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Abstract. We study the manifold of all metrics with the fixed volume form

on a compact Riemannian manifold of dimension ≥ 3. We compute the char-

acteristic function for the L2 (Ebin) distance to the reference metric. In the
Appendix, we study Lipschitz-type distance between Riemannian metrics, and

give applications to the diameter and eigenvalue functionals.

1. Introduction

The paper [CJW] initiated a program of studying the behavior of geometric
properties of random Riemannian metrics; this can be thought of as performing
geometric analysis on the (infinite-dimensional) manifold of Riemannian metrics
on a fixed compact manifold. The authors of [CJW] took a fixed “reference” (or
“background” metric g0 on M , and considered a random metric g on an arbitrary
but fixed compact Riemannian manifold M , lying in the conformal class of g0. The
conformal class was parametrized by letting the logarithm of the conformal factor
vary as a Gaussian random field on M constructed using the eigenfunctions of the
Laplacian for the reference metric.

In the present paper, we consider random deformations in a transverse direction:
we choose a random Riemmanian metric among those having the same volume form
as g0. Again we parametrize those metrics by exponentiating a Gaussian random
field on the manifold and mainly study the distribution of various distances to
the reference metric. For simplicity our construction depends on a choice of an
orthonormal frame in the tangent bundle (we thus make the topological assumption
of parallelizability, that is that M supports such frames), but except for this, it is
invariant under diffeomorphisms of the manifold (more precisely, the pushforward of
the probability measure under a diffeomorphism would correspond to the measure
obtained by pushing forward the reference metric and the frame). The construction
is given in Section 3. We expect to be able to make a similar construction on general
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manifolds without the parallelizability assumption; the results of this paper should
extend as well.

The construction proceeds by viewing the space of metrics with a given volume
form as the space of sections of a bundle over M with fibers diffeomophic to the
symmetric space S = SLn(R)/SO(n) (n = dimM). This symmetric space supports
an invariant Riemannian metric which can then be used to define an L2 distance
on the space of metrics. This metric coincides with the metric arising from a Rie-
mannian structure on this (infinite-dimensional) space. This distance is introduced
in Section 2.3 and is studied as a random variable in Section 4, where tail estimates
are obtained in terms of geometric constants.

In the Appendix, similar constructions are carried out for a Lispchitz-type dis-
tance, also considered in [BU]. Those estimates are then applied to prove inte-
grability results for the diameter and Laplace eigenvalue functionals of random
Riemannian metrics. The authors plan to further study those and other geometric
and spectral functionals in subsequent papers.

In another sequel, the authors will address questions about convergence and
tightness (i.e. relative compactness in the weak-* topology) of our families of mea-
sures.

We expect that the Gaussian measure we have introduced in this paper will have
applications that extend significantly beyond the basic questions we have considered
here. Questions we hope to investigate in the future include the computation of
correlation functions, the computation of the probability for a metric to lie in a small
ball centered around the reference metric, and the behaviour of the isoperimetic
constant under random deformations of the reference metric. We are quite hopeful
that the explicit character of our Gaussian measure will make it a useful tool in the
study of these and other questions.
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D.J. would like to acknowledge the hospitality of the Departments of Mathematics
at Stanford University and at UBC, where this research was partly conducted.

2. The space of metrics

We fix once and for all a compact smooth manifold M without boundary and
write n for its dimension. We also fix a smooth volume form dv on M .

We rely crucially on the symmetric space structure of the space P of positive-
definite matrices of determinant 1 and on the related structure theory of SLn(R).
In the discussion below we state the facts we use; proofs and further details may be
found in the text [Ter], which concentrates on this case, and in [Hel] which develops
the general theory of symmetric spaces associated to semisimple Lie groups.
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2.1. The space of metrics. We start by giving two coordinate-free descriptions of
the set of Riemannian metrics with the volume form dv on M . We then restrict to a
class of manifolds for which there is a coordinate system simplifying the description.

The first description will be in terms of reductions of the frame bundle F(M),
viewed as a principal GLn(R)-bundle over M . Recall [Stern] that for given subgroup
G ⊂ GLn(R), a G-structure BG on F(M) is a reduction of the bundle to that group,
that is a G-invariant submanifold of F(M) surjecting on M such that for all p ∈ BG
and g ∈ GLn(R), we have g · p ∈ BG if and only if g ∈ G. In this language the set
of all Riemannian metrics on M is the set of O(n)-structures on F(M). Now let
BG denote the O(n)-structure on M associated to g0 and let SLn(R) act pointwise
on the fibers of π : BG → M . Note that the submanifold of F(M) obtained by
this construction corresponds to the set of orthonormal frames for the Riemannian
metrics g on M having the same volume form as g0.

We shall now give a second description which forms our main point of view.
Let V be a finite-dimensional real vector space, let V ∗ be its dual space, and let
Sym(V ) = {g ∈ Hom(V, V ∗)|g∗ = g} be the space of symmetric bilinear forms on V .
For these we construct Pos(V ) = {g ∈ Sym(V )|∀v ∈ V : g(v, v) > 0}, the space of
positive-definite bilinear forms on V . We also let SL(V ) ⊂ GL(V ) denote the special
(respectively general) linear group on V , and sl(V ) ⊂ gl(V ) their Lie algebras. Then
GL(V ) acts on Pos(V ) by h−1 · g = h∗ ◦ g ◦ h. It is well-known that this action
is transitive; the stabilizer of any h ∈ Pos(V ) is a maximal compact subgroup
isomorphic to O(n). Moreover, the orbits of SL(V ) are precisely the level sets of
the determinant function g 7→ det(g−1

0 g) where g0 is a fixed isomorphism V → V ∗.
Each level set is then of the form SL(V )/Kg0 where Kg0 = StabSL(V )(g0) ' SO(n)
and we give it the SL(V )-invariant Riemannian structure coming from the Killing
form of SL(V ), making it into a simply connected Riemannian manifold of non-
positive curvature.

Working in local co-ordinates one can now associate to the tangent bundle TM
the vector bundles Hom(TM, T ∗M) and Sym(TM), the symmetric space-valued
bundle Pos(TM), and the group bundles GL(TM) and SL(TM).

By definition, a Riemannian metric on M is a section of Pos(M); we denote the
space of sections by Met(M). To such a metric there is an associated Riemannian
volume form, and we let Metdv(M) denote the space of metrics whose volume form
is dv. Fixing a metric g0 ∈ Metdv(M), the above discussion identifies Metdv(M)
with the space of sections of the bundle over M whose fibers are isomorphic to
SLn(R)/SO(n). Moreover, the fibre at x of this bundle is equipped with a transitive
isometric action of SL(TxM), where the metric is the one pulled back from the
identification with S = SLn(R)/SO(n) (the pullback is well-defined since the metric
on S is SLn(R)-invariant).

Remark 2.1. It is a classical result of Ebin [Eb] that the diffeomorphism group acts
transitively on the space of smooth volume forms, and therefore that the foliation of
Met(M) by the orbits of the diffeomorphism group Diff(M) descends to a foliation
of Metdv(M) by the group Diffdv(M) of volume-preserving diffeomorphisms. It
follows that Met(M)/Diff(M) ' Metdv(M)/Diffdv(M); we regard this space as the
space of geometries on M .

In local co-ordinates (x1, . . . , xn), the above construction reads as follows. One

takes the basis
{

∂
∂xi

}n
i=1

for TxM and its dual basis
{
dxi
}n
i=1

for T ∗xM . Then fibers
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of Sym(M) are represented by symmetric matrices, fibers of of Pos(M) by positive-
definite symmetric matrices. The volume form associated to g ∈ Met(M) is then

given by |det(gx)|1/2 dx1 ∧ · · · ∧ dxn. Metdv(M) is then the metrics g such that
det(gx) = det(g0

x) for all x ∈ M , where g0 is any metric with Riemannian volume
form dv. The group GLn(R) then acts on the fibres via (up to taking inverses) the
congruence action h ·g = htgh, with the stabilizer of gx being the orthogonal group
Ogx(R) ' O(n). Similarly, the group SLn(R) acts transitively on the subset of the
fibre with a given determinant, with point stabilizer SOgx(R) ' SO(n).

2.2. Deforming a metric. Fix g0 ∈ Metdv(M), and let Kx ⊂ Gx = SL(TxM) be
the orthogonal group of g0

x, which is also the stabilizer of g0
x under the congruence

action. Pointwise, fix a frame fx in TxM orthonormal with respect to the inner
product defined by g0

x, and let Ax ⊂ Gx be the subgroup of matrices which are
diagonal with positive entries in the basis fx. As noted above we can idenfiy the
set of positive-definite quadratic forms on TxM with the same determinant as g0

with the symmetric space Gx/Kx.
Recall now the Cartan (or polar) decomposition Gx = KxAxKx. Here if we

write hx ∈ Gx in the form k1,xaxk2,x, the element ax ∈ Ax is unique up to the
action of the Weyl group NGx(Ax)/ZGx(Ax), a group isomorphic to Sn acting by
permutation of the coordinates with respect to the basis fx. Given ax, the two
elements ki,x ∈ Kx are unique up to the fact that ZKx(ax) may not be trivial
(generically this centralizer is equal to ZKx(Ax), which is either trivial or {±1}
depending on whether n is odd or even).

It follows that for every g1 ∈ Metdv(M) we can write g1
x = (kxax) · g0

x for some
ax ∈ Ax and kx ∈ Kx, where ax is unique up to the action of Sn on Ax.

Our goal is to randomly deform g0 by elements kx and ax for every x ∈ M .
We shall discuss the “random” aspect of the construction in the next section, and
concentrate at the moment on the topological issues involved in making such con-
structions well-defined.

Given the orthonormal frame fx, we can identify Ax with the space of positive
diagonal matrices of determinant 1. Further, using the exponential map we may
identify this group with its Lie algebra a ' Rn−1 of diagonal matrices of trace
zero. We will therefore specify ax by choosing such a matrix at each x, that is by
choosing a function H : M → a.

While this clearly works locally, making a global identification requires a choice
of frame fx at every x ∈ M , that is an everywhere non-zero section of the frame
bundle of M or equivalently a trivialization of the tangent bundle of M , something
which is not possible in general. For simplicity we have decided to only discuss
here the case of manifolds where such sections exist (such manfiolds are called
parallelizable). We defer more general constructions to future papers.

Remark 2.2. Above we required the existence of a continuous orthonormal frame.
Nevertheless, parallelizability is a topological notion, independent of the choice of
metric g0. To see this note that applying pointwise the Gram–Schmidt procedure
with respect to the metric g0 to any non-zero section of the frame bundle is a smooth
operation and will produce a smooth orthonormal frame.

We survey here some facts about parallelizable manifolds, mainly to note that
this class is rich enough to make our construction interesting. First, a parallelizable
manifold is clearly orientable. Second, a necessary condition for parallelizability is
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the vanishing of the second Stiefel-Whitney class of the tangent bundle, which
for orientable manifolds is equivalent to M being a spin manifold. Examples of
parallelizable manifolds include all 3-manifolds, all Lie groups, the frame bundle of
any manifold and the spheres Sn with n ∈ {1, 3, 7}.

2.3. The L2 metric. Once the volume form is fixed, the action of SL(TxM) on the
stalk of Metdv(M) at x identifies it with the symmetric space S = SLn(R)/SO(n).
As noted above this space supports an SLn(R)-invariant Riemannian metric of non-
positive curvature (we recall an explicit description below). We write its distance
function dS ; we then write dx for the well-defined metric on the stalk at x of
Metdv(M). Integrating this over M then gives a metric (to be denoted Ω2) on
Metdv(M): given two Riemannian metrics g0, g1 ∈ Metdv(M) on M with the same
Riemannian volume form dv, we set

Ω2
2(g0, g1) =

∫
M

d2
x(g0

x, g
1
x)dv(x).

We will need to understand the metric dS . For this, identify S with the space
of positive maps Rn → Rn, in which case we may identify all tangent spaces to S
with the space Sym(Rn) of the corresponding symmetric maps. The Riemannian
metric on S is then

(1) ds2
g = Tr(g−1Xg−1X),

where g ∈ S and X is a symmetric map. This metric is SLn(R)-invariant by
construction; its associated distance function can be expressed using the group
theory of G = SLn(R). For this let K = SOn(R) (a maximal compact subgroup)
and let A ⊂ SLn(R) be the subgroup of diagonal matrices with positive entries.
We then write the Cartan decomposition (described above) as G = KAK, which
we recall is unique up to the action by conjugation of the group of permutation
matrices Sn ⊂ G on A. Now let gK, hK ∈ S = G/K be two positive maps of
determinant 1. Then Kh−1gK is a well-defined element of K\G/K ' A/Sn, say
represented by a ∈ A. We say that g and h are in relative position a. It turns
out ([Ter]) that the distance between gK, hK is then dS(gK, hK) = ‖log a‖, where
log a ∈ Rn is the vector of logarithms of the entries of the diagonal matrix a and
‖·‖ is the usual `2 norm.

3. Gaussian measures on the space of metrics

We next turn to the question of actually constructing our Gaussian measures
In view of the decomposition considered in Section 2.1, it is natural to split the
construction into diagonal and orthogonal parts.

Let g0 be our reference metric. Every other metric of Metdv is of the form
g1
x = kxax · g0

x where k, a are smooth functions on M such that kx ∈ Kx and
ax ∈ Ax. In Sections 3.1 and 3.2 we describe random constructions of ax and kx
respectively.

Recall that we fixed a global frame onM , which we now choose to be orthonormal
wrt g0 by Gram–Schmidt. With this frame we may identify Kx with SOn(R) and
Ax with the subgroup of diagonal matrices in SLn(R), so that Lie(Kx) is identified
with the Lie algebra of skew-symmetric matrices, and Lie(Ax) with the Lie algebra
diag0(n) ⊂ sln(R) of diagonal matrices of trace zero, isomorphic to Rn−1.
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For the constructions below we fix a complete orthonormal basis {ψj}∞j=0 ⊂
L2(M) such that ∆g0ψj +λjψj = 0, with λj being a non-decreasing ordering of the
spectrum of the Laplace operator ∆g0 . Our constructions are in fact independent of
the choice of basis of each eigenspace, but it is more convenient to make an explcit
choice.

3.1. The radial part. We begin by defining a measure on the space of sections Hx

on M such that Hx ∈ Lie(Ax). We follow the recipe of [Mor]: choose decay coef-
ficients βj = F (λj) where F (t) is an eventually monotonically decreasing function
of t and F (t)→ 0 as t→∞. Then set

(2) Hx =

∞∑
j=1

πn(ξ
j
)βjψj(x),

where ξ
j

are i.i.d. standard Gaussians in Rn, and πn : Rn → Rn is the orthogonal

projection on the hyperplane
∑n
i=1 xi = 0.

Finally, set
ax = exp(Hx)

where exp is the exponential map to Ax from its Lie algebra.
The smoothness of H defined by (2) is given by [Mor, Theorem 6.3]. The fol-

lowing two propositions apply whenver ξ
j

in (2) denotes a d-dimensional standard

Gaussian, while M has dimension n.

Proposition 3.1. If βj = O(j−r) where r > (q + α)/n + 1/2, then H defined by
(2) converges a.s. in Cq,α(M,Rd).

We remark that the exponents in Proposition 3.1 are independent of d (the
dimension of the “target” space). Substituting into Weyl’s law, we get

Proposition 3.2. If βj = O(λ−sj ) where s > q/2 + n/4, then H defined by (2)

converges a.s. in Cq(M,Rd).

3.2. The angular part. In this paper we study invariants of g1 that can be bound
only using a, and hence our later calculations only depend on the marginal distri-
bution of a. Thus, as long as the choices of k and a are independent, the choice
of k has no effect. In future work we plan to ask more detailed questions where
this choice will become relevant. For example, determining the curvature of g1

following the ideas of [CJW] requires differentiating g1
x with respect to x and hence

immediately implicates the choice of kx. We thus propose the following specific
choice, again using the recipe of Equation (2). We set

kx = expx(ux)

where ux is the Gaussian vector

(3) ux =

∞∑
j=1

η
j
δjψj(x).

Here η
j
∈ son are i.i.d. standard Gaussian anti-symmetric matrices (i.e. each η

j
is

given by dn = n(n − 1)/2 i.i.d. standard Gaussian variables corresponding to the
upper-triangular part of η

j
), and δj = F2(λj) are decay factors, given as functions

of the corresponding eigenvalues.
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Proposition 3.1 above applies again to give the smoothness properties of our ran-
dom sections. In particular, since the exponents in Proposition 3.1 are independent
of dn, substituting into Weyl’s law we get a straightforward analogue of Proposition
3.2 for the expression (3).

3.3. Remarks on the construction.

Remark 3.3. For the convenience of the reader who prefers Gaussian variables
to be defined by their covariance function, we note here the covariance functions
relevant to our case.

Let gx = sl(TxM) denote the Lie algebra of SL(TxM). Then
⋃
x gx is a vector

bundle, and our Gaussian measure is defined on appropriate spaces of sections of
subbundles of this bundle. With sufficient continuity it is enough to consider the
covariance operator evaluated on linear functionals of the form X 7→ αx(X(x)),
where X is a section of the bundle and αx ∈ g∗x.

Our Gaussian measure for the diagonal part then has the covariance functions

(4) R((x, k), (x′, k′)) = δkk′
∑
j

β2
jψj(x)ψj(x

′) ,

where k is an index for the diagonal entries of a matrix in gx, diagonal with respect
to our fixed frame. The angular part has a similar covariance function.

For standard choices of βk, we note that the covariance function for analogously-
defined scalar fields would be

(5) r(x, y) =

{
Z(x, y, 2s) :=

∑∞
k=1

ψk(x)ψk(y)
λ2s
k

, βk = λ−sk ;

e∗(x, y, 2t) :=
∑∞
k=1

ψk(x)ψk(y)

e2tλk
, βk = e−tλk .

In (5), Z(x, y, 2s) denotes the spectral zeta function of ∆0, while e∗(x, y, 2t) de-
notes the corresponding heat kernel, both taken without the constant term that
corresponds to the constant eigenfunction ψ0.

Here the parameter s in βk = λ−sk determines the a.s. Sobolev regularity of the
random metric g via Propositions 3.1 and 3.2. If the metric g0 is real-analytic,
then letting βk = e−tλk makes the random metric g real-analytic as well, with the
parameter t related to the a.s. radius of analyticity (the exponent in rate of decay
of Fourier coefficients).

Remark 3.4. A similar construction applies to the space of all Riemannian met-
rics on M (without necessarily fixing the volume form). We now work in the sym-
metric space GL(TxM)/O(g0

x). The only change is that in Equation (2) one lets
Aj be standard vector-valued Gaussians without the projection.

There is a Riemannian structure and an L2 metric (due to Ebin) defined on the
space of all metrics. A detailed study of the metric properties of this space was
undertaken in [Cl].

4. Ω2 as a random variable

In this section we study the statistics of Ω2
2.

4.1. The distribution function. We recall one definition of the (fiber-wise) dis-
tance dx introduced in Section 2.3. For this choose a a basis for TxM orthonormal
with respect to g0(x). In this basis the reference metric g0

x is represented by the
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identity matrix, and our random metric by the matrix g1
x = kxa

2
xk
−1
x . We denote

the diagonal entries of ax e
bi(x). In this parametrization,

d2
x(g0

x, g
1
x) =

n∑
i=1

bi(x)2.

Accordingly,

(6) Ω2
2(g0, g1) =

∫
M

(
n∑
i=1

bi(x)2

)
dv(x).

In our random model, the vector-valued function b(x) is a Gaussian random field,
chosen according to Equation (2), where here we choose πn to be the orthogonal
projection. In other words b(x) is defined by projecting an isotropic Gaussian in
Rn orthogonally to the hyperplane

∑
i bi(x) = 0. Integrating over x, we find that

the distribution of Ω2
2 is given by:

Ω2
2
D
=
∑
j

β2
j

n−1∑
i=1

Wi,j

where Wi,j ∼ χ2
1 are i.i.d. (equivalently, the orthogonal projection from Rn to the

hyperplane has the eigenvalue 1 with multiplicity (n− 1)). We can rewrite this as

Ω2
2
D
=
∑
j

β2
jVj

where Vj ∼ χ2
n−1 are i.i.d.

One can then explicitly compute the moment generating function of Ω2
2 as the

product

MΩ2
2
(t) = E(exp(tΩ2

2)) =
∏
j

n∏
i=1

Mχ2
1
(tβ2

j ) =
∏
j

n∏
i=1

(1− 2tβ2
j )−1/2

=
∏
j

(1− 2tβ2
j )−(n−1)/2

The characteristic function can also be found explicitly as∏
j

n∏
i=1

(1− 2itβ2
j )−1/2 =

∏
j

(1− 2itβ2
j )−(n−1)/2.

4.2. Tail estimates for Ω2
2. Here we apply [LM, Lemma 1, (4.1)] to estimate the

probability of the following events:

(7) Prob{Ω2
2 > R2}, R→∞.

We let W =
∑
i aiZ

2
i with Zi i.i.d. standard Gaussians, and for (n−1)(j−1)+1 ≤

i ≤ (n − 1)j, we have ai = β2
j (i.e. each β2

j is repeated (n − 1) times). We let
‖a‖∞ = supj aj . Assume from now on that βj = F (λj) is a monotone decreasing

function; then ‖a‖∞ = a1 = β2
1 .

It is shown in [LM, Lemma 1, (4.1)] that for Wk =
∑k(n−1)
i=1 aiZ

2
i , we have

Prob{Wk ≥
k(n−1)∑
i=1

ai + 2

k(n−1)∑
i=1

a2
i

1/2

√
x+ 2 ‖a‖∞ x} ≤ e−x.
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Letting k →∞, we get the following quantities:

W := limk→∞Wk = Ω2
2;

A2 =
∑∞
i=1 ai = (n− 1)

∑∞
j=1 β

2
j ;

B4 =
∑∞
i=1 a

2
i = (n− 1)

∑∞
j=1 β

4
j ;

‖a‖∞ = a1 = β2
1 .

We obtain
Prob{W ≥ A2 + 2B2x+ 2 ‖a‖2∞ x2} ≤ e−x

2

.

We have to solve
R2 = 2||a||2∞x2 + 2B2x+A2.

This gives (for R ≥ A) the following root:

(8) x(R) =
−B2 +

√
B4 + 2(R2 −A2)||a||2∞

2||a||2∞
.

Then we obtain
Prob{Ω2 ≥ R} ≤ e−(x(R))2 ,

where x(R) is given by (8).
It is easy to show that there exists a constant C = C(A,B, ||a||∞) such that for

R ≥ A, we have

x(R)2 ≥ R2

2||a||2∞
− CR =

R2

2β2
1

− CR.

We also notice that

Prob{Ω2 ≥ R} ≥ Prob{β2
1Z

2
1 ≥ R2} = Ψ

(
R

β1

)
≥ Cβ1e

−R2/(2β2
1)

R
,

provided R ≥ β1.
To summarize:

Theorem 4.1. For R ≥ A, we have

Cβ1

R
exp

(
−R2

2β2
1

)
≤ Prob{Ω2 ≥ R} ≤ exp

(
−R2

2β2
1

+ CR

)
.

Appendix by Y. Canzani, D. Jakobson and L. Silberman
Lipschitz distance. Applications to the study of diameter and

Laplace eigenvalues.

In this section we shall prove tail estimates for a Lipschitz-type distance ρ defined
below, and use those estimates to prove that the diameter and Laplace eigenvalue
functionals are measurable with respect to the Gaussian measures defined in Section
3, and to give tail estimates for them.

A.1. Lipschitz distance. Here we study a (Lipschitz-type) distance ρ related to
the distance used in [BU] by Bando and Urakawa. It is defined by

(9) ρ(g0, g1) = sup
x∈M

sup
06=ξ∈TxM

∣∣∣∣ln g1(ξ, ξ)

g0(ξ, ξ)

∣∣∣∣
In other words, it is determined by taking the identity map on M and considering
its Lipschitz constants between the two metrics.

As in the case of Ω2, ρ(g1, g0) depends only on ax where g1
x = kxax · g0

x. In the
our adapted frame, the diagonal part of g1 has entries e2bi(x), where

∑
i bi(x) = 0
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for every x ∈ M , and where the vector b(x) = (b1(x), . . . , bn(x)) is defined by the
formula (2). Specifically, for any x ∈M the second supremum in (9) is equal to

(10) 2 sup
i
|bi(x)|

The supremum is attained for ξ = ei (the i-th unit vector in TxM). Accordingly,

(11) ρ(g0, g1) = 2 sup
1≤i≤n

sup
x∈M
|bi(x)|

A.2. Tail estimate for ρ. Now, ρ > R iff supj supx∈M |2bi(x)| > R. Accordingly,

(12) Prob{ρ(g0, g1) > R} ≤ Prob{ sup
x∈M

sup
i
|bi(x)| > R/2}.

Recall that diag(b1, . . . , bn) is given by projecting a random vector on a particular
hyperplane, which does not increase the maximum norm. It follows that

Prob{ρ(g1, g0) > R} ≤ Prob{ sup
x∈M

sup
j
|aj(x)| > R/2},

where aj are the components of an Rn-valued Gaussian vector. By symmetry we
have for fixed i that

Prob{ sup
x∈M
|ai(x)| > u} ≤ 2 · Prob{ sup

x∈M
ai(x) > u}.

Taking the union bound we find that

(13) Prob{ρ(g0, g1) > R} ≤ 2n · Prob{ sup
x∈M

a1(x) > R/2}.

We would like to estimate this probability as R →∞. We will need the covari-
ance function for the scalar random field a1(x), given by (see (4))

ra1(x, y) =

∞∑
k=1

β2
kψk(x)ψk(y),

where ψk denote the L2-normalized eigenfunctions of ∆(g0).
The following result now follows in a standard way from the Borell-TIS theorem;

it can be easily deduced from the calculations in [CJW, §3] and [AT08, §2, (2.1.3)].
We denote by σ2 the supremum of the variance ra1(x, x):

(14) σ2 := σ(a1)2 := sup
x∈M

ra1(x, x).

Proposition A.2. Let σ(aj) be as in (14). Then

lim
R→∞

ln Prob{supx∈M a1(x) > R/2}
R2

=
−1

8σ2
.

Proposition A.2 and (13) imply the following

Corollary A.3. Let σ2 := supx∈M ra1(x, x). Then for any fixed ε > 0

(15) lim
R→∞

ln Prob{ρ(g0, g1) > R}
R2

≤ −1

8σ2
.

In the sequel, we shall need a slightly more precise estimate; it follows from the
previous discussion and the estimates in [AT08, §2, p. 50].
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Proposition A.4. There exists α > 0 such that for a fixed ε > 0 and for large
enough R, we have

Prob{ρ(g1, g0) > R} ≤ 2n exp

(
αR

2
− R2

8σ2

)
.

A.3. Diameter and eigenvalue functionals. In this section we use Corollary
A.3 to give estimates for the diameter and Laplace eigenvalues of the random metric
g1.

Lemma A.5. Assume that dvol(g0) = dvol(g1), and that in addition ρ(g0, g1) < R.
Then

(16) e−R ≤ diam(M, g1)

diam(M, g0)
≤ eR.

and also

(17) e−2R ≤ λk(∆(g1))

λk(∆(g0))
≤ e2R.

Proof. The definition (9) implies that for any fixed path γ : [0, 1] → M , the ratio
of its lengths with respect to the metrics g0 and g1 is satisfies

e−R ≤ Lg1(γ)

Lg0(γ)
≤ eR.

Since

diam(M, g) = sup
x,y∈M

inf
γ:γ(0)=x,γ(1)=y

Lg(γ),

the inequality (16) follows.
To prove (17), we let h ∈ H1(M), h 6≡ 0 be a test function. Then ||h||2g :=∫

M
h2dv is independent of the metric, since the volume form dv is fixed. The

Rayleigh quotient of h is equal to

〈dh, dh〉g−1

||h||2g
,

where g−1 denotes the co-metric corresponding to g. Since the Lipschitz dis-
tance is symmetric in its two arguments, we conclude that if ρ(g0, g1) < R, then
ρ(g−1

0 , g−1
1 ) < R as well. It follows that

(18) e−2R ≤
〈dh, dh〉g−1

0

〈dh, dh〉g−1
1

≤ e2R.

By the min-max characterization of the eigenvalues (see e.g. [BU, §2]),

λk(∆(g)) = inf
U⊂H1(M): dimU=k+1

sup
h∈U, h 6≡0

||dh||2g−1

||h||2g
.

The estimate (17) now follows from (18).
�

We next establish some integrability results for the diameter functional diam(M, g1).
They follow from Lemma A.5 and a slightly stronger form of Corollary A.3.
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Theorem A.6. Let h : R+ → R+ be a monotonically increasing function such that
for some δ > 0

h(ey) = O
(
exp

[
y2(1/(8σ2)− δ)

])
.

Then h(diam(g1)) is integrable with respect to the probability measure dω(g1) con-
structed in section 3.

In the proof we shall use Proposition A.4.

Proof. Without loss of generality, assume that we have normalized g0 so that
diam(g0) = 1. It follows from (16) that if ρ(g0, g1) < R, then diam(g1) ≤ diam(g0) ·
eR = eR. By monotonicity, we have

h(diam(g1)) < h(eR).

Since h ≥ 0, the function h(diam(g1)) is integrable provided the sum
∞∑
k=N

h(ek) · Prob{g1 : k − 1 ≤ ρ(g1, g0) ≤ k}

converges. By assumption on h and Corollary A.3, that sum is dominated by

2n

∞∑
k=N

h(ek) exp

(
α(k − 1)

2
− (k − 1)2

8σ2

)
≤

2n

∞∑
k=N

exp

[
α(k − 1)

2
+

(
k2

8σ2
− δk2

)
− (k − 1)2

8σ2

]
Choosing N large enough, we find that the last sum is dominated by

2n

∞∑
k=N

exp

[
−δk2

2

]
,

and the last expression clearly converges. �

Remark A.7. The proof of Theorem A.6 can be easily modified to establish anal-
ogous results for averages of the distance function. For example, given t > 0,
consider the functional

Et(g) :=

∫
M

∫
M

(distg(x, y))t dv(x) dv(y).

We leave the details to the reader.

Another corollary is the following

Theorem A.8. Let h : R+ → R+ be a monotonically increasing function such that
for some δ > 0

h(e2y) = O
(
exp

[
y2(1/(8σ2)− δ)

])
.

Then h(λk(∆(g1))) is integrable with respect to the probability measure dω(g1) con-
structed in section 3.

Proof. The proof is similar to the proof of Theorem A.6. We let λk(g0) =: e2βk =:
e2β .

It follows from (17) that if ρ(g0, g1) < R, then λk(g1) ≤ λk(g0) · e2R = e2(R+β).
By monotonicity of the function h, we have

h(λk(g1)) < h(e2(R+β)).
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Since h ≥ 0, the function h(λk(g1)) is integrable provided the sum
∞∑

m=N

h(e2(m+β)) · Prob{g1 : m− 1 ≤ ρ(g1, g0) ≤ m}

converges.
By the assumptions on h and Corollary A.3, that sum is dominated by

2n

∞∑
m=N

h(e2(m+β)) exp

(
α(m− 1)

2
− (m− 1)2

8σ2

)
≤

2n

∞∑
m=N

exp

[
α(m− 1)

2
+

(
(m+ β)2

8σ2
− δ(m+ β)2

)
− (m− 1)2

8σ2

]
Choosing N large enough, we find that the last sum is dominated by

2n

∞∑
m=N

exp

[
−δm2

2

]
,

and the last expression clearly converges.
�

Remark A.9. Theorems A.6 and A.8 prove integrability results about the diameter
and eigenvalue functionals. We plan to further study those and other functionals
in future papers.

A.4. Volume entropy functional. The volume entropy functional hvol(g) of a
metric g was defined by Manning in [Man] as the exponential growth rate of volume
in the universal cover. It was shown that for any point x in the universal cover N
of a compact manifold M ,

(19) hvol = lim
s→∞

1

s
ln vol(B(x, s)),

where the volume and the distance in N are with respect to the metric g lifted from
M ; the choice does not depend on x, but does depend on the metric g.

We next prove the following counterpart of Lemma A.5.

Lemma A.10. Assume that dvol(g0) = dvol(g1), and that in addition ρ(g0, g1) <
R. Then

(20) e−R ≤ hvol(M, g1)

hvol(M, g0)
≤ eR.

Proof. It follows from the definition of ρ that

Bg0(x, s/(eR)) ⊂ Bg1(x, s) ⊂ Bg0(x, eR · s).
By definition of hvol, for any ε > 0, there exists s0 > 0 such that for every s > s0,
we have

hvol(g0)− ε ≤ 1

s
ln volBg0(x, s) ≤ hvol(g0) + ε.

It follows that for large enough s, we have

1

s
ln volBg1(x, s) ≤ eR 1

seR
ln volBg0(x, s) ≤ eR(hvol(g0) + ε),

and also that

e−R(hvol(g0)− ε) ≤ e−R 1

se−R
ln volBg0(x, s/eR) ≤ 1

s
ln volBg1(x, s).
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Letting s→∞ in those two inequalities, we conclude that

e−R(hvol(g0)− ε) ≤ hvol(g1) ≤ eR(hvol(g0) + ε).

We remark that ε > 0 was arbitrary; this finishes the proof. �

Lemma A.10 now easily implies

Theorem A.11. The conclusion of the Theorems A.6 remains true if the diameter
functional is replaced by the volume entropy functional hvol.
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