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from below

Jakobson,

FellEReey e X" n>2-compact. A - Laplacian. Spectrum:
Api+Xigi=0, 0=Xg< A <A< ...
SHEE Eigenvalue counting function:

NN = #{/N < A}
Weyl’s law: N(\) = C,VA" + R(\), R(\) = O(A"1).
R(\) - remainder.
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FellEReey e X" n>2-compact. A - Laplacian. Spectrum:
Api+Xigi=0, 0=Xg< A <A< ...
e Eigenvalue counting function:
NN = #{/N < A}
Weyl’s law: N(\) = C,VA" + R(\), R(\) = O(A"1).
R(\) - remainder.
e Spectral function: Let x, y € X.

Nxy(A) = 22 m<n 2i(X)9i(y)-

If x =y, let Ny (\) := Nx(A).

Local Weyl’s law:

Niy(N) = O,  x#y;

Ni(A\) = CoA"+ By(\),  Rx()) = O(N"1); Ry(N) -
local remainder.
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Jakobson,

FellEReey e X" n>2-compact. A - Laplacian. Spectrum:
Api+Xigi=0, 0=Xg< A <A< ...
e Eigenvalue counting function:
NN = #{/N < A}
Weyl’s law: N(\) = C,VA" + R(\), R(\) = O(A"1).
R(\) - remainder.
e Spectral function: Let x, y € X.

Nxy(A) = z\ﬁ,g)\ 0i(x)9i(y)-
If x =y, let Ny (\) := Nx(A).
Local Weyl’s law:
Niy(N) = O,  x#y;
Ni(A\) = CoA"+ By(\),  Rx()) = O(N"1); Ry(N) -
local remainder.
e We study lower bounds for R(\), Bx(X) and Ny ,()).
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Results f1()\) 75 O(fZ()‘))'
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o e Notation: f;(\) = Q(f2(\)), f2 > 0 iff
im sup, . [f1(\)|/%2(A) > 0. Equivalentl,
Results f1 ()\) 7& O(fZ()‘))

e Theorem 1[JP] If x, y € X are not conjugate along any
shortest geodesic joining them, then

Ney(N) = Q (A%) .
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P « Notation: f;(\) = Q(H())), & > 0 iff
— limsup,_, . |fi(A)|/f2(X) > 0. Equivalently,
Results f1 ()\) ?é O(fz()\))
e Theorem 1[JP] If x, y € X are not conjugate along any
shortest geodesic joining them, then

Ney(N) = Q (A%) .

e Theorem 2[JP] If x € X is not conjugate to itself along
any shortest geodesic loop, then
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Jakobson,

P Notation: f(\) = Q(f())), & > 0 iff
— limsup,_, . |fi(A)|/f2(X) > 0. Equivalently,
Results f1 ()\) ?é O(fz()\))
Theorem 1[JP] If x, y € X are not conjugate along any
shortest geodesic joining them, then

n—1

Ney(N) = Q (AT) .

Theorem 2[JP] If x € X is not conjugate to itself along
any shortest geodesic loop, then

Other results in dimension n > 2 involve heat invariants.
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General
Results

o Example: flat square 2-torus

N =4m3(nf +n3), nynpeZ
(z)j(x) — 6271'/.(rl1X1—i—f72X2)7 X = (X’],Xz)

6 =1 = N(A) = N(A)

Gauss circle problem: estimate R(\).

Theorem 2 = R(\) = Q(V) -
Hardy-Landau bound. Theorem 2 generalizes that
bound for the local remainder.

Soundararajan (2003):

1 32*/3-1)
R(\) =Q VA(logA)3 (loglog\) ™~ 4 >

(log log log X\)>/8
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S o Example: flat square 2-torus

T A= 47r2(n$_+ ns), m,meZ
General d)j(X) = 627”(”1)(14_”2)(2)7 X = (X1 ) X2)

Results

6 =1 = N(A) = N(A)

Gauss circle problem: estimate R(\).

Theorem 2 = R(\) = Q(V) -
Hardy-Landau bound. Theorem 2 generalizes that
bound for the local remainder.

Soundararajan (2003):

1 32*/3-1)
R(\) =Q VA(logA)3 (loglog\) ™~ 4 >

(log log log X\)>/8

 Hardy’s conjecture: R()\) < \'/2%¢ ve > 0.
Huxley (2003): R(\) < As (log \)2-25.
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Polirovich, ¢ Negative curvature. Suppose sectional curvature
satisfies
—KZ < K(¢,m) < —KZ

S Theorem (Berard): Ry (\) = O(\"~"/log \)

Curvature Conjecture (Randol): On a negatively-curved surface,
R(\) = O(A%+€). Randol proved an integrated (in \)
version for Ny y ().
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Negative
Curvature

e Negative curvature. Suppose sectional curvature

satisfies

7K12 < K(f»ﬁ) < 7K22

Theorem (Berard): Ry (\) = O(\"~"/log \)
Conjecture (Randol): On a negatively-curved surface,
R(\) = O(A%+€). Randol proved an integrated (in \)
version for Ny y ().

Theorem (Karnaukh) On a negatively curved surface

+ logarithmic improvements discussed below.
Karnaukh’s results (unpublished 1996 Princeton Ph.D.
thesis under the supervision of P. Sarnak) served as a
starting point and a motivation for our work.
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f;‘;:‘oz::’nw « Thermodynamic formalism: G’ - geodesic flow on
Polt_(la_(r;t)r\:icr;, SX, f € SX, Té(SX) == Egs @ E{U @ Ego,

e dim Eg = n—1: stable subspace, exponentially
contracting for G;
e dim Eg = n— 1 : unstable subspace, exponentially
contracting for G;
o dim E2 = 1 : tangent subspace to G'.
Sinai-Ruelle-Bowen potential 7/ : SM — R:

Negative
Curvature

H(E) = 91 ndet th]Eg
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f;::‘oz::’nw « Thermodynamic formalism: G’ - geodesic flow on
Polt_(la_(r;t)r\:icr;, SX, f € SX, Té(SX) == Egs @ E{U @ Ego,

e dim Eg = n—1: stable subspace, exponentially
contracting for G;
e dim Eg = n— 1 : unstable subspace, exponentially
contracting for G;
o dim E2 = 1 : tangent subspace to G'.
Sinai-Ruelle-Bowen potential 7/ : SM — R:

Negative
Curvature

ey =2

_ t
= —|  IndetdGle:

t=0
» Topological pressure P(f) of a Hélder function
f . SX — R satisfies (Parry, Pollicott)

eP(NT

5 i | [ 102(s) 7/ ()es| ~ gy

I(v)<T
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P(f) = sup <hu + / fdu) ,
w

w is Gl-invariant, h, - (measure-theoretic) entropy.

Negative
Curvature
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Negative
Curvature

e ~ - geodesic of length /(v). P(f) is defined as

P(f) = Sl:p <hu + / fdu) ,

w is Gl-invariant, h, - (measure-theoretic) entropy.

e Ex 1: P(0) = h - topological entropy of G!. Theorem
(Margulis): #{vy: I(y) < T} ~ e"T/hT.
Ex. 2: P(—H) = 0.
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Negative
Curvature

e ~ - geodesic of length /(v). P(f) is defined as

P(f) = Sl:p <hu + / fdu) ,

w is Gl-invariant, h, - (measure-theoretic) entropy.

e Ex 1: P(0) = h - topological entropy of G!. Theorem
(Margulis): #{vy: I(y) < T} ~ e"T/hT.
Ex. 2: P(—H) = 0.

e Theorem 3[JP] If X is negatively-curved then for any
d>0and x #y

Nx,y(A):Q(A%( ogA) 2 5)

Here P(—H/2)/h > Ka/(2K) > 0.
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Negative
Curvature

Theorem 4a[JP] X - negatively-curved. For any § > 0

Rx(\) =@ (A" (log 2\ ), n=23
Results for n > 4 involve heat invariants.
K=-1= B\ =2 (A% (log )\)%*5>

Karnaukh, n = 2: estimate above + weaker estimates in
variable negative curvature.
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Pattrovieh Randol, n = 2:
Toth
K=-1=RM)=2((logn)z™),  vi>0.
G Theorem 4b[JPT] X - negatively-curved surface
(n=2). Forany 6 >0

RO = 2 ((log ) "2 4)
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from below e Global results: R()\)

Jakobson,

Polterovich, RandOI, n=2:
Toth

K=-1=RM)=0 <(Iog )\)%_‘5) . ¥5>0.

Negative

Curvature Theorem 4b[JPT] X - negatively-curved surface
(n=2). Forany 6 >0

RO = 2 ((log ) "2 4)

o Conjecture (folklore). On a generic negatively curved
surface
R(\) = O(X9) Ve > 0.
Selberg, Hejhal: On compact arithmetic surfaces that
correspond to quaternionic lattices R(\) = Q (%)
Reason: exponentially high multiplicities in the length
spectrum; generically, X has simple length spectrum.
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Proof: Weyl's
Law

Proof of Theorem 4b: (about R()\)). X-compact,
negatively-curved surface.
Wave trace on X (even part):

Cut-off: (t,7) = (1 — @Z)(t))ﬁ(}),where
e pcS(R), suppp C

* Y(t) € C°(R), ¥(
P(t)=0,[t] > 2T,.
In the sequel, T = T(\) — oo as A — oo. Let

k(A T) = T/ x(t, T)cos(\t)dt
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Polieravich, » Key microlocal result:
Proposition 5. Let T = T(\) < elog A. Then
# .
Proof: Weyl’s ()T T v | det(l o PPY)|
Law

where
7 - closed geodesic; /() - length; /(v)#-primitive
period; P, - Poincaré map.
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Proof: Weyl's
Law

¢ Key microlocal result:

Proposition 5. Let T = T(\) < elog A. Then

I(v)# cos(M(7)) - x(I(»), T)
k(A T) = E o1
7 I()<T Ty/|det(/ —P,)| ol

where

7 - closed geodesic; /() - length; /(v)#-primitive
period; P, - Poincaré map.

Long-time version of the “wave trace” formula of
Duistermaat and Guillemin, microlocalized to shrinking
neighborhoods of closed geodesics. Allows to isolate
contribution from a growing number of closed
geodesics with /() < T(A) to k(A\, T) as A, T(A\) — oc.
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Proof: Weyl's
Law

e Proof - separation of closed geodesics in phase space
+ small-scale microlocalization near closed geodesics.
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e Proof - separation of closed geodesics in phase space
+ small-scale microlocalization near closed geodesics.

e Dynamical lemma: Let X - compact, negatively curved

Lo manifold. Q(v, r) - neighborhood of ~ in S*X of radius r

(cylinder). There exist constants B > 0,a > 0 s.t. for all

closed geodesics on X with /(y) € [T — a, T], the

neighborhoods Q(v, e~ 87) are disjoint, provided

T> To.

Radius r = e BT is exponentially small in T, since the

number of closed geodesic grows exponentially.
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Toth

k(\, T) = o((log \)P).

Goal: estimate (A, T) from below. Need to extract
Proof: Weyl's long exponential sums as the leading asymptotics of
L the long-time wave trace expansion.
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Proof: Weyl's
Law

Lemma 6. If R(\) = o((log \)?), b > 0 then

k(\, T) = o((log \)P).

Goal: estimate (A, T) from below. Need to extract
long exponential sums as the leading asymptotics of
the long-time wave trace expansion.

Consider the sum

ZW
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Jakobson,

Polt_(la_ror\:ich, e Lemma 6. If R()\) = O((Iog )\)b), b > 0 then
ofl
k(\, T) = o((log \)P).

Goal: estimate (A, T) from below. Need to extract
Proof: Weyl's long exponential sums as the leading asymptotics of
L the long-time wave trace expansion.

e Consider the sum

ZW

» P, preserves stable and unstable subspaces.
Dimension 2: eigenvalues are

exp | [, H(3(s).7/(s))ds|
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e, e P, — Id is conjugate to
- ( oxp [ [, ] — 1 0 )
0 exp {— J H} -1
Thus, S(T) is asymptotic to
Proof: Weyl's
Law

> Iy exp[ ;/WH}

I(M<T

Results of Parry and Pollicott =
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Proof: Weyl's
Law

e P, — Id is conjugate to
exp {fv H] —1 0
0 exp {— J H} -1
Thus, S(T) is asymptotic to

> Iy exp[ ;/WH}

I(M<T

Results of Parry and Pollicott =
e Theorem 7. As T — oo,
o T
)~ prp2)

Here P (—%) > (n—1)Ky/2.
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Proof: Weyl's
Law

Dirichlet box principle = “straighten the phases:” 3\ s.t.
cos(AM(v)) >v>0,Vy:I(y)<T.

(Al(v) close to 27Z). This combined with Theorem 7 shows
that I\, T s.t.

exp[P (%) T(1 —6/2)]
T
This leads to contradiction with Lemma 6. Q.E.D.

For Dirichlet principle need T =< InIn A, So, get logarithmic
lower bound in Theorem 4b.

KA, T) ~
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Proof:
Spectral
Function

Proof of Theorem 3: N(x,y, \)
Wave kernel on X:

e(t, x, y) Zcosftgb,

fundamental solution of the wave equation
(82/at2 - A)e(ta X7.y) = 07 e(O,X,y) = 5(X - .y)7
(9/0t)e(0,x,y) = 0.

ky1(x,y) = /oo w(t7/_T) cos(At)e(t, x, y)dt

where ¢ € C3°([—1, 1]), even, monotone decreasing on

[0,1], % > 0, ¥(0) =
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Lemma 6a If Ny ,()\) = o(A¥(log \)?)), where a > 0,b > 0
then
= ka,7(X,¥) = 0(A(log \)?)).

Function
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gt conjugate points, E(t, x, y) be the wave kernel on M.
Then for x, y € X, we have

e(t,x,y)= Y E(tx,wy)
wemy(X)

Proof:
Spectral
Function
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Proof:
Spectral
Function

¢ Pretrace formula. M - universal cover of X, no
conjugate points, E(t, x, y) be the wave kernel on M.
Then for x, y € X, we have

e(t,x,y)= Y E(tx,wy)
wemy(X)

e Hadamard Parametrix for E(t,x,y) =

n—1
KA (X, ¥) ~amoo Q1A X
wem (X):d(x,wy)<T
o (2952 sin(Ad(x, wy) + 0n)

VTa(x,wy) d(x,wy)"

Here g = ,/det g; in normal coordinates,
0n = (7/4)(3 — (nmod 8)), and Qy # 0.

o) {)\%3 eO(T)] .
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Polterovich,
Toth
1
w: d()%:y)<T Va(x,wy) d(x,wy)T

where g = /det g;; in normal coordinates at x. Sy ,(T)
grows at the same rate as S(T).

Proof:
Spectral
Function
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It e Pointwise analog of the sum S(T):

Polterovich,
Toth
1
w: d()%:}’KT \/g x,wy) d(x,wy)n1

where g = /det g;; in normal coordinates at x. Sy ,(T)
- grows at the same rate as S(T).
Spectral o Reason: let x,y € M, v - geodesic from x to y,

¢ = (x,7/(0)), and dist(x, y) = r. Then

VX, y)r"=1 < Jacvere) G-

Here Vert(¢) € T¢SM - vertical subspace; E;' € T;SM -

unstable subspace at &.

By properties of Anosov flows,

Dist[DG'(Vert(§)), DG'(E{')] < Ce™°". Therefore,

Jacye(e)G" < JacgqwG" = exp [ f,y H}
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Subtracting
heat kernel
terms

Our local estimates are not uniform in x, y. Need
Proposition 5 to prove global estimates.
Heat trace asymptotics:

1 &
E —Ait 3 +
= DICL
i j=0

Local: K(t, x,x) = ;, e M @2(x) ~
(47r1)n/2 Z/C')OO aj(x)t~z,
aj(x) - local heat invariants, a; = [, a;(x)dx

ao(x) =1, ap = vol(X). as (x) = "%, r(x )-scalar
curvature.
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i “Heat kernel” estimates:
Theorem 2b[JP] If the scalar curvature
7(X) # 0,= Ryx()\) = Q(\"2).
Global:[JPT] If [, 7 # 0,= R(\) = Q(A"2).
Remark: if 7(x) = 0, let k = k(x) be the first positive
number such that the k-th local heat invariant a,(x) # 0. If
n—2k(x) > 0, then

S Re()) = QAM2K(1).
terms
Similar result holds for R(\): if [ ax(x)dx # 0 and
n— 2k > 0, then
R()\) = Q(A"~2K).
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Subtracting
heat kernel
terms

» Oscillatory error term: subtract [(n — 1)/2] terms

coming from the heat trace:
2

M) = A

Warning: not an asymptotic expansion!
Physicists: subtract the “mean smooth part” of Ny()\).
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Subtracting
heat kernel
terms

» Oscillatory error term: subtract [(n — 1)/2] terms

coming from the heat trace:

[ 2 ] a,( )A"A Rosc
( ) Z 2r(7—j+1) + X ()\)
Warning: not an asymptotlc expansion!
Physicists: subtract the “mean smooth part” of Nx()\).
Theorem 2c¢[JP] If x € X is not conjugate to itself along

any shortest geodesic loop, then

RZ°(\) = QA7)
Theorem 4c[JP] X negatively -curved. Forany § >0
Ro5°()\) = Q ()\ (log \) 72 5) , any n.
If n > 4 then Theorem 2b, Ry()\) = Q(\"2) gives a
better bound for Rx(\).
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Subtracting
heat kernel
terms

» Oscillatory error term: subtract [(n — 1)/2] terms

coming from the heat trace:
Ny(\) = Z[ 2 ]M + R9SC()\)
2r(g-j+1) "
Warning: not an asymptotlc expansion!
Physicists: subtract the “mean smooth part” of Nx()\).
Theorem 2c¢[JP] If x € X is not conjugate to itself along
any shortest geodesic loop, then

RZ°(\) = QA7)
Theorem 4c[JP] X negatively -curved. Forany § >0
RY°(\) = Q ()\ (log \) 72 5) , any n.
If n > 4 then Theorem 2b, Ry()\) = Q(\"2) gives a
better bound for Rx(\).

Global Conjecture: X - negatively-curved. For any
6>0 -
RO°()\) = Q ((log A)

H/2) -5
h , any n.
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Subtracting
heat kernel
terms

The behavior of N(x, y, \)/(A\("~1)/2) was studied by
Lapointe, Polterovich and Safarov.

[LPS] Average growth of the spectral function on a
Riemannian manifold. arXiv:0803.4171, to appear in Comm.
PDE.
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fotn eigenfunctions and frame flows. CMP 270 (2007),
813-833
[JSZ] On the spectrum of geometric operators on
Kahler manifolds. arxiv:0805.2376, To appear in
Journal of Modern Dynamics.

Frame flows
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fotn eigenfunctions and frame flows. CMP 270 (2007),
813-833
[JSZ] On the spectrum of geometric operators on
Kahler manifolds. arxiv:0805.2376, To appear in
Journal of Modern Dynamics.

e Motivation: high energy asymptotics for A on scalars
are influenced by geodesic flow G!.

Frame flows
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S e [JS] High energy limits of Laplace-type and Dirac-type
fotn eigenfunctions and frame flows. CMP 270 (2007),
813-833
[JSZ] On the spectrum of geometric operators on
Kahler manifolds. arxiv:0805.2376, To appear in
Journal of Modern Dynamics.

e Motivation: high energy asymptotics for A on scalars
are influenced by geodesic flow G!.
¢ Question: which dynamical system influences to high

energy asymptotics of the Hodge laplacian dé + dd,
Frame flows and the Dirac operator?
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Frame flows

e [JS] High energy limits of Laplace-type and Dirac-type

eigenfunctions and frame flows. CMP 270 (2007),
813-833

[JSZ] On the spectrum of geometric operators on
Kahler manifolds. arxiv:0805.2376, To appear in
Journal of Modern Dynamics.

Motivation: high energy asymptotics for A on scalars
are influenced by geodesic flow G!.

Question: which dynamical system influences to high
energy asymptotics of the Hodge laplacian dé + 4d,
and the Dirac operator?

Answer: frame flow, or parallel transport along the
geodesic flow (cf. Bolte and Glaser, Dencker, Bunke
and Olbrich, [JS]). This flow was considered by V.
Arnold in 1961.
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o o k-frame flow: (v4, ..., vk) ordered ON set of k unit
vectors. vy defines a geodesic v; (v, ..., vk) are

parallel transported along ~.

Frame flows
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Frame flows

e k-frame flow: (vy,..., vk) ordered ON set of k unit
vectors. vy defines a geodesic v; (v, ..., vk) are
parallel transported along ~.

e Itis SO(k — 1)-extension of Gt; ergodicity of m-frame
flow = ergodicity of k-frame flow, k < m. Dimension 2:
equivalent to ergodicity of G! (up to orientation).
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Frame flows

e k-frame flow: (vy,..., vk) ordered ON set of k unit
vectors. vy defines a geodesic v; (v, ..., vk) are
parallel transported along ~.

e Itis SO(k — 1)-extension of Gt; ergodicity of m-frame
flow = ergodicity of k-frame flow, k < m. Dimension 2:
equivalent to ergodicity of G! (up to orientation).

* X negatively-curved, —KZ < K < —K2.
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Frame flows

k-frame flow: (v4,..., vk) ordered ON set of k unit
vectors. vy defines a geodesic v; (v, ..., vk) are
parallel transported along ~.

It is SO(k — 1)-extension of G!; ergodicity of m-frame
flow = ergodicity of k-frame flow, k < m. Dimension 2:
equivalent to ergodicity of G! (up to orientation).

X negatively-curved, —KZ < K < —K2.

Key object: Brin group B: closure of the holonomy
group around closed piecewise US-paths (segments go
along stable and unstable manifolds). B = SO(n— 1)
= frame flow is ergodic and Bernoulli. Restricted
holonomy =- nonergodic frame flow.
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S e The frame flow is known to be ergodic and have the K
property

Frame flows
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S e The frame flow is known to be ergodic and have the K
property
e if X has constant curvature (Brin 76, Brin-Pesin 74);

Frame flows
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Frame flows

e The frame flow is known to be ergodic and have the K
property
e if X has constant curvature (Brin 76, Brin-Pesin 74);

e for an open and dense set of negatively curved metrics
(in the C® topology) (Brin 75);
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Frame flows

The frame flow is known to be ergodic and have the K
property
if X has constant curvature (Brin 76, Brin-Pesin 74);

for an open and dense set of negatively curved metrics
(in the C® topology) (Brin 75);

if nis odd, but not equal to 7 (Brin-Gromov 80); or if
n=7and Ky/K> > 0.99023... (Burns-Pollicott 03);
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The frame flow is known to be ergodic and have the K
property

if X has constant curvature (Brin 76, Brin-Pesin 74);
for an open and dense set of negatively curved metrics
(in the C3 topology) (Brin 75);

if nis odd, but not equal to 7 (Brin-Gromov 80); or if
n=7and Ky/K> > 0.99023... (Burns-Pollicott 03);

if nis even, but not equal to 8, and K; /K, > 0.93,
(Brin-Karcher 84); or if n = 8 and K; /K, > 0.99023...
(Burns-Pollicott 03).

[JS]: Quantum Ergodicity holds in all the above cases

Conjecture: If -1 < K < —1/4, then frame flow is
Bernoulli.
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Frame flows

Structural stability and other properties of frame flows were
studied by Pugh, Schub, WIkinson, Policott, Burns,
Dolgopyat and many others.

Kaehler manifold: J is a flow invariant; full frame flow is not
ergodic. Ergodicity can sometimes be proved for restricted
frame flow (Brin and Gromov, 80). This implies an
appropriate version of quantum ergodicity, [JSZ].



