
ar
X

iv
:s

ub
m

it/
14

16
00

4 
 [

m
at

h.
D

G
] 

 2
6 

N
ov

 2
01

5

ZERO AND NEGATIVE EIGENVALUES OF THE CONFORMAL

LAPLACIAN

A.R. GOVER, A. HASSANNEZHAD, D. JAKOBSON, AND M. LEVITIN

This paper is dedicated to the memory of Yuri Safarov

Abstract. We show that zero is not an eigenvalue of the conformal Lapla-
cian for generic Riemannian metrics. We also discuss non-compactness for
sequences of metrics with growing number of negative eigenvalues of the con-
formal Laplacian.

1. Introduction

In [CGJP14, CGJP13], the authors studied spectra and eigenfunctions of confor-
mally covariant operators on compact manifolds of dimension n ≥ 3. They showed,
in particular, that the number of negative eigenvalues of conformal Laplacian is un-
bounded on any such manifold. One of the questions left open in those papers was
whether for a generic Riemannian metric g on a compact n-dimensional manifold
M , 0 is an eigenvalue of the conformal Laplacian Yg := −∆g + cnRg. The oper-
ator Yg is also called the Yamabe operator. Here −∆g is the nonnegative-definite
Laplacian for the metric g, cn := (n − 2)/(4(n − 1)), and Rg denotes the scalar
curvature of g. In this paper we address that question.

Our first main result is

Theorem 1.1. For generic smooth metrics g on M , zero is not an eigenvalue of

Yg.

It follows from a transformation formula for Yg that if 0 is an eigenvalue of Yg0 ,
then it is also an eigenvalue of Yg1 for all metrics g1 in the conformal class [g0].
Accordingly, one needs to change conformal class to find metrics for which 0 is not
an eigenvalue of Yg.

Also, 0 is an eigenvalue of Yg for conformally scalar flat metrics g, i.e. those
metrics lying in a conformal class [g0] of a scalar-flat metric g0, such that Rg0 ≡ 0.
The corresponding eigenfunction u is given by u(g0) ≡ 1, and by a suitable power
of the conformal factor one obtains the eigenfunction for g ∈ [g0].

It is also clear that 0 is not an eigenvalue of Yg for metrics g with positive scalar
curvature Rg, and hence in the corresponding conformal classes. However, it is
known that some manifolds do not admit metrics with positive scalar curvature,
[KW75]. Accordingly, in the current paper we restrict ourselves to metrics lying in
conformal classes of metrics with negative scalar curvature.
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Remark 1.2. We remark that our proof of Theorem 1.1 works verbatim to show an
analogous statement for operators Pg,c = ∆g + cRg, where c ∈ R is any constant
satisfying c 6= 0, c 6= 1/2.

The crucial result is Proposition 4.1, and the only part of the proof where the
numerical value of c becomes important is the argument after the equation (3),
where it is necessary that 2c − 1 6= 0, hence c 6= 1/2. Also, we assume that the
corresponding eigenfunctions are orthogonal to constants, hence we require that
c 6= 0. Note that, Pg,c is only conformally covariant for c = cn, so for other values
of c an argument using conformal perturbations (as in [BW80]) should also work.
The case c = 0 corresponds to the very-well studied of eigenvalues of the Laplacian
∆g.

Perturbation theory of conformally covariant operators was previously considered
in [Can14, Pon]; see also [Mai97, Dah03, Dah08] for the corresponding results for
the Dirac operator. Applications to eigenvalue multiplicity of nonzero eigenvalues
were discussed in [Can14]; arbitrary eigenvalues were considered in [Pon], but the
question of whether kerYg is generically empty was not settled. It seems interesting
to understand whether 0 is generically a simple eigenvalue of Yg, among those
metrics for which it is an eigenvalue of Yg.

Another question considered in this paper concerns the study of sequence of
metrics gk such that the number of negative eigenvalues of Ygk increases. Recall
that it was shown in [CGJP14] that the results in [Loh96] imply that the number
of negative eigenvalues of Yg can become arbitrarily large for metrics g on any
compact manifold of dimension ≥ 3; thus, it seems natural to ask what is the
geometric significance of the increasing number of negative eigenvalues of Yg.

In Section 5, we show that a sequence of metrics gk, such that the number of
negative eigenvalues of Ygk increases, cannot satisfy two natural “pre-compactness”
conditions (see Proposition 5.3).

2. The space of conformal structures

Let M be a compact orientable manifold of dimension n ≥ 3; we denote by M
the space of all Riemannian metrics on M . For simplicity, we only consider C∞

metrics on M , although the regularity can be lowered significantly.

Definition 2.1. Given k ≥ 1, we denote by M0,k the set of all metrics g on M s.t.
the multiplicity of 0 as an eigenvalue of Yg is at least k.

As we remarked in section 1, if g0 ∈ M0,k, then so is every metric g in the
conformal class [g0]; also that condition is invariant under composition with diffeo-
morphisms ofM . Consider the action onM of the group P of (pointwise) conformal
transformations (multiplication by positive functions), as well as by the group D
of diffeomorphisms; we shall denote by D0 the subgroup of D of diffeomorphisms
isotopic to identity. It seems natural to consider the Teichmuller space of conformal

structures

T (M) =
M/P

D0
,

or the Riemannian moduli space of conformal structures

R(M) =
M/P

D
,
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in the terminology of Fischer and Monkrief, [FM96, FM97].1

Definition 2.2. We denote by T0,k(M) the Teichmuller space of conformal struc-
tures corresponding to metrics g0 ∈ M0,k, i.e. the projection of M0,k into T (M).

The meaning of Theorem 1.1 is the following, and we prove this in Section 4

Theorem 2.3. The complement T c
0,1 of the set T0,1(M) in T (M) is open and dense

in T (M).

3. Curves of metrics

Let g0 be a metric on M such that 0 is an eigenvalue of Yg0 with multiplicity
m, so, g0 ∈ M0,m (recall the definition 2.1). We note that it was shown in [BD03,
Lemma 3.4] that the eigenvalues of Yg depend continuously on g in the C1-topology
(see also [KS60]). Thus, M0,m2

is a closed submanifold of M0,m1
for 0 ≤ m1 < m2,

in the Ck topology for any k ≥ 1. We would like to compute the tangent space to
M0,m, at g0, for m ≥ 1.

Denote by E0 the zero eigenspace of Yg0 ; it has dimension m. Let Π0 denote the
orthogonal projection into E0 with respect to L2(M,dVg0). Consider a curve gt of
metrics on M passing through g0 at t = 0; denote the t-derivative by .

Let ġ(0) = h, i.e. g(t) = g0 + th+ o(t). We denote by Qg0,h the operator

(1) Qg0,h := Π0Ẏg = Π0(cnṘ− ∆̇) : E0 → E0,

Sometimes when the dependence on the metric g0 is clear, we shall omit the sub-
script g0 and simply write Qh.

We have the following:

Proposition 3.1. The tangent space to M0,k at g0 consists of all the tensors

(2) H0,k := {h : 0 is an eigenvalue of Qg0,h of multiplicity ≥ k}.

Proof of Proposition 3.1. We refer to [Rel69, page 74] and the discussion in
[Can14, §4,5] for basic results about the perturbation theory of conformally covari-
ant operators; see also [DWW05], where some important formulas that we use in
our argument were derived.

It follows from general theory that for a real–analytic family of self-adjoint op-
erators {Yg(t)}, eigenvalue and eigenfunction branches can be chosen to depend
analytically on the perturbation parameter t, for t small enough, see for example
[Ber73, Lemma 3.15]. Moreover, there is a positive constant ǫ such that, for t small
enough, the number of eigenvalues of Yg(t) in the interval (−ǫ, ǫ) is equal to m,
where m ≥ k is the multiplicity of 0 for Yg0 ; and the eigenvalue derivatives are
equal to the eigenvalues of Qg0,h. In particular, Qg0,h ≡ 0 for any real–analytic
perturbation of g0 when m = k. The result is now immediate from the definition
of M0,k and H0,k.

�

It is well-known (see e.g. [BE69, FM77]) that the tangent space to T (M) at
g0 may be identified with the space of all transverse traceless symmetric tensors h

1If M is an orientable two-dimensional manifold, then T (M) (resp. R(M)) are the usual
Teichmuller (resp. moduli) spaces. In [FM97], the space T (M) for Haken 3-manifolds M of
degree 0 is proposed as a configuration space for a Hamiltonian reduction of Einstein’s vacuum
field equations.
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satisfying trg0h = 0, δh = 0. Clearly, the tangent space to T0,k(M) at g0 consists of
all transverse traceless tensors lying in H0,k.

4. Nullspace of Yg

In this section we prove Theorem 2.3. We keep the notation from section 3. For
convenience we shall assume that g0 is a Yamabe metric, i.e. that Rg0 ≡ −1.

Theorem 2.3 will follow from the following important result:

Proposition 4.1. There exists a symmetric tensor h such that Qg0,h 6≡ 0.

We postpone the proof that Proposition 4.1 implies Theorem 2.3 until later, and
first prove the Proposition.
Proof of Proposition 4.1.

Let gt be a curve of metrics real-analytic in t, and ψ 6≡ 0 be an element of E0

that belongs to the Rellich basis of gt, i.e. ψ is an eigenvector of the operator Qh
defined in (1).

Differentiating the eigenfunction equation

(−∆+ cnR)ψ = λψ,

we find that

λ̇ψ = (−∆− λ+ cnR)ψ̇ + (cnṘ− ∆̇)ψ.

It suffices to show that there exists a metric deformation gt real-analytic in t such
that λ̇ 6= 0.

Take the inner product (with respect to dVg0 ) of both sides with ψ. Since (−∆−
λ+ cnR) is self-adjoint, we find that

((−∆− λ+ cnR)ψ̇, ψ) = (ψ̇, (−∆− λ+ cnR)ψ) = 0.

Then

λ̇(ψ, ψ) = ((cnṘ− ∆̇)ψ, ψ).

We assume for contradiction that λ̇ = 0 for any perturbation gt, i.e. that (1) is
identically zero for any gt.

We next give the expressions for ∆̇ and Ṙ. We need to recall some notation. Let
C∞(⊗rT ∗M) be the space of (r, 0)-tensors on M , and C∞(M) = C∞(⊗0T ∗M).
We consider the covariant derivative

∇ : C∞(⊗rT ∗M) → C∞(⊗r+1T ∗M),

which in local coordinates is given by

∇α =
∑

i

∇iα⊗ dxi.

Notice that d = ∇ : C∞(M) → C∞(T ∗M). We denote the formal adjoint of ∇ by

δ : C∞(⊗r+1T ∗M) → C∞(⊗rT ∗M),

i.e. for every α ∈ C∞(⊗rT ∗M) and β ∈ C∞(⊗r+1T ∗M), (∇α, β) = (α, δβ).
Here, (·, ·) =

∫

M
〈·, ·〉, where 〈·, ·〉 is the pointwise inner product. We can now

recall the expressions for ∆̇ and Ṙ computed in [DWW05, (2.5) and (2.6)], see also
[Ber70, Ber73]. They are,

Ṙ = −〈h,Ric〉+ δ2h−∆trh,
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and

∆̇f = −〈h,∇2f〉+ 〈δh+
1

2
dtrh, df〉,

where ∇2f is the Hessian of f , and δ2 is the formal adjoint of the Hessian. Recall
the pointwise inner product on C∞(⊗2T ∗M) is

〈α, β〉 =
∑

i,j

αijβij ;

in particular, trgh = 〈g, h〉. We know apriori that the only metric deformations
that will change the eigenvalue 0, are transverse traceless deformations h of g.
However, we shall only insist that h is traceless, and so trgh ≡ 0. Then the previous
expressions simplify to

Ṙ = −〈h,Ric〉+ δ2h

and

∆̇f = −〈h,∇2f〉+ 〈δh, df〉.

Let A := λ̇(ψ, ψ). Combining the above expressions, we find that

A = (〈h,∇2ψ − cnψRic〉 − 〈δh, dψ〉 + cnψδ
2h, ψ)

= (h, ψ∇2ψ)− cn(h, ψ
2Ric)− (h,∇(ψdψ)) + cn(ψδ

2h, ψ)

= (h, ψ∇2ψ)− cn(h, ψ
2Ric)− (h, ψ∇2ψ)− (h, dψ ⊗ dψ) + cn(ψδ

2h, ψ)

= −(h, cnψ
2Ric)− (h, dψ ⊗ dψ) + (δ2h, cnψ

2)

=

∫

M

〈h, cn(∇
2ψ2 − ψ2Ric)− dψ ⊗ dψ〉

=

∫

M

〈h, cnψ(2∇
2ψ − ψRic) + (2cn − 1)dψ ⊗ dψ〉.

To get the last equality, we use the identity ∇2ψ2 = 2(ψ∇2ψ+ dψ⊗ dψ). Using
the assumption that trgh = 〈g, h〉 = 0, we find that

A =

∫

M

〈h, cnψ(2ψ∇̊
2ψ − ψ2R̊ic) + (2cn − 1)(dψ ⊗ dψ)o〉,

where V̊ = V − 1
n
trgV g is the traceless part of the corresponding expression V .

Putting h = cnψ(2ψ∇̊2ψ − ψ2R̊ic) + (2cn − 1)(dψ ⊗ dψ)o (which is symmetric
and traceless), we find that A = 0 if and only if

(3) cnψ(2ψ∇̊
2ψ − ψ2R̊ic) + (2cn − 1)(dψ ⊗ dψ)o ≡ 0.

We next remark that equation (3) has no non-trivial solutions. Indeed, take g0
to be the Yamabe metric; recall we assume that Rg0 ≡ −1. By assumption ψg0 is an
eigenfunction of ∆g0 with eigenvalue cn, hence it is L2-orthogonal to the constant
function, and changes sign on M . Let N (ψ) denote the nodal set of ψ. The term

cnψ(2ψ∇̊2ψ − ψ2R̊ic) vanishes on N (ψ), so it follows from (3) that

(dψ ⊗ dψ)o ≡ 0,

on N (ψ). This is equivalent to

dψ ⊗ dψ =
1

n
|dψ|2g · g
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Now, the right-hand side has rank n whenever |dψ|g 6= 0. On the other hand, the
left-hand side has rank ≤ 1. The only way the equality is possible if both side are
identically zero on N (ψ), i.e. if

(4) dψ
∣

∣

N (ψ) ≡ 0.

However, it is well-known (see e.g. [Che76, Han94, HHL98, HHHN99]) that the
intersection of the nodal and critical sets of ψ has locally finite Hausdorff (n− 2)-
dimensional measure, and so (4) is impossible for non-zero ψ. This contradiction
finishes the proof of Proposition 4.1.

�

An immediate consequence of the proof of Proposition 4.1 is the following corollary.

Corollary 4.2. Let g0 be a Yamabe metric on M , g0 ∈ M0,m(M)∩M0,m+1(M)c.

Let h = cnψ(2ψ∇̊2ψ − ψ2R̊ic) + (2cn − 1)(dψ ⊗ dψ)o, where ψ = ψg0 is a nonzero

eigenfunction of Yg0 with eigenvalue 0. Consider the perturbation g(t) = g0 + th.
Then for every ǫ > 0, there exists |t| ≤ ǫ such that g(t) ∈ Mc

0,m.

To complete the proof of Theorem 2.3, we need to prove the following

Claim 4.3. Proposition 4.1 implies Theorem 2.3.

Proof of Claim 4.3. Since T0,1(M) is a closed subspace of T (M), its complement
T0,1(M)c is clearly open in T (M). We thus need to show that T0,1(M)c is dense

in T (M). We shall show that M0,1(M)c is dense in M(M). Let g0 be a metric on
M . It suffices to show that M0,1(M)c is dense in some neighbourhood U of g0 in
M(M). If g0 ∈ M0,1(M)c, we are done, so we can assume that g0 ∈ M0,1(M).

The proof proceeds by induction on the dimension m of E0. We note that m is
finite for any g0, and that Proposition 4.1 was proved for arbitrary m. First, let
m = 1, meaning 0 is a simple eigenvalue of Yg0 . By Corollary 4.2, we know that
one can choose a curve of metrics g(t), real analytic in t, such that g(0) = g0 and
g(t) /∈ M0,1 for arbitrary small t.2 Hence, the proof in case m = 1 is complete.

Next, assume that we have shown that M0,1(M)c is dense in any neighborhood
U of any metric g0 ∈ M0,1(M) such that zero is an eigenvalue of Yg0 with the
multiplicity at most m − 1; we would like to prove the corresponding statement
for a metric g0 such that 0 is an eigenvalue of Yg0 with multiplicity exactly m. By
Corollary 4.2, there exists a small perturbation that decreases the multiplicity m
of 0 as an eigenvalue of Yg. By the inductive hypothesis, it follows that for any
neighborhood U of g0, there exists a metric g1 ∈ U, such that 0 is an eigenvalue of
Yg1 with multiplicity ≤ m− 1, and in a suitable neighborhood V of g1 (which can
be chosen to satisfy V ⊂ U), have a nonempty intersection with M0,1(M)c. This
completes the proof of the Claim 4.3, and hence also of Theorems 2.3 and 1.1.

�

2It will then follow that (in the notation of [Tey99]), the space of conformal structures corre-
sponding to metrics in M0,1 is of meager codimension 1 in the space of all conformal structures;

we leave the details of the argument to the reader.
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5. Negative eigenvalues of the conformal Laplacian

In [CGJP14, CGJP13, ES14] the authors showed that the number of negative
eigenvalues of the conformal Laplacian cannot be unifromly bounded above on any
compact manifold M of dimension n ≥ 3. Accordingly, it seems interesting to
consider sequences of metrics gk on M where the number of negative eigenvalues
of Ygk = −∆gk + cnRgk is growing.

It is known that the set of metrics gk on a manifold M of dimension n ≥ 3
is pre-compact in Gromov-Hausdorff topology if it satifies either condition 5.1 or
condition 5.2 below:

Condition 5.1. The volume Vol(M, gk) ≤ V <∞ is bounded above; the injectivity

radius inj(M, gk) ≥ r > 0 is bounded from below; the Ricci curvature Ric(M, gk) ≥
−a2 is bounded from below.

Condition 5.2. The diameter diam(M, gk) ≤ D <∞ is bounded above; the Ricci

curvature Ric(M, gk) ≥ −a2 is bounded from below.

Consider a sequence of metrics g̃k on a fixed Riemannian manifold such that
the number of negative eigenvalues of the conformal Laplacian Yg̃k goes to infinity.
It is natural to choose a unique Yamabe representative gk in the conformal class
[g̃k]; the scalar curvature of gk is constant and equal to −1; the number of negative
eigenvalues of Ygk and Yg̃k are equal.

Proposition 5.3. The sequence gk cannot satisfy the pre-compactness condition

5.1; nor can it satisfy the condition 5.2.

Proof of Proposition 5.3: The result follows from [Bus82, Thm. 6.2] and [Gro99,
Appendix C]. Indeded, since gk is Yamabe, the number of negative eigenvalues of
Ygk is equal to the number N( n−2

4(n−1) ; gk) of eigenvalues of the Laplacian −∆gk that

are less than (n− 2)/(4(n− 1)). Assuming gk satisfies 5.1, it follows from [Bus82,
Thm. 6.2] that N( n−2

4(n−1) ; gk) ≤ C1 < ∞ where the constant C1 only depends on

V, r, n, δ. Similarly, assuming gk satisfies Condition 5.2, it follows from Gromov’s
result in [Gro99, Appendix C] that N( n−2

4(n−1) ; gk) ≤ C2 < ∞ where the constant

C2 only depends on D,n, a. These contradict the assumption on the number of
negative eigenvalues of Ygk . �

Proposition 5.3 shows that sequences of metrics with increasing number of neg-
ative eigenvalues of Ygk cannot stay in the “thick” part of M satisfying natural
pre-compactness conditions 5.1 or 5.2, and thus we cannot use those conditions to
choose a convergent subsequence of metrics. On the other hand, we remark that
on certain high-dimensional manifolds (cf. [GL80]) there exist infinitely many con-
nected components of the set of metrics with positive scalar curvature. Accordingly,
the sequence of metrics can diverge but the number of negative eigenvalues of Y
can stay equal to 0.

5.1. Example: product of a surface with another manifold. We consider
(a slight modification of) one of the examples discussed in [CGJP14, §4]. Let
M be a manifold of dimension d ≥ 2, and let Σ be a Riemann surface of genus
γ ≥ 2. Assume that M admits a metric with positive scalar curvature, and fix a
Yamabe metric G on M with scalar curvature RG > 0. Fix ǫ > 0. By a result
of Buser [Bus77, Theorem 4], for every k ≥ 1, there exists a hyperbolic metric
hk on Σ such that the hyperbolic Laplacian −∆hk

has at least k eigenvalues in
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the interval (1/4, 1/4 + ǫ). Choose k of those eigenvalues and denote them by
1/4 < λk,1 ≤ λk,2 ≤ . . . ≤ λk,k < 1/4+ ǫ. Denote the corresponding eigenfunctions
by uk,j , 1 ≤ j ≤ k.

Consider the product metric gk := (G⊗ t−1hk) on M × Σ, where t is a positive
constant to be chosen later. It is easy to show that the scalar curvature of gk is
equal to RG − 2t for all k (the Gauss curvature of (Σ, hk) is equal to −1). If we
choose

(5) t > RG/2,

then the scalar curvature of gk will be negative.
Denote the coordinates on M × Σ by (x, y). Then the conformal Laplacian is

given by

Ygk = −∆G,x − t∆hk,y +
d

4(d+ 1)
(RG − 2t).

It follows that

Ygkuj,k =

(

tλj,k +
d(RG − 2t)

4(d+ 1)

)

uj,k.

We would like to choose t so that the eigenvalues tλj,k +
d(RG−2t)
4(d+1) are all negative.

Since λj,k < 1/4 + ǫ by assumption on hk, it suffices to choose t so that

d(2t−RG)

4t(d+ 1)
>

1

4
+ ǫ.

This can be rewritten as
(

d

d+ 1

)

(1−RG/2t) > 1/2 + 2ǫ.

A straightforward calculation shows that this is equivalent to choosing

(6) t < RG ·
d

d− 1− 4ǫ(d+ 1)
.

The inequalities (5) and (6) are compatible provided d/(d − 1 − 4ǫ(d+ 1)) > 1/2,
which is easy to achieve by choosing ǫ small enough. It follows that the functions
uj,k(y) will be eigenfunctions of Ygk with negative eigenvalues.

After rescaling gk by (2t − RG), we can make the scalar curvature Rgk ≡ −1.
Note that the rescaling does not depend on k. It is well-known that as the number of
eigenvalues of −∆hk

in (1/4, 1/4+ǫ) increases, the injectivity radius of the metric hk
goes to 0, and hk leaves the “thick” part of the moduli space Mγ of the hyperbolic
metrics on Σ.3 Accordingly, the injectivity radius of (M×Σ, gk/(2t−RG)) also goes
to 0. The moduli space Mγ can be compactified by adding surfaces with cusps;

the sequence hk will then have a convergent subsequence in Mγ , and the sequence
(M × Σ, gk/(2t−RG)) will also have a convergent subsequence.

It seems interesting to better understand under what circumstances a sequence
of metrics gk, with increasing number of negative eigenvalues of Ygk , can be made to
converge in a suitable completion of the moduli spaceR(M) of conformal structures
on M .

3See e.g. [Bus92]; for finer asymptotics of small eigenvalues we refer to [Bat98] and references
therein.
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West, Montréal QC H3A 2K6, Canada.

E-mail address: jakobson@math.mcgill.ca

Department of Mathematics and Statistics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, United Kingdom

E-mail address: M.Levitin@reading.ac.uk


	1. Introduction
	2. The space of conformal structures
	3. Curves of metrics
	4. Nullspace of Yg
	5. Negative eigenvalues of the conformal Laplacian
	5.1. Example: product of a surface with another manifold.

	Acknowledgements
	References

