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Scalar
curvature

(M, g) is n-dimensional compact manifold, n > 2.

Goal: study scalar curvature R of random Riemannian
metrics on M. We start with Gauss curvature K in
dimension n = 2; R = 2K.

Scalar curvature: Geometric meaning: as r — 0,

R 2
VOI(BM(Xo, I’)) = VOI(BRn(I’)) 1-— 6(57)(3-);) + O(r4) .
Uniformization theorem in dimension 2: in every
conformal class, there exists a unique metric of
constant scalar curvature Ry. Ry > 0 for M = S?,
Ry = 0 for M = T2, and Ry < O for surfaces of genus
v > 2.
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e Questions: What is the probability that a random
metric g¢ in a conformal class has non-vanishing
curvature Ry, M # T2? or that it satisfies certain
curvature bounds?
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Questions

e Questions: What is the probability that a random
metric g¢ in a conformal class has non-vanishing
curvature Ry, M # T2? or that it satisfies certain
curvature bounds?

e Use Laplacian to define random metrics in a conformal
class and to estimate that probability.

e Techniques: differential geometry; spectral theory of
elliptic operators; Gaussian random fields on manifolds
(Borell, Tsirelson-lbragimov-Sudakov, Adler-Taylor).
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on M.
e /g - Laplacian of gg. Spectrum:
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Random
metrics

e g - reference metric on M. Conformal class of go:

{g1 = e’ - go}; f is a random (suitably regular) function
on M.

A - Laplacian of gg. Spectrum:

Dodj+Ajgj =0, 0= X9 <Ay < X2 <.... Define f by

— Z ajchbj(x)
j=1

aj ~ N(0,1) are i.i.d standard Gaussians,

¢j = F(\j) — 0 (damping):

C = )\j* ¢ (random Sobolev metric); ¢; = e~ (random
real analytic metric).

The covariance function

ri(x,y) == E[f(x)f(y)] = ZC%,( )j(y), for x, y € M.
For x € M, f(x) is mean zero Gaussian of variance

(X, x) = i 24 (x)2.
=
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Proposition 1: If ¢; = O(\;°),s > n/2, then f ¢ C°
as;if ;= O()\;°),s > n/2+1,then f € C* as.



Random
metrics

e Sobolev regularity:
Proposition 1: If ¢; = O(\;°),s > n/2, then f ¢ C°
as;if ;= O()\;°),s > n/2+1,then f € C* as.

e Volume change: Let Vy = vol(M, go). If
g1 := g1(a) = e g, then dV; = e€"¥/2dV;. One can
show that lim,_,o E[vol(M, g1(a))] = V.
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R; changes
sign

e Letn=2,and g; = e#gy. Then
Ry = e ¥Ry — ah] (1)
M # T2. Estimate the probability of
{Sgn(Ry) = Sgn(Ro)}

e Observation: If Ry +# 0, then
Sgn(Ry) = Sgn(Ro)Sen(1 — alof/Ro).
e Let P(a) := Prob{3x : SgnR1(x) = SgnRy}, or
P(a) = Prob{3x € M : 1 — a(Aof)(x)/Ro(x) < 0}. Then

P(a) = Prob{sup(Aof)(x)/Ro(x) > 1/a},

xeM
Consider the random field v = (Aqf)/Ry. Then
> (6N b (x)bi(y)

YN = R 0R)



e We shall estimate P(a) in the limit a — 0.
Geometrically, this implies that a.s. gy(a) — go, SO
P(a) — 0. We want to estimate the rate.
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e We shall estimate P(a) in the limit a — 0.
Geometrically, this implies that a.s. g1(a) — go, so
P(a) — 0. We want to estimate the rate.
e First use Proposition 2 (Borell, TIS, 1975-76): Let v be
. a centered Gaussian process, a.s. bounded on M, and
Borell-Tis 02 := sup,em E[v(x)?]. Let ||v|| := supem v(X); then
E{||v||} < oo, and Ja so that for 7 > E{||v||} we have

Prob{||v|| > 7} < e*7 /(0.

o Assume that Ry € C°, s > 2, then v € C°(M) a.s. and
Proposition 2 applies. In our situation, 7 = 1/a — oo as
a— 0, s0 P(a) < exp[Cz/a— 1/(28°02)].



e To estimate P(a) from below choose x; € M where the
variance r,(x, x) attains its supremum o2. Clearly,
Prob(||v|| > 1/a) > Prob(v(xg) > 1/a) =
1o g2 i i :
e 5= J1/(a0,) € "/ at. Combine the estimates:
Borell-TIS



e To estimate P(a) from below choose X e M where the
variance r,(x, x) attains its supremum o2. Clearly,
Prob(||v|| > 1/a) > Prob(v(xg) > 1/a) =
1 g2 i i :
e 5= J1/(a0,) € "/ at. Combine the estimates:

serelTis e Theorem 3: Assume that Ry € C°, ¢; = O(X;®), s > 2.
Then 3C; > 0, C> > 0 such that
(C1 a) —1/(28%02) < P( ) < 662/371/(2a206)7

—1

as a — 0. In particular lim,_,o a%In P(a) = 52
v



e Random real-analytic metrics. Choose the
coefficients ¢; = e=47/2/);. Then

r(x,x, T) = e*(x,x, T)/(Ro(x))2.

where e*(x, x, T) is the heat kernel, without the
Real-analytic constant term.
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e Random real-analytic metrics. Choose the
coefficients ¢; = e=47/2/);. Then

r(x,x, T) = e*(x,x, T)/(Ro(x))2.
where e*(x, x, T) is the heat kernel, without the
Real-analytio constant term.
o Small T asymptotics of e*(x, x, T) imply that as
T—0t,

’
(4rT)"/2infyem(Ro(x))?

o2 ~




e Theorem 4. n =2, M # T2. Let gy and g1 have equal
areas, Ry and R; have constant sign, Ry = const and
Ri # const. Then Jag > 0, To > 0 (that depend on
90, g1) such that for any 0 < a < ag and for any
0<t< To,wehave P(a, T,g1) > P(a, T,g).

Real-analytic
metrics



Real-analytic
metrics

e Theorem 4. n =2, M # T2. Let gy and g1 have equal

areas, Ry and R; have constant sign, Ry = const and
Ri # const. Then Jag > 0, To > 0 (that depend on

90, g1) such that for any 0 < a < ag and for any

0<t< To,wehave P(a, T,g1) > P(a, T,g).

Proof: By Gauss-Bonnet, [,, RodVy = [, R1dV;. Since
A(M, go) = A(M, g1); and since Ry = const and

Ry # const, it follows that

by := minyepm(Ro(X))? > minyep(Ry (x))? := by.
Accordingly, as T — 01, we have

U%(Qh T) - @
o5(g, T) b

The result follows easily from Theorem 3.
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e Large T asymptotics:
Aq - the smallest nonzero eigenvalue of —Ag. Let
m = m(\¢) be the multiplicity of A1, and let

F := sup Zo 400° (2)
. XeM RO(X)z .
e One can show that
Real-analytic 5
metrics
. oy(T)
Tlinoo Fe—M T

e Theorem 5. Let gy and g; be two metrics (of equal
area) on a compact surface M, such that Ry and R4
have constant sign, and such that A\1(go) > \1(g1).
Then there exist ap > 0 and 0 < Ty < o (that depend
on 9o, g1), such that for all a < ag and T > Ty we have
P(a, T;q) < P(a,T;9).



e To summarize: Small T = metrics with Ry = const
extremal.
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e To summarize: Small T = metrics with Ry = const
extremal.

e Large T = metrics with the largest A\{ extremal.
e Genus 0: (S?, round) extremal for both small T and
large T (Hersch). Conjecture: extremal for all T.
e Genus v > 2: Small T = hyperbolic metrics extremal.
moice e Large T: By a 1985 theorem of R. Bryant, hyperbolic
metrics never maximize Ay in their conformal class.

e Genus 2: Metrics maximizing A for surfaces of genus 2
of fixed area are branched coverings of the round S? (J,
Levitin, Nigam, Nadirashvili, Polterovich).

e Question: Which metrics are extremal for intermediate
T?



e We next indicate how to obtain a better estimate for
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the round metric, Ry = 1.
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Using A-T

We next indicate how to obtain a better estimate for
P(a) for M = S2. 3! conformal class [go] on S?; gy is
the round metric, Ry = 1.

The isometry group acts transitively on (S2, gg), so the
random fields f(x), v(x) are isotropic and in particular
have constant variance. That allows us to apply results
of Adler and Taylor and obtain more precise asymptotic
estimates for P(a).

Note that for surfaces of genus v > 2 (where Ry < 0),
the variance r,(x, x) is not constant, so the results of
A-T do not apply.

Also, the assumptions on v are more restrictive: to
apply A-T we need v € C?(S?) a.s; to apply Borell-TIS,
we only need v € C°%(S?) a.s.
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normalize our random Fourier series differently.
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dimension Ny, = 2m + 1; the corresponding eigenvalue
is Em = m(m+1). Let By = {nmx}rm, be an
orthonormal basis of &p,.
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dimension Ny, = 2m + 1; the corresponding eigenvalue
is Em = m(m+1). Let By = {nmx}rm, be an
orthonormal basis of &n.

e Let f(x) = —/|S?| Z E\ﬁamk”mk( ), where an «

are standard Gau53|an i.i.d. and cm > 0 are (suitably

pelghey decaying) constants satisfying Z Cm=1.

m=1



Using A-T

Since Ag on (S?, go) is highly degenerate, we
normalize our random Fourier series differently.

Em - space of spherical harmonics of degree m,
dimension Ny, = 2m + 1; the corresponding eigenvalue
is Em = m(m+1). Let By = {nmx}rm, be an
orthonormal basis of &n.

Let f(x) = —/|S?| Z E\ﬁamk”mk( ), where an «

are standard Gau53|an i.i.d. and cm > 0 are (suitably

decaying) constants satisfying Z cm=1.

m=1
It follows that v = /[S2] 3" jﬁl:’;amknm,k(x) has unit

m>1, k
variance, and covariance

n(x,y) = Z cmPm(cos(d(x,y))), where Py, is the

Legendre ponnom|aI



e In the new normalization, if c, = O(M~%),s > 7, then
h(x) € C?(S?) as.
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e In the new normalization, if ¢, = O(M~5),s > 7, then
h(x) € C?(S?) as.
e Applying results of A-T, we can prove
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e In the new normalization, if ¢, = O(M~5),s > 7, then
h(x) € C?(S?) as.
e Applying results of A-T, we can prove

e Theorem 6: Notation as above, let
Cm=O0(m°),s>7.Let C = 5= 3" 1 CmEm. Then
there exists a > 1, s.t. in the limit a — 0, P(a) satisfies

A C 1 2 1
Pa) =3P 22) T 5 P 22
(0%
+o0 (exp(—z—a2)>



Using A-T

In the new normalization, if ¢, = O(M~5),s > 7, then
h(x) € C?(S?) as.
Applying results of A-T, we can prove

Theorem 6: Notation as above, let
Cm=O0(m°),s>7.Let C = 5= 3" 1 CmEm. Then
there exists a > 1, s.t. in the limit a — 0, P(a) satisfies

P(a) = gexp (—2132> + \/227 exp (—2;2)
+o0 (exp(—%))

Note that we now have an asymptotic expression for
P(a).



e We next estimate the probability of the event
{lIR1 — Rol| < u},u > 0; we shall do that for
g1 = €¥gg, in the limit a — 0. The result below hold for
any compact orientable surface, including T?.

L=° bounds



e We next estimate the probability of the event
{lIR1 — Rol| < u},u > 0; we shall do that for
g1 = e gy, in the limit a — 0. The result below hold for
any compact orientable surface, including T?.

e To state the result, we define a new random field w on
M:
w = Aof + Rof

L=° bounds

We denote its covariance function by r,(x, y), and we
define 02, = sup,cp fw(X, X).



e We can now state
Theorem 7: Assume that the random metric is chosen
so that the random fields f, w are a.s. C°. Leta— 0
and u — 0 so that (u/a) — co. Then

U2

log Prob(||R1 — Rpllec > U) ~ ———-.
gProb(|Br — Folloo > ) ~ =55

L=° bounds
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e The proof uses Borell-TIS inequality. The condition
L> bounds (u/a) — oo ensures that the application of Borell-TIS
gives an asymptotic result for
log Prob(||Ry — Rollsc > U).



e We can now state
Theorem 7: Assume that the random metric is chosen
so that the random fields f, w are a.s. C°. Leta— 0
and u — 0 so that (u/a) — co. Then

U2

log Prob(||R1 — Rpllec > U) ~ ———-.
gProb(|Br — Folloo > ) ~ =55

e The proof uses Borell-TIS inequality. The condition
L> bounds (u/a) — oo ensures that the application of Borell-TIS
gives an asymptotic result for
log Prob(||Ry — Rollsc > U).

e The condition u — 0 is needed to estimate (from
above) the probability of certain exceptional events.



e Dimension n > 3: Yamabe problem (Yamabe,
Trudinger, Aubin, Schoen): in every conformal class
there exist metric(s) of constant scalar curvature Ry (its
sign is uniquely determined). If Ry < 0, that metric is
unique.
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e Dimension n > 3: Yamabe problem (Yamabe,
Trudinger, Aubin, Schoen): in every conformal class
there exist metric(s) of constant scalar curvature Ry (its
sign is uniquely determined). If Ry < 0, that metric is
unique.

e Difficulties that arise when trying to extend Theorems 3,
4, 5 to dimension n > 2.

e Change of R;:

Rie* = Ro — a(n— 1)Aof — &(n —1)(n - 2)|Vof[?/4

e has a gradient term —a?(n —1)(n — 2)|Vf|2/4, that
vanished for n = 2. Accordingly, the random field R; eaf
is no longer Gaussian, making its study more difficult.



e Dimension n > 3: Yamabe problem (Yamabe,
Trudinger, Aubin, Schoen): in every conformal class
there exist metric(s) of constant scalar curvature Ry (its
sign is uniquely determined). If Ry < 0, that metric is
unique.

e Difficulties that arise when trying to extend Theorems 3,
4, 5 to dimension n > 2.

e Change of R;:

Rie* = Ro — a(n— 1)Aof — &(n —1)(n - 2)|Vof[?/4

Dimension

n>2 has a gradient term —a?(n — 1)(n — 2)|V,f|?/4, that
vanished for n = 2. Accordingly, the random field R; eaf
is no longer Gaussian, making its study more difficult.

e We obtain the following (weaker) generalization of
Theorem 3.



e M" n> 3 - compact. Assume that the scalar curvature
Ry € C° of gy has constant sign. Let g; = e® gy, and let
¢; satisfy ¢; = O(Aj‘s), s>n/2+1,sothat Ry € C° a.s.
Letv = (Aof)/Rp. As usual, we let
02 = SUP,epy Iv(X, X). If Ry > 0, let

e EIVof ()]
R
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e M" n> 3 - compact. Assume that the scalar curvature
Ry € C° of gy has constant sign. Let g; = e® gy, and let
¢; satisfy ¢; = O(Aj‘s), s>n/2+1,sothat Ry € C° a.s.
Letv = (Aof)/Rp. As usual, we let
02 = SUP,cp Iv(X, x). If Ry > 0, let

E[|Vof(x)[?]
Op =SUPp ——5———.
2T e Fo()
e Theorem 8:
Assume that Vx € M. Ry(x) < 0. Then there exists
a > 0 so that

Dimension « 1
, P(a) = S
- @=0(20 (5~ zir172))



e M" n> 3 - compact. Assume that the scalar curvature
Ry € C° of gy has constant sign. Let g; = e® gy, and let
¢; satisfy ¢; = O(Aj‘s), s>n/2+1,sothat Ry € C° a.s.
Letv = (Aof)/Rp. As usual, we let
02 = SUP,cp Iv(X, x). If Ry > 0, let

E[|Vof(x)]
o2 =SUPp — 5~
2 xeM RO(X)
e Theorem 8:
Assume that Vx € M. Ry(x) < 0. Then there exists
a > 0 so that
Dimension « 1
n P(a) = - .
5 @=0(e (5~ g 17))
e Assume that Vx € M. Ry(x) > 0. Then there exists
8 > 0 so that

P(a)=0 <exp (i — 52)) ,



_ SRR S
~oan(n—1)(n-2)
and

_ 402(n—1)
K= oon(n—2)°
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¢ In dimension n > 3, after a conformal change of
variables, Laplacian acquires a gradient term. Problem:
construct (possibly higher order) elliptic operators so
that after a conformal change of variables, the gradient
term vanishes.

Conformally
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¢ In dimension n > 3, after a conformal change of
variables, Laplacian acquires a gradient term. Problem:
construct (possibly higher order) elliptic operators so
that after a conformal change of variables, the gradient
term vanishes.

e Example: n = 4; Paneitz operator

Py = A5 +6[(2/3)Ryg — 2Ricg]d.
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¢ In dimension n > 3, after a conformal change of
variables, Laplacian acquires a gradient term. Problem:
construct (possibly higher order) elliptic operators so
that after a conformal change of variables, the gradient
term vanishes.

e Example: n = 4; Paneitz operator
Py = A5 +6[(2/3)Ryg — 2Ricg]d.

e General theory of such conformally covariant operators:
Conformally Fefferman, Graham, Zworski, Jenne, Mason, Sparling,
covariant Chang, Yang et al.

operators



e M - compact, orientable manifold of even dimension
n > 4. Consider conformally covariant elliptic operator
P of order n.

Conformally
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operators



e M - compact, orientable manifold of even dimension
n > 4. Consider conformally covariant elliptic operator
P of order n.

e P = A"/2 4t lower order terms. P is self-adjoint
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e M - compact, orientable manifold of even dimension
n > 4. Consider conformally covariant elliptic operator
P of order n.

e P = A"2 4 Jower order terms. P is self-adjoint
(Graham, Zworski, Fefferman). Under a conformal
transformation of metric § = e?“g, the operator P
changes as follows: P = e~™P. No lower order terms!

e There exist lower order operators with similar
properties (GJMS operators of Graham- Jenne-
Mason- Sparling). For even n, P has the largest
Conformally . . . "’
covariant possible order (dimension critical).
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e M has even dimension n. Q-curvature for n = 4 was
defined by Paneitz:

1
12

e n > 6: Q-curvature - local scalar invariant associated to
the operator P,. It was introduced by T. Branson;
alternative constructions were provided Fefferman,
Graham, Hirachi using the ambient metric construction.

e Studied by Branson, Gover, Orsted, Fefferman,
Graham, Zworski, Chang, Yang, Djadli, Malchiodi et al

Qg = — 5 (8gRg — A3+ 3Ricg ) .

Q-curvature



e Important properties of Q-curvature: it is equal to
1/(2(n — 1))A"2R modulo nonlinear terms in
curvature. Under a conformal transformation of
variables § = e2“g on M", the Q-curvature transforms
as follows: y

Pw+ Q= Qe™. (3)

Integral of the Q-curvature is conformally invariant.
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e Important properties of Q-curvature: it is equal to
1/(2(n — 1))A"2R modulo nonlinear terms in
curvature. Under a conformal transformation of
variables § = e2“g on M", the Q-curvature transforms
as follows: y

Pw+ Q= Qe™. (3)

Integral of the Q-curvature is conformally invariant.

¢ Uniformization theorem (existence of metrics with
constant Q-curvature in conformal classes): n = 4:
Chang and Yang, Djadli and Malchiodi; n > 6: Ndiaye.

Q-curvature



e Proposition 9: (M, g) compact, n > 4 even, Assume
that M satisfies the following “generic” assumptions:
i) n=4:ker P, = {const}, and
[, QdV # 8x%k,k=1,2,...
i) n>6: ker P, = {const}, and
Sy QaV # (n—1)lwpk, k=1,2,..., where
(n—1)lw, = [5, QdV, the integral of Q-curvature for the
round S”.
Then there exists a metric gg on M in the conformal
class of g with constant Q-curvature. If
n=4, /[, QdV < 8x2, P, > 0 and ker P4 = {const},
then gq is unique.
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e Proposition 9: (M, g) compact, n > 4 even, Assume
that M satisfies the following “generic” assumptions:
i) n=4:ker P, = {const}, and
[, QdV # 8x%k,k=1,2,...
i) n>6: ker P, = {const}, and
Sy QaV # (n—1)lwpk, k=1,2,..., where
(n—1)lw, = [5, QdV, the integral of Q-curvature for the
round S”.
Then there exists a metric gq on M in the conformal
class of g with constant Q-curvature. If
n=4, /[, QdV < 8x2, P, > 0 and ker P4 = {const},
then gq is unique.
o If g has positive R and M # S*, then the assumption
Sy QdV < 872 is satisfied; if in addition Jy @ >0, then
Q-curvature the assumptions P4 > 0 and ker P, = {const} are also
satisfied.



e |tis possible to generalize Theorems 3, 7 for
Q-curvature:
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e It is possible to generalize Theorems 3, 7 for
Q-curvature:
e Strategy:

i) Consider (M, go) such that Q, has constant sign;

ii) Consider the conformal perturbation g; = €# gy where
ais a positive number; expand f in a series of
eigenfunctions of Py,

iii) Use the transformation formula (3) for Q-curvature (no
gradient terms!) to study the new Q-curvature Qy of gy.

Q-curvature
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Conclusion

Improve estimates for the scalar curvature in higher
dimensions.

Consider “rough” metrics that arise in 2D quantum
gravity.

Study the case when a —» 0.

Study Ricci and sectional curvatures in high
dimensions.

Consider the space of all metrics, not just those in a
conformal class.

Study differential geometry of random metrics, e.g.
distance between two points, diameter etc.

Study geodesic and frame flows and their ergodicity;
existence of conjugate points; entropy etc.

A: small eigenvalues, heat kernel asymptotics.
Eigenfunctions: prove for “generic” metrics results that
seem difficult (or wrong!) for all metrics.

Prove quantitative estimates (spectral gaps, level
spacing).
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