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Abstract. We study Gauss curvature for random Riemannian metrics on a
compact surface, lying in a fixed conformal class; our questions are motivated
by comparison geometry. We next consider analogous questions for the scalar
curvature in dimension n > 2, and for the Q-curvature of random Riemannian
metrics.

1. Introduction

The goal of the authors in this paper is to initiate the study of standard questions
in comparison geometry for random Riemannian metrics lying in the same conformal
class.

Since the 19th century, many results have been established comparing geometric
and topological properties of manifolds where the (sectional or Ricci) curvature is
bounded from above or from below, with similar properties of manifolds of constant
curvature.

When studying such questions for random Riemannian metrics, the first natural
question is to estimate the probability of the metric satisfying certain curvature
bounds, in a suitable regime. The present paper addresses such questions for scalar
curvature, and also for Branson’s Q-curvature. We study the behavior of scalar
curvature for random Riemannian metrics in a fixed conformal class, where the
conformal factor is a random function possessing certain smoothness; our random
metrics are close to a “reference” metric that we denote g0.

The paper addresses two main questions (our manifold M is always assumed to
be compact and orientable):

Question 1.1. Assuming that the scalar curvature R0 of the reference metric g0

doesn’t vanish, what is the probability that the scalar curvature of the perturbed
metric changes sign?

We remark that in each conformal class, there exists a Yamabe metric with
constant scalar curvature R0(x) ≡ R0 [Yam, Au76, Sch84, Tr]; the sign of R0 is
uniquely determined. Question 1.1 can be posed in each conformal class where
R0 6= 0 (e.g. in dimension two, for M 6∼= T2). Also, it was shown in [CY, DM, N]
that in every conformal class satisfying certain generic conditions, there exists a
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metric g0 with constant Q-curvature, Q0(x) ≡ Q0. Question 1.1 can be posed in
each conformal class where Q0 6= 0.

Question 1.2. What is the probability that the curvature of the perturbed metric
changes by more than u (where u is a positive real parameter, subject to some
restrictions)?

We study Question 1.2 for Gauss curvature (equal to 1/2 the scalar curvature) in
dimension 2, and for Q-curvature in higher dimensions. Our techniques are inspired
by [AT08, Bl].

1.1. Acknowledgement. The authors would like to thank R. Adler, P. Guan, V.
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at Erwin Shrödinger Institute in Vienna (May 2009), as well as the organizers of
the conference “Topological Complexity of Random Sets” at American Institute of
Mathematics in Palo Alto (August 2009).

2. Random metrics in a conformal class

We consider a conformal class of metrics on a Riemannian manifold M of the
form

(1) g1 = eafg0,

where g0 is a “reference” Riemannian metric on M , a is a constant, and f = f(x)
is a C2 function on M .

Given a metric g0 on M and the corresponding Laplacian ∆0, let {λj , φj} denote
an orthonormal basis of L2(M) consisting of eigenfunctions of −∆0; we let λ0 =
0, φ0 = 1. We define a random conformal multiple f(x) by

(2) f(x) = −
∞∑

j=1

ajcjφj(x),

where aj ∼ N (0, 1) are i.i.d standard Gaussians, and cj are positive real numbers,
and we use the minus sign for convenience purposes only. We assume that cj =
F (λj), where F (t) is an eventually monotone decreasing function of t, F (t) → 0 as
t →∞.

The random field f(x) is a centered Gaussian field with covariance function

rf (x, y) := E[f(x)f(y)] =
∞∑

j=1

c2
jφj(x)φj(y),

x, y ∈ M . In particular for every x ∈ M , f(x) is mean zero Gaussian of variance

σ2(x) = rf (x, x) =
∞∑

j=1

c2
jφj(x)2.
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In the study of scalar curvature, it is convenient to work with the random cen-
tered Gaussian field

(3) h(x) := ∆0f(x) =
∞∑

j=1

ajcjλjφj(x)

having the covariance function

(4) rh(x, y) =
∞∑

j=1

c2
jλ

2
jφj(x)φj(y)

x, y ∈ M .
The smoothness of the Gaussian random field (2) is given by the following propo-

sition, [Bl, Proposition 1]:

Proposition 2.1. If
∑∞

j=1(λj + 1)rc2
j < ∞, then f(x) ∈ Hr(M) a.s.

Choosing cj = F (λj) = λ−s
j translates to

∑
j≥1 λr−2s

j < ∞. In dimension n, it
follows from Weyl’s law that λj ³ j2/n as j →∞; we find that

If s >
2r + n

4
, then f(x) ∈ Hr(M) a.s.

By the Sobolev embedding theorem, Hr ⊂ Ck for k < r − n/2. Substituting into
the formula above, we find that

(5) If cj = O(λ−s
j ), s >

n + k

2
, then f(x) ∈ Ck a.s.

We will be mainly interested in k = 0 and k = 2. Accordingly, we formulate the
following

Corollary 2.2. If cj = O(λ−s
j ), s > n/2, then f ∈ C0 a.s; if cj = O(λ−s

j ), s >

n/2 + 1, then f ∈ C2 a.s. Similarly, if cj = O(λ−s
j ), s > n/2 + 1, then ∆0f ∈ C0

a.s; if cj = O(λ−s
j ), s > n/2 + 2, then ∆0f ∈ C2 a.s.

We next consider the volume of the random metric in (1). The volume element
dV1 corresponding to g1 is given by

(6) dV1 = enaf/2dV0,

where dV0 denotes the volume element corresponding to g0.
Consider the random variable V1 = vol(M, g1).

Proposition 2.3. Notation as above,

lim
a→0

E[V1(a)] = V0,

where V0 denotes the volume of (M, g0).

Remark 2.4. The constant a can be regarded as the radius of a sphere (in a space
M of Riemannian metrics on M), centered at g0. The regime a → 0 can thus be
considered as studying local geometry of M.

It is well-known that the scalar curvature R1 of the metric g1 in (1) is related to
the scalar curvature R0 of the metric g0 by the following formula ([Au98, §5.2, p.
146])

(7) R1 = e−af [R0 − a(n− 1)∆0f − a2(n− 1)(n− 2)|∇0f |2/4],
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where ∆0 is the (negative definite) Laplacian for g0, and ∇0 is the gradient corre-
sponding to g0. We observe that the last term vanishes when n = 2:

(8) R1 = e−af [R0 − a∆0f ].

Substituting (2), we find that

(9) R1(x)eaf(x) = R0(x)− a

∞∑

j=1

λjajcjφj(x).

Proposition 2.5. If R0 ∈ C0 and cj = O(λ−s
j ), s > n/2 + 1 then R1 ∈ C0 a.s. If

R0 ∈ C2 and cj = O(λ−s
j ), s > n/2 + 2 then R1 ∈ C2 a.s.

Consider the sign of the scalar curvature R1 of the new metric. We make a
remark that will be important later:

Remark 2.6. Note that the quantity e−af is positive so that the sign of R1 satisfies

sgn(R1) = sgn[R0 − a(n− 1)∆0f − a2(n− 1)(n− 2)|∇0f |2/4],

in particular for n = 2, assuming that R0 has constant sign, we find that

sgn(R1) = sgn(R0 − a∆0f) = sgn(R0 − ah) = sgn(R0) · sgn(1− ah/R0).

3. Studying Question 1.1

We denote by M = Mγ a compact surface of genus γ 6= 1. We choose a reference
metric g0 so that R0 has constant sign (positive if M = S2, and negative if M has
genus ≥ 2).

Define the random metric on Mγ by g1 = eafg0, (as in (1)) and f is given by
(2). Let P2(a) the probability

(10) P2(a) := Prob{∃x ∈ M : sgn R1(g1(a), x) 6= sgn(R0)},
i.e. the probability that the curvature R1 of the random metric g1(a) changes sign
somewhere on M . The probability of the complementary event P1(a) = 1−P2(a) is
clearly P1(a) := Prob{∀x ∈ M : sgn(R1(g1(a), x)) = sgn(R0), } i.e. the probability
that the curvature of the random metric g1(a) does not change sign.

By Remark 2.6, in dimension two sgn(R1) = sgn(R0) sgn(1 − ah/R0), where
h = ∆0f was defined earlier in (3). We let v denote the random field

(11) v(x) = h(x)/R0(x)

Note that

(12) rv(x, x) = rh(x, x)/[R0(x)]2,

and let

(13) σ2
v = sup

x∈M
rv(x, x) = sup

x∈M
rh(x, x)/[R0(x)]2.

For a random field F : M → R that is a.s. bounded we introduce the random
variable ‖F‖M := sup

x∈M
F (x). It follows from Remark 2.6 that

(14) P2(a) = Prob {||v||M > 1/a} .

We shall estimate P2(a) in the limit a → 0. Geometrically, that means that
g1(a) → g0, so P2(a) should go to zero as a → 0; below, we estimate the rate.
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To do that, we use a strong version of the Borell-TIS inequality, cf. [Bor, TIS] or
[AT08, p. 51].

From now on we shall assume that R0 ∈ C0(M), and that cj = O(λ−s
j ), s > 2.

Then Proposition 2.5 implies that h and R1 are a.s. C0 and hence bounded, since
M is compact.

Theorem 3.1. Assume that R0 ∈ C0(M) and that cj = O(λ−s
j ), s > 2. Then there

exist constants C1 > 0 and C2 such that the probability P2(a) satisfies

(C1a)e−1/(2a2σ2
v) ≤ P2(a) ≤ eC2/a−1/(2a2σ2

v),

as a → 0. In particular

lim
a→0

a2 ln P2(a) =
−1
2σ2

v

.

Let M be a compact orientable surface, M 6∼= T2. Consider random real-analytic
conformal deformations; this corresponds to the case when the coefficients cj in (2)
decay exponentially.

We fix a real parameter T > 0 and choose the coefficients cj in (2) to be equal
to

(15) cj = e−λjT/2/λj .

Here T/2 can be regarded as the radius of analyticity of g1.
Then it follows from (4) that

rh(x, x) = e∗(x, x, T ) =
∑

j:λj>0

e−λjT φj(x)2,

where e∗(x, x, T ) denotes the heat kernel on M without the constant term, evaluated
at x at time T .

Proposition 3.2. Assume that the coefficients cj are chosen as in (15). Then as
T → 0+, σ2

v is asymptotic to
1

(4πT )n/2 infx∈M (R0(x))2
.

Theorem 3.3. Let g0 and g1 be two distinct reference metrics on M , normalized
to have equal volume, such that R0 and R1 have constant sign, R0 ≡ const and
R1 6≡ const. Then there exists a0, T0 > 0 (that depend on g0, g1) such that for any
0 < a < a0 and for any 0 < t < T0, we have P2(a, T, g1) > P2(a, T, g0).

It follows that in every conformal class, P2(a, T, g0) is minimized in the limit
a → 0, T → 0+ for the metric g0 of constant curvature.

Let λ1 = λ1(g0) denote the smallest nonzero eigenvalue of ∆0. Denote by m =
m(λ1) the multiplicity of λ1, and let

(16) F := sup
x∈M

∑m
j=1 φj(x)2

R0(x)2
.

Proposition 3.4. Let the coefficients cj be as in (15). Denote by σ2
v(T ) the cor-

responding supremum of the variance of v. Then

(17) lim
T→∞

σ2
v(T )

Fe−λ1T
= 1.
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Theorem 3.5. Let g0 and g1 be two reference metrics (of equal area) on a compact
surface M , such that R0 and R1 have constant sign, and such that λ1(g0) > λ1(g1).
Then there exist a0 > 0 and 0 < T0 < ∞ (that depend on g0, g1), such that for all
a < a0 and T > T0 we have P2(a, T ; g0) < P2(a, T ; g1).

It was proved by Hersch in [Her] that for M = S2, if we denote by g0 the round
metric on S2, then λ1(g0) > λ1(g1) for any other metric g1 on S2 of equal area.
This immediately implies the following

Corollary 3.6. Let g0 be the round metric on S2, and let g1 be any other metric
of equal area. Then, there exist a0 > 0 and T0 > 0 (depending on g1) such that for
all a < a0 and T > T0 we have P2(a, T ; g0) < P2(a, T ; g1).

It seems natural to conjecture ([Mor, EI02]) that the round metric on S2 will be
extremal for P2(a, T ) for all T , in the limit a → 0.

For surfaces of genus γ ≥ 2 the situation is different. It follows from [Yau74] and
standard results about extremal metrics for λ1 that

Proposition 3.7. Let g0 be a hyperbolic metric on a compact orientable surface
M of genus γ ≥ 2. Then g0 does not maximize λ1 in its conformal class.

A metric that maximizes λ1 for surfaces of genus 2 is a branched covering of the
round 2-sphere, cf. [JLNNP]. Accordingly, we conclude that on surfaces of genus
γ ≥ 2, different metrics maximize P2(a, T ) in the limit a → 0, T → 0 and in the
limit a → 0, T →∞, unlike the situation on S2.

The 2-sphere is special in that the curvature perturbation is isotropic, so that
in particular the variance is constant. In this case a special theorem due to Adler-
Taylor gives a precise asymptotics for the excursion probability.

For an integer m let Em be the space of spherical harmonics of degree m of
dimension Nm = 2m + 1 associated to the eigenvalue Em = m(m + 1), and for
every m fix an L2 orthonormal basis Bm = {ηm,k}Nm

k=1 of Em.
To treat the spectrum degeneracy it will be convenient to use a slightly different

parametrization of the conformal factor than the usual one (2)

(18) f(x) = −
√
|S2|

∑

m≥1, k

√
cm

Em

√
Nm

am,kηm,k(x),

where am,k are standard Gaussian i.i.d. and cm > 0 are some (suitably decaying)
constants. For extra convenience we will assume in addition that

(19)
∞∑

m=1

cm = 1.

Lemma 3.8. Given a sequence cm satisfying (19), we have f(x) ∈ Hr(S2) a.s. if
and only if

∞∑
m=1

m2r−4cm < ∞.

In what follows we will always assume that

(20) cm = O

(
1

ms

)

for some s > 0.
Using the two-dimensional case of [AT08, Thm. 12.4.1], we show that
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Theorem 3.9. Let s > 7, and the metric g1 on S2 be given by

g1 = eafg0

where f is given by (18). Also, let cm 6= 0 for at least one odd m. Then as a → 0,
the probability that the curvature is negative somewhere is given by

P2(a) =
C2

a
exp

(
− 1

2a2

)
+ C1Ψ

(
1
a

)
+ o

(
exp(− α

2a2
)
)

∼ C2

a
exp

(
− 1

2a2

)
+

C1√
2π

exp
(
− 1

2a2

)
,

where C1 = 2, C2 = 1√
2π

∑
m≥1 cmEm and α > 1.

Here Ψ(u) denotes the error function Ψ(u) = 1√
2π

∫∞
u

e−t2/2dt.

4. L∞ curvature bounds

On the torus T2, Gauss-Bonnet theorem implies that the curvature has to change
sign for every metric, so that question about the probability of the curvature chang-
ing sign is meaningless. We study another question instead, which can be formu-
lated for arbitrary reference metric g0 on any compact orientable surface: estimate
the probability that ||R1−R0||∞ > u, where R1 denotes the curvature of the metric
g1 = eafg0, and u > 0 is a real parameter.

Recall that the random field f was defined by (2) (with σ2
f = supx∈M rf (x, x));

h = ∆0f was defined in (3) (with σ2
h = supx∈M rh(x, x)).

Definition 4.1. Let w = ∆0f +R0f = h+R0f . We denote its covariance function
by rw(x, y), and we define σ2

w = supx∈M rw(x, x).

Note that on flat T2, h ≡ w and σh = σw. Note also that the random fields
f, h and w have constant variance on round S2; also f and h = w have constant
variance on flat T2.

Theorem 4.2. Assume that the random metric is chosen so that the random fields
f, h, w are a.s. C0. Let a → 0 and u → 0 so that

(21)
u

a
→∞.

Then

(22) log Prob{‖R1 −R0‖∞ > u} ∼ − u2

2a2σ2
w

.

5. Dimension n > 2

Let (M, g0) be a compact orientable n-dimensional Riemannian manifold, n > 2.
Let R0 ∈ C0(M) be the scalar curvature of g0; we assume that R0 has constant
sign. Let g1 = eafg0 with f as in (2) be a conformal change of metric. The key
difference between dimension 2 and dimension n > 2 in our calculations is the
presence of the gradient term. We shall assume that cj = O(λ−s

j ), s > n/2 + 1.
Then R1 ∈ C0(M) a.s. by Proposition 2.5. We let P2(a) denote the probability
that the scalar curvature R1 of g1 will change sign.
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Below, we shall consider a random field v = (∆0f)/R0 = h/R0. As usual, we let
σ2

v = supx∈M rv(x, x). We shall also consider the quantity

σ2 = sup
x∈M

E[|∇0f(x)|2]
R0(x)

.

Proposition 5.1. Let (M, g0) be a compact orientable n-dimensional Riemannian
manifold, n > 2, such that the scalar curvature R0 ∈ C0(M) and R0(x) 6= 0, ∀x ∈
M . Assume that cj = O(λ−s

j ), s > n/2 + 1, so that h,R1 ∈ C0(M).

1) Assume that ∀x ∈ M. R0(x) < 0. Then there exists α > 0 so that

P2(a) = O

(
exp

(
α

a
− 1

2a2(n− 1)2σ2
v

))
.

2) Assume that ∀x ∈ M. R0(x) > 0. Then there exists β > 0 so that

P2(a) = O

(
exp

(
β

a
− B

a2

))
,

where

B =
2 + κ−√κ2 + 4κ

σ2n(n− 1)(n− 2)
.

and

κ =
4σ2

v(n− 1)
σ2n(n− 2)

.

6. Q-curvature

The Q-curvature was first studied by Branson and later by Gover, Orsted, Fef-
ferman, Graham, Zworski, Chang, Yang, Djadli, Malchiodi and others. We refer to
[BG] for a detailed survey.

We start by discussing conformally covariant operators, first considered by Paneitz
in dimension 4: the Paneitz operator is P4 = ∆2

g + δ[(2/3)Rgg− 2Ricg]d. Below we
summarize the relevant results from [BG]. Let M be a compact orientable manifold
of dimension n ≥ 3. Let m be even, and m /∈ {n + 2, n + 4, . . .} ⇔ m − n /∈ 2Z+.
Then there exists on M a conformally covariant elliptic operator Pm of oreder 2m
(GJMS operators of Graham-Jenne-Mason-Sparling, cf. [GJMS]). We shall restrict
ourselves to even n, and to m = n. We shall denote the corresponding operator Pn

simply by P .
It satisfies the following properties: P = ∆n/2+lower order terms. P is formally

self-adjoint (Graham-Zworski [GZ], Fefferman-Graham [FG]). Under a conformal
transformation of metric g̃ = e2ωg, the operator P changes as follows: P̃ = e−nωP .

We next discuss Q-curvature and its key properties. In dimension 4, it was
defined by Paneitz as follows:

(23) Qg = − 1
12

(
∆gRg −R2

g + 3|Ricg|2
)
.

In higher dimensions, Q-curvature is a local scalar invariant associated to the op-
erator P . It was introduced by T. Branson in [Br]; alternative constructions were
provided in [FG, FH] using the ambient metric construction.
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Q-curvature is equal to 1/(2(n−1))∆n/2R modulo nonlinear terms in curvature.
Under a conformal transformation of variables g̃ = e2ωg on Mn, the Q-curvature
transforms as follows [BG, (4)]:

(24) Pω + Q = Q̃enω.

Integral of the Q-curvature is conformally invariant.
A natural problem is the existence of metrics with constant Q-curvature in a

given conformal class. It was established by Chang and Yang, and Djadli and
Malchiodi in dimension 4, and by Ndiaye in arbitrary even dimension n > 4 [CY,
DM, N], assuming that certain “generic” assumptions are satisfied.

To generalize our results for scalar curvature to Q-curvature, consider a manifold
M with a “reference” metric g0 such that Q-curvature Q0(x) has constant sign, and
a conformal perturbation g1 = e2afg0; expand f in a series of eigenfunctions of P ,
and use formula (24) to study the induced curvature Q1.

In the Fourier expansions considered below, we shall restrict our summation
to nonzero eigenvalues of P . Let P have k negative eigenvalues (counted with
multiplicity); denote the corresponding spectrum by Pψj = −µjψj , for 1 ≤ j ≤ k,
where 0 > −µ1 ≥ −µ2 ≥ . . . ≥ −µk. The other nonzero eigenvalues are positive,
and the corresponding spectrum is denoted by Pφj = λjφj , for j ≥ 1, where
0 < λ1 ≤ λ2 ≤ . . ..

Consider the transformation of metric g1 = e2afg0, where we let

(25) f =
k∑

i=1

biψi +
∞∑

j=1

ajφj ,

and where bi ∼ N (0, t2i ) and aj ∼ N (0, c2
j ).

We define h := −Pf , and substituting into (24), we find that

(26) Q1e
naf = Q0 − ah = Q0 + a




∞∑

j=1

ãjφj −
k∑

i=1

b̃iψi


 ,

where ãj ∼ N (0, λ2
jc

2
j ) and b̃i ∼ N (0, t2i µ

2
i ).

It is easy to see that the regularity of the random field in (25) is determined by
the principal symbol ∆n/2 of the GJMS operator P . The following Proposition is
then a straightforward extension of Proposition 2.1:

Proposition 6.1. Let f be defined as in (25). If cj = O(λ−t
j ) and t > 1 + k

n , then
f ∈ Ck. Similarly, if cj = O(λ−t

j ) and t > 2 + k
n then Pf ∈ Ck.

Let f be as in equation (25) and such that Pf is a.s. C0. We remark that it
follows from Proposition 6.1 that this happens if cj = O(λ−t

j ) where t > 2.
Let g1 = e2afg0. Denote the Q-curvature of g1 by Q1; then it follows from (24)

that

(27) sgn(Q1) = sgn(Q0) sgn(1− ah/Q0)

It follows that Q1 changes sign iff supx∈M h(x)/Q0(x) > 1/a.
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We denote by v(x) the random field h(x)/Q0(x). The covariance function of
v(x) is equal to

(28) rv(x, y) =
1

Q0(x)Q0(y)




k∑

i=1

t2i µ
2
i ψi(x)ψi(y) +

∞∑

j=1

λ2
jc

2
jφj(x)φj(y)


 .

We let

(29) σ2
v := sup

x∈M
rv(x, x).

As for the scalar curvature, we make the following

Definition 6.2. Denote by P2(a) the probability that the Q-curvature Q1 of the
metric g1 = g1(a) changes sign.

Theorem 6.3. Assume that Q0 ∈ C0(M) and that cj = O(λ−t
j ), t > 2. Then there

exist constants C1 > 0 and C2 such that the probability P2(a) satisfies

(C1a)e−1/(2a2σ2
v) ≤ P2(a) ≤ eC2/a−1/(2a2σ2

v),

as a → 0. In particular

lim
a→0

a2 ln P2(a) =
−1
2σ2

v

.

Next, we extend the results in section 4 to Q-curvature.

Theorem 6.4. Let (M, g0) be an n-dimensional compact orientable Riemannian
manifold, with n even. Assume that Q0 ∈ C0(M), and that cj = O(λ−t

j ), t > 2, so
that by Proposition 6.1 the random fields f and h are a.s. C2. Let w := h−nQ0f ,
denote by rw(x, y) its covariance function and set

σ2
w := sup

x∈M
rw(x, x).

Let a → 0 and u → 0 so that
u

a
→∞.

Then

log Prob{‖Q1 −Q0‖∞ > u} ∼ − u2

2a2σ2
w

.

7. Conclusion

There are numerous questions that were not addressed in the present paper. We
concentrated on the study of local geometry of spaces of positively- or negatively-
curved metrics (see Remark 2.4), but it seems extremely interesting to study global
geometry of these spaces, [GL, Kat, Lo, Ros06, Sch87, SY79-1, SY82, SY87].

Another interesting question that seems tractable concerns the study of the nodal
set of R1 i.e. its zero set. That set, like the sign of R1, only depends on the quantity
R0 − a(n − 1)∆0f − a2(n − 1)(n − 2)|∇0f |2/4 (or R0 − a∆0f in dimension two).
It also seems interesting to study other characteristics of the curvature (whether it
changes sign or not), such as its Lp norms, the structure of its nodal domains (if it
changes sign), and of its sub- and super-level sets.

Also, it seems quite interesting to study related questions for Ricci and sectional
curvatures in dimension n ≥ 3. Another important question concerns an appropri-
ate definition of measures on the space of Riemannian metrics not restricted to a
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single conformal class. A very important question concerns the study of metrics of
lower regularity than in the present paper, appearing e.g. in 2-dimensional Liouville
quantum gravity, cf. [DS].

In addition, it seems very interesting to study various questions about random
metrics that are influenced by curvature, such as various geometric invariants (girth,
diameter, isoperimetric constants etc); spectral invariants (small eigenvalues of ∆,
determinants of Laplacians, estimates for the heat kernel, statistical properties of
eigenvalues and of the spectral function, etc); as well as various questions related
to the geodesic flow or the frame flow on M , such as existence of conjugate points,
ergodicity, Lyapunov exponents and entropy, etc.

We plan to address these and other questions in subsequent papers.

References

[AT08] R. Adler and J. Taylor. Random fields and geometry. Springer, 2008.
[Au76] T. Aubin. The scalar curvature. In Differential geometry and relativity, Mathematical

Phys. and Appl. Math., Vol. 3, Reidel, Dordrecht, 1976, 5–18.
[Au98] T. Aubin. Some nonlinear problems in Riemannian geometry. Springer Monographs in

Mathematics. Springer-Verlag, Berlin, 1998.
[Bl] D. Bleecker. Non-perturbative conformal field theory. Class. Quantum Grav. 4 (1987), 827–

849.
[Bor] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975), 205–

216.
[Br] T. Branson. Differential operators canonically associated to a conformal structure. Math.

Scand. 57 (1985), 293-345.
[BG] T. Branson and A. Rod Gover. Origins, applications and generalisations of the Q-curvature.

Acta Appl. Math. 102 (2008), no. 2-3, 131–146.
[CY] S.Y.A. Chang and P. Yang. Extremal metrics of zeta function determinants on 4-manifolds.

Ann. of Math. 142 (1995), 171–212.
[DM] Z. Djadli and A. Malchiodi. Existence of conformal metrics with constant Q-curvature.

Ann. of Math. (2) 168 (2008), no. 3, 813–858.
[DS] B. Duplantier and S. Sheffield. Liouville Quantum Gravity and KPZ. arXiv:0808.1560
[EI02] A. El Soufi and S. Ilias. Critical metrics of the trace of the heat kernel on a compact

manifold. J. Math. Pures Appl. 81 (2002), 1053-1070.
[FG] C. Fefferman and R. Graham. Q-curvature and Poincaré metrics. Math. Res. Lett. 9 (2002),
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Acad. Sci. Paris Sér. A-B 270 (1970), A1645–A1648.
[JLNNP] D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigam and I. Polterovich. How large can

the first eigenvalue be on a surface of genus two? Int. Math. Res. Not. 2005, no. 63, 3967–3985.
[Kat] M. Katagiri. On the topology of the moduli space of negative constant scalar curvature

metrics on a Haken manifold. Proc. Japan Acad. 75 (A), 126–128.
[Lo] J. Lohkamp. The space of negative scalar curvature metrics. Invent. Math. 110 (1992), 403–

407.



12 Y. CANZANI, D. JAKOBSON, AND I. WIGMAN

[Mor] C. Morpurgo. Local Extrema of Traces of Heat Kernels on S2. Jour. Func. Analysis 141
(1996), 335–364.

[N] C. B. Ndiaye. Constant Q-curvature metrics in arbitrary dimension. J. Funct. Anal. 251
(2007), no. 1, 1–58.

[Ros06] J. Rosenberg. Manifolds of positive scalar curvature: a progress report. Surveys in dif-
ferential geometry. Vol. XI, 259–294, Surv. Differ. Geom., 11, Int. Press, Somerville, MA,
2007.

[Sch84] R. Schoen. Conformal deformation of a Riemannian metric to constant scalar curvature.
J. Differential Geom. 20 (1984), no. 2, 479–495.

[Sch87] R. Schoen. Variational theory for the total scalar curvature functional for Riemannian
metrics and related topics, In Lecture Notes in Mathematics, Vol. 1365, Springer Verlag, 1987,
120–154.

[SY79-1] R. Schoen and S. T. Yau. On the structure of manifolds with positive scalar curvature.
Manuscripta Math. 28 (1979), no. 1-3, 159–183.

[SY82] R. Schoen and S. T. Yau. Complete three-dimensional manifolds with positive Ricci cur-
vature and scalar curvature, Seminar on Differential Geometry. Ann. of Math. Stud., vol. 102,
Princeton Univ. Press, Princeton, N.J., 1982, pp. 209–228.

[SY87] R. Schoen and S. T. Yau. The structure of manifolds with positive scalar curvature. Di-
rections in partial differential equations (Madison, WI, 1985), Publ. Math. Res. Center Univ.
Wisconsin, vol. 54, Academic Press, Boston, MA, 1987, 235–242.

[Tr] N. Trudinger. Remarks concerning the conformal deformation of Riemannian structures on
compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265–274.

[TIS] B. Tsirelson, I. Ibragimov and V. Sudakov. Norms of Gaussian sample functions. Proceed-
ings of the Third Japan-USSR Symposium on Probability Theory (Tashkent, 1975), pp. 20–41.
Lecture Notes in Math., Vol. 550, Springer, Berlin, 1976.

[Yam] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka
Math. J. 12 (1960), 21–37.

[Yau74] S. T. Yau. Submanifolds with Constant Mean Curvature. American Jour. of Math. 96,
No. 2 (1974), pp. 346–366.

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Str.
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