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Abstract. Let G be a finite connected simple graph. We define the moduli

space of conformal structures on G. We propose a definition of conformally
covariant operators on graphs, motivated by [23]. We provide examples of

conformally covariant operators, which include the edge Laplacian and the ad-

jacency matrix on graphs. In the case where such an operator has a nontrivial
kernel, we construct conformal invariants, providing discrete counterparts of

several results in [11, 12] established for Riemannian manifolds. In particu-

lar, we show that the nodal sets and nodal domains of null eigenvectors are
conformal invariants.

1. Introduction: conformally covariant operators

Conformal transformations in Riemannian geometry preserve angles between
tangent vectors at every point x on a Riemannian manifold M . A Riemannian
metric g1 is conformally equivalent to a metric g0 if

(g1)ij(x) = eω(x)(g0)ij(x), (1.1)

where gij = g(∂/∂xi, ∂/∂xj) defines the metric g in local coordinates, and where

eω(x) is a positive function on M called a conformal factor. A conformal class [g0]
of a metric g0 is the set of all metrics of the form {eω(x)g0(x) : ω(x) ∈ C∞(M)}.
The Uniformization theorem for compact Riemann surfaces says that on such a
surface, in every conformal class there exists a metric of constant Gauss curvature;
the corresponding statement in dimension n ≥ 3 (solution of the Yamabe problem)
stipulates that in every conformal class there exists a metric of constant scalar
curvature.

Conformally covariant differential operators include the Laplacian in dimension
two, as well as the conformal Laplacian, Paneitz operator, and the operators con-
structed in [23] on manifolds of dimension n ≥ 3. Their defining property is the
transformation law under a conformal change of metric: there exist a, b ∈ R such
that if g1 and g0 are related as in (1.1), then

Pg1 = eaωPg0e
bω. (1.2)
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It follows easily that kerPg1 = e−bω kerPg0 . Based on this observation, the au-
thors of the papers [11, 12] constructed several conformal invariants related to the
nodal sets of eigenfunctions in kerPg (that change sign). In the current paper,
the authors initiate the development of the theory of conformally covariant oper-
ators on graphs, giving several examples of such operators and providing discrete
counterparts to several results in [11, 12].

1.1. Differential operators on graphs. Let G = (V,E) be a finite simple graph,
i.e. it has a finite vertex set and no loops or multiple edges. A weighted graph is a
pair (G,w) where w : E → R+ is a weight function.

A differential operator on G is a linear endomorphism on either Hom(V,R) or
Hom(E,R). These vector spaces are equipped with the L2-norms

〈f, g〉V =
∑
v∈V

f(v)g(v), and 〈f̃ , g̃〉E =
∑
e∈E

f̃(e)g̃(e). (1.3)

This extends to locally-finite graphs with countable vertex sets, where the function
spaces are replaced by those functions with finite L2-norms.

Example 1.1. The adjacency matrix Aw of the weighted graph (G,w) is the |V |×|V |
matrix given by

[Aw]ij =

{
w(vi, vj) : (vi, vj) ∈ E,
0 : otherwise.

(1.4)

The degree matrix Dw is the the diagonal matrix with [Dw]ii =
∑n
j=1[Aw]ij , and

the vertex Laplacian is ∆w = Dw −Aw. The vertex Laplacian is an example of an
elliptic Schrödinger operator in the sense of [17].

2. Conformal changes of metric

Let W(G) be the space of all weight functions on the graph G. Inspired by the
notion of conformal equivalence of Riemannian metrics on a Riemannian manifold,
we define below the notion of conformal equivalence of weights as in [8, 14, 22, 30].

Definition 2.1. Two weight functions w, w̃ ∈ W(G) are conformally equivalent if
there exists a function u ∈ Hom(V,R) such that

w̃(vi, vj) = w(vi, vj)e
u(vi)+u(vj). (2.1)

We say that u is the conformal factor relating w and w̃. This equivalence relation
allows us to partition the space of all weights W(G) on the graph G into conformal
equivalence classes. Given w ∈ W(G), we will denote its conformal class by [w].

If ∼c denotes conformal equivalence, then letW(G)/∼c be the space of conformal
classes of weights on G. We will refer toW(G)/∼c as the (conformal) moduli space
of the graph G. In § 3, we study the structure of the moduli space and characterize
it explicitly for connected graphs.

3. The space of conformal classes

If G = (V,E) is a finite simple graph, recall that W(G) is the space of weights
on G. If ∼c denotes conformal equivalence, then let M :=W(G)/∼c be the space
of conformal classes of weights on G. We will refer toM as the (conformal) moduli
space of G.
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We remark that if |V | > |E| (i.e. G is a tree), then M is just a point. If
|V | = |E|, there are different possibilities: an odd-length cycle C2n+1 has only one
conformal class, but an even-length cycle C2n has infinitely many. If |E| > |V |,
then M is generally nontrivial.

Enumerate the vertex set as V = {v1, . . . , vn} and the edge set E = {e1, . . . , em}.
The (unsigned) edge-vertex incidence matrix B = (Bij) of G

Bij =

{
1 : the edge ej is adjacent to the vertex vi

0 : otherwise
(3.1)

Notice that B is determined only by the topology (combinatorics) of the graph G;
it does not depend on the weight. We will be mostly interested in calculating the
rank of B. The following is a result of Grossman, Kulkarni, and Schochetman (see
[25]) to that effect.

Theorem 3.1. ([25, Thm 5.2]) For any graph G = (V,E), let ω0 be the number of
bipartite components.1 Then, rank(B) = |V | − ω0.

Fix a reference weight w0 ∈ W(G) and consider w ∈ [w0] with conformal factor
u ∈ Hom(V,R). Then we have a system of |E| linear equations given by

u(vi) + u(vj) = lnw(vi, vj)− lnw0(vi, vj) for (vi, vj) ∈ E. (3.2)

Consider the transpose of B as an R-linear operator2 Bt : Hom(V,R) → [w0] that
sends u ∈ Hom(V,R) to the weight w ∈ [w0] defined by Eq. (3.2). This map is by
definition surjective, so dim([w0]) = rank(BT ) = rank(B).

Let [1] denote the conformal class of the combinatorial weight, then we can iden-
tify M = W(G)/∼c with the R-vector space W(G)/[1]. The above considerations
then imply that

dim(M) = dim(W(G))− dim([1]) = |E| − rank(B).

This discussion therefore yields the following conclusion.

Theorem 3.2. If ω0 is the number of bipartite components of G, then

M = W (G)/∼c ' (R+)|E|−|V |+ω0 . (3.3)

Remark 3.3. Let G1, . . . , Gk denote the connected components of G, then

W(G)/∼c =W(G1)/∼c × . . .×W(Gk)/∼c.

As a consequence, we can reduce to the case where G is connected; in particular,
Theorem 3.1 tells us that when G is connected,

(1) If G is bipartite, dim(M) = |E| − |V |+ 1.
(2) If G is not bipartite, dim(M) = |E| − |V |.

The following proposition specifies a manner of choosing a canonical representa-
tive of each conformal class.

1A bipartite component is a connected component that is also bipartite. Equivalently, ω0 is

the number of connected components of G that do not contain an odd cycle.
2By an abuse of notation, we consider W(G) to be an R-vector space of dimension |E| by

identifying a weight w = (we)e∈E with the vector (lnwe)e∈E ∈ R|E|. In this way, [1] is a linear
subspace and the other conformal classes are the equivalences classes in the quotient W(G)/[1].
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Proposition 3.4. In each conformal class [w] ∈ M, there exists a unique repre-
sentative w ∈ [w] such that for any vi ∈ V ,∏

e∼vi

w(e) = 1, (3.4)

where e ∼ vi denotes that the edge e has the vertex vi as an endpoint.

Remark 3.5. The equation (3.4) is a very useful normalization condition, simplify-
ing computations in examples of section 5.2. In the continuous setting ([11, 12]),
a convenient normalization condition was choosing a metric with constant scalar
curvature in each conformal class; such metrics exist by the Uniformization theorem
in dimension 2, and by solution of the Yamabe problem in higher dimensions.

Proof. The statement is equivalent to finding w ∈ [w] such that
∑
e∼vi lnw(e) = 0

for all vi ∈ V . Equivalently, lnw ∈ Ker(B) i.e. [w] ∩ Ker(B) = {w}. Notice that
we have the orthogonal decomposition

lnW(G) = Ker(B)⊕ Im(BT ), (3.5)

since (Ker(B))⊥ = Im(BT ). Recall that we can identify ln[1] with Im(BT ) inside
lnW(G), so when we pass to the quotient, we find that

lnW(G)/ ln[1] = Ker(B).

Therefore, the conformal classes are in bijection with the elements of Ker(B); in
particular, each [w] intersects Ker(B) at exactly one point. �

Example 3.6. Pick an edge in the even cycle C2n and assign to it the weight a ∈
(0,∞), then assign each adjacent edge the weight 1

a . The following two edges will
be assigned the weight a, and if we continue this process, we have define a weight
wa on C2n. By construction,

∏
e∼vi wa(e) = 1 for each vi ∈ C2n. Conversely, given

an arbitrary weight w ∈ W(C2n), we may compute its canonical representative as
follows: put a cyclic orientation {e1, . . . , em} on E, then

a =

( ∏
i : odd

w(ei)

)/( ∏
i : even

w(ei)

)
. (3.6)

Thus, we have explicitly the isomorphism M(C2n)
∼−→ (0,∞).

Remark 3.7. It is well-known that on compact Riemann surfaces, in each conformal
class there exists a unique metric of constant Gauss curvature. The space of such
metrics is called the moduli space of surfaces. Riemannian geometry of moduli
spaces has been extensively studied; in particular, the Weil-Petersson metric on
the moduli space. In [31], the authors propose and study analogous notions for
weighted graphs. It seems quite interesting to relate the results in our paper to
those in [31]. The authors intend to consider this in a future paper.

4. Conformally covariant operators

Motivated by the transformation law (1.2) for conformally covariant operators on
manifolds, we define discrete conformally covariant operators below, and provide
several examples of such operators. The “continuous” transformation law (1.2)
involves pre- and post-multiplication by positive functions (powers of the conformal
weight); on a graph, the multiplication operator by a positive function f : V → R
corresponds to multiplication by the diagonal matrix diag(f(v1), . . . , f(vn)).
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Definition 4.1. Fix a graph G and let {Sw} be a collection of differential operators,
indexed by w ∈ W(G). We say that Sw is conformally covariant if for any weight
w̃ ∈ [w], there exist two invertible diagonal matrices Dα, Dβ with positive entries
(those entries should only depend on the conformal factors in (2.1)), such that

Sw̃ = DαSwDβ . (4.1)

In this case, we say that Sw̃ is the conformal transformation of Sw.3

Example 4.2. Write e = (e+, e−) to denote the head and tail of an edge, and fix
F ⊂ E. In [31], the authors employ a |E|×|E|matrix, which we denote by A0(F,w),
to study a Weil-Petersson type metric on M. This matrix is given by

[A0(F,w)]ij :=

{
w(ei, ej) ei, ej ∈ F and e−j = e+i
0 otherwise.

(4.2)

Let w̃ ∈ [w] with conformal factor u ∈ Hom(V,R) and let Du be the diagonal

matrix given by [Du]ii = eu(e
+
i )+u(e−i ), then A0(F, w̃) = A0(F,w)Du. Therefore,

A0(F,w) is a conformally covariant operator on Hom(E,R).

In § 5 and § 6, we describe other classes of operators satisfying the transformation
law (4.1), which include the adjacency matrix and the edge Laplacian.

4.1. Signature is a conformal invariant. Let (G,w) be a fixed finite simple
weighted graph throughout this section.

Theorem 4.3. Let Sw be a conformally covariant operator on Hom(E,R), then
up to isomorphism ker(Sw) is conformally invariant. A similar results holds for
conformally covariant operators on Hom(V,R).

Proof. If w̃ ∈ [w], then there exists an invertible diagonal matrices Dα, Dβ such
that Sw̃ = DαSwDβ . Let f ∈ Hom(E,R), then Sw̃f = 0 iff Sw(Dβf) = 0. It

follows that ker(Sw̃) = D−1β · ker(Sw). �

The first assertion of Theorem 4.3 implies that the dimension of ker(Sw) is a
numerical invariant of the conformal class [w] (as the graph is finite, the rank of Sw
must also then be a conformal invariant). As the multiplicity of zero eigenvalues of
a matrix is the dimension of its nullspace, notice that

Corollary 4.4. The multiplicity of the zero eigenvalue of Sw is a conformal in-
variant.

Theorem 4.5. Let Sw be a conformally covariant operator on Hom(E,R) or
Hom(V,R). Then, the number of positive and negative eigenvalues, and the multi-
plicity of the zero eigenvalues of Sw are conformal invariants.

Proof. The proof is similar to the proof of the corresponding result in [11, 12].
Assume for contradiction that there exist two weights w1 ∈ [w0] such that the
signatures of Sw1 and Sw0 are different. The conformal class [w0] is a path connected
space, hence there exists a curve wt, t ∈ [0, 1] starting at w0 and ending at w1. The
eigenvalues of Awt

depend continuously on t, and the multiplicity of 0 is constant

3The manner in which these differential operators transform under a conformal change of weight
is analogous to how the GMJS operators transform under a conformal change of Riemannian metric

in [11, 12].



6 D. JAKOBSON, THOMAS NG, MATTHEW STEVENSON, AND MASHBAT SUZUKI

by Corollary 4.4. That means that the number of positive and negative eigenvalues
of Awt remains constant, which is a contradiction. �

LetM be a matrix, then the signature sig(M) is the triple (N+(M), N0(M), N−(M)),
where N+(M), N0(M), and N−(M) are the number of positive, zero, and negative
eigenvalues of M respectively. In this setting, Theorem 4.5 says that the signature
sig(Sw) is a conformal invariant, when Sw is a conformally covariant operator.

A special case of that result is Sylvester’s Law of Inertia, which states that given
a symmetric matrix M and an invertible matrix N , the matrix NMNT has the
same number of positive, negative, and zero eigenvalues as M . Large classes of
operators, as described in § 4, satisfy the above hypothesis on the transformation
matrices.

Let Sw be a conformally covariant operator on Hom(E,R) (the analogues still
hold if Sw acts on Hom(V,R)). Now, order the eigenvalues of Sw as

λ1(Sw) ≤ λ2(Sw) ≤ . . . ≤ λ|E|(Sw).

Our previous considerations imply the following about the sign of λ1(Sw):

(1) λ1(Sw) < 0 iff the number of negative eigenvalues of Sw is greater or equal
to 1.

(2) λ1(Sw) = 0 iff the number of zero eigenvalues is η > 0 and the number of
positive eigenvalues is |E| − η.

(3) λ1(Sw) > 0 iff the number of positive eigenvalues of Sw is equal to |E|.
It follows that

Corollary 4.6. The sign of λ1(Sw) is a conformal invariant.

Remark 4.7. As a consequence of Proposition 6.4 and Proposition 6.6, the above
statements are vacuous for the edge Laplacian ∆(E,w) and ∆(∅, w), as the dimen-
sions of their kernels are independent of the weight w. Thus, the dimension of the
cycle subspace ker(∆(E,w)) is also independent of w.

5. Adjacency matrices

Recall the adjacency matrix Aw associated to the weighted graph (G,w), as in
Eq. (1.4). For any subset F ⊂ E, the generalized adjacency matrix A(F,w) is the
|V |× |V | matrix where the sign of the entries in Aw has been changed for the edges
e ∈ F ; it is given by

A(F,w)ij =

{
−[Aw]ij , (vi, vj) ∈ F,
[Aw]ij , otherwise.

(5.1)

Theorem 5.1. For each F ⊂ E, A(F,w) is a conformally covariant operator.

This statement remains true even in the more general case when we allow the
graph to have loops.

Proof. Let w̃(vi, vj) = eu(vi)+u(vj)w(vi, vj) for (vi, vj) ∈ E and u ∈ Hom(V,R).

Then, A(F, w̃) = DuA(F,w)Du where Du = diag(eu(v1), . . . , eu(vn)). �

Notice that the case F = ∅ gives that A(F,w) = Aw, so the adjacency matrix is
also conformally covariant. Furthermore, it follows that the “random walk” matrix
Mw = (Dw)−1Aw, which consists of the probability of travelling from one vertex
to another along a random walk, is also conformally covariant.
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Remark 5.2. The vertex Laplacian is not in general conformally covariant.

Remark 5.3. A generalized adjacency matrix A(F,w) remains conformally covariant
if we allow the graph G to contain loops. The same holds for the matrices A0(F,w)
defined in Eq. (4.2).

5.1. Ranks of generalized adjacency matrices. Let G be finite simple graph,
which in this section we assume to be connected.

Definition 5.4. The maximal rank maxrank(G) is equal to supF,w rankA(F,w).
The minimal rank minrank(G) is equal to infF,w rankA(F,w).

Equivalently, this is the largest (respectively, the smallest) rank of a symmetric
matrix with zero diagonal, whose off-diagonal entries are nonzero off the corre-
sponding edges are neighbours in G (we do not allow zero edge weights).

Example 5.5. Let Sk be a star graph with k + 1 vertices; a elementary calculation
shows that maxrank(Sk) = minrank(Sk) = 2. The same holds for G = Ka,b, the
complete bipartite graph.

Related questions are discussed e.g. in [20], and the nullity of combinatorial
graphs was discussed e.g. in [9].

It was shown in [32] that adjacency matrices of cographs have full rank. Recall
that G is a cograph, or complement-reducible graph, iff G does not have the path
P4 on 4 vertices as an induced subgraph.

The maximal size of a graph whose adjacency matrix has a given rank was
studied in [28, 26].

The rank of adjacency matrices of Erdös-Renyi random graphs was studied in
[18]; it was shown in [21, Prop. 3.2.2] that adjacency matrices of certain families of
random graphs have full rank with probability going to 1.

5.2. Partition of the space of conformal classes. We next discuss a partition
of the set of conformal classes defined by the signature of a (generalized) adjacency
matrix.

5.2.1. The case maxrank(G) = V (G). Assume that maxrank(G) = V (G) = n.
Then there exists a choice of F such that for all weights w in an open subset of W,
0 is not an eigenvalue of the adjacency matrix A(F,w); a similar statement holds
on an open subset of the conformal moduli space M. In this section, we restrict
our attention to F satisfying supw rankAF (w) = maxrank(G).

Definition 5.6. Fix a subset F ⊂ E of the set of edges of a graph G satisfying
maxrank(G) = n. A discriminant hypersurface D(F )W in the weight space w ∈ W
is the set of all weights such that the generalized adjacency matrix A(F,w) has
eigenvalue 0. Since the multiplicity of zero of A(F,w) is conformally invariant, this
defines a hypersurface D(F )M in the conformal moduli space M.

Example 5.7. Let C5 be the 5-cycle with vertices {v1, . . . , v5}. Let G5,2 be the
non-bipartite graph obtained from C5 by adding the edges (v1, v3), and (v1, v4).
Remark that dimM(G5,2) = 2. The discriminant hypersurface D(∅)M associated
to the standard adjacency matrix A(∅, w) is the subset

D(∅)M = {(a, b) ∈M(G5,2) : (ab)4 = a3 + b3}.
The curve D(∅)M in M(G5,2) is depicted in Fig. 1.
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Figure 1. The discriminant hypersurface partitionsM(G5,2) into
2 components.

Consider a curve w(t) ∈ W, t ∈ [0, 1]. It is clear that to change the signature of
A(F,w(t)) the curve w(t) has to cross D(F )W . We conclude that

Proposition 5.8. The signature of A(F,w) does not change on connected compo-
nents of W \D(F )W and M\D(F )M.

Since trA(F,w) = 0 for any choice of F ⊂ E and w ∈ W, we find that A(F,w)
always has at least one positive eigenvalue, and at least one negative eigenvalue. We
let N+(A) be the number of positive eigenvalues of A; and N−(A) be the number
of negative eigenvalues of A.

Definition 5.9. We let PosF (G) ≥ 1 to be supwN+(A(F,w)). Similarly, we let
NegF (G) ≥ 1 to be supwN−(A(F,w)).

The signature of A(F,w) ranges between (PosF (G), n− PosF (G)) and
(n−NegF (G), NegF (G)).

Definition 5.10. The signature list ListF (G) is the list of all possible signatures of
A(F,w), for different w.

It seems interesting to study the number, topology and geometry of connected
components of M\D(F )M.

Example 5.11. Let C6 be the 6-cycle with vertices {v1, . . . , v6}. Let G6,3 be the
non-bipartite graph obtained from C6 by adding the edges (v1, v5), (v2, v4), and
(v3, v6). Remark that dimM(G6,3) = 3. Let F = {(v1, v2)}, then the discriminant
hypersurface D(F )M associated to the generalized adjacency matrix A(F,w) is the
curve seen in Fig. 2, which is cut out by the equation

x8y2z2−4(xyz)6+x5(2y2z5 − 2y5z2)+2x4yz+(xyz)2(y3 − z3)2+x(2yz4 − 2y4z)+1 = 0.

The signature of A(F,w) is described by the following list:

(1) If w ∈ M is in the component whose boundary contains the origin, then
the signature of A(F,w) is (3, 0, 3).

(2) If w ∈ D(F )M, then the signature of A(F,w) is (3, 1, 2).
(3) Otherwise, the signature of A(F,w) is (4, 0, 2).

We remark that the spectrum of unweighted adjacency matrix A(G) has been
studied extensively. In particular, Graham and Pollack showed in [24] that biclique
partition number bp(G) satisfies bp(G) ≥ max{N+(A(G)), N−(A(G))}.
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Figure 2. The discriminant hypersurface partitionsM(G6,3) into
2 components.

5.2.2. The case maxrank(G) < V (G). In this section we consider graphs with
maxrank(G) < V (G) = n. In addition, we consider graphs with maxrank(G) = n
and subsets F ⊂ E(G) satisfying supw rankA(F,w)) < maxrank(G). In those
cases, 0 is an eigenvalue of AF (w) for all w ∈ W.

We adjust the definition of the discriminant hypersurface:

Definition 5.12. A discriminant hypersurface D(F )W in the weight space w ∈ W
is the set of all weights w such that the generalized adjacency matrix A(F,w)
satisfies rank(A(F,w)) < maxrank(G). Since the multiplicity of zero of A(F,w) is
conformally invariant, this defines a hypersurface D(F )M in the conformal moduli
space M.

Proposition 5.8 easily extends. Consequently, this allows one to extend the
Definitions 5.9 and 5.10.

5.3. Bipartite graphs. It is well-known that tr(A(F,w)k) =
∑
|γ|=k

∏
e∈γ w(e);

here the sum is taken over all closed paths of length k in G, and the edges in
F ⊂ E have negative weights. In bipartite graphs, all closed paths have even
length. Accordingly, for any odd k ≥ 1 we have

tr(A(F,w)k) = 0.

It follows that the set of eigenvalues of A(F,w) is symmetric around 0. Accordingly,

Proposition 5.13. Let G be a bipartite simple connected graph. Then the signature
of A(F,w) is always of the form k, k for any F ⊂ E and w ∈ W. If |V (G)| is even
(resp. odd), then the multiplicity of 0 as an eigenvalue of A(F,w) is also even
(resp. odd). In particular, if |V (G)| is odd, then kerA(F,w) is always nontrivial.

6. Incidence matrices

We next describe a class of conformally covariant operators constructed using
the (weighted) incidence matrix, or related matrices defined below.



10 D. JAKOBSON, THOMAS NG, MATTHEW STEVENSON, AND MASHBAT SUZUKI

Let G = (V,E) be a finite simple graph. Let F ⊂ E be a subset of edges which we
shall orient: for each e ∈ F we shall choose a head vertex e+ ∈ V and a tail vertex
e− ∈ V . We next define a variant of a well-known incidence matrix as follows.
Enumerate the vertex set V = {v1, . . . , vn} and the edge set ~E = {e1, . . . , em}.
The signed weighted vertex-edge incidence matrix M(F,w) (see [6, 16] for related
constructions) is an n×m matrix given by

M(F,w)ij =


√
w(ej) : if ej ∈ F, vi = e+j ,

−
√
w(ej) : if ej ∈ F, vi = e−j ,√

w(ej) : if ej /∈ F, vi ∼ ej ,
0 : if vi 6∼ ej .

(6.1)

Let w̃ ∈ [w] be a different weight in [w] given by the function u ∈ Hom(V,R).
Then it is easy to show that

M(F, w̃) = M(F,w)Du, (6.2)

where Du is an invertible diagonal matrix given by

(Du)ii =

{
e

1
2 (u(e

+
i )+u(e−i )) : if ei ∈ F, ei = (e−i , e

+
i ),

e
1
2 (u(v1(i))+u(v2(i))) : if ei 6∈ F, ei = (v1(i), v2(i)).

(6.3)

In other words,

Theorem 6.1. For each F ⊂ E, M(F,w) is a conformally covariant operator.

The signed incidence matrix (the discrete gradient) arises from this construction
when F = E and the unsigned incidence matrix is M(∅, w). Consequently, these
operators are conformally covariant.

In addition, define the following generalization of the edge Laplacian:

∆(F,w) := M(F,w)T ·M(F,w). (6.4)

It follows immediately that

Theorem 6.2. Let w̃ ∈ [w] be a different weight in [w] given by the function
u ∈ HG. Then

∆(F, w̃) = Du ·∆(F,w) ·Du

Accordingly, ∆(F,w) is a conformally covariant operator in the sense of (4.1) for
any choice of F ⊂ E.

We next discuss important special cases of Theorem 6.2 corresponding to differ-
ent choices of F ⊂ E.

6.1. The edge Laplacian. Consider first the case F = E; the operator ∆(E,w)
corresponds to the weighted edge Laplacian of [6], so

Corollary 6.3. The edge Laplacian is a conformally covariant operator.

Proposition 6.4. Given a connected weighted graph (G,w), dim ker(∆(E,w)) =
|E| − |V |+ 1. In particular, dim ker(∆(E,w)) is independent of w.

Proof. Clearly, ker(∆(E,w)) = ker(M(E,w)). Now, the cycle space ker(M(E,w))
is isomorphic to the real homologyH1(G,R). For a connected graph, dimH1(G,R) =
|E| − |E(T )|, where |E(T )| = |V | − 1 is the number of edges in a minimal spanning
tree T of the combinatorial graph. �
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Remark 6.5. The results in this section seem to be related to the results in [10].
The authors intend to study this relation further in a future paper.

6.2. The Case F = ∅. The other extreme example is where F = ∅: Theorem 6.2
again implies that ∆(∅, w) is a conformally covariant operator. Note that M(∅, w) is
the unsigned weighted vertex-edge incidence matrix, and it is the weighted analogue
of the matrix B from § 3. Indeed, they have the same rank, as one is obtained from
the other by scaling the columns. It follows from Theorem 3.1 that

Proposition 6.6. Given a weighted graph (G,w), dim ker(∆(∅, w)) = |E| − |V |+
ω0, where ω0 denotes the number of bipartite components of G. In particular,
dim ker(∆(∅, w)) is independent of w.

6.3. Generalized incidence matrices: left and right kernels. A generalized
incidence matrix M(F,w) will in general be a rectangular matrix; accordingly, we
shall consider separately the left kernel of M : kerleftM = {U : U ·M = 0}; and
the right kernel of M : kerrightM = {V : M · V = 0}.

In this setting, we have the ‘rectangular’ analogue of Theorem 4.3: this Propo-
sition below follows easily from (6.2).

Proposition 6.7. Let G be a simple connected graph, F ⊂ E(G); let also w ∈ W
and w̃ ∈ [w]. Then kerleftM(F, w̃) = kerleftM(F,w); also, kerrightM(F, w̃) =
D−1u · kerrightM(F,w)

6.4. Additional variants of the edge Laplacian. We first prove the following
elementary lemma:

Lemma 6.8. Let the graph G have m edges. Let J ⊂ {1, 2, . . . ,m}. Denote by
MJ(F,w) the signed incidence matrix defined by (6.1) with the columns indexed by
J omitted; we ignore the edges labelled by the elements of J . Then the operator

∆J(F,w) := MJ(F,w)t ·MJ(F,w) (6.5)

is also conformally covariant.

Proof. We showed in Theorem 6.2 that ∆(F,w) := M(F,w)t ·M(F,w) is confor-
mally covariant. The new matrix MJ(F,w)t ·MJ(F,w) (of order (m−|J |)·(m−|J |))
is the minor ∆(F,w), with rows and columns indexed by J omitted. Let DJ(u) be
the diagonal matrix that appears in Theorem 6.2 with entries corresponding to the
edges labelled by J omitted. Then it follows easily from the definition that

∆J(F, w̃) = DJ(u) ·∆J(F,w) ·DJ(u), (6.6)

finishing the proof. �

Let I = {1, . . . , |E| − |J |}, then for each pair (i1, i2) ∈ I × I, let Λi1,i2(J, F,w)
be the matrix obtained from ∆J(F,w) by removing the i1st row and i2nd column.
Then,

Proposition 6.9. For each (i1, i2) ∈ I×I, Λi1,i2(J, F,w) is conformally covariant.

Proof. Let Di1
J (u) be the matrix obtained from DJ(u) by removing the i1st row

and i1st column, and let Di2
J (u) be the matrix obtained from DJ(u) by removing

the i2nd row and i2nd column. Then, it follows from Lemma 6.8 that

Λi1,i2(J, F, w̃) = Di1
J (u) · Λi1,i2(J, F,w) ·Di2

J (u).

�
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The same procedure can be applied for any square subset of I × I in order to
get further conformally covariant operators.

7. Conformal invariants from Schrödinger operators

Let (G,w) be a finite simple weighted graph and let H : V (G)→ R be a function
on vertices.

Definition 7.1. The nodal set N (H) is the set of all edges e = (u, v) ∈ E(G) such
that H(u)H(v) < 0, i.e. such that H changes sign across e; together with the set
of all vertices v such that H(v) = 0. A strong nodal domain U of H is a connected
subgraph of G such that F had constant sign on all the vertices of U .

Now, let S be a conformally covariant operator (satisfying 4.1). Let w ∈ W, and
let w̃ ∈ [w]. Then it follows from (4.1) that

kerSw1
= D−1β kerSw. (7.1)

This defines a canonical bijection between kerSw and kerSw̃.
Since the entries of Dβ are all positive, the following Proposition is immediate:

Proposition 7.2. Assume Sw is conformally covariant, and kerSw 6= 0. Let
H ∈ kerSw. Then the nodal set N (H) and strong nodal domains of H are invariant
under (7.1).

It also follows follows easily from (7.1) that

Proposition 7.3. If dim ker(Sw) ≥ 2, then the nonempty intersection of nodal sets
of H1, H2 ∈ ker(Sw) and of their complements are invariant under (7.1).

One can define nodal sets and strong nodal domains for functions in Hom(E,R),
and prove analogues of Propositions 7.2 and 7.3 for conformally covariant operators
on Hom(E,R).

We can say more in the special case Sw = A(F,w).

Theorem 7.4. Let A(F,w) be a generalized adjacency matrix as in (5.1). Assume
that kerA(F,w) 6= 0, and let H ∈ kerA(F,w). Consider the map ΨH : E(G) → R
defined for an edge e = (v1, v2) by

ΨH(e) := Hw(v1)Hw(v2)w(e) (7.2)

Then, ΨH is invariant under (7.1).

Proof. Let w̃ ∈ [w]. Then Hw̃(v1) = e−f(v1)Hw(v1), and Hw̃(v2) = e−f(v2)Hw(v2).
Also, w̃(e) = ef(v1)+f(v2)w(e). The result follows. �

Example 7.5. Let G5,2 be as in Example 5.7, then along the discriminant hypersur-
face D(∅)M of the standard adjacency matrix, we have that A(∅, w) has a simple
zero eigenvalue. Identifying the canonical representative of a conformal class with
a pair (a, b) ∈ (0,∞)2, we get a ‘canonical’ basis vector H(a,b) ∈ ker(A(∅, (a, b))),
which is given by

H(a,b) =

(
a2

b2
, a5 − a

b
,−a2,−1, 1

)
.

For fixed e ∈ E(G5,2), we consider the range of ψH(a,b)
(e) as we vary the conformal

class along the discriminant hypersurface. Namely, consider the set

Xe = {(a, b, ψH(a,b)
(e) ∈ (R+)3 : (a, b) ∈ D(∅)M}.

Projections of some Xe’s are pictured in Fig. 3.
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Figure 3. The horizontal axis corresponds to points a + b for
(a, b) ∈ D(∅)M and the curves give the value ψH(a,b)

(e1) and

ψH(a,b)
(e5) respectively. In this sense, the two curves are projec-

tions of Xe1 and Xe5 respectively onto the plane.

Remark 7.6. As a consequence of Proposition 6.4 and Proposition 6.6, the above
statements are vacuous for the edge Laplacian ∆(E,w) and ∆(∅, w), as the dimen-
sions of their kernels are independent of the weight w. Thus, the dimension of the
cycle subspace ker(∆(E,w)) is also independent of w.

Moreover, let f1, . . . , fm be a basis of ker(Sw) and let Xw = ∩mi=1f
−1
i (0). Define

the map Φw : E\Xw → RPm−1 by

Φw(e) = (f1(e) : . . . : fm(e)) ∀e ∈ E\Xw. (7.3)

Take w̃ ∈ [w], and let Dβ be the invertible diagonal matrix as in 4.1. Then,

D−1β f1, . . . , D
−1
β fm is a basis of ker(Sw̃) and Proposition 7.3 implies that Xw̃ = Xw;

in particular, the domain of Φw̃ is equal to the domain of Φw. Finally, for e ∈ E\Xw̃,

Φw̃(e) = (D−1β (e)f1(e) : . . . : D−1β (e)fm(e)) = (f1(e) : . . . : fm(e)) = Φw(e),

as the diagonal entries D−1β (e) are nonzero. It immediately follows that

Proposition 7.7. For fixed Sw, the map Φw is a conformal invariant.

Remark 7.8. The results of this section hold in particular for the class of elliptic
Schrödinger operators in the sense of [17]. The authors have partial results on
classifying its intersection with the collection of conformally covariant operators,
and will consider this problem further in a future paper. In particular, given an
elliptic Schrödinger operator of the form ∆w+Pw, where ∆w is the vertex Laplacian
and Pw is any diagonal matrix, then Pw transforms as

[Pw̃]ii +
∑
vj∼vi

w̃(vi, vj) = e2u(vi)

[Pw]ii +
∑
vj∼vi

w(vi, vj)

 , (7.4)

where w̃ ∈ [w] is related to w by the conformal factor u ∈ Hom(V,R).
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8. Determinants and Permanents of conformally covariant operators

There exist polynomial graph invariants that can be constructed as determinants
of certain operators on graphs. For example, consider the tree polynomial

T (G,w) :=
∑
T

∏
e∈T

w(e), (8.1)

where the sum is taken over all spanning trees of G.
Let F = E (the edge set of G), and let Mi(E,w) be the matrix defined by the

formula (6.1) with the i-th row (corresponding to the vertex vi of G) omitted. It
can be shown ([29, p. 135]) that T (G,w) = det(Mi(E,w) ·Mi(E,w)t). Omitting
several rows in M(E,w) gives the generating polynomial for rooted spanning forests
of G, see e.g. [13, (3)]. These results motivate the study below.

Let A(F,w) be the generalized adjacency matrix of Eq. (5.1). We next define
two multivariate polynomials, with the variables given by the edge weights.

Definition 8.1. Let P1(F,w) := PermA(F,w) and let P2(F,w) := detA(F,w).

Recall that PermX of a square matrix X is defined by the same formula as detX,
except that the product corresponding to every permutation appears with the sign
+1. By the multiplicativity of the determinant, it follows that det(D · X · D) =
det(D)2 ·det(X). It follows easily from the definition of the permanent that for any
diagonal matrix D, we have Perm(D ·X ·D) = det(D)2 · Perm(X).

More generally, let χ1, . . . , χk be the irreducible characters of S|E|−|J|, then by
replacing sgn with χj in the determinant formula we get the immanant polynomials
of the matrix A(F,w), denoted Immaχj

(A(F,w)). Define the following sequence of
polynomials in w = (w(e))e∈E :

Pj(F,w) := Immaχj (A(F,w)) =
∑

σ∈S|V |

χj(σ)

|V |∏
i=1

[A(F,w)]i,σ(i). (8.2)

Take χ1 to be the trivial representation and χ2 to be the sign representation,
then the first two polynomials defined by Eq. (8.2) coincide with those given in
Definition 8.1.

In general, the immanant is not a multiplicative function; however, as D(u) is a
diagonal matrix, a simple calculation reveals that

Immaχj
(D(u) ·A(F,w) ·D(u)) = det(D(u))2Immaχj

(A(F,w)).

It follows that

Theorem 8.2. For each j = 1, . . . , k, the polynomials Pj(F,w) satisfy

Pj(F, w̃) = det(D(u))2Pj(F,w),

where D(u) is the invertible diagonal matrix such that A(F, w̃) = D(u)A(F,w)D(u).

To each polynomial Pj(F,w), associate a vector x(j, F, w) ∈ RPd for some d <∞
where the components of x(j, F, w) are the coefficients of the monomials and the
coefficient of the constant. As det(D(u))2 is a strictly positive real number, it
follows from Theorem 8.2 that

Corollary 8.3. Fix j ∈ {1, . . . , k} and F ⊂ E. Then, the vector x(j, F, w) ∈ RPd
associated to Pj(F,w) is a conformal invariant.
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The polynomials Pj(F,w) for j = 1, . . . , k determine a subset Zj(F ;w) of (R+)m

as follows:

Zj(F ;w) := {w ∈ (R+)m : Pj(F ;w) = 0}. (8.3)

As D(u) is an invertible diagonal matrix, Theorem 8.2 implies the following:

Corollary 8.4. For j = 1, . . . , k,

Zj(F ; w̃) = Zj(F ;w).

That is, the zero set Zj(F ;w) is a conformal invariant.

Example 8.5. Let G = Cn where 4|n, and enumerate E(G) = {e1, . . . , en}. A
calculation from [5] gives that

det(A(E,w)) =

( ∏
i : even

w(ei)−
∏
i : odd

w(ei)

)2

, (8.4)

where A(E,w) is the usual adjacency matrix. It is then clear that the polynomial
P2(E,w) has a nonempty zero locus Z2(E;w), which is a proper subset of W(Cn).

Example 8.6. Assume G has an even number n of vertices. Take F = E, then the
generalized adjacency matrix A(E,w) is skew-symmetric. Then, the Pfaffian of a
skew-symmetric matrix A is given by

pf(A) :=
1

2nn!

∑
σ∈Sn

sgn(σ)

n∏
i=1

aσ(2i−1),σ(2i). (8.5)

It is clear that pf(A(E, w̃)) = det(D(u))pf(A(E,w)). Consequently, we can again
associate to pf(A(E,w)) a conformally invariant projective vector as above, and the
zero locus is also conformally invariant.

Remark 8.7. In principle, one can consider the polynomials of Eq. (8.2) and the
zero set of Eq. (8.3) that arise from any conformally covariant operator. However,
for certain classes of examples (in particular, the variants of the edge Laplacian
given in Eq. (6.5)), these invariants are known to be trivial.

9. Open problems

9.1. Classification of conformally covariant operators. In the present paper,
we proposed a definition of conformally covariant operators on graphs, and provided
several examples of such operators. Motivated by [23], it seems interesting to
classify all conformally covariant operators on graphs (in the sense of [17]). On
manifolds, a very important role in the study of conformally covariant operators is
played by the ambient space construction of C. Fefferman; can this construction be
extended to graphs?

9.2. Conformal moduli space. It is well-known that on compact Riemann sur-
faces, in every conformal class there exists a unique metric with constant Gauss
curvature (up to scaling and the action of the diffeomorphism group). For surfaces
of genus ≥ 2, we get the moduli space of hyperbolic metrics; its quotient by the
mapping class group is the Teichmuller space, whose geometry and topology has
been studied extensively. If the graph has nontrivial group Γ automorphisms, it
seems natural to consider the quotientM/Γ of the conformal moduli spaceM; for
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many graphs G, Γ(G) is trivial. What is a natural analogue of the Teichmuller
space for graphs?

There exist several natural metrics on moduli spaces of surfaces, including the
Weil-Petersson metric and the Teichmuller metric. Related problems for graphs
have been studied in [31]. It seems interesting to consider related metrics on M.
The boundary of M naturally corresponds to weights on G that are 0 on one or
more edges; it seems interesting to describe the geometry of that boundary with
respect to different metrics.

Finally, some natural operations on graphs that preserve degree sequence (e.g.
edge switches) can be realized geometrically by letting the weights of several edges
decrease from 1 to 0, then letting the weights of several other edges increase from 0
to 1. It seems that this realization would allow to “glue” the corresponding spaces
of weights W for the two graphs along a common boundary; it could be interesting
to extend this construction to conformal moduli spacesM. The authors hope that
this will provide some intuition for related problems on manifolds of metrics.

9.3. Graph Jacobians. In the papers [1, 2, 3] and related articles, the authors
developed discrete counterpart of the theory of Riemann surfaces, and explored
connections to tropical geometry. Conformal maps play an important role in the
theory of Riemann surfaces; it seems interesting to explore connections between the
papers cited above and the present paper.

9.4. Discretization, and higher-dimensional complexes. In the paper [19],
the authors proved that spectra of discretized Laplacian on manifolds converge to
the spectrum of the manifold Laplacian, for suitable choices of discretized opera-
tors. In [8, 14, 22, 30] and many other papers, connections between discrete and
continuous conformal geometry were investigated. In [33] the author showed that
for a triangulated Riemann surface, and a suitable choice of inner product, the com-
binatorial period matrix converges to the (conformal) Riemann period matrix. It
seems interesting to develop a theory of conformally covariant operators on higher-
dimensional simplicial complexes, and provide discrete counterparts to the results
in [10] and related papers.

9.5. Other transformation laws. The transformation law (4.1), motivated by
(1.2), preserves the signature of an operator, leads to a simple transformation law
for the kernel, and preserves the nodal set of nullvectors. However, it follows from
Sylvester’s theorem that signature is preserved under more general transformations.
It could be interesting to construct operators satisfying more general transformation
laws, to study their properties, and to possibly construct continuous analogues.
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