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WITH AN APPENDIX BY A. ROD GOVER AND ANDREA MALCHIODI*

Abstract. In this paper, we study conformal invariants that arise from nodal sets
and negative eigenvalues of conformally covariant operators; more specifically, the

GJMS operators, which include the Yamabe and Paneitz operators. We give several

applications to curvature prescription problems. We establish a version in conformal
geometry of Courant’s Nodal Domain Theorem. We also show that on any manifold

of dimension n ≥ 3, there exist many metrics for which our invariants are nontriv-

ial. We prove that the Yamabe operator can have an arbitrarily large number of
negative eigenvalues on any manifold of dimension n ≥ 3. We obtain similar results

for some higher order GJMS operators on some Einstein and Heisenberg manifolds.

We describe the invariants arising from the Yamabe and Paneitz operators associated
to left-invariant metrics on Heisenberg manifolds. Finally, in the appendix, the 2nd

named author and Andrea Malchiodi study the Q-curvature prescription problems for

non-critical Q-curvatures.

1. Introduction

Nodal sets (i.e., zero loci) of eigenfunctions were first considered in the 18th century
by Ernst Chladni in his 1787 paper Entdeckungen über die Theorie des Klanges on vi-
brating plates. More recently, some important results about nodal sets were obtained
by Courant [CH], Pleijel [Pl], Cheng-Yau [CYau] and Donnelly-Fefferman [DF], among
others. For high energy eigenfunctions of the Laplacian geometry and topology of nodal
sets and nodal domains (i.e., connected components of complements of nodal sets) have
also been studied in quantum chaos, in particular in connection to random wave theory
(see, e.g., [BS, NS, TZ]).

Conformally invariant operators with leading term a power of the Laplacian ∆g have
been central in mathematics and physics for over 100 years. The earliest known of these
is the conformally invariant wave operator which was first constructed for the study of
massless fields on curved spacetime (see, e.g., Dirac [Di]). Its Riemannian signature
elliptic variant, usually called the Yamabe operator, controls the transformation of the
Ricci scalar curvature under conformal rescaling and so plays a critical role in the Yamabe
problem on compact Riemannian manifolds. A conformal operator with principal part
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∆2
g is due to Paneitz [Pa], and sixth-order analogues were constructed by Branson [Br1]

and Wünsch [Wü].
Two decades ago Graham, Jenne, Mason and Sparling (GJMS) solved a major existence

problem in [GJMS], where they used the ambient metric of Fefferman-Graham [FG1, FG3]
to show the existence of conformally invariant differential operators Pk,g (to be referred
to as the GJMS operators) with principal part ∆k

g . In odd dimensions, k is any pos-
itive integer, while in dimension n even, k is a positive integer no more than n

2 . The
k = 1 and k = 2 cases recover the Yamabe and Paneitz operators, respectively. Further-
more, the GJMS operators are intimately related to the Qk-curvatures Qk,g identified by
Branson [Br2, Br3] (see also Section 2); the Qn

2 ,g
-curvature is also known as Branson’s

Q-curvature.
The aim of this article is to study conformal invariants arising from nodal sets and nega-

tive eigenvalues of GJMS operators. In particular, we give some applications to curvature
prescription problems. Various authors have considered spectral theoretic functions asso-
ciated to conformally covariant operators, e.g., Parker-Rosenberg [PR], Osgood-Phillips-
Sarnak [OPS], Branson-Ørsted [BØ1], Branson-Chang-Yang [BCY], Chang-Yang [CY],
and Okikiolu [Ok]. However, to our knowledge this is the first time that nodal sets have
been considered generally in the setting of conformal geometry.

A first observation is that nodal sets and nodal domains of any null-eigenfunction of a
GJMS operator are conformal invariants (Proposition 3.1). In case of the critical GJMS
operator Pn

2 ,g
, it can be further shown this feature is actually true for any level set (Propo-

sition 3.3). Notice that these results actually hold for more general conformally invariant
operators, including the fractional conformal powers of the Laplacian (see Remark 3.5).

Here we also look at the negative eigenvalues of the GJMS operators. In particular,
we show that the number of negative eigenvalues of a GJMS operator is a conformal
invariant (Theorem 4.2). It was shown by Kazdan-Warner [KW2] that the sign of the
first eigenvalue of the Yamabe operator is a conformal invariant. We prove that this result
actually holds for all GJMS operators (Theorem 4.3). Once again these results hold for
general conformally invariant operators (see Remark 4.5) acting between the same spaces.

A natural question is whether, for a given operator, the number of negative eigenvalues
can become arbitrarily large as the conformal class varies. We prove that this indeed the
case for the Yamabe operator on any connected manifold (Theorem 4.6). The proof relies
on a deep existence result of Lokhamp [Lo2]. We give a more explicit proof in case of
products with hyperbolic surfaces (see Proposition 4.7). Furthermore, on the product
of a hyperbolic manifold with a hyperbolic surface we construct hyperbolic metrics for
which various higher order GJMS operators have arbitrary large numbers of negative
eigenvalues (see Theorem 4.8 for the precise statement). In addition, we prove a version
of Courant’s nodal domain theorem in conformal geometry: if the Yamabe operator has
m negative eigenvalues, then its null-eigenfunctions have at most m + 1 nodal domains
(Theorem 4.10).

The problem of prescribing the curvature (Gaussian or scalar) of a given compact
manifold is very classical and is known as the Kazdan-Warner problem (see [Au, BE, KW1]
and the references therein). The extension of this question to Branson’s Q-curvature has
proved to be an important proxblem for the development of mathematical ideas (see, e.g.,
[BFR, Bren, CGY, CY, DM, DR, MS, Nd]).

We look at some constraints on curvature prescription in terms of nodal sets. A
main result is Theorem 5.2 which states that, if u is a null-eigenfunction for the Yamabe
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operator P1,g and Ω is a nodal domain of u, then∫
Ω

|u|P1,g(v) dvg = −
∫
∂Ω

v ‖g∇u‖g dσg ∀v ∈ C∞(M,R).

Another main result is Theorem 5.5 which asserts that, if a function f is the scalar
curvature of some metric in the conformal class of g, then there is a smooth function
ω > 0 such that, for any null-eigenfunction u of the Yamabe operator and any nodal
domain Ω of u, ∫

Ω

f |u|ω dvg < 0.

As a corollary, we see that, if Rĝ is the scalar curvature of some metric in the conformal
class of g, then Rĝ cannot be positive everywhere on Ω.

We illustrate our results on nodal sets and negative eigenvalues in the case of the
Yamabe and Paneitz operators associated to left-invariant metrics on a Heisenberg man-
ifold Γ\Hd, obtained as the quotient of the (2d+ 1)-dimensional Heisenberg Hd group by
some lattice Γ. Using the representation theory of the Heisenberg group, we are able to
give spectral resolutions for the Yamabe and Paneitz operators (see Proposition 6.3 and
Proposition 6.9). Interestingly enough, some of the eigenfunctions involve theta-functions.
As a result, this enables us to explicitly describe their nodal sets (see Proposition 6.6).
Furthermore, we can give lower bounds for the number of negative eigenvalues of the
Yamabe and Paneitz operators, which shows that these operators can have an arbitrar-
ily large number of negative eigenvalues; the bounds involve the volume of Γ\Hd (see
Proposition 6.5 and Proposition 6.10).

For Branson’s Q-curvature it was shown by Malchiodi [Mal] (when
∫
Q = 0) and

Gover [Go3] (for the general case) that if the kernel of the critical GJMS operator contains
nonconstant functions, then there is an infinite-dimensional space of functions that cannot
be the Q-curvature of any metric in the conformal class.

In the appendix, by the second named author and Andrea Malchiodi, it is shown that,
surprisingly, similar results are available for the non-critical Q-curvatures; these are the
curvature quantities Qk,g, k 6= n

2 . The main result is Theorem A.2 which proves that for
0 6= u ∈ kerPk,g any function su on M , with the same strict sign as u, cannot be Qk,ĝ
for any metric ĝ in the conformal class. In particular this potentially obstructs achieving
constant Qk-curvature (see Theorem A.5). Theorem A.2 is also used to identify a space
I of functions, determined by the conformal structure (and in general properly contained
in C∞(M,R)), which contains the range of Qk,g, as g ranges over the conformal class (see
Theorem A.4 for the precise statement).

Various open problems and conjectures are gathered in Section 7. Further invariants
will be considered in a forthcoming paper [CGJP2].

The paper is organized as follows. In Section 2, we review the main definitions and
properties of the GJMS operators and Q-curvatures. In Section 3, we study the nodal sets
of GJMS operators. In Section 4, we study the negative eigenvalues of GJMS operators.
In Section 5, we discuss curvature prescription problems. In Section 6, we study the
nodal sets and negative eigenvalues of Yamabe and Paneitz associated to left-invariant
metrics on Heisenberg manifolds. In Section 7, we present various open problems and
conjectures. Finally, the appendix by the second named author and Andrea Malchiodi
deals with Q-curvature prescriptions for non-critical Q-curvatures.

The results of this paper were announced in [CGJP1].
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2. GJMS operators and Q-curvatures

Let M be a Riemannian manifold of dimension n ≥ 3. A conformally covariant differ-
ential operator of biweight (w,w′) is a covariant differential operator Pg such that, under
any conformal change of metric ĝ := e2Υg, Υ ∈ C∞(M,R), it transforms according to
the formula

(2.1) Pĝ = e−w
′ΥPge

wΥ.

An important example of a conformally invariant differential operator is the Yamabe
operator (a.k.a. conformal Laplacian),

(2.2) P1,g := ∆g +
n− 2

4(n− 1)
Rg,

where Rg is the scalar curvature. This is a conformally invariant operator of biweight(
n
2 − 1, n2 + 1

)
.

Another example is the Paneitz operator,

(2.3) P2,g := ∆2
g + δV d+

n− 4

2

{
1

2(n− 1)
∆gRg +

n

8(n− 1)2
R2
g − 2|S|2

}
,

where Sij = 1
n−2 (Ricgij −

Rg

2(n−1)gij) is the Schouten-Weyl tensor and V is the tensor

Vij = n−2
2(n−1)Rggij − 4Sij acting on 1-forms (i.e., V (ωidx

i) = (V j
i ωj)dx

i). The Paneitz

operator is a conformally invariant operator of biweight
(
n
2 − 2, n2 + 2

)
.

A generalization of the Yamabe and Paneitz operators is provided by the GJMS opera-
tors. They were constructed by Graham, Jenne, Mason and Sparling in [GJMS] by using
the ambient metric of Fefferman-Graham [FG1, FG3] (see also [GP, GZ, Ju] for formulas
for, and features of, the GJMS operators).

Proposition 2.1 ([GJMS]). For k = 1, . . . , n2 when n is even, and for all non-negative
integers k when n is odd, there is a conformally invariant operator Pk = Pk,g of biweight(
n
2 − k,

n
2 + k

)
such that

(2.4) Pk,g = ∆(k)
g + lower order terms.

When n is even the ambient metric is obstructed at finite order by Fefferman-Graham’s
obstruction tensor (see [FG1, FG3]). This is a conformally invariant tensor which in
dimension 4 agrees with the Bach tensor. As a result, the ambient metric construction
of the GJMS operators Pk breaks down for k > n

2 , when n is even. In fact, as proved
by Graham [Gr1] in dimension 4 for k = 3 and by Gover-Hirachi [GH] in general, there
do not exist conformally invariant operators with same leading part as ∆k

g for k > n
2

when n is even. For this reason, the operator Pn
2 ,g

is sometimes called the critical GJMS
operator. Notice that for Pn

2
the transformation law becomes

Pn
2 ,e

2Υg = e−nΥPn
2 ,g

∀Υ ∈ C∞(M,R).

When n is even and the metric g is conformally Einstein, the Fefferman-Graham ob-
struction tensor vanishes, and a canonical ambient metric exists all orders (in fact it exists
on a collar), see [FG3] and references therein. It is also the case that on an even dimen-
sional conformally Einstein manifold the GJMS operator family may be extended to all
(even) orders in a canonical way [Go2]. Furthermore, when g is actually Einstein, say
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Ricg = λ(n− 1)g for some λ ∈ R, it was shown by Graham [Gr2, FG3] and Gover [Go2]
(see also Guillarmou-Naud [GN] for constant sectional curvature spaces) that

(2.5) Pk,g =
∏

1≤j≤k

(
∆g +

λ

4
(n+ 2j − 2)(n− 2j)

)
.

The GJMS operators Pk,g are formally self-adjoint (see [GZ, FG2]). Moreover, they
are intimately related to the Qk-curvatures identified by Branson [Br2, Br3]. For k =
1, · · · , n2 − 1 when n is even and for k ∈ N0 when n is odd, the Qk-curvature is defined by

(2.6) Qk = Qk,g :=
2

n− 2k
Pk,g(1).

When n is even, the Qn
2

-curvature (a.k.a. Branson’s Q-curvature) is defined by analytic
continuation arguments (see [BØ2, Br1]; see also [GZ, FG2]).

For instance, it follows from (2.2)–(2.3) that

Q1,g =
1

2(n− 1)
Rg and Q2 =

1

2(n− 1)
∆gRg +

n

8(n− 1)2
R2
g − 2|S2,g|2.

As explained in [BG2],

(2.7) Pk,g = δSk,gd+
n− 2k

2
Qk,g,

where Sk,g is an operator acting on 1-forms. In particular, we see that the critical GJMS
operator Pn

2
kills the constant functions. It follows from (2.7) that, when k 6= n

2 , under

a conformal change of metric ĝ := e2Υg, Υ ∈ C∞(M,R),

Qk,ĝ = e−2kΥQk,g +
2

n− 2k
e−Υ(n

2 +k)δSk,gde
Υ(n

2−k).

When n is even, for k = n
2 , we have

(2.8) Qn
2 ,ĝ

= e−nΥQn
2 ,g

+ e−nΥPn
2 ,g

(Υ).

Finally, let us mention that there is a rather general theory for the existence of linear
conformally invariant differential operators due to Eastwood-Slovák [ES]. Further con-
formally invariant differential objects were also constructed by, e.g., Alexakis [Al1, Al2]
and Juhl [Ju].

3. Nodal sets of GJMS operators

In this section, we shall look at the conformal invariance of nodal sets (i.e., zero-
loci) and nodal domains (i.e., connected components of complements of nodal sets) of
eigenfunctions of GJMS operators.

Throughout this section we let (Mn, g) be a Riemannian manifold (n ≥ 3). In addition,
we let k ∈ N0 and further assume k ≤ n

2 when n is even.
It is convenient to look at conformally covariant scalar operators as linear operators

between spaces of conformal densities. Throughout the sequel we shall regard a conformal
density of weight w, w ∈ R, as a family (uĝ)ĝ∈[g] ⊂ C∞(M) parametrized by the conformal
class [g] in such way that

ue2Υg(x) = e−wΥ(x)ug(x) ∀Υ ∈ C∞(M,R).

We shall denote by E [w] the space of conformal densities of weight w.
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The space E [w] can be realized as the space of smooth functions of a line bundle over
M as follows (see also [PR]). Denote by CO(n) the conformal group of Rn, that is, the
subgroup of GLn(R) consisting of positive scalar multiples of orthogonal matrices. The
datum of the conformal class [g] gives rise to a reduction of the structure group of M to
the conformal group CO(n). Denote by E[w] the line bundle over M associated to the
representation ρw : CO(n)→ R+

∗ given by

ρw(A) = |detA|wn ∀A ∈ CO(n).

Any metric ĝ = e2Υg, Υ ∈ C∞(M), in the conformal class [g] defines a global trivialization
τĝ : E[w]→M × R with transition map,

τĝ ◦ τ−1
g (x) = ewΥ(x) ∀x ∈M.

This gives rise to a one-to-one correspondence between smooth sections of E[w] and
conformal densities. Namely, to any u ∈ C∞(M,E[w]) corresponds a unique conformal
density (uĝ)ĝ∈[g] in E [w] such that, for any metric ĝ ∈ [g],

τĝ ◦ u(x) = (x, uĝ(x)) ∀x ∈M.

The property that the GJMS operator operator Pk,g is conformally invariant of biweight(
n
2 − k,

n
2 + k

)
exactly means it gives rise to a linear operator,

Pk : E
[
−n

2
+ k
]
→ E

[
−n

2
− k
]
,

such that, for all u = (uĝ)ĝ∈[g] in E
[
−n2 + k

]
,

(Pku)ĝ(x) = (Pk,ĝuĝ)(x) ∀ĝ ∈ [g] ∀x ∈M.

In particular, this enables us to regard the nullspace of Pk,g as a space of conformal
densities. Clearly the dimension of kerPk,g is an invariant of the conformal class [g].

We observe that if u = (uĝ)ĝ∈[g] is a conformal density of weight w, then the nodal

set the zero locus u−1
ĝ (0) is independent of the metric ĝ, and hence is an invariant of the

conformal class [g]. Applying this observation to null-eigenvectors of Pk we then get

Proposition 3.1. Let k ∈ N and further assume k ≤ n
2 if n is even.

(1) If dim kerPk,g ≥ 1, then the nodal sets and nodal domains of any nonzero null-
eigenvector of Pk,g give rise to invariants of the conformal class [g].

(2) If dim kerPk,g ≥ 2, then (non-empty) intersections of nodal sets of null-eigenvectors
of Pk,g and their complements are invariants of the conformal class [g].

Remark 3.2. A connected component X of an intersection of p nodal sets should gener-
ically be a co-dimension p submanifold of M , and in the case it is, the corresponding
homology class in Hn−p(M) would be a conformal invariant. Further interesting con-
formal invariants should arise from considering the topology of M \ X. For example, if
dimM = 3 and dim kerPk = 2, and u1, u2 ∈ kerPk, then N (u1) ∩N (u2) should define a
“generalized link” in M , and all topological invariants of that set and its complement in
M would be conformal invariants. Related invariants are considered in [Ch, CR].

When k = n
2 (n even) the nullspace of Pn

2
is contained in the space E [0] of conformal

densities of weight 0 and it always contains constant functions (seen as conformal densities
of weight zero, i.e., a constant family of constant functions).
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Observe also that if u = (uĝ)ĝ∈[g] is a conformal density of weight 0, then, in addition
to the zero-locus, all the level sets {x ∈ M ; ug(x) = λ}, λ ∈ C, are independent of the
representative metric g. Therefore, for the critical GJMS operator we obtain

Proposition 3.3. Assume n is even. If dim kerPn
2
≥ 2, then the level sets of any

non-constant null-eigenvector of Pn
2

are invariants of the conformal class [g].

Next, we mention the following result.

Proposition 3.4. Assume M compact and k < n
2 . Let ug ∈ kerPk,g and let us regard u

as a conformal density of weight −n2 + k. Then the integral

∫
M

|ug(x)|
2n

n−2k dvg(x) is an

invariant of the conformal class [g].

Proof. Let ĝ = e2Υg, Υ ∈ C∞(M,R), be a metric in the conformal class [g]. Then∫
M

|uĝ(x)|
2n

n−2k dvĝ(x) =

∫
M

∣∣∣e 2k−n
2 Υ(x)ug(x)

∣∣∣ 2n
n−2k

enΥ(x) dvg(x) =

∫
M

|ug(x)|
2n

n−2k dvg(x).

This proves the result. �

Remark 3.5. Although stated for GJMS operators, the results of this section actually hold
for any conformally covariant operator that yields an endomorphism on some function
space. They even hold for conformally invariant pseudodifferential operators, including
the conformal fractional powers of the Laplacian Ps,g, s > 0, which extend the GJMS
construction to non-integer orders (see [GZ, GQ]). More precisely, Proposition 3.1 holds
verbatim for any such conformally invariant operator, and Proposition 3.3 (resp., Propo-
sition 3.4) holds verbatim for any such conformally invariant operator of biweight (w,w′)
with w = 0 (resp., w = n

2 − k with k ∈
(
0, n2

)
).

4. Negative eigenvalues of GJMS operators

In this section, we look at the negative eigenvalues of GJMS operators. Throughout
this section Mn is a compact manifold (n ≥ 3) and we let k ∈ N (and further assume
k ≤ n

2 when n is even).
Let G be the set of Riemannian metrics on M equipped with its standard Fréchet-space

C∞-topology. As mentioned in Section 2, given any metric g on M , the GJMS operator
Pk,g is self-adjoint with respect to the inner product defined by g. Moreover, as it has
same leading part as ∆k

g it has a positive principal symbol. Therefore, it spectrum consists
of a sequence of real eigenvalues converging to ∞. We thus can order the eigenvalues of
Pk,g as a non-decreasing sequence,

λ1(Pk,g) ≤ λ2(Pk,g) ≤ · · · ,

where each eigenvalue is repeated according to multiplicity. Notice that by the min-max
principle,

(4.1) λj(Pk,g) = inf
E⊂C∞(M)

dimE=j

sup
u∈E
‖u‖=1

〈Pk,gu, u〉.

Lemma 4.1 ([KS, Theorem 2]). For every j ∈ N, the function g → λj(Pk,g) is continuous
on G.
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For a metric g ∈ G, we define

νk(g) := #{j ∈ N; λj(Pk,g) < 0}.
In addition, for any m ∈ N, we set

Gk,m := {g ∈ G; Pk,g has at least m negative eigenvalues} .
Notice that Gk,m = {g ∈ G; νk(g) ≥ m} = {g ∈ G; λm(Pk,g) < 0}, so it follows from
Lemma 4.1 that Gk,m is an open subset of G.

Theorem 4.2. Let g ∈ G. Then νk(g) is an invariant of the conformal class [g].

Proof. Let g ∈ G, and set m = νk(g) and l = dim kerPk,g. Thus λj(Pk,g) < 0 for j ≤ m,
and λj(Pk,g) = 0 for j = m + 1, · · · ,m + l, and λj(Pk,g) > 0 for j ≥ m + l + 1. Let δ
be a positive real number < min {|λm(Pk,g)|, λm+l+1(Pk,g)}. It follows from Lemma 4.1,
if a metric ĝ in the conformal class [g] is close enough to g, then λm(Pk,ĝ) < −δ and
λm+l+1(Pk,ĝ) > δ. That is, the only λj(Pk,ĝ) that are contained in the interval [−δ, δ] are
λm+1(Pk,ĝ), · · · , λm+l(Pk,ĝ).

As mentioned in Section 3, the dimension of kerPk,g is an invariant of the conformal
class [g], so dim kerPk,ĝ = l, i.e., there are exactly l of the λj(Pk,ĝ) that are equal to 0.
Since we know that the l eigenvalues λm+1(Pkĝ), · · · , λm+l(Pkĝ) are the only eigenvalues
that are contained in [−δ, δ], it follows that λm+1(Pk,ĝ) = · · · = λm+l(Pk,ĝ) = 0. As
λm(Pk,ĝ) < 0, we then conclude that νk(ĝ) = m.

All this shows that the map g → νk(g) is locally constant when restricted to the
conformal class [g]. As [g] is a connected subset of G (since this is the range of C∞(M,R)
under Υ → e2Υg), we deduce that νk(g) is actually constant along the conformal class
[g]. This proves the theorem. �

It follows from Theorem 4.2 that the number of negative eigenvalues of each GJMS
operator defines a partition of the set of conformal classes.

A result of Kazdan-Warner [KW2, Theorem 3.2] asserts that the sign of the first
eigenvalue λ1(P1,g) is an invariant of the conformal class [g]. Notice that

(i) λ1(Pk,g) < 0 if and only if νk(g) ≥ 1.
(ii) λ1(Pk,g) = 0 if and only if νk(g) = 0 and dim kerPk,g ≥ 1.

(iii) λ1(Pk,g) > 0 if and only if dim kerPk,g = νk(g) = 0.

Therefore, as an immediate consequence of the conformal invariance of dim kerPk,g and
νk(g), we obtain the following extension of Kazdan-Warner’s result.

Theorem 4.3. The sign of the first eigenvalue λ1(Pk,g) is an invariant of the conformal
class [g].

Remark 4.4. Let g0 be a metric of constant scalar curvature in the conformal class. As
the nullspace of the Laplacian consists of constant functions, λ1(P1,g0) = n−2

4(n−1)Rg0 .

Therefore, the sign of λ1(P1,g) agrees with that of the constant scalar curvature Rg0
. We

also see that λ1(Pk,g) = 0 if and only if Rg0
= 0. Furthermore, in that case kerP1,g0

consists of constant functions and kerP1,g is spanned by a single positive function.

Remark 4.5. Both Theorem 4.2 and Theorem 4.3 hold verbatim for any conformally
invariant pseudodifferential operator acting on functions or even on sections of a vector
bundle. In particular, they hold for the fractional conformal powers of the Laplacian on
functions.
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The question that naturally arises is whether νk(g) can be arbitrary large as g ranges
over metrics on M . The following shows this is indeed the case when k = 1 (i.e., Pk,g is
the Yamabe operator).

Theorem 4.6. Assume M connected. Then, for every m ∈ N, there is a metric g on
M such that the Yamabe operator P1,g has at least m negative eigenvalues counted with
multiplicity.

Proof. By a result of Lohkamp [Lo2, Theorem 2], given λ > 0, there is a metric g on M
such that

(i) The m first positive eigenvalues of the Laplacian ∆g counted with multiplicity
are equal to λ.

(ii) The volume of (M, g) is equal to 1.
(iii) The Ricci curvature of g is ≤ −m2.

The condition (iii) implies that Rg ≤ −nm2. Combining this with (ii) shows that, for all
u ∈ C∞(M), we have

〈P1,gu, u〉 = 〈∆gu, u〉+
(n− 2)

4(n− 1)

∫
M

Rg(x)|u(x)|2vg(x)

≤ 〈∆gu, u〉 −
(n− 2)

4(n− 1)
nm2‖u‖2.(4.2)

Assume λ < (n−2)
4(n−1)nm

2 and denote by E the eigenspace of ∆g associated to λ. Notice

that E is a subspace of C∞(M) and has dimension ` ≥ m. Moreover, if u a unit vector

in E, then (4.2) shows that 〈P1,gu, u〉 ≤ λ − (n−2)
4(n−1)nm

2 < 0. Combining this with the

min-max principle (4.1) we see that λm(P1,g) ≤ λ`(P1,g) < 0. Thus, P1,g has at least m
negative eigenvalues counted with multiplicity. The proof is complete. �

More explicit construction of metrics with an arbitrarily large number of eigenvalues
can be given in the case of a product with a hyperbolic surface.

Assume n ≥ 4 and let (Nn−2, g1) be a compact Riemannian manifold and (Σ, g2) a
hyperbolic surface of genus ≥ 2. Given t > 0 we equip the product M := N ×Σ with the
product metric gt := g1 ⊗ 1 + 1⊗ t−1g2.

Proposition 4.7. For any m ∈ N, we can choose g2 and t such that the Yamabe operator
P1,gt has at least m negative eigenvalues.

Proof. The scalar curvature of gt is Rgt = Rg1
−2t, so the Yamabe operator on (M, gt) is

P1,gt = ∆g1
⊗ 1 + t(1⊗∆g2

) +
n− 2

4(n− 1)
(Rg1

− 2t),

where ∆g1 (resp., ∆g2) is the Laplacian on N (resp., Σ).
Let λ be an eigenvalue of ∆g2

and let u be an associated eigenfunction. We have

P1,gtu = tλu+
n− 2

4(n− 1)
(Rg1 − 2t)u.

Set µ := n−2
4(n−1) supx∈N Rg1

(x). Then

(4.3) 〈P1,gtu, u〉 ≤
(
tλ+ µ− n− 2

2(n− 1)
t

)
〈u, u〉 = t

(
λ− n− 2

2(n− 1)
+ t−1µ

)
〈u, u〉.
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Let m ∈ N. Observe that n−2
2(n−1) = 1

2 −
1

2(n−1) >
1
4 since n ≥ 4. Therefore, we may

choose t large enough so that n−2
2(n−1) − t

−1µ > 1
4 . Then a result of Buser [Bu, Theorem

4] ensures us that we can choose the metric g2 so that ∆g2 has at least m eigenvalues
λ < n−2

2(n−1)−t
−1µ. If u is an eigenfunction of u associated to such an eigenvalue, then (4.3)

shows that 〈Pu, u〉 < 0. Therefore, the quadratic form defined by P1,gt is negative definite
on an m-dimensional subspace of C∞(M). Applying the min-max principle (4.1) then
shows that λm(P1,gt) < 0, i.e., P1,gt has at least m negative eigenvalues. The proof is
complete. �

Next, we construct explicit examples of products of hyperbolic manifolds for which
various higher order GJMS operators have an arbitrarily large number of negative eigen-
values upon varying the metric.

Let (Nn−2, g1) be a hyperbolic manifold and (Σ2, g2) a hyperbolic surface of genus ≥ 2.
We equip the product manifold M := N ×Σ with the product metric g := g1⊗1 + 1⊗g2.
Notice that (M, g) is an Einstein manifold and Ric = −g.

Theorem 4.8. For every m ∈ N, we can choose the (hyperbolic) metric g2 on Σ so that
the GJMS operator Pk,g has at least m negative eigenvalues for all odd integers k ≤ n−1

2 .
If we further assume that n = 4l or n = 4l+1 for some l ∈ N, then the same conclusion

holds for all integers k ≥ n
2 .

Remark 4.9. As (M, g) is Einstein, the GJMS operator Pk family extends to a family of
canonical Laplacian power type operators defined for all integers k > n

2 even when n is
even [Go2].

Proof of Theorem 4.8. As Ric = −g, Eq. (2.5) gives

(4.4) Pk,g =
∏

1≤j≤k

(∆g − µj) , µj :=
1

4(n− 1)
(n+ 2j − 2)(n− 2j).

Notice also that the Laplacian on M is ∆g = ∆g1
⊗ 1 + 1⊗∆g2

, where ∆g1
(resp., ∆g2

)
is the Laplacian on N (resp., Σ).

Let λ be an eigenvalue of ∆g2
and let u be an eigenfunction associated to λ. If we

regard u as a function on M , then ∆gu = ∆g2u = λu. Combining this with (4.4) we then
see that u is an eigenvector of Pk,g with eigenvalue

(4.5) Λk :=
∏

1≤j≤k

(λ− µj) .

Observe that 4(n−1)µj = (n−1)2− (2j−1)2, so µj > µj+1 for j ≥ 1
2 . Moreover, µn

2
= 0

and µn−1
2

= 2n−3
4(n−1) = 1

2 −
1

4(n−1) >
1
4 . Incidentally, µj ≥ 0 when j ≥ n

2 .

Let m ∈ N. As µn−1
2
> 1

4 and Σ has genus ≥ 2, appealing again to [Bu, Theorem 4] we

can find a hyperbolic metric g2 such that the Laplacian ∆g2
has at least m eigenvalues

contained in (0, µn−1
2

). Let λ be such an eigenvalue and assume that k is an odd integer ≤
n−1

2 . Then λ − µj ≤ λ − µk ≤ λ − µn−1
2

< 0 for j = 1, · · · , k, and so the eigenvalue Λk
in (4.5) is the product of k negative numbers. As k is odd, it follows that Λk is a negative
eigenvalue of Pk,g. This enables us to produce m negative eigenvalues for this operator.
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Assume further that m = 4l or m = 4l + 1 for some l ∈ N and suppose that k is an
integer ≥ n

2 . Then the integral part k0 =
[
n−2

2

]
is an odd number and we can write

Λk = Λ′kΛk0
with Λ′k :=

∏
k0+1≤j≤k

(λ− µj) .

Notice that Λk0
< 0 since k0 is an odd integer ≤ n−1

2 . Moreover, as k0 + 1 ≥ n
2 we see

that µj ≤ 0 for all j ≥ k0 + 1, and hence Λ′k is a positive number. It then follows that Λk
is a negative eigenvalue of Pk,g, and so this operator has m negative eigenvalues for this
operator. The proof is complete. �

Finally, we derive a version of Courant’s nodal domain theorem in conformal geometry.

Theorem 4.10. Assume that the Yamabe operator P1,g has m ≥ 1 negative eigenvalues.
Then any null eigenfunction of P1,g has at most m+ 1 nodal domains.

Proof. By Proposition 3.1 the nodal domains of P1,g are conformal invariants. Therefore,
without any loss of generality we may assume that the scalar curvature Rg is constant.
Then the eigenvalues of P1,g are obtained by adding c = n−2

4(n−1)Rg to the eigenvalues of

the Laplacian ∆g and the corresponding eigenspaces agrees.
Let u ∈ kerP1,g. By assumption P1,g has m negative eigenvalues, and so the eigenvalue

λ = 0 is the j-th eigenvalue of P1,g for some j ≥ m. It then follows that u is an eigenfunc-
tion of ∆g for its j-th eigenvalue. Applying Courant’s nodal domain theorem [Ch, CH]
we then see that u has at most m+ 1 nodal domains. The proof is complete. �

5. Curvature prescription problems

In this section, we look at some constraints on curvature prescription. Further results
are given in Appendix. The problem of prescribing the curvature (Gaussian or scalar) of
a given compact manifold is very classical and is known as the Kazdan-Warner problem
(see [Au, BE, KW1] and the references therein). The extension of this question to Bran-
son’s Q-curvature is an important impetus for the developement of various mathematical
ideas (see, e.g., [BFR, Bren, CGY, CY, DM, DR, MS, Nd]).

Throughout this section we let (Mn, g) be a compact Riemannian manifold (n ≥ 3).
Given k ∈ N (further assuming k ≤ n

2 if n is even), the problem of conformally prescribing
Qk-curvature is that of determining which functions are the Qk-curvature Qk,ĝ for some
metric ĝ in the conformal class [g]. In other words, we seek to characterize the range
R(Qk) of the map,

(5.1) Qk : [g] 3 ĝ −→ Qk,ĝ ∈ C∞(M,R).

Let us first make some elementary observations on
∫
M
Rgu dvg with u ∈ kerP1,g. As

Q1,g = 1
2(n−1)Rg, using elementary spectral considerations and expression (A.4) in the

Appendix, we obtain

Proposition 5.1. Assume that the scalar curvature Rg is constant. Then∫
M

Rgu dvg = 0 ∀u ∈ kerP1,g.

In addition, if ĝ = e2Υg, Υ ∈ C∞(M,R), is a metric in the conformal class [g], then∫
M

e
2−n

2 ΥRĝu dvĝ = 0 ∀u ∈ kerP1,g.
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Next, we consider the scalar curvature restricted to nodal domains. The following
extends to the Yamabe operator a formula of Sogge-Zelditch [SZ, Proposition 1] for the
Laplace operator.

Theorem 5.2. Let u ∈ ker(P1,g) and let Ω be a nodal domain of u. Then, for all
v ∈ C∞(M), ∫

Ω

|u|P1,g(v) dvg = −
∫
∂Ω

v ‖g∇u‖g dσg,

where g∇ is the Levi-Civita connection of g and σg is the surface measure of ∂Ω.

Remark 5.3. The intersection of the critical and nodal sets of u has locally finite n − 2-
Hausdorff dimension ([HHL, HHHN]; see also [Ha, Ch]). Therefore, ∂Ω admits a normal
vector almost everywhere, and hence the surface measure dσg is well-defined.

Proof of Theorem 5.2. Notice that u has constant sign on Ω. Let ν be the outward unit
normal vector to the hypersurface ∂Ω. Then ∂νu agrees with −‖g∇u‖g (resp., ‖g∇u‖g)
almost everywhere on ∂Ω in case u is positive (resp., negative) on Ω. Therefore, possibly
upon replacing u by −u, we may assume that u is positive on Ω.

Let v ∈ C∞(M). As P1,gu = 0 and the Yamabe operator agrees with the Laplacian
∆g up to a the multiplication by a function, we have∫

Ω

|u|P1,g(v) dvg =

∫
Ω

(uP1,gv − vP1,gu) dvg =

∫
Ω

(u∆gv − v∆gu) dvg.

Notice that u∆gv − v∆gu = udiv (g∇v)− udiv (g∇v) = div (u(g∇v)− v(g∇u)). There-
fore, applying the divergence theorem for rough domains (see [Fe, Section 4.5.6]), we
deduce that the integral

∫
Ω
|u|P1,g(v) dvg is equal to∫

Ω

div (u(g∇)v − v(g∇u)) dvg = −
∫
∂Ω

(u ∂νv − v ∂νu) dσg = −
∫
∂Ω

v ‖g∇u‖g dσg,

where we have used the fact that u = 0 and ∂νu = −‖g∇u‖g on ∂Ω. The proof is
complete. �

Decomposing the manifold into a disjoint union of positive nodal domains, negative
nodal domains and the nodal set of u, and applying Theorem 5.2 we obtain

Corollary 5.4. For all u ∈ kerP1,g and v ∈ C∞(M),∫
M

|u|P1,g(v) dvg = −2

∫
N (u)

v ‖g∇u‖g dσg,

where N (u) is the nodal set of u.

Theorem 5.5. Let f ∈ C∞(M) be the scalar curvature of some metric in the conformal
class [g]. Then, there is a positive function ω ∈ C∞(M), such that, for any u ∈ ker(P1,g)
and any nodal domain Ω of u, ∫

Ω

f |u|ω dvg < 0.

Proof. By assumption f = Rĝ for some metric ĝ = e2Υg, Υ ∈ C∞(M,R). Thus P1,ĝ(1) =
n−2

4(n−1)Rĝ = n−2
4(n−1)f . Let u ∈ ker(P1,g) and let Ω be nodal domain of u. In addition, set

ω = n−2
4(n−1)e

n+2
2 Υ and û = e

2−n
2 Υu. Then

(5.2)

∫
Ω

f |u|ω dvg =
n− 2

4(n− 1)

∫
Ω

|û| f dvĝ =

∫
Ω

|û|P1,ĝ(1) dvĝ.
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As the kernel of the Yamabe operator consists of conformal densities of weight n−2
2 ,

we see that û is contained in P1,ĝ and Ω is a nodal domain for û. Therefore, applying
Theorem 5.2 to û and v = 1 and using (5.2) we get∫

Ω

ω|u| f dvg =

∫
Ω

|û|P1,ĝ(1) dvĝ = −
∫
∂Ω

‖ĝ∇u‖ĝ dσĝ.

As the intersection of the critical and nodal sets of u has locally finite n−2-Hausdorff di-
mension ([HHL, HHHN]; see also [Ha, Ch]), the integral

∫
∂Ω
‖ĝ∇u‖ĝ dσĝ must be positive,

and hence
∫

Ω
ω|u| f dvg < 0. This proves the result. �

Theorem 5.5 seems to be new. We remark that when dim ker(P1,g) ≥ 2 this gives
infinitely many constraints on Rĝ.

Corollary 5.6. Let u ∈ ker(P1,g) and let Ω be nodal domain of u. Then, for any metric
ĝ in the conformal class [g], the scalar curvature Rĝ cannot be everywhere positive on Ω.

Let u ∈ ker(P1,g) and let Ω be nodal domain of u. Given any metric ĝ = e2Υg,
Υ ∈ C∞(M,R), in the conformal class [g] we define

T (u,Ω, ĝ) := −4(n− 1)

n− 2

∫
∂Ω

e
2−n

2 Υ‖ĝ∇û‖ĝ dσĝ,

where we have set û = e
2−n

2 Υu.

Proposition 5.7. For all metrics ĝ in the conformal class [g],

T (u,Ω, ĝ) =

∫
Ω

|u|Rg dvg.

Proof. Let ĝ = e2Υg, Υ ∈ C∞(M,R), be a metric in the conformal class [g]. Set û =

e
2−n

2 Υu and v = e
2−n

2 Υ. As pointed out in the proof of Theorem 5.5, û lies in kerP1,ĝ

and Ω is a nodal domain. Applying Theorem 5.2 to û and v then gives

n− 2

4(n− 1)
T (u,Ω, ĝ) = −

∫
∂Ω

v‖ĝ∇û‖ĝ dσĝ =

∫
Ω

|û|P1,ĝv dvĝ.

As P1,ĝv = e−
n+2

2 ΥP
(
e

n−2
2 Υ · e 2−n

2 Υ
)

= e−
n+2

2 ΥP1,g(1) = n−2
4(n−1)e

−n+2
2 ΥRg, we get

T (u,Ω, ĝ) =

∫
Ω

|û|e−
n+2

2 ΥRg dvĝ =

∫
Ω

e
2−n

2 Υ|u|e−
n+2

2 ΥRg e
nΥ dvg =

∫
Ω

|u|Rg dvg.

The result is proved. �

Proposition 5.7 provides us with some conserved quantities for the conformal class. In
particular, if Rg is constant, then we obtain

T (u,Ω, ĝ) = Rg||u||L1(Ω).

Finally, let k ∈ N and further assume k ≤ n
2 − 1 when n is even. We look at conformal

classes containing a metric for which the Qk-curvature is zero.

Proposition 5.8. The following are equivalent:

(1) The kernel of Pk,g contains a nowhere vanishing eigenfunction.
(2) There is a metric ĝ in the conformal class [g] such that Pk,ĝ(1) = 0.
(3) There is a metric ĝ in the conformal class [g] such that Qk,ĝ is identically zero.
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Proof. As by definition Qk,ĝ = 2
n−2kPk,ĝ(1), the equivalence of (2) and (3) is immediate.

Furthermore, the conformal invariance of kerPk,g as a space of conformal densities of
weight k − n

2 6= 0 implies that kerPk,g contains a nowhere vanishing function if and only
if there is a metric ĝ in the conformal class [g] such that kerPk,ĝ(1) = 0. This proves the
equivalence of (1) and (3) and completes the proof. �

Remark 5.9. In the recent paper [FR] A. Fardoun and R. Regbaoui study the Q-curvature
prescription problem on even-dimensional conformal classes for which the kernel of the
critical GJMS operator is nontrivial kernel (i.e., it contains non-constant functions). In
particular, they give sufficient conditions for the convergence of the Q-curvature flow in
terms of nodal domains of null-eigenfunctions of the critical GJMS operator.

6. The Yamabe and Paneitz Operators on Heisenberg Manifolds

In this section, we explicitly compute the eigenvalues and nodal sets of the Yamabe
and Paneitz operators on Heisenberg manifolds.

6.1. The setup. Let Hd be the (2d + 1)-dimensional Heisenberg group, i.e., the 2-
nilpotent subgroup of GLd+2(R) of unipotent matrices. Thus, any A ∈ Hd is of the
form,

A =

1 x t
0 1 yT

0 0 1

 , x, y ∈ Rd, t ∈ R.

We shall use coordinates x = (x1, · · ·xd), y = (y1, · · · , yd) and t as above to represent an
element of Hd.

Let r = (r1, · · · , rd) ∈ Zd be such that rj |rj+1 for j = 1, · · · , d − 1 and consider the
lattice subgroup,

Γr =


1 x t

0 1 yT

0 0 1

 ; x ∈ Zd, y ∈ r1Z× · · · × rdZ, t ∈ Z

 .

In addition, consider the quotient manifold,

M := Γr\Hd.
This is a compact manifold with fundamental group Hd. Moreover, a fundamental domain
for this quotient is

D = [0, 1)d × [0, r1)× · · · × [0, rd)× [0, 1).

A tangent frame of Hd is provided by the left-invariant vector fields,

Xj =
∂

∂xj
, Yj =

∂

∂yj
+ xj

∂

∂t
, T =

∂

∂t
,

where j ranges over 1, · · · , d. The standard contact form onHd is the left-invariant 1-form
given by

θ := dt−
∑

1≤j≤d

xjdyj .

Notice that the 1-forms dt and dxj and dyj are left-invariant too.
Let s > 0. We endow Hd with the left-invariant metric,

(6.1) gs :=
∑

1≤j≤d

dxj ⊗ dxj +
∑

1≤j≤d

s−2dyj ⊗ dyj + s2dθ ⊗ θ.
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This is the type of left-invariant Riemannian metrics considered in [GW]. Notice that the
volume of M with respect to gs is independent of s and is equal to

|Γr| := r1 · · · rd.
Observe that {Xj , sYj , s

−dT} is an orthonormal frame for this metric and det gs = 1.
Therefore, the Laplace operator ∆gs on Hd is given by

(6.2) ∆gs = −
∑

1≤j≤d

(X2
j + s2Y 2

j )− s−2dT 2.

In addition, it follows from the results of [Je] that the Ricci tensor of gs (seen as a
(0, 2)-tensor) is given by

Ricgs = −1

2
s2d+2

∑
1≤j≤d

(dxj ⊗ dxj + s−2dyj ⊗ dyj) +
d

2
s4d+2θ ⊗ θ

= −1

2
s2d+2g +

(d+ 1)

2
s4d+2θ ⊗ θ.(6.3)

We then get the following formula for the scalar curvature,

(6.4) Rgs = −d
2
s2d+2.

6.2. Spectral resolution of the Yamabe operator. As all the objects above are left-
invariant, they descend to M = Γ\Hd. In particular, the Laplacian ∆gs on M is given
by (6.2), where the vector fields Xj , Yj and T are meant as vector fields on M . Therefore,
combining this with the above formula for the scalar curvature we obtain

Proposition 6.1. The Yamabe operator of (M, gs) is given by

P1,gs = −
∑

1≤j≤d

(X2
j + s2Y 2

j )− s−2dT 2 − 2d− 1

16
s2d+2.

The spectral resolution of ∆gs on M is intimately related to the representation theory
of Hd. Indeed, the right-action of Hd on itself descends to a right-action on M , and hence
the right-regular representation descends to the unitary representation

ρ : Hd −→ L2(M).

This representation can be decomposed into irreducible representations as follows.
Recall that the irreducible representations of Hd are of two types:

(i) The characters χ(ξ,η) : Hd → C, (ξ, η) ∈ Rd × Rd, defined by

(6.5) χ(ξ,η)(x, y, t) = e2iπ(ξ·x+η·y).

(ii) The infinite dimensional representations πh : Hd → L
(
L2(Rd)

)
, h ∈ R∗, given by

(6.6) [πh(x, y, t)f ] (ξ) := e2iπh(t+y·ξ)f(ξ + x) ∀f ∈ L2(Rd).

We observe that for the characters χ(ξ,η) we have

(6.7) Xjχ(ξ,η) = 2iπξjχ(ξ,η), Yjχ(ξ,η)(Yj) = 2iπηjχ(ξ,η), Tχ(ξ,η) = 0.

For the representations πh, we have

(6.8) dπh(Xj) =
∂

∂ξj
, dπh(Yj) = 2iπhξj , dπh(T ) = 2iπh.
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For n ∈ Z, define

Hn :=
{
f ∈ L2(M); f(x, y, t) = e2inπtg(x, y)

}
.

In particular, H0 is the space of functions that do not depend on the t-variable.
Define

Λ = Zd × ((r1Z)× · · · × (rdZ)) ,

Λ′ = {(µ, ν) ∈ Rd × Rd; µ · x+ ν · y ∈ Z ∀(x, y) ∈ Λ}.

Notice that Λ is the lattice of R2d given by the image of Γ under the projection (x, y, t)→
(x, y). The set Λ′ is its dual lattice.

Let n ∈ Z∗. We set

An :=

{
a = (a1, · · · , ad) ∈ Rd; aj ∈

{
0,

1

|n|
, · · · , |n| − 1

|n|

}}
,

B :=

{
b = (b1, · · · , bd); bj ∈

{
0,

1

rj
, · · · , rj − 1

rj

}}
.

For a ∈ An and b ∈ B, we define the operator W a,b
n : L2(Rd)→ L2(M) by

W a,b
n f(x, y, t) = e2iπnt

∑
k∈Zd

f(x+ k + a+ b)e2iπn(k+a+b)·y.

This is an isometry from L2(Rd) into Hn (see [Fo]). We then let

Ha,bn := W a,b
n (L2(Rd)).

Proposition 6.2 (Brezin [Brez]). We have the following orthogonal decompositions,

L2(M) =
⊕
n∈Z
Hn,

H0 =
⊕

(µ,ν)∈Λ′

Cχ(µ,ν), Hn =
⊕
a∈An
b∈B

Ha,bn , n 6= 0.

Moreover, each operator W a,b
n is an intertwining operator from πn to the regular repre-

sentation ρ. In particular, the multiplicity of πn in ρ is equal to |n|d|r1 · · · rd = |n|d|Γr|.

Thanks to this result the spectral analysis of ∆gs on L2(M) reduces to the spectral
analysis on each of the irreducible subspaces Cχ(µ,ν) and Ha,bn .

Let (ξ, η) ∈ Λ′. Then from (6.2) and (6.7) we see that

∆gsχ(ξ,η) = 4π2(|ξ|2 + s2|η|2)χ(ξ,η).

That is, χ(ξ,η) is an eigenfunction of ∆gs w.r.t. the eigenvalue λ = 4π2(|ξ|2 + s2|η|2).
Let n ∈ Z∗. Using (6.2) and (6.8) we get

dπn(∆gs) =
∑

1≤j≤d

(
−∂2

ξj + 4n2s2π2ξ2
j

)
+ 4n2s−2dπ2.

Under the change of variable ηj =
√

2π|n|s ξj this becomes

2π|n|s
∑

1≤j≤d

(
−∂2

ηj + η2
j

)
+ 4n2s−2dπ2.
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Recall that on R that an orthogonal eigenbasis of L2(R) for the harmonic oscillator

− d2

dv2 + v2 is given by the Hermite functions, hk(v), k ∈ N0, such that

hk(v) := (−1)k
dk

dvk
e−

1
2v

2

,

(
− d2

dv2
+ v2

)
hk(v) = (1 + 2k)hk(v).

Notice that e
1
2v

2

hk(v) is a polynomial of degree k.
From all this we deduce that an orthogonal basis of eigenfunctions of dπn(∆gs) is given

by the functions,

fα(ξ) :=
∏

1≤j≤d

hαj (
√

2π|n|s ξj), α ∈ Nd0,

in such way that

dπn(∆gs)fα =
(
2π|n|s(d+ 2|α|) + 4n2s−2dπ2

)
fα.

Notice that each eigenvalue 2π|n|s(d+2|α|)+4n2s−2dπ2 occurs with multiplicity

(
|α|+ d− 1

d− 1

)
.

As W a,b
n intertwines from πn to the regular representation ρ, we see that an orthogonal

eigenbasis of Ha,bn for ∆gs is given by the functions,

W a,b
n fα(x, y, t) = e2inπt

∑
k∈Zd

fα(x+ k + a+ b)e2inπ(k+a+b)·y

= e2inπt
∑
k∈Zd

∏
1≤j≤d

hαj

(√
2π|n|s (xj + kj + aj + bj)

)
e2inπ(kj+a+b)yj(6.9)

= e2inπt
∏

1≤j≤d

{∑
k∈Z

hαj

(√
2π|n|s (xj + kj + aj + bj)

)
e2inπ(k+a+b)yj

}
.

Each W a,b
n fα is an eigenfunction for the eigenvalue 2π|n|s(d + 2|α|) + 4n2s−2dπ2. This

eigenvalue has multiplicity |n|dr1 · · · rd
(
|α|+ d− 1

d− 1

)
in Hn.

As it turns out, for α = 0 the function W a,b
n f0 can be expressed in terms of Jacobi’s

theta function,

ϑ(z, τ) :=
∑
k∈Z

eiπk
2τe2iπkz, z, τ ∈ C, =τ > 0.

If α = 0, then hαj
(v) = h0(v) = e−

1
2 v

2

for j = 1, · · · , d. Moreover, for u > 0 and v, c ∈ R,
we have∑

k∈Z
h0

(√
2π|n|s (u+ k)

)
e2inπ(k+c)v =

∑
k∈Z

e−π|n|s(u+k)2

e2inπ(k+c)v

= e2inπcv
∑
k∈Z

e−π|n|s(u
2+2ku+u2)e2inπkv

= e−π|n|su
2

e2inπcv
∑
k∈Z

e−π|n|su
2

e2inπk(v±isu)

= e−π|n|su
2

e2inπcvϑ(v ± isu, i|n|s),

where ± is the sign of n. Applying this equality to u = xj+aj+bj , v = yj and c = aj+bj
and using (6.9) we get
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W a,b
n f0(x, y, t) =

= e2inπt
∏

1≤j≤d

{
e−π|n|s(xj+aj+bj)2

e2inπ(aj+bj)vϑ (yj ± is(xj + aj + bj), i|n|s)
}

= e2inπte−π|n|s |x+a+b|2e2inπ(a+b)·v
∏

1≤j≤d

ϑ (yj ± is(xj + aj + bj), i|n|s) .(6.10)

Combining the previous discussion with Proposition 6.1 we obtain

Proposition 6.3 (Compare [GW, Theorem 3.3]). Assume M = Γr\Hd is equipped with
the metric gs given by (6.1).

(1) An orthogonal eigenbasis of L2(M) for the Yamabe operator P1,gs is given by the
join,

(6.11)
{
χ(ξ,η); (ξ, η) ∈ Λ′

}⋃{
W a,b
n fα; (n, a, b, α) ∈ Z∗ ×An × B × Nd0

}
.

The characters χ(ξ,η) are given by (6.5). The functions W a,b
n fα are given by (6.9),

which reduces to (6.10) when α = 0.
(2) Each character χ(ξ,η) is an eigenfunction of P1,gs with eigenvalue

λ(ξ, η) := 4π2
(
|ξ|2 + s2|η|2

)
− 2d− 1

16
s2d+2.

(3) Each function W a,b
n fα is an eigenfunction of P1,gs with eigenvalue

µ(n, |α|) := 2π|n|s(d+ 2|α|) + 4n2s−2dπ2 − 2d− 1

16
s2d+2.

This eigenvalue has multiplicity |n|d|Γr|
(
|α|+ d− 1

d− 1

)
in Hn.

Remark 6.4 (See also [GW, Theorem 3.3]). The above considerations also provides us
with a spectral resolution of the Laplacian ∆gs . More precisely, we see that

(i) Each χ(ξ,η) is an eigenfunction of ∆gs with eigenvalue

(6.12) λ0(ξ, η) := 4π2
(
|ξ|2 + s2|η|2

)
.

(ii) Each function W a,b
n fα is an eigenfunction of P1,gs with eigenvalue

(6.13) µ0(n, |α|) := 2π|n|s(d+ 2|α|) + 4n2s−2dπ2.

6.3. Nodal sets and negative eigenvalues of P1,gs . We observe that an eigenfunction
W a,b
n fα lies in the nullspace of P1,gs if and only if

(6.14) 2π|n|s(d+ 2|α|) + 4n2s−2dπ2 − 2d− 1

16
s2d+2 = 0.

If we multiply both sides of the equation by −s2d and set v = s2d+1, then this equation
becomes the quadratic equation 2d−1

16 v2 − 2π|n|(d + 2|α|)v − 4n2π2 = 0, whose unique

positive root is v = 8π|n|
2d−1

(
2(d+ 2|α|) +

√
4(d+ 2|α|)2 + 2d− 1

)
. Therefore, W a,b

n fα lies

in the nullspace of P1,gs if and only if

(6.15) s2d+1 =
8π|n|
2d− 1

(
2(d+ 2|α|) +

√
4(d+ 2|α|)2 + 2d− 1

)
.
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Let us give a lower bound for ν1(gs), i.e., the number of negative eigenvalues of P1,gs .

An eigenvalue µ(n, |α|) = 2π|n|s(d + 2|α|) + 4n2s−2dπ2 − 2d−1
16 s2d+2 is negative if and

only if

s2d+1 >
8π|n|
2d− 1

(
2(d+ 2|α|) +

√
4(d+ 2|α|)2 + 2d− 1

)
.

In particular, for every integer n such that 8π|n|
2d−1

(
2d+

√
4d2 + 2d− 1

)
< s2d+1, the eigen-

value µ(n, 0) is negative. Moreover, such an eigenvalue occurs with multiplicity |n|d|Γr|.
Therefore, we obtain

Proposition 6.5. There is a constant cd > 0 depending on d, but not on the sequence
r = (r1, · · · , rd), such that

ν1(gs) ≥ cd|Γr|s2d+2 ∀s > 0.

In particular, for every integer m ∈ N, the Yamabe operator P1,gs has at least m negative
eigenvalues as soon as s is large enough.

Suppose now that s2d+1 = 8π
2d−1

(
2d+

√
4d2 + 2d− 1

)
, i.e., (6.15) holds for n = ±1

and α = 0. Notice that A±1 = {0}, so kerP1,gs ∪ H⊥0 is spanned by the functions

W 0,b
±1 f0 given by (6.10) where b ranges over B. Furthermore, the transcendence of π

implies that if s2d+1 = 8π
2d−1

(
2d+

√
4d2 + 2d− 1

)
, then no element (ξ, η) ∈ Λ′ satisfies

λ(ξ, η) = |ξ|2 + s2|η|2 − 2d−1
16 s2d+2 = 0, i.e., no character χ(ξ,η) is contained in kerP1,gs .

Thus the functions W 0,b
±1 f0, b ∈ B, form an orthogonal eigenbasis of kerP1,gs .

Let us now look at the nodal sets of the eigenfunctions W 0,b
±1 f0. It follows from (6.10)

that W 0,b
±1 f0(x, y, t) = 0 if and only if

(6.16) ϑ (yj ± is(xj + bj), is) = 0 for some j ∈ {1, · · · , d}.

Moreover, by Jacobi’s triple product formula,

ϑ(z, is) =

∞∏
m=1

(1− e−2mπs)(1 + e2iπze−(2m−1)πs)(1 + e−2iπze−(2m−1)πs).

Thus, for z = v + isu, u, v ∈ R, we see that ϑ(z, is) = 0 if and only if there is m ∈ Z
such that e−(2m−1)πs = −e2iπz = e−2πsu+iπ(2v+1), that is, u and v are contained in
1
2 + Z. Applying this to u = xj + bj and v = ±yj with (xj , yj) ∈ [0, 1) × [0, rj) and

bj ∈ {0, r−1
j , · · · , 1− r−1

l } it not hard to deduce that

ϑ (yj ± is(xj + bj), is) = 0⇐⇒
{
xj = ±(bj − 1

2 )−
[
±(bj − 1

2 )
]
,

yj ∈
{

1
2 ,

3
2 , · · · , rj −

1
2

}
,

where [·] is the floor function. (Here xj = ±(bj − 1
2 )−

[
±(bj − 1

2 )
]

is the only element of
[0, 1) such that ±(xj + bj) is a half-integer.) Combining with (6.16) enables us to get the

nodal set of W 0,b
±1 f0.

Summarizing the previous discussion, we have proved

Proposition 6.6. Let s be the (2d+ 1)-th root of 8π
2d−1

(
2d+

√
4d2 + 2d− 1

)
.

(1) The functions W 0,b
±1 f0, b ∈ B, form an orthogonal basis of kerP1,gs .
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(2) The nodal set of W 0,b
±1 f0 is given by the join,

⋃
1≤j≤d
1≤l≤rj

{
(x, y, t) ∈M ;xj = ±(bj −

1

2
)−

[
±(bj −

1

2
)

]
, yj = l − 1

2

}
.

Remark 6.7. The nodal sets of the eigenfunctions W 0,b
±1 f0 are submanifolds of codimen-

sion 2 in M .

Null eigenvectors and negative eigenvalues can also occur from the characters χ(ξ,η).
To simplify the discussion we assume that d = 1 and r1 = 1.

The eigenfunction χ(ξ,η) is in the kernel of P1,gs if and only if λ(ξ, η) = 0 which,
according to Proposition 6.3, is equivalent to

(6.17) 4π2(|ξ|2 + s2|η|2) =
2d− 1

16
s2d+2

Although χ(ξ,η) takes values in S1, we observe that χ(ξ,η) is a null eigenvector if and only
if so is χ(−ξ,−η) = χ(ξ,η). Therefore, nodal sets to consider are N (<χξ,η) and N (=χξ,η).
Notice they are of the form N (x, y) × [0, 1] where the last factor corresponds to the t
coordinate.

As r1 = 1 we see that ξ and η are in Z in (6.17). Accordingly, the values of s for which
a function χ(ξ,η) lies in the kernel of P1,gs are given by

(6.18) s2 ∈
{

32π2(η2 +
√
η4 + ξ4/(16π2)) : ξ, η ∈ Z

}
.

Here the dimension of the kernel is equal to the number of the pairs (ξ, η) for which
equation (6.17) has solutions for a given s ∈ R. An elementary calculation shows that
(ξ1, η1, s) and (ξ2, η2, s) can both be solutions of (6.17) if and only if ξ1 = ±ξ2, η1 = ±η2

(otherwise π would be a root of a nontrivial algebraic equation). It follows that for
solutions of (6.17) and (6.18) the values of ξ2 and η2 are fixed.

Accordingly, the dimension of the kernel of P1,gs is equal to either two (when (ξ, η) =
(0,±b) or (ξ, η) = (±a, 0)) or four (when (ξ, η) = (±a,±b), a 6= 0, b 6= 0). It is now easy
to describe some of the corresponding nodal sets.

In case ξ = 0, η = ±a, s = 4a, a ∈ N the eigenfunction is of the form sin 2π(ay + θ).
Accordingly, up to translation in y, the nodal set is

(6.19) [0, 1]× {k/(2a) : 0 ≤ k ≤ 2a} × [0, 1].

In case η = 0, ξ = ±a2, s = 2a, a ∈ N, the eigenfunction is of the form sin 2π(a2x+ θ).
Accordingly, up to translation in x, the nodal set is

(6.20) {k/(2a2) : 0 ≤ k ≤ 2a2} × [0, 1]× [0, 1].

Finally, in case ξ = ±a, η = ±b, s2 = 8(η2 +
√
η4 + ξ4/4); a 6= 0, b 6= 0, there exist

“product” eigenfunctions of the form sin 2π(ax+ θ1) · sin 2π(by + θ2) with nodal sets is a
union of sets of the form (6.20) and (6.19). In addition, there exist eigenfunctions of the
form sin 2π(ax+ by + θ), whose nodal sets (up to translation) have the form

{(x, y) ∈ [0, 1]2 : 2(ax+ by) ∈ Z} × [0, 1].
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6.4. The Paneitz operator. Let us now look at the Paneitz operator (2.3). We have

(6.21) P2,gs := ∆2
gs + δV d+

2d− 3

2

{
1

4d
∆gsRgs +

2d+ 1

8(2d)2
R2
g − 2|S|2

}
,

where S = 1
2d−1 (Ricgs −

Rgs

2(2d)gs) is the Schouten-Weyl tensor and V is the tensor V =
2d−1
2(2d)Rgsgs − 4S acting on 1-forms.

Using (6.3)–(6.4), we see that the Schouten-Weyl tensor is given by

S = − 3

8(2d− 1)
s2d+2gs +

d+ 1

2(2d− 1)
s4d+2θ ⊗ θ

= − 3

8(2d− 1)
s2d+2

∑
1≤j≤d

(
dxj ⊗ dxj + s−2dyj ⊗ dyj

)
+

4d+ 1

8(2d− 1)
s2d+2 · s2dθ ⊗ θ.

Observing that {dxj⊗dxj , s−2dyj⊗dyj , s2dθ⊗θ} is an orthonormal family of (0, 2)-tensors
we find that

|S|2 =
16d2 + 18d+ 1

64(2d− 1)2
s4d+4.

We then deduce that the constant coefficient of P2 is equal to

(2d− 3)
(2d+ 1)(2d− 1)2 − 4(16d2 + 18d+ 1)

256(2d− 1)2
s4d+4.

The tensor V is given by

V =
12− (2d− 1)2

8(2d− 1)
s2d+2gs −

2(d+ 1)

2d− 1
s4d+2θ ⊗ θ.

We need to look at V as acting on 1-forms. The action of gs on 1-form is just the identity.
The action of s2dθ ⊗ θ is the orthogonal projection onto the span of θ. Thus,

δV d =
12− (2d− 1)2

8(2d− 1)
s2d+2∆gs + 2

d+ 1

2d− 1
s2T 2.

Combining all this together we get

Proposition 6.8. The Paneitz operator on M for the metric gs is given by

P2,gs = ∆2
gs − c1(d)s2d+2∆gs + 2

d+ 1

2d− 1
s2T 2 + c0(d)s4d+4,

where we have set

c0(d) := (2d− 3)
(2d+ 1)(2d− 1)2 − 4(16d2 + 18d+ 1)

256(2d− 1)2
and c1(d) :=

(2d− 1)2 − 12

8(2d− 1)
.

Observe that Tχ(ξ,η) = 0 and T 2W a,b
n fα = −2n2π2. Therefore, we can use the spectral

resolution of Laplacian ∆gs given by Remark 6.4 and to get a spectral resolution of P2,gs .

Proposition 6.9. Assume M = Γr\Hd is equipped with the metric gs given by (6.1).

(1) The family (6.11) for an orthogonal eigenbasis of L2(M) for P2,gs .
(2) Each character χ(ξ,η) is an eigenfunction of P2,gs with eigenvalue

λ0(ξ, η)2 − c1(d)s2d+2λ0(ξ, η) + c0(d)s4d+4,

where λ0(ξ, η) is given by (6.12).
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(3) Each function W a,b
n fα is an eigenfunction of P2,gs with eigenvalue

µ0(n, |α|)2 − c1(d)s2d+2µ0(n, |α|) + c0(d)s4d+4 − 4
d+ 1

2d− 1
n2π2s2,

where µ0(ξ, η) is given by (6.12). This eigenvalue has multiplicity |n|d|Γr|
(
|α|+ d− 1

d− 1

)
in Hn.

Set Fn(µ; s) := µ2 − c1(d)s2d+2µ + c0(d)s4d+4 − 4 d+1
2d−1n

2π2s2. Then Proposition 6.9

states that W a,b
n fα is an eigenfunction of P2,gs with eigenvalue Fn (µ0(n, |α|); s). More-

over, Fn(µ; s) is a quadratic polynomial in µ with discriminant

δn(d, s) := δ0(d)s4d+4 + 16
d+ 1

2d− 1
n2π2s2, δ0(d) = c1(d)2 − 4c0(d).

A computation shows that δ0(d) = 1
4

4d2−7
2d−1 , which is positive for d ≥ 2.

Assume d ≥ 2. Then δn(d, s) ≥ δ0(d)s4d+4 > 0, and so Fn (µ0(n, |α|); s) is a negative
eigenvalue of P2,gs if and only if

µ0(n, |α|) < 1

2

(
c1(d)s2d+2 +

√
δn(d, s)

)
.

As δn(d, s) ≥ δ0(d)s4d+4, we see that µ0(n, |α|) satisfies the above condition if µ0(n, |α|) <
1
2

(
c1(d) +

√
δ0(d)s4d+4

)
. That is,

2π|n|s(d+ 2|α|) + 4n2s−2dπ2 <
1

2

(
c1(d) +

√
δ0(d)

)
s2d+2.

This is the same type of condition than that incurring from (6.14) for Wnf
a,b
α to produce

a negative eigenvalue of the Yamabe operator P1,gs . Therefore, by using the same kind
of arguments as that used to derive of Proposition 6.5, we obtain

Proposition 6.10. Assume d ≥ 2. Then there is a constant cd > 0 depending on d, but
not on the sequence r = (r1, · · · , rd), such that

ν2(gs) ≥ cd|Γr|s2d+2 ∀s > 0.

In particular, for every integer m ∈ N, the Paneitz operator P2,gs has at least m negative
eigenvalues as soon as s is large enough.

7. Open problems

7.1. Discriminant hypersurfaces in the space of conformal structures. Let M
be a compact orientable Riemannian manifold. Denote byM the space of all Riemannian
metrics on M . Then one can consider the action on M of the group P of (pointwise)
conformal transformations (multiplication by positive functions), as well as of the group D
of diffeomorphisms; we shall denote by D0 the subgroup of D of diffeomorphisms isotopic
to identity.

The objects considered in the paper are invariant under the action of P, and equivariant
with respect to the action of D. Accordingly, it seems natural to consider our invariants
as functions on the Teichmüller space of conformal structures

TM =
M/P
D0

,
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or on Riemannian moduli space of conformal structures

RM =
M/P
D

,

in the terminology of Fischer and Monkrief, [FM1, FM2]. If M is an orientable two-
dimensional manifold, then TM (resp. RM ) is the usual Teichmüller (resp. moduli)
spaces. In [FM2], the space TM for Haken 3-manifolds M of degree 0 is proposed as a
configuration space for a Hamiltonian reduction of Einstein’s vacuum field equations.

7.2. Dimension of the nullspace of a non-critical GJMS operator. The Dirac
operator is another important conformally invariant operator. Results of Maier [Ma]
in dimension 3 and Amman-Dahl-Humbert [ADH] in higher dimension show that, on
a compact Riemannian spin manifold, and for a generic metric, the dimension of the
nullspace of the Dirac operator is equal to the lower bound provided by the Atiyah-Singer
index theorem. In particular, the nullspace of the Dirac operator is generically trivial
when n ∈ {3, 4, 5, 6, 7} mod 8.

Let k ∈ N and further assume k < n
2 when n is even. For the GJMS operator Pk we

make the following conjecture.

Conjecture A. For a generic conformal class in TM the nullspace of Pk is trivial.

This conjecture will be addressed in the sequel [CGJP2]. For a general (possibly
non-generic) conformal class, we mention the following conjecture due to Colin Guillar-
mou [Gu].

Conjecture B (Guillarmou). Assume n odd. Then, for any conformal class in TM , there
exists C > 0 such that

dim kerPk ≤ Ckn ∀k ∈ N.

7.3. Hypersurfaces in TM , RM and rigidity of the nodal set. Bearing in mind
Conjecture A, we consider the discriminant hypersurface Hk (in T or R) consisting of
conformal classes with nontrivial nullspace kerPk 6= 0.

Conjecture C. For a generic conformal class in Hk, the nullspace of Pk has dimension 1.

Notice that when dim kerPk = 1 the nodal set and the nodal domains are well-defined.
We also observe that Hk contains all conformal classes of Ricci-flat metrics, since for a
Ricci-flat metric g Eq. (2.5) shows that Pk,g = ∆k

g , and hence kerPk,g is equal to the
space of constant functions.

The following inverse (rigidity) problem seems natural:

Problem D. Let g be a metric such that dim kerPk,g = 1. Does the nodal set N (φ), φ ∈
kerPk,g, determine the corresponding conformal class [g] ∈ Hk uniquely (up to diffeomor-
phisms)? In other words, do our invariants separate points in Hk?

The following weaker (deformation rigidity) version of the previous problem also seems
interesting:

Problem E. Let g be a metric such that dim kerPk,g = 1. Does the nodal set N (φ), φ ∈
kerPk,g, determine locally the conformal class [g]? In other words, can we deform a
conformal class without changing N (φ)?
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We remark that it seems quite natural to consider Problems D and E on the spaces TM
and RM , since the action of P preserves the nodal sets, and their definition is equivariant
with respect to the action of D. The first natural step in this direction seems to be

Problem F. Let g be a metric such that dim kerPk,g ≥ 1. Determine the tangent space
TgH ⊂ TgM.

7.4. Dimension of the nullspace of the critical GJMS operator. Assume n even.
For the critical GJMS operator Pn

2
on a n-dimensional manifold with n even, the constant

function will always be in kerPn
2

.

Conjecture G. For a generic conformal class in TM , the nullspace of kerPn
2

consists of
constant functions.

This conjecture is true if M admits an Einstein metric of positive scalar curvature.
We define the discriminant hypersurface Hn

2
as the set of of conformal classes for which

the dimension of the nullspace of Pn
2

is at least 2.

Conjecture H. For a generic conformal class in Hn
2

, the nullspace of Pn
2

has dimen-
sion 2.

It seems interesting to study the geometry and topology of the various Hk and their
complements in the space of all conformal classes of Riemannian metrics on M .

7.5. Negative eigenvalues and topology of spaces of metrics. Recall that it was
shown in Proposition 4.6 that on any compact manifold of dimension n ≥ 3, for any
m > 0 there exist metrics g for which the Yamabe operator P1,g has at least m nega-
tive eigenvalues. We have also constructed examples of Riemannian manifolds for which
there are analogous results for some higher order GJMS operators (cf. Theorem 4.8 and
Theorem 6.10).

Problem I. Let k > 1, and let M be a compact manifold of dimension n ≥ 3. Can
we find for every m ∈ N a metric gm on M such that Pk,gm has at least m negative
eigenvalues?

We remark that if the number of negative eigenvalues of Pk,g, k > 1, is uniformly
from bounded above for every metric g on M , then the smallest such bound would be a
topological invariant of M .

On Yamabe-negative manifolds (which do not admit metrics of nonnegative scalar
curvature), we know that in every conformal class there exists at least one negative
eigenvalue of P1,g. For such manifolds, the following question formulated in [BD] seems
natural:

Problem J. Let M be a Yamabe-negative compact manifold of dimension n ≥ 3. Does
there exist an integer m0 ≥ 2 such that in every conformal class on M , the Yamabe
operator P1,g has at least m0 negative eigenvalues?

It is known from the work of Gromov-Lawson [GL, Ro] that, on many manifolds of
dimension n ≥ 5 (and on some manifolds of dimension 4), the space of Yamabe-positive
metrics (with positive scalar curvature, or equivalently without negative eigenvalues of
P1,g) can have infinitely many connected components.

On the other hand, Lohkamp ([Lo1]; see also [Ka]) showed that the space of metrics
with negative scalar curvature is connected and has trivial homotopy groups. Therefore,
the following seems natural:
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Problem K. Let M be a compact manifold of dimension n ≥ 3. Given integers k and
m, describe the topology of the space of all metrics g for which the GJMS operator Pk,g
has at most m negative eigenvalues (i.e., λm+1(Pk,g) ≥ 0). In particular, is that space
connected?

Appendix by A. Rod Gover and Andrea Malchiodi.
Non-critical Q curvature prescription.

Forbidden functions arising from non-trivial nullspace.

A.1. Background. Some literature and background concerning curvature prescription
was mentioned in Section 5. Concerning the problem of prescribing Q = Qn

2 ,g
on even

manifolds: in [Go3, Mal] it was shown that if the manifold and conformal structure is
such that the related critical GJMS operator Pn

2
has non-trivial kernel (i.e., it contains

non-constant functions), then global considerations show that large classes of functions
cannot arise as the Q-curvature for some metric in the given conformal class. Due to the
curious properties of Branson’s Q-curvature it turns out that the arguments required in
[Go3] are mainly of a linear or quadratic nature and benefit from a conformal invariant
identified in [BG1, BG2].

The conformal prescription problem for the other (“non-critical”) Q-curvatures is
rather different (having polynomial instead of exponential non-linearities). Neverthe-
less we work with the cases k 6= n

2 here (so we exclusively consider the non-critical
Q-curvatures) and show that there are again global obstructions to prescription of cer-
tain functions, arising from the presence of non-trivial GJMS kernel. In the following k
is an integer from the usual range for the GJMS operators except that we shall suppose
henceforth that 2k 6= n (so k is a positive integer with 2k /∈ {n, n+ 2, · · · }).

Recall the expression (2.7) defining the Q-curvatures and that in the case k = 1 we
have Q1 = Rg/2(n− 1), where Rg is the usual scalar curvature. In general the quantity
Qk in (2.7) is called the order 2k (non-critical) Q-curvature; for simplicity we shall refer
to this as simply a Q-curvature. As in the body of the article, for Qk we may write Qk,g
to emphasise the dependence on the metric g; we similarly treat related quantities.

A.2. The Problem. The Q-prescription problem is described in (5.1). The partial dif-
ferential equation governing this follows from the conformal transformation of the Pk
operator, as discussed in Section 2. We summarise the facts from there in a form conve-
nient for our current purposes.

For the conformal transformation of Pk,g we have

(A.1) Pk,ĝe
2k−n

2 ωu = e−
2k+n

2 ωPk,gu,

where ĝ = e2ωg, ω, u ∈ C∞(M,R). So if we take, in particular, u to be the positive

function u = e
n−2k

2 ω, then e
2k−n

2 ωu = 1, and so we conclude

(A.2) Pk,ĝ1 = u
n+2k
2k−nPk,gu.

Putting (2.7) and (A.2) together we obtain the non-linear equation governing (5.1):

(A.3)

(
δSk,gd+

n− 2k

2
Qk,g

)
u =

n− 2k

2
Qk,ĝu

n+2k
n−2k ,

where u is an arbitrary positive function. This generalises the well-known scalar curvature
prescription equation which is the k = 1 special case.
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A.3. Forbidden functions. Denote by C a conformal class of metrics on M . We are
interested in what functions we can, or cannot, land on with Qk,ĝ, where ĝ ∈ C. Let us
fix k and drop it from the notation. So henceforth P = Pk and Q = Qk for some fixed k
with 2k ∈ 2Z \ {n, n+ 2, n+ 4, . . .}.

A first obstruction one can obtain rather easily, as in [KW1], is that if for some g ∈ C
Qg has a given sign, then it is not possible to prescribe a function with the opposite sign:
this follows immediately by integrating (A.3). We notice first that for the case k = 1 the
sign of the Yamabe invariant

inf
ĝ∈C

∫
R ĝ dvĝ(∫
dvĝ
)n−2

n

coincides with the sign of the first eigenvalue of the conformal Laplacian and determines
uniquely the possible sign of the scalar curvature for the metrics in C. This is not the
case in general for larger k, due to a lack of maximum principle.

We have next the following observation, more peculiar to the presence of a kernel. Here
and subsequently we write kerPg for the kernel (or nullspace) of Pg.

Proposition A.1. Consider a closed manifold M equipped with a conformal structure C,
and let g ∈ C. If 0 6= u ∈ kerPg, then u is not in the range of Q. That is, u 6= Qĝ for all
ĝ ∈ C.

Proof. Suppose with a view to contradiction that ĝ ∈ C and Qĝ = u. Since g, ĝ ∈ C we
have ĝ = e2ωg for some ω ∈ C∞(M,R).

Now from (A.1), if u ∈ kerPg then efu ∈ kerPĝ, where f = 2k−n
2 ω. So, using that Pĝ

is formally self-adjoint, it follows that for any function v∫
uefPĝv dvĝ = 0.

Thus, taking v = 1, this shows

0 =
2

n− 2k

∫
uefPĝ1 dvĝ =

∫
uefQĝ dvĝ =

∫
uefu dvĝ =

∫
u2ef dvĝ.

This is a contradiction since u2ef is a non-zero non-negative function. �

More generally essentially the same argument shows that we cannot have Qĝ equal su,
where the latter is any function that has the same or opposite strict sign as u: Suppose
with a view to contradiction Qĝ = su. Then

0 =
2

n− 2k

∫
uefPĝ1 dvĝ =

∫
uefsu dvĝ =

∫
efusu dvĝ,

which is impossible. Thus we have the following result.

Theorem A.2. Consider a closed manifold M equipped with a conformal structure C,
and let g ∈ C. Suppose there exists u ∈ kerPg \ {0}. Then for any function su on M with
the same or opposite strict sign as u, su is not in the range of Q. That is su 6= Qĝ, for
all ĝ ∈ C.

Observe that if there exists u, as in the Theorem, then there is a huge class of functions
satisfying the conditions on su: for example efup where p is an odd positive integer and
f ∈ C∞(M,R). We record this for emphasis.

Corollary A.3. If Pg has non-trivial kernel then there is an infinite dimensional space
of functions disjoint from R(Q).
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A.4. Constraints on R(Q). To prove Theorem A.2 we used that given u ∈ kerPg then
for any ĝ ∈ C we have

(A.4)

∫
uefQĝ dvg = 0

for some real function f , which depends on ĝ. In fact if ĝ = e2ωg then f = n+2k
2 ω,

but the details are not important. The key point here is that ef is a strictly positive
function, thus for u non-zero the display captures some non-trivial constraint on R(Q) as
demonstrated in Theorem A.2 and its Corollary.

Given elements u ∈ kerPg and g ∈ C, consider the linear form Igu : C∞(M,R) → R
defined by

Igu(v) =

∫
uv dvg ∀v ∈ C∞(M,R).

Now let us fix some g ∈ C, and for the moment also fix some u ∈ kerPg. From (A.4),
and the conformal transformation of the standard metric measure, we have that if v = Qĝ,
for some ĝ ∈ C, then there exists g′ ∈ C such that

(A.5)

∫
uv dvg′ = 0.

Thus

R(Q) ⊆
⋃
g′∈C
Z(Ig

′

u ),

where Z(Ig
′

u ) denotes the kernel of the map Ig
′

u . This holds for all elements of kerPg,
thus we have

(A.6) R(Q) ⊆
⋂

u′∈kerPg

 ⋃
g′∈C
Z(Ig

′

u′ )

 .
By definition R(Q) depends only on the conformal structure. On the other hand we
had fixed g ∈ C to describe the right-hand-side here. A different choice would result
in each of the elements u′ ∈ kerPg being replaced by a positive function multiple efu′,
with the same function ef for all elements of kerPg. Examining (A.5), we see that this
factor ef may be absorbed by moving to a conformally related measure. Since we average
over all such in the right-hand-side of (A.6) it is clear that in fact this function space is
independent of g, and depends only on C.

Since kerPg is finite dimensional and Igu′ is linear in its dependence on u′ ∈ kerPg we
obtain the following refinement of the above.

Theorem A.4. On a closed conformal manifold (M, C) let g ∈ C. Then

R(Q) ⊆ I =
⋂̀
i=1

⋃
g′∈c
Z(Ig

′

ui
)

 .
where ` = dim kerPg, and u1, · · · , u` is a basis for kerPg. Furthermore the function space
I is independent of the choice of g ∈ C and the choice of basis {u1, · · · , u`}.

An important special case is prescribing constant Q-curvature. This is related to the
Yamabe problem which seeks to find within a conformal class a metric with constant
scalar curvature. Note that if there is a metric g ∈ C such that Qg = constant 6= 0 then
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it is clear from (A.5) that any non-zero element of kerPg must change sign on M . But
this sign change property is independent of g ∈ C. Thus by contrapositive we have the
following.

Theorem A.5. On a connected conformal manifold (M, C) let g ∈ C. Suppose that there
is a non-zero function u ∈ kerPg that is either everywhere non-negative, or everywhere
non-positive. Then there is no non-zero constant function in R(Q).

Remark A.6. Note the result in the Proposition is interesting only if u, as described there,
has a non-trivial zero locus. Otherwise if u is strictly positive or strictly negative then
it follows easily from (A.1) that there is a metric ĝ ∈ C such that Pĝ annihilates (all)
constant functions and so the constant function 0 is in R(Q), see Proposition 5.8.

A.5. Final comments. Although we have focussed on the GJMS operators the results
here apply more widely. We could replace the GJMS operators with any conformally
covariant and formally self-adjoint operator P k (on functions) of the same conformal
bidegree and taking the form

P k = δSkd+Qk,

(cf., (2.7)) with Qk non-trivial. Then the Qk prescription theory would mirror that above.
Alternative conformal powers of the Laplacian, with these properties, are described in
[Go1] (due to M.G. Eastwood and the first author).

Similarly in certain circumstances the restriction 2k /∈ {n + 2, n + 4, · · · }, on even
manifolds, can be relaxed. For example this is the case if the manifold is locally confor-
mally flat or if it is locally conformally Einstein [Go2]; in both settings there is a class of
differential operators which extends the GJMS family to these orders.
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[Wü] V. Wünsch. On conformally invariant differential operators. Math. Nachr. 129 (1986), 269–281.

[SZ] C. Sogge and S. Zelditch. Lower bounds on the Hausdorff measure of nodal sets. Math. Res.
Lett. 18 (2011), no. 1, 25–37.

Department of Mathematics and Statistics, McGill University, Montréal, Canada.
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