representation is irreducible
if n is odd. It is the direct sum of two irreducible components if
n is even. The spinor bundle S associated with a Spin structure is
the associated bundle P ×ρ ∆n. The Levi-Civita connection on FX
lifts naturally to a connection on P and this defines a connection
∇S : C∞(X; S) → C∞(X; S ⊗ T ∗X) on S, the Levi-Civita connection
on the spinor bundle. The Dirac operator D : C∞(X; S) → C∞(X; S)
is defined by − i γ ◦ ∇S, where γ denotes the action of covector fields
on sections of the spinor bundle by Clifford multiplication. D is of
Dirac type and essentially selfadjoint on C∞(X; S). The operator
F = sign(D) is in ΨDO0

cl(X; S) and its principal symbol σF (ξ) is given
by Clifford multiplication by 1

|ξ|
ξ. If n is even, then Clifford multipli-

cation with the volume form times i
n(n+1)

2 defines an involution Γ on
L2(X; S) which anti-commutes with D and with F , but which com-
mutes with |D|. The Lichnerowicz formula allows us to express the
square of the Dirac operator by the spinor Laplacian

D2 = ∇∗
S∇S +

1

4
R,(16)

where R is the scalar curvature. By Prop. 3.2 the connection deter-
mined by the subprincipal symbol sub(|D|) of |D| transports spinors
along geodesics with the spinor connection ∇S. The corresponding flow
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on the bundle π∗S → T ∗
1 X will be denoted by αt. The induced flow

on the bundle π∗End(S) → T ∗
1 X will be denoted as before by Ad(αt).

This induces a 1-parameter group βt = Ad(αt)
∗ of ∗-automorphisms of

the algebra C∞(T ∗
1 X, π∗End(S)). It extends continuously to the C∗-

algebra A = C(T ∗
1 X, π∗End(S)). The Egorov theorem of the previous

section therefore reads as follows.

Proposition 4.1. Let D be the Dirac operator on a compact spin man-
ifold X and let A ∈ ΨDO0

cl(X; S). Then with At := e+ i t|D|Ae− i t|D| we
have At ∈ ΨDO0

cl(X; S) for all t ∈ R and

σAt = βt(σA).

And as a consequence we get

Corollary 4.2. Let X be a closed Riemannian spin manifold of di-
mension n ≥ 3 and let D be the Dirac operator. Let φk be a sequence
of eigensections to D2 with

D2φk = λkφk, 〈φk, φj〉 = δkj.

such that |λk| ↗ ∞ and such that the sequence of states

ωi(A) := 〈φi, Aφi〉

on the C∗-algebra ΨDO0
cl(X; S) converges in the weak-∗-topology. Then

there is a βt-invariant state ω∞ on C(T ∗
1 X, π∗End(S)) such that

lim
n→∞

ωn(A) = ω∞(σA)

Proof. Since the states ωi are invariant under the flow induced by con-
jugation with e i |D|t so is the limit state. The limit state ω vanishes on
all operators of order −1 since their product with |D| is bounded. Since
the norm closure of those operators are the compact operators K we
have ω(K) = {0}. Hence, the state projects to a state on the quotient

ΨDO0
cl(X; S)/K. The symbol map is known to extend by continuity

to a map ΨDO0
cl(X; S) → C(T ∗

1 X, π∗End(S)) with kernel K. Hence,
the quotient is via the symbol map isomorphic to C(T ∗

1 X, π∗End(S)).
Moreover, by the above the symbol map is equivariant with respect to
the two flows. �

There are two natural invariant states ω± on C(T ∗
1 X, π∗End(S))

given by

ω±(a) :=
2

rk(S)

∫

T ∗

1 X

Tr(P±(ξ)a(ξ)P±(ξ))dµL(ξ),(17)
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where µL is the normalized Liouville measure and P± := 1
2
(1 ± σF ).

The tracial state

ω =
1

2
(ω+ + ω−),

ω(a) =
1

rk(S)

∫

T ∗

1 X

Tr(a(ξ))dµL(ξ)

is therefore not ergodic (see Appendix A for the notion of ergodicity in
this context).

Theorem 4.3. Suppose the frame flow is ergodic. Then ω+ and ω−

are ergodic states with respect to βt. If moreover n is odd the systems
(C(T ∗

1 X, π∗End(S)), ω±) are βt-abelian.

Proof. Note that since the Levi-Civita connection is compatible with
the Clifford multiplication both P+ and P− are easily seen to be invari-
ant under βt. To prove ergodicity we have to show (see Appendix A)
that all βt-invariant elements in P±L∞(T ∗

1 X, π∗End(S))P± are of the
form cP± with c ∈ C. To show βt-abelianness we have to show that an
invariant element in L2(T ∗

1 X, π∗End(S)) is of the form c1P+ + c2P−

with c1, c2 ∈ C. We therefore analyze, how invariant elements in
L2(T ∗

1 X, π∗End(S)) look like.
Step 1: Denote by C〈X1, . . . , Xn〉 the space of noncommutative poly-
nomials in the variables X1, . . . , Xn. Now we define a continuous map

T : L2(FX) ⊗ C〈X1, . . . , Xn〉 → L2(T ∗
1 X, π∗End(S)),(18)

T (f ⊗ p)(ξ) :=

∫

FξX

f(ξ, v)p(ξ, v)dµ(v),(19)

where the integration is over the invariant measure on the fiber FξX.
The action of covectors on spinors here is by Clifford multiplication.
The pullback h∗

t of the frame flow on FX defines a flow on L2(FX) ⊗
C〈X1, . . . , Xn〉 by acting on the first tensor factor. Since the connection
is compatible with Clifford multiplication and the Clifford action the
map T intertwines the pullback h∗

t of the frame flow and the flow βt,
i.e.

T ◦ (h∗
t ⊗ 1) = βt ◦ T.(20)

Note that the Clifford action on the spinor bundle is irreducible. This
implies that T is onto.
Step 2: Let Ψ ∈ L2(T ∗

1 X, π∗End(S)) be an invariant vector. By the
above we can choose an element f ∈ L2(FX) ⊗ C〈X1, . . . , Xn〉 such
that T (f) = Ψ. Since by assumption the frame flow is ergodic we

have limT→∞
1
T

∫ T

0
h∗

t (f)dt =
∫

FX
f(x)dx = m, where m is a constant
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polynomial. Since Ψ is invariant and T is equivariant we have almost
everywhere

Ψ(ξ) = T (m)(ξ) =

(

∫

FξX

m(ξ, v)dµ(v)

)

.

Since the measure on FξX is invariant under the action of SO(n −
1) the endomorphism

∫

FξX
m(ξ, v)dµ(v) commutes with the action of

Spin(n − 1). Clearly, the projections P+(ξ) and P−(ξ) commute with
the Spin(n−1) action, and it is easy to see (for example by calculating
the dimensions) that the representations of Spin(n − 1) on the ranges
of P+(ξ) and P−(ξ) are irreducible. Moreover, these two representa-
tions are equivalent iff n is even. In this case the algebra of invariant
matrices in End(Sξ) is generated by P+(ξ), P−(ξ), Γ. This shows that
an invariant element of the form P±AP± is proportional to P± which
proves ergodicity. If n is odd the two irreducible representations of
Spin(n− 1) on the ranges of P+(ξ) and P−(ξ) are inequivalent. Hence,
any invariant element in A ∈ End(Sξ) is of the form c1P+ + c2P−. �

Remark: That (C(T ∗
1 X, π∗End(S)), ω±) is not βt-abelian in even di-

mensions has a simple interpretation. It is that the space of invariant
states on C(T ∗

1 X, π∗End(S)) is not a simplex, i.e. the decomposition
of an invariant state into ergodic states is not unique. For example
the tracial state ω has the decomposition ω = 1

2
(ω+ + ω−), but it also

has the decomposition ω = 1
2
(ω1 + ω2) where ω1(a) = ω((1 + Γ)a) and

ω2(a) = ω((1 − Γ)a). The states ω1 and ω2 can also be shown to be
ergodic if the frame flow is ergodic.

Theorem 4.4. Let X be a compact Riemannian spin manifold with
spinor bundle S and Dirac operator D : C∞(X; S) → C∞(X; S). Let
φk be an orthonormal sequence of eigensections of D with eigenvalues
λk ↗ ∞ such that φk spans3 L2

+(X; S) = 1+F
2

L2(X; S). If the frame
flow of X is ergodic, then Quantum Ergodicity holds, i.e.

lim
N→∞

1

N

N
∑

k=1

|〈φk, Aφk〉 − ω+(σA)| = 0, for all A ∈ ΨDO0
cl(X; S).

Moreover, there is a density one subsequence φ′
k such that

lim
k→∞

〈φ′
k, Aφ′

k〉 = ω+(σ(A)), for all A ∈ ΨDO0
cl(X; S).

An analogous statement holds for eigensections with λk ↘ −∞ with
ω+ replaced by ω−.

3in the sense that the hull of the vectors is dense.
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Proof. We denote ω = 1
2
(ω+ + ω−) = 1

rk(S)

∫

T ∗

1 X
Tr(σA(ξ))dµ(ξ) be the

ordinary tracial state on C∞(T ∗
1 X, π∗End(S)). The heat trace asymp-

totics (cf. [GrSee95])

Tr(A · e−D2t) = C(n)

∫

T ∗

1 X

Tr(σA(ξ))dµ(ξ) · t−n/2 + O(t−n/2+1/2)(21)

which one easily gets from the classical calculus of pseudodifferential
operators together with Karamata’s Tauberian theorem implies that

lim
N→∞

1

N

N
∑

k=1

〈
1 + F

2
φk, A

1 + F

2
φk〉 = ω+(σA), A ∈ ΨDO0

cl(X; S).

(22)

The proof is now an analog to the proof of Shnirelman, Zelditch and
Colin de Verdière ([Shn74, Shn93, CV85, Zel87]). To prove Quantum
ergodicity it is obviously enough to show that for any selfadjoint A ∈
ΨDO0

cl(X; S) with ω+(σA) = 0 we have

lim
N→∞

1

N

N
∑

k=1

|〈φk, Aφk〉| = 0.(23)

Clearly, |〈φk, Aφk〉| = |〈φk,
1+F

2
A1+F

2
φk〉| and therefore, we assume

without loss of generality that A = 1+F
2

A1+F
2

. Hence, σA = P+σAP+.

Now let AT := 1
T

∫ T

0
e+ i t|D|Ae− i t|D|dt and since ω+ is ergodic we have

ω+(|σAT
|2) → 0 (see Lemma A.1) as T → ∞. This implies that also

ω+(|σAT
|) → 0 as T → ∞. On the other hand we have

|〈φk, Aφk〉| = |〈φk, AT φk〉| ≤ 〈φk, |AT |φk〉.(24)

Then formula (22) applied to |AT | together with the fact that ω+(σ|AT |) <
ε for T large enough allows us to conclude that

lim sup
N→∞

1

N

N
∑

k=1

|〈φk, Aφk〉| < ε,(25)

for all ε > 0 from which the assertion follows. The existence of a
density one sequence is based on a diagonalization argument which is
well known (see e.g. [Zel96]). �

5. The Hodge-Laplace

Let X be a compact oriented Riemannian manifold, let Λ∗X :=
Λ∗T ∗X be the exterior algebra bundle, and let Λ∗

C
X be its complexifi-

cation. We denote by d the exterior derivative, δ the coderivative (i.e.
the formal adjoint of d), and by ∗ the Hodge star operator. Then d+ δ
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is a Dirac type operator acting on sections of Λ∗
C
X. Its square is the

Hodge Laplace operator

∆ = dδ + δd.(26)

Note that ∆ leaves the subspace of p-forms invariant. In the following
we will denote the restriction of ∆ to p-forms by ∆p. The ordinary
Laplace operator acting on functions is therefore equal to ∆0. If ∇p is
the Levi-Civita covariant derivative of p-forms the Weitzenböck formula
states that

∆p = ∇∗
p∇p + Hp,(27)

where Hp is section of End(ΛpT ∗X) which can be expressed in terms of
the curvature of the connection. For example H1 is equal to the Ricci
curvature. We conclude that the partial connection determined by the

subprincipal symbol of ∆
1/2
p transports p-multivectors along the Hamil-

tonian vector field parallel with respect to the Levi-Civita connection.
The corresponding flow on the C∗-algebra C(T ∗

1 X, π∗End(Λp
C
X)) will

be denoted by βt. There is a natural invariant tracial state ωtr on
C(T ∗

1 X, π∗End(Λp
C
X)) given by

a → ωtr(a) =

(

n

p

)−1 ∫

T ∗

1 X

Tr(a(ξ))dL(ξ).(28)

As in the Dirac case this state is not ergodic for 0 < p < n. Let
P ∈ C(T ∗

1 X, π∗End(Λp
C
X)) defined by

P (ξ)v := i(ξ)ξ ∧ v,(29)

where i(ξ) denotes the operator of interior multiplication with ξ. Then
P is an orthogonal projection in C(T ∗

1 X, π∗End(Λp
C
X)) which is invari-

ant under βt, and hence

ωtr =
n − p

n
ωt +

p

n
ωl,(30)

ωl(a) =
n

p
ωtr((1 − P ) · a),(31)

ωt(a) =
n

n − p
ωtr(P · a),(32)

is a decomposition into invariant states. The non-ergodicity of this
state can be seen as the classical counterpart of the Hodge decomposi-
tion

C∞(X; Λp
C
X) = dC∞(X; Λp−1

C
X) ⊕ δC∞(X; Λp+1

C
X) ⊕ ker(∆p),(33)

which induces a decomposition of L2(X; Λp
C
X) into invariant subspaces

of ∆p.
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Theorem 5.1. Suppose 0 < p < n, n ≥ 3 and let kp = 2 min(p, n−p).
Suppose that the kp-frame flow is ergodic and that p 6= n−1

2
. Then ωt

is an ergodic state with respect to βt on C(T ∗
1 X, π∗Λp

C
X). If moreover

p 6= n
2

then the system (C(T ∗
1 X, π∗Λp

C
X), ωt) is βt-abelian.

Proof. The proof is similar to the proof in the Dirac case. We inves-
tigate the set of invariant vectors in PL2(T ∗

1 X, π∗End(Λp
C
X))P and in

L2(T ∗
1 X, π∗End(Λp

C
X))P .

Step 1: Let N = kp. Denote by P ⊂ C〈X1, . . . , XN , Y1, . . . , YN〉 the
ring of polynomials in the noncommutative variables X1, . . . , XN and
Y1, . . . , YN such that in each summand the same number of X and Y
occur. Now define a map

T : L2(FNX) ⊗ P → L2(T ∗
1 X, π∗End(Λp

C
X)),

T (f ⊗ p)(ξ) =

∫

FN,ξX

f(ξ, v)p̂(v)dµ(v),

where integration is over the fibre FN,ξX of the bundle FNX over the
point ξ ∈ T ∗

1 X. The endomorphism p̂(v) is defined by replacing all Xi

by exterior multiplication with vi and all Yi by interior multiplication
with vi. Since the number of X and Y is the same in each summand
the operators leave the space Λp

C
T ∗

π(ξ)X invariant. Since exterior and
interior multiplication are compatible with the Levi-Civita connection
the map T intertwines the pullback of N -frame flow and the flow βt,
i.e.

T ◦ (h∗
t ⊗ 1) = βt ◦ T.

Moreover, by an elementary exercise in linear algebra any endomor-
phism of Λp

C
T ∗

π(ξ)X can be represented by a linear combination of ele-

ments of the form p̂(v1, . . . , vN), where v1, . . . , vN is a frame and p has
degree at most 2N . Therefore, the map T is surjective.
Step 2: Now let Ψ be an invariant element in L2(T ∗

1 X, π∗End(Λp
C
X)).

Then we may find an f ∈ L2(FNX) ⊗ P such that Ψ = T (f). By the
same argument as in the proof of theorem 4.3 it follows that Ψ = T (m),
where m is some constant polynomial such that m̂(ξ) commutes with
the action of SO(n − 1) on each fiber of π∗(Λp

C
X) . Note that P (ξ)

and (1−P (ξ)) project onto invariant subspaces. The fiber of π∗(Λp
C
X)

at the point (x, ξ) ∈ T ∗
1 X is given by Λp

C
T ∗

xX. On the other hand
T ∗

xX = Rξ ⊕ V , where V is the orthogonal complement of ξ in T ∗
x X.

Hence, we have the decomposition ΛpT ∗
x X = R ⊗ Λp−1V ⊕ ΛpV . It is

now easy to see that 1−P projects onto C⊗Λp−1
C

V , whereas P projects
onto Λp

C
V . The representation of SO(n − 1) on ΛpCn−1 is irreducible

(see e.g. [FuHa91], Lecture 18) since we assumed p 6= n−1
2

. If p 6= n
2
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then all other components which occur in the decomposition into irre-
ducible representations are inequivalent to this representation as one
can see by calculating the dimensions (the exceptional case n = 3, p = 2
by other methods). Hence, in this case the algebra of invariant elements
in End(Λp

C
T ∗

xX) is generated by P (ξ) and 1−P (ξ). Therefore, any in-
variant element is of the form c1P +c2(1−P ). This shows R-abelianness
and ergodicity if p 6= n

2
. Ergodicity for p = n

2
follows from the fact that

any invariant element in P (ξ)End(Λp
C
T ∗

x X)P (ξ) is proportional to P (ξ)
which is a simple consequence of the irreducibility of the SO(n − 1)
action on Λp

C
V . �

The orthoprojection onto the closure of δC∞(X; Λp−1T ∗X) is given
by the zero order pseudodifferential operator (∆p|ker(∆p)⊥)−1δd. The
principal symbol of this operator is easily seen to coincide with P . Be-
cause of the Hodge decomposition quantum ergodicity for the operator
∆p with 0 < p < n can never hold in the strict sense. An eigenform φ
of ∆p with nonzero eigenvalue can be decomposed uniquely as

φ = dφ− + δφ+,(34)

where φ− is an eigenform of ∆p−1 and φ+ is an eigenform of ∆p+1.
Hence, part of the spectrum of ∆p comes from part of the spectrum of
∆p−1. The other part can be obtained by solving the system

∆pφ = λφ,(35)

δφ = 0.

We will show that in certain situations this system is quantum ergodic.

Theorem 5.2. Assume 0 < p < n, n ≥ 3 and suppose that φk is an
orthonormal sequence of eigen-p-forms satisfying

∆pφk = λkφk,

δφk = 0,

such that the φk span ker(δ) and λk ↗ ∞. Suppose that p 6= n−1
2

.
Then, if the 2 min(p, n−p)-frame flow is ergodic, the system is quantum
ergodic in the sense that

lim
N→∞

1

N

∑

k≤N

|〈φk, Aφk〉 − ωt(σA)| = 0,

for all A ∈ ΨDO0
cl(X; Λp

C
X). In particular there is a density one sub-

sequence φ′
k such that

lim
k→∞

〈φ′
k, Aφ′

k〉 = ωt(σA), for all A ∈ ΨDO0
cl(X; Λp

C
X).
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Proof. The proof is along the same lines as the proof of theorem 4.4.
Suppose that A ∈ ΨDO0

cl(X; Λp
C
X) with ωt(A) = 0 and A∗ = A. Let

F be the operator (∆p|ker(∆p)⊥)−1δd, then we have σF = P . Since
Fφk = φk we conclude that 〈φk, Aφk〉 = 〈φk, FAFφk〉. Hence, we
may assume without loss of generality that A = FAF and hence,
σA = PσAP . Again we have the heat asymptotics

Tr(Ae−∆pt) ∼ C(p, n)ωtr(σA)t−n/2,(36)

and from Lemma A.1 ωt(|σAT
|2) → 0 as T → ∞. Together these

statements with the Karamata’s Tauberian theorem imply Quantum
ergodicity in the stated form exactly in the same way as in the proof
of theorem 4.4. �

In the above proof it was necessary to exclude the case p = n−1
2

because in this case the representation of SO(n − 1) on ΛpCn−1 is not
irreducible but splits into a direct sum of two irreducible representa-
tions. One reason for this is the existence of an involution defined by
the Hodge star operator which commutes with the SO(n − 1) action.
This actually causes the state ωt to be non-ergodic in case p = n−1

2
. To

see this let P± ∈ C(T ∗
1 X, π∗End(ΛpX)) defined by

P±(ξ)v :=
1

2
(1 ± i pi(ξ)∗) i(ξ)ξ ∧ v,(37)

where ∗ : Λp−1
C

X → Λp+1
C

X is the Hodge star operator. Then P±

are orthogonal projections C(T ∗
1 X, π∗End(Λp

C
X)) which commute in

addition with P . Therefore, we have P = P+ + P− and

ωt =
1

2
(ω+ + ω−),

ω+(a) = 2ωt(P+a),

ω+(a) = 2ωt(P−a).

Again these states are invariant. The same proof as for theorem 5.1
now gives

Theorem 5.3. Suppose that n > 1 is odd. Let p = n−1
2

. If the (n−1)-
frame flow is ergodic then ω± are ergodic states with respect to βt on
C(T ∗

1 X, π∗Λp
C
X) and the systems (C(T ∗

1 X, π∗Λp
C
X), ω±) are βt-abelian.

It is amusing that also in case p = n−1
2

the non-ergodicity of the state
ωt is related to the existence of a “quantum symmetry”, i.e. of a pseu-
dodifferential operator which commutes with ∆p and leaves the kernel

of Rg(δ) invariant. Namely, for p = n−1
2

the operator i p+1∆
−1/2
p δ∗ is

a selfadjoint involution on Rg(δ) whose principal symbol is precisely
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i pi(ξ)∗. Hence, P± are the principal symbols of the projections to the
±1 eigenspaces of this involution. The proof of theorem 5.2 gives

Theorem 5.4. Suppose that n is odd and 2p = n− 1. Suppose that φk

is an orthonormal sequence of eigen-p-forms satisfying

∆pφk = λkφk,

δφk = 0,

i p+1δ ∗ φk = ±
√

λkφk

such that the φk span Ran(δ ± i p+1∆
−1/2
p δ ∗ δ) and with λk ↗ ∞.

Then, if the (n−1)-frame flow is ergodic, the system is quantum ergodic
in the sense that

lim
N→∞

1

N

∑

k≤N

|〈φk, Aφk〉 − ω±(σA(ξ))| = 0,

for all A ∈ ΨDO0
cl(X; Λp

C
X). In particular there is a density one sub-

sequence φ′
k such that

lim
k→∞

〈φ′
k, Aφ′

k〉 = ω±(σ(A)), for all A ∈ ΨDO0
cl(X; Λp

C
X).

Appendix A. Ergodicity of states for noncommutative

classical systems

Let A be a unital C∗-algebra. A state ω over A is a positive linear
functional ω : A → C with ω(1) = 1. The set of states EA of A is a
convex weakly-∗-compact subset of A∗ and its extreme points are the
pure states PA. Each state ω gives via the GNS-construction rise to
a representation πω : A → L(Hω) with a cyclic vector Ωω such that
ω(a) = 〈Ωω, πω(a)Ωω〉. Up to equivalence the triple (πω,Hω, Ωω) is
uniquely determined by its properties and we refer to it as the GNS
triple.

In the following let αt be a strongly continuous group of ∗-auto-
morphisms of A. The set of invariant states Eαt

A is again a weakly-∗-
compact subset of A∗. The extreme points in Eαt

A are called ergodic
states. Hence, an invariant state ω is ergodic if it cannot be written
as a convex linear combination of two other invariant states. If ω is
an invariant state the group αt can be uniquely implemented by a
strongly continuous unitary group U(t) on the GNS-Hilbert space Hω

such that U(t)Ωω = Ωω and U(t)∗πω(a)U(t) = πω(αt(a)). Let Eω be
the orthogonal projection onto the space of αt-invariant vectors in Hω.
Then the pair (A, ω) is called R-abelian if all operators in Eωπω(A)Eω

commute pairwise. If we look at the following conditions
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(1) Eω has rank one,
(2) ω is ergodic for αt, i.e. ω ∈ E(Eαt

A ),
(3) {πω(A) ∪ U(t)} is irreducible on Hω,

then it is known that (1) ⇒ (2) ⇔ (3). If, moreover, either (A, ω) is
R-abelian, or Ωω is separating for πω(A)′′, then all three conditions are
equivalent (see [BR79], Prop. 4.3.7, Th. 4.3.17, Th 4.3.20).

Now let E → X be a hermitian complex vector bundle over a
compact Hausdorff space X. Then A = C(X; End(E)) is a uni-
tal C∗-algebra. Suppose that µ is some finite Borel measure with
µ(X) = 1 and let P ∈ C(X; End(E)) be a non-trivial orthogonal pro-
jection onto a subbundle, i.e. P has constant rank k. Then ω(a) :=
1
k

∫

X
Tr (P (x)a(x)P (x)) dµ(x) is a state over A. The GNS triple can

be calculated explicitly and is given by Hω = L2(X; End(E))P with
scalar product 〈a, b〉 = 1

k

∫

X
Tr(a∗(x)b(x))dµ(x) and Ωω = P . The ac-

tion of A on Hω is by multiplication from the left. The von Neumann
closure of πω(A) is given by πω(A)′′ = L∞(X; End(E)). The commu-
tant πω(A)′ of πω(A) can be identified with the opposite algebra of
PL∞(X; End(E))P which acts on L2(X; End(E))P by right multipli-
cation. Note that Ωω is separating for πω(A)′′ iff P = Id. Now any
continuous geometric flow on E determines a continuous geometric flow
on End(E). If the hermitian structure is preserved by the flow, this
gives rise to a strongly continuous 1-parameter group αt on A. If P and
µ are invariant under the flow, then ω is an invariant state. If all invari-
ant vectors in L2(X; End(E))P are of the form cP with c ∈ C, then by
the above ω is ergodic. In this case Eωπω(A)Eω is just a multiplication
by a number and the system is R-abelian. If a state ω′ is majorized
by ω then there exists a positive element A ∈ PL∞(X; End(E))P such
that such that ω′(a) = ω(aA). Hence, if P is up to a constant the only
invariant element in PL∞(X; End(E))P then ω is ergodic.

Now denote by ω′ the restriction of the state ω to the subalgebra B =
PC(X; End(E))P . If E ′ denotes the subbundle onto which P projects
then clearly B = C(X; End(E ′)) and ω′ becomes the tracial state on B.
Ergodicity of the state is equivalent to the condition that all invariant
elements in PL∞(X; End(E))P = L∞(X; End(E ′)) are multiples of P .
Therefore, ergodicity of ω′ is equivalent to the ergodicity of ω. Since
Ωω′ is separating for π′′

ω′(B) ergodicity of ω is equivalent to Eω′ having
rank one. As a consequence we get

Lemma A.1. If A ∈ PL∞(X, E)P such that ω(A) = 0, then ergodicity
of ω implies that

lim
T→∞

ω(|AT |
2) = 0,(38)
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where

AT =
1

T

∫ T

0

αt(A)dt.

Proof. Since A = PAP we also have A2
T = PA2

TP . By the above
Eω′ has rank one and its range is spanned by P . Now by the von
Neumann ergodic theorem AT converges to Eω′A in PL2(X, E)P . But
since ω(A) = 0 we have Eω′A = 0 and therefore AT converges to 0
in PL2(X, E)P . By definition this means that ω(|AT |

2) converges to
0. �
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