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• X n, n ≥ 2 - compact. ∆ - Laplacian. Spectrum:
∆φi + λiφi = 0, 0 = λ0 < λ1 ≤ λ2 ≤ . . .
Eigenvalue counting function:
N(λ) = #{√λj ≤ λ}.
Weyl’s law: N(λ) = CnVλn + R(λ), R(λ) = O(λn−1).
R(λ) - remainder.

• Spectral function: Let x , y ∈ X .
Nx ,y (λ) =

∑√
λi≤λ φi(x)φi(y).

If x = y , let Nx ,y (λ) := Nx(λ).
Local Weyl’s law:
Nx ,y (λ) = O(λn−1), x 6= y ;
Nx(λ) = Cnλ

n + Rx(λ), Rx(λ) = O(λn−1); Rx(λ) -
local remainder.

• We study lower bounds for R(λ), Rx(λ) and Nx ,y (λ).
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• Notation: f1(λ) = Ω(f2(λ)), f2 > 0 iff
lim supλ→∞ |f1(λ)|/f2(λ) > 0. Equivalently,
f1(λ) 6= o(f2(λ)).

• Theorem 1[JP] If x , y ∈ X are not conjugate along any
shortest geodesic joining them, then

Nx ,y (λ) = Ω
(
λ

n−1
2

)
.

• Theorem 2[JP] If x ∈ X is not conjugate to itself along
any shortest geodesic loop, then

Rx(λ) = Ω(λ
n−1

2 )

• Other results in dimension n > 2 involve heat invariants.
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• Example: flat square 2-torus
λj = 4π2(n2

1 + n2
2), n1, n2 ∈ Z

φj(x) = e2πi(n1x1+n2x2), x = (x1, x2)

|φj(x)| = 1 ⇒ N(λ) ≡ Nx(λ)

Gauss circle problem: estimate R(λ).
Theorem 2 ⇒ R(λ) = Ω(

√
λ) -

Hardy–Landau bound. Theorem 2 generalizes that
bound for the local remainder.
Soundararajan (2003):

R(λ) = Ω

(√
λ(log λ)

1
4 (log log λ)

3(24/3−1)
4

(log log log λ)5/8

)
.

• Hardy’s conjecture: R(λ) ¿ λ1/2+ε ∀ε > 0.

Huxley (2003): R(λ) ¿ λ
131
208 (log λ)2.26.
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• Negative curvature. Suppose sectional curvature
satisfies
−K 2

1 ≤ K (ξ, η) ≤ −K 2
2

Theorem (Berard): Rx(λ) = O(λn−1/ log λ)
Conjecture (Randol): On a negatively-curved surface,
R(λ) = O(λ

1
2 +ε). Randol proved an integrated (in λ)

version for Nx ,y (λ).
• Theorem (Karnaukh) On a negatively curved surface

Rx(λ) = Ω(
√

λ)

+ logarithmic improvements discussed below.
Karnaukh’s results (unpublished 1996 Princeton Ph.D.
thesis under the supervision of P. Sarnak) served as a
starting point and a motivation for our work.
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• Thermodynamic formalism: Gt - geodesic flow on
SX , ξ ∈ SX , Tξ(SX ) = Es

ξ ⊕ Eu
ξ ⊕ Eo

ξ ,
• dim Es

ξ = n − 1 : stable subspace, exponentially
contracting for Gt ;
• dim Eu

ξ = n − 1 : unstable subspace, exponentially
contracting for G−t ;
• dim Eo

ξ = 1 : tangent subspace to Gt .
Sinai-Ruelle-Bowen potential H : SM → R:

H(ξ) =
d
dt

∣∣∣∣
t=0

ln det dGt |Eu
ξ

• Topological pressure P(f ) of a Hölder function
f : SX → R satisfies (Parry, Pollicott)

∑

l(γ)≤T

l(γ) exp
[∫

γ
f (γ(s), γ′(s))ds

]
∼ eP(f )T

P(f )
.
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• γ - geodesic of length l(γ). P(f ) is defined as

P(f ) = sup
µ

(
hµ +

∫
fdµ

)
,

µ is Gt -invariant, hµ - (measure-theoretic) entropy.
• Ex 1: P(0) = h - topological entropy of Gt . Theorem

(Margulis): #{γ : l(γ) ≤ T} ∼ ehT /hT .
Ex. 2: P(−H) = 0.

• Theorem 3[JP] If X is negatively-curved then for any
δ > 0 and x 6= y

Nx ,y (λ) = Ω
(
λ

n−1
2 (log λ)

P(−H/2)
h −δ

)

Here P(−H/2)/h ≥ K2/(2K1) > 0.
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Theorem 4a[JP] X - negatively-curved. For any δ > 0

Rx(λ) = Ω
(
λ

n−1
2 (log λ)

P(−H/2)
h −δ

)
, n = 2, 3.

Results for n ≥ 4 involve heat invariants.

K = −1 ⇒ Rx(λ) = Ω
(
λ

n−1
2 (log λ)

1
2−δ

)

Karnaukh, n = 2: estimate above + weaker estimates in
variable negative curvature.
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• Global results: R(λ)
Randol, n = 2:

K = −1 ⇒ R(λ) = Ω
(
(log λ)

1
2−δ

)
, ∀δ > 0.

Theorem 4b[JPT] X - negatively-curved surface
(n = 2). For any δ > 0

R(λ) = Ω
(
(log λ)

P(−H/2)
h −δ

)
.

• Conjecture (folklore). On a generic negatively curved
surface

R(λ) = O(λε) ∀ε > 0.

Selberg, Hejhal: On compact arithmetic surfaces that
correspond to quaternionic lattices R(λ) = Ω

( √
λ

log λ

)
.

Reason: exponentially high multiplicities in the length
spectrum; generically, X has simple length spectrum.
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Proof of Theorem 4b: (about R(λ)). X -compact,
negatively-curved surface.
Wave trace on X (even part):

e(t) =
∞∑

i=0

cos(
√

λi t).

Cut-off: χ(t , T ) = (1− ψ(t))ρ̂
( t

T

)
, where

• ρ ∈ S(R), supp ρ̂ ⊂ [−1, +1], ρ ≥ 0, even;
• ψ(t) ∈ C∞

0 (R), ψ(t) ≡ 1, t ∈ [−T0, T0], and
ψ(t) ≡ 0, |t | ≥ 2T0.
In the sequel, T = T (λ) →∞ as λ →∞. Let

κ(λ, T ) =
1
T

∫ ∞

−∞
e(t)χ(t , T ) cos(λt)dt
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• Key microlocal result:
Proposition 5. Let T = T (λ) ≤ ε log λ. Then

κ(λ, T ) =
∑

l(γ)≤T

l(γ)# cos(λl(γ)) · χ(l(γ), T )

T
√|det(I − Pγ)| + O(1)

where
γ - closed geodesic; l(γ) - length; l(γ)#-primitive
period; Pγ - Poincaré map.

• Long-time version of the “wave trace” formula of
Duistermaat and Guillemin, microlocalized to shrinking
neighborhoods of closed geodesics. Allows to isolate
contribution from a growing number of closed
geodesics with l(γ) ≤ T (λ) to κ(λ, T ) as λ, T (λ) →∞.
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• Proof - separation of closed geodesics in phase space
+ small-scale microlocalization near closed geodesics.

• Dynamical lemma: Let X - compact, negatively curved
manifold. Ω(γ, r) - neighborhood of γ in S∗X of radius r
(cylinder). There exist constants B > 0, a > 0 s.t. for all
closed geodesics on X with l(γ) ∈ [T − a, T ], the
neighborhoods Ω(γ, e−BT ) are disjoint, provided
T > T0.
Radius r = e−BT is exponentially small in T , since the
number of closed geodesic grows exponentially.
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• Lemma 6. If R(λ) = o((log λ)b), b > 0 then

κ(λ, T ) = o((log λ)b).

Goal: estimate κ(λ, T ) from below. Need to extract
long exponential sums as the leading asymptotics of
the long-time wave trace expansion.

• Consider the sum

S(T ) =
∑

l(γ)≤T

l(γ)√|det(I − Pγ)|

• Pγ preserves stable and unstable subspaces.
Dimension 2: eigenvalues are
exp

[
± ∫

γ H(γ(s), γ′(s))ds
]
.
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• Pγ − Id is conjugate to
 exp

[∫
γ H

]
− 1 0

0 exp
[
− ∫

γ H
]
− 1




Thus, S(T ) is asymptotic to

∑

l(γ)≤T

l(γ) exp
[
−1

2

∫

γ
H

]
.

Results of Parry and Pollicott ⇒
• Theorem 7. As T →∞,

S(T ) ∼ eP(−H2 )·T

P(−H/2)

Here P
(−H

2

) ≥ (n − 1)K2/2.
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γ H
]
− 1




Thus, S(T ) is asymptotic to

∑

l(γ)≤T

l(γ) exp
[
−1

2

∫

γ
H

]
.

Results of Parry and Pollicott ⇒
• Theorem 7. As T →∞,

S(T ) ∼ eP(−H2 )·T

P(−H/2)

Here P
(−H

2

) ≥ (n − 1)K2/2.
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Dirichlet box principle ⇒ “straighten the phases:” ∃λ s.t.

cos(λl(γ)) > ν > 0, ∀γ : l(γ) ≤ T .

(λl(γ) close to 2πZ). This combined with Theorem 7 shows
that ∃λ, T s.t.

κ(λ, T ) ∼ exp[P
(−H

2

)
T (1− δ/2)]

T

This leads to contradiction with Lemma 6. Q.E.D.
For Dirichlet principle need T ³ ln ln λ, So, get logarithmic
lower bound in Theorem 4b.
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Proof of Theorem 3: N(x , y , λ)
Wave kernel on X :

e(t , x , y) =
∞∑

i=0

cos(
√

λi t)φi(x)φi(y),

fundamental solution of the wave equation
(∂2/∂t2 −∆)e(t , x , y) = 0, e(0, x , y) = δ(x − y),
(∂/∂t)e(0, x , y) = 0.

kλ,T (x , y) =

∫ ∞

−∞

ψ(t/T )

T
cos(λt)e(t , x , y)dt

where ψ ∈ C∞
0 ([−1, 1]), even, monotone decreasing on

[0,1], ψ ≥ 0, ψ(0) = 1.
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Lemma 6a If Nx ,y (λ) = o(λa(log λ)b)), where a > 0, b > 0
then

kλ,T (x , y) = o(λa(log λ)b)).
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• Pretrace formula. M - universal cover of X , no
conjugate points, E(t , x , y) be the wave kernel on M.
Then for x , y ∈ X , we have

e(t , x , y) =
∑

ω∈π1(X)

E(t , x , ωy)

• Hadamard Parametrix for E(t , x , y) ⇒

Kλ,T (x , y) ∼λ→∞ Q1λ
n−1

2 ×
∑

ω∈π1(X):d(x ,ωy)≤T

ψ
(

d(x ,ωy)
T

)
sin(λd(x , ωy) + θn)

√
Tg(x , ωy) d(x , ωy)n−1

+ O
[
λ

n−3
2 eO(T )

]
.

Here g =
√

det gij in normal coordinates,
θn = (π/4)(3− (n mod 8)), and Q1 6= 0.
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• Pointwise analog of the sum S(T ):

Sx ,y (T ) =
∑

ω:d(x ,ωy)≤T

1√
g(x , ωy) d(x , ωy)n−1

,

where g =
√

det gij in normal coordinates at x . Sx ,y (T )
grows at the same rate as S(T ).

• Reason: let x , y ∈ M, γ - geodesic from x to y ,
ξ = (x , γ′(0)), and dist(x , y) = r . Then√

g(x , y)rn−1 ¿ JacVert(ξ)Gr .
Here Vert(ξ) ∈ TξSM - vertical subspace; Eu

ξ ∈ TξSM -
unstable subspace at ξ.
By properties of Anosov flows,
Dist[DGr (Vert(ξ)), DGr (Eu

ξ )] ≤ Ce−αr . Therefore,

JacVert(ξ)Gr ¿ JacEξu Gr = exp
[∫

γ H
]
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Our local estimates are not uniform in x , y . Need
Proposition 5 to prove global estimates.
Heat trace asymptotics:

∑

i

e−λi t ∼ 1
(4π)n/2

∞∑

j=0

aj t j− n
2 , t → 0+

Local: K(t , x , x) =
∑

i e−λi tφ2
i (x) ∼

1
(4π)n/2

∑∞
j=0 aj(x)t j− n

2 ,

aj(x) - local heat invariants, aj =
∫

X aj(x)dx .
a0(x) = 1, a0 = vol(X ). a1(x) = τ(x)

6 , τ(x) - scalar
curvature.
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“Heat kernel” estimates:
Theorem 2b[JP] If the scalar curvature
τ(x) 6= 0,=⇒ Rx(λ) = Ω(λn−2).
Global:[JPT] If

∫
X τ 6= 0,⇒ R(λ) = Ω(λn−2).

Remark: if τ(x) = 0, let k = k(x) be the first positive
number such that the k -th local heat invariant ak (x) 6= 0. If
n − 2k(x) > 0, then

Rx(λ) = Ω(λn−2k(x)).

Similar result holds for R(λ): if
∫

ak (x)dx 6= 0 and
n − 2k > 0, then

R(λ) = Ω(λn−2k ).
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• Oscillatory error term: subtract [(n − 1)/2] terms
coming from the heat trace:

Nx(λ) =
∑[ n−1

2 ]
j=0

aj (x)λn−2j

(4π)
n
2 Γ( n

2−j+1)
+ Rosc

x (λ)

Warning: not an asymptotic expansion!
Physicists: subtract the “mean smooth part” of Nx(λ).

• Theorem 2c[JP] If x ∈ X is not conjugate to itself along
any shortest geodesic loop, then

Rosc
x (λ) = Ω(λ

n−1
2 )

Theorem 4c[JP] X - negatively-curved. For any δ > 0
Rosc

x (λ) = Ω
(
λ

n−1
2 (log λ)

P(−H/2)
h −δ

)
, any n.

If n ≥ 4 then Theorem 2b, Rx(λ) = Ω(λn−2) gives a
better bound for Rx(λ).

• Global Conjecture: X - negatively-curved. For any
δ > 0
Rosc(λ) = Ω

(
(log λ)

P(−H/2)
h −δ

)
, any n.
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The behavior of N(x , y , λ)/(λ(n−1)/2) was studied by
Lapointe, Polterovich and Safarov.
[LPS] Average growth of the spectral function on a
Riemannian manifold. arXiv:0803.4171, to appear in Comm.
PDE.
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• [JS] High energy limits of Laplace-type and Dirac-type
eigenfunctions and frame flows. CMP 270 (2007),
813-833
[JSZ] On the spectrum of geometric operators on
Kahler manifolds. arxiv:0805.2376, To appear in
Journal of Modern Dynamics.

• Motivation: high energy asymptotics for ∆ on scalars
are influenced by geodesic flow Gt .

• Question: which dynamical system influences to high
energy asymptotics of the Hodge laplacian dδ + δd ,
and the Dirac operator?

• Answer: frame flow, or parallel transport along the
geodesic flow (cf. Bolte and Glaser, Dencker, Bunke
and Olbrich, [JS]). This flow was considered by V.
Arnold in 1961.
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• k-frame flow: (v1, . . . , vk ) ordered ON set of k unit
vectors. v1 defines a geodesic γ; (v2, . . . , vk ) are
parallel transported along γ.

• It is SO(k − 1)-extension of Gt ; ergodicity of m-frame
flow ⇒ ergodicity of k -frame flow, k < m. Dimension 2:
equivalent to ergodicity of Gt (up to orientation).

• X negatively-curved, −K 2
2 ≤ K ≤ −K 2

1 .

• Key object: Brin group B: closure of the holonomy
group around closed piecewise US-paths (segments go
along stable and unstable manifolds). B = SO(n − 1)
⇒ frame flow is ergodic and Bernoulli. Restricted
holonomy ⇒ nonergodic frame flow.
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• The frame flow is known to be ergodic and have the K
property

• if X has constant curvature (Brin 76, Brin-Pesin 74);
• for an open and dense set of negatively curved metrics

(in the C3 topology) (Brin 75);
• if n is odd, but not equal to 7 (Brin-Gromov 80); or if

n = 7 and K1/K2 > 0.99023... (Burns-Pollicott 03);
• if n is even, but not equal to 8, and K1/K2 > 0.93,

(Brin-Karcher 84); or if n = 8 and K1/K2 > 0.99023...
(Burns-Pollicott 03).

• [JS]: Quantum Ergodicity holds in all the above cases
• Conjecture: If −1 < K < −1/4, then frame flow is

Bernoulli.
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• if n is odd, but not equal to 7 (Brin-Gromov 80); or if

n = 7 and K1/K2 > 0.99023... (Burns-Pollicott 03);
• if n is even, but not equal to 8, and K1/K2 > 0.93,

(Brin-Karcher 84); or if n = 8 and K1/K2 > 0.99023...
(Burns-Pollicott 03).

• [JS]: Quantum Ergodicity holds in all the above cases
• Conjecture: If −1 < K < −1/4, then frame flow is

Bernoulli.
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Frame flows

Structural stability and other properties of frame flows were
studied by Pugh, Schub, Wlkinson, Policott, Burns,
Dolgopyat and many others.
Kaehler manifold: J is a flow invariant; full frame flow is not
ergodic. Ergodicity can sometimes be proved for restricted
frame flow (Brin and Gromov, 80). This implies an
appropriate version of quantum ergodicity, [JSZ].


