
GAUSSIAN FREE FIELDS AND KPZ RELATION IN R4

LINAN CHEN AND DMITRY JAKOBSON

Abstract. This work aims to extend part of the two dimensional results of
Duplantier and Sheffield on Liouville quantum gravity [DS11] to four dimen-
sions, and indicate possible extensions to other even-dimensional spaces R2n

as well as Riemannian manifolds.
Let Θ be the Gaussian free field on R4 with the underlying Hilbert space

H2
(
R4

)
and the inner product

(
(I −∆)2 ·, ·

)
L2

, and θ a generic element

from Θ. We consider a sequence of random Borel measures on R4, denoted
by

{
mθεn (dx) : n ≥ 1

}
, each of which is absolutely continuous with respect to

the Lebesgue measure dx, and the density function is given by the exponential
of a centered Gaussian family parametrized by x ∈ R4. We show that with
probability 1, mθεn (dx) weakly converges as εn ↓ 0, and the limit measure can
be “formally” written as “mθ (dx) = e2γθ(x)dx”. In this setting, we also prove
a KPZ relation, which is the quadratic relation between the scaling exponent
of a bounded Borel set on R4 under the Lebesgue measure and its counterpart
under the random measure mθ (dx).

Our approach is similar to the one used in [DS11] with adaptations to R4.

1. Introduction

Random measures have long been considered in 2-dimensional conformal field
theory and quantum gravity since the work of Knizhnik, Polyakov and Zamolod-
chikov [KPZ]. Recently, a probabilistic proof of the formula due to Knizhnik,
Polyakov and Zamolodchikov was given by Duplantier and Sheffield in [DS11]. On
the unit planar disc D, Duplantier and Sheffield construct the Liouville quantum
gravity measure “eγh(z)dz”, where dz is the Lebesgue measure on D, γ is a properly
chosen positive constant and h is an instance of the Gaussian free field (GFF) on
D with the Dirichlet inner product. To be specific, they prove that the random
measure exists as the weak convergence limit of εγ

2/2eγhε(z)dz as ε ↓ 0, where hε (z)
is the circular average of h over the circle centered at z with radius ε. They further
show that there is a quadratic relation, known as the KPZ relation, between the
scaling exponent of a random set under the Lebesgue measure, and its counterpart
under the quantum gravity measure. Another derivation was given in [DB]. Gauss-
ian free field in dimension 2 has also been considered in [HMP] and numerous other
papers.

In this article, we generalize part of the results from [DS11] to four dimensions.
We define the Euclidean GFF on R4, denoted by Θ, with the inner product deter-
mined by the Bessel operator (I −∆)

2. In other words, the underlying Hilbert space
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of Θ is given by the Sobolev space H2
(
R4
)
with the inner product

(
(I −∆)

2 ·, ·
)
L2
.

In this setting, we prove (Section 2, Theorem 5) that given 0 < γ2 < 2π2, almost
every θ ∈ Θ admits a random measure on R4 which “formally” has the density
e2γθ(x) with respect to the Lebesgue measure dx on R4. We also show that this
random measure satisfies a KPZ relation similar to the one in the two dimensional
case. Namely, if κ ∈ [0, 1] is the scaling exponent of a bounded Borel set in R4

under the Lebesgue measure, and K ∈ [0, 1] is the scaling exponent of the same
set but under the random measure obtained above (both κ and K will be defined
in Section 4), then κ and K satisfy the following quadratic relation (Section 4,
Theorem 9):

κ = K

(
1− γ2

16π2

)
+

γ2

16π2
K2.

Our proof follows the outline of the proof in [DS11] with adaptations to four
dimensions. Mainly we have to overcome (both in “designing” the model to work
with and in technical details) the difficulties caused by the absence in our problem
the two dimensional conformal structure. To interpret rigorously an instance θ
of the GFF on the entire Euclidean space R4, we adopt the theory of the abstract
Wiener space. A key ingredient in this theory is the underlying Hilbert space whose
inner product determines the covariance structure of the field. It is already known
that in order to obtain a measure which “formally” has the exponential of θ (x)
as the density with respect to dx, the covariance function Cov (θ (x) , θ (y)) can
at most grow at the rate of − log |x− y| when |x− y| is small. Taking this into
account, H2

(
R4
)
with the inner product

(
(I −∆)

2 ·, ·
)
L2

becomes our natural
choice. Also this way of defining the GFF makes it possible, in certain situations,
to obtain explicit formulas of the covariance function. To construct the random
measure and thereafter to study it, we always need to relate it to a sequence of
approximating measures which converges in some proper sense. So it is our intention
to choose the approximating measures appropriately so they will be convenient to
work with. In the two dimensional case in [DS11], the approximating measures are
in terms of the circular averages of the GFF on D. In fact, the properties of the
Gaussian family consisting of these circular averages play an important role in the
proof. For example, if h is an instance of the GFF on D, then given any z ∈ D,
the one-parameter family {hε (z) : 0 < ε ≤ 1} has up to a time change the same
distribution as a standard Brownian motion. Such properties are derived from the
Green’s function of the Laplace operator ∆ on D, which, in particular, is harmonic.
Therefore, it should not be surprising that the trivial analogue in four dimensions,
that is, the family of spherical averages of θ, fails to have such properties, which
makes it a less than optimal substitute for hε in carrying out this project on R4.
In Section 2, we present one possible replacement for hε in four dimensions which
still has simple and concrete geometric interpretations (in fact, it is given by a
functional of the spherical average of θ), but possesses, to a large extent, similar
properties to those of hε in two dimensions. In Section 3, we use the results from
Section 2 to build the approximating measures, and then prove they almost surely
admit a limit measure in the sense of weak convergence. In Section 4, we lay out an
outline to derive the KPZ relation and the proofs of the main results are collected
in Section 5. Other work on the KPZ relation in higher dimensions with different
settings can be found in [JJRV, RV].
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Our original interest in constructing such a random measure lies in its poten-
tial applications in the study of conformal classes of Riemannian metrics. In fact,
another more geometric point of view on the GFF on a planar domain or more
generally on a surface Σ, is to consider it as a measure on a conformal class of
metrics on Σ, where the measure is constructed with the help of a reference metric
g0 on Σ, but where the result does not depend on g0. It seems natural to generalize
this approach to conformal classes of metrics on higher-dimensional manifolds. It
turns out that on a compact four-dimensional manifold M, a natural replacement
for the Laplace-Beltrami operator ∆ (that is used in the construction of the GFF on
surfaces) is the 4-th order Paneitz operator that arises in the conformal geometry.
More generally, on compact 2n-dimensional manifolds it seems natural to use the
dimension-critical GJMS operator in the construction of higher-dimensional ana-
logues of the two-dimensional GFF. This will be further explained in the second
part of Section 6.

Acknowledgments. The authors thank L. Addario-Berry and D. Stroock for their
valuable comments on an earlier version of this article. We also thank R. Adler, I.
Binder, Y. Canzani, B. Duplantier, S. Klevtsov, R. Ponge, P. Sarnak, S. Sheffield,
J. Taylor, I. Wigman, P. Yang, S. Zelditch for many fruitful conversations.

2. Spherical Averages of GFF on R4

We start with a brief review of some fundamental facts about the abstract Wiener
space theory ([Gr] or [S08]). An abstract Wiener space is commonly used in con-
structions of infinite dimensional Gaussian measures. The basic setting of an ab-
stract Wiener space is as follows. Given a (infinite dimensional) Banach space Θ
and a (infinite dimensional) Hilbert space H, assume both Θ and H are separable,
and H can be continuously embedded into Θ as a dense subspace. Therefore if x∗
is a bounded linear functional on Θ (denoted by x∗ ∈ Θ∗), then there is unique
hx∗ ∈ H such that for every h ∈ H, (h, hx∗)H = 〈h, x∗〉, where 〈·, ∗〉 refers to the
action of Θ∗ on Θ (or more specifically in later discussions, the action of tempered
distributions on test functions). LetW be a probability measure on (Θ,BΘ) where
BΘ is the Borel σ−algebra of Θ. If W satisfies

EW [exp (i 〈·, x∗〉)] = exp

(
−
‖hx∗‖2H

2

)
for all x∗ ∈ Θ∗,

then the triple (H,Θ,W) is called an abstract Wiener space. It is known ([S11],
§8.3) that given any separable Hilbert space, one can always find Θ and W such
that (H,Θ,W) forms an abstract Wiener space. Moreover, since {hx∗ : x∗ ∈ Θ∗}
is also dense in H, the linear mapping

I : hx∗ ∈ H 7→ I (hx∗) ≡ 〈·, x∗〉 ∈ L2 (W)

can be uniquely extended as a linear isometry from H to L2 (W). Its images
{I (h) : h ∈ H}, known as the Paley-Wiener integrals, form a centered Gaussian
family whose covariance is given by

EW [I (h1) I (h2)] = (h1, h2)H for all h1, h2 ∈ H.

We point out that although the Hilbert structure of H plays an essential role,
W (H) = 0 and the choice of Θ is not unique.
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As we have mentioned in the previous section, we consider in our project the in-
finite dimensional Gaussian measure on the space of certain tempered distributions
on R4, with the underlying Hilbert space given by the Sobolev space H ≡ H2

(
R4
)
,

which is the completion of the real valued Schwartz test function space S
(
R4
)

under the inner product

(f1, f2)H ≡
ˆ
R4

(I −∆)
2
f1 (x) f2 (x) dx for all f1, f2 ∈ S

(
R4
)
.

Then, given this particular choice of H, our notion of the Gaussian free field on R4

refers to any probability space (Θ,BΘ,W) such that (Θ, H,W) forms an abstract
Wiener space. For example, if Θ̃ is the space of continuous functions θ : R4 → R
satisfying

lim
|x|→∞

(log (e+ |x|))−1 |θ (x)| = 0,

then Θ can be chosen as the image of Θ̃ under the Bessel operator (I −∆)
1
4 , i.e.,

Θ =
{

(I −∆)
1
4 θ : θ ∈ Θ̃

}
.

From this we observe that Θ consists of tempered distributions which in general
are not defined point-wise. Nonetheless, we can understand some properties of the
GFF by studying the Paley-Wiener integrals, which can be viewed as “generalized”
action of certain tempered distributions on Θ.

In addition, if H−2 = H−2
(
R4
)
is the Hilbert space consisting of tempered

distributions µ such that

‖µ‖2H−2 ≡
1

(2π)
4

ˆ
R4

(
1 + |ξ|2

)−2

|µ̂ (ξ)|2 dξ <∞

where µ̂ is the Fourier transform (without the factor (2π)
−2 in the definition) of µ,

then we can identify H with H−2 since (I −∆)
−2

: H−2 → H is obviously a linear
isometry. We will abuse the notation1 by denoting “hν” the image of ν ∈ H−2 under
(I −∆)

−2. Then hν is the unique element in H such that 〈h, ν〉 = (h, hν)H for all
h ∈ H, which suggests that the corresponding Paley-Wiener integral I (hν) can be
viewed as a “representation” of the action of ν on Θ, even though ν is not in Θ∗ and
I (hν) (θ) is only defined for almost every θ ∈ Θ. Meanwhile,

{
I (hν) : ν ∈ H−2

}
is also a Gaussian family whose covariance is given by

EW [I (hν1) I (hν2)] = (hν1 , hν2)H = (ν1, ν2)H−2 .

With these in mind, as a natural analogue of the 2D circular average, we consider
the spherical average of the GFF on R4. To this end, for every x ∈ R4 and ε > 0,
denote σxε the tempered distribution determined by

〈f, σxε 〉 ≡
1

2π2ε3

ˆ
Sε(x)

f (y) dσ (y) for all f ∈ S
(
R4
)
,

where Sε (x) is the sphere centered at x with radius ε, and dσ is the surface area
measure on Sε (x). Clearly, the action of σxε is to take the spherical average of f

1The subscript of “hν ” is an element of H−2, not to be confused with “hx∗ ” in the definition
of the abstract Wiener space where x∗ ∈ Θ∗.
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over Sε (x). It is an easy matter to verify that σxε ∈ H−2. In fact, one only needs
to write down the Fourier transform of σxε as

(2.1) σ̂xε (ξ) = 2 (ε |ξ|)−1
J1 (ε |ξ|) ei(x,ξ)R4

where Jk (r) is the Bessel function of order k ∈ N, and use the fact that Jk (r) is
asymptotic to r−1/2 when r is large.

As we have indicated in the introduction (and as we will confirm in the next
lemma), the spherical average of the GFF on R4 does not behave as “nicely” as the
circular average of the GFF in two dimensions. For one thing

{
I
(
hσxε
)

: ε > 0
}

fails to be a reversed Markov process. An intuitive way to view this is that, the
spherical average does not bear enough information in itself for this Gaussian fam-
ily parametrized by radius ε > 0 to be (reversed) Markovian. It might also be
helpful to relate this to the following analogous problem: when solving PDEs with
higher order differential operator on a domain with boundary, one often needs more
than one boundary condition (e.g., both the Dirichlet and the Neumann boundary
conditions) to uniquely determine the solution. Inspired by this idea, besides the
average itself we will also “collect” one more piece of information about the GFF
from each sphere, which is the “derivative” of the average with respect to the radius.
Namely, for every x ∈ R4 and ε > 0, denote dσxε the tempered distribution given
by 〈f, dσxε 〉 ≡ d

dε 〈f, σ
x
ε 〉 for all f ∈ S

(
R4
)
, then the action of dσxε can be viewed as

to take the derivative of the spherical average of the GFF in the radial direction.
It follows trivially from (2.1) that

(2.2) ˆdσxε (ξ) =
d

dε
σ̂xε (ξ) = −2ε−1J2 (ε |ξ|) ei(x,ξ)R4 .

In particular, dσxε is also in H−2 and so
{
I
(
hσxε
)
, I
(
hdσxε

)
: x ∈ R4, ε > 0

}
forms a

centered Gaussian family whose covariance is determined by the H−2 inner product
of
{
σxε , dσ

x
ε : x ∈ R4, ε > 0

}
.

The next lemma in some sense validates our decision to take dσxε into account.
It shows that by putting I

(
hσxε
)
and its “derivative” I

(
hdσxε

)
together2, not only

does the Gaussian family recover the reversed Markov property in the concentric
case (with x ∈ R4 fixed, parametrized by ε > 0 only), the non-concentric family
(parametrized by both ε > 0 and x ∈ R4) also resembles, to a large extent, its
counterpart in two dimensions. To be precise, we define the vector-valued Gaussian
random variable:

V xε ≡
(
I
(
hσxε
)

I
(
hdσxε

) ) for every x ∈ R4 and ε > 0.

Then, under certain circumstances, the covariance matrix of the Gaussian family{
V xε : x ∈ R4, ε > 0

}
can be evaluated explicitly as follows.

Lemma 1. For r ∈ (0,∞), define the following four matrices:

A (r) ≡
(

K ′1 (r) K1 (r) /r
K ′′1 (r) −K2 (r) /r

)
,B (r) ≡

(
I1 (r) /r I ′1 (r)
I2 (r) /r I ′′1 (r)

)
,

C (r) ≡
(
I1 (r) /r 0
I2 (r) I1 (r) /r

)
, D (r) ≡

(
−K2 (r) K1 (r) /r
K1 (r) /r 0

)
,

2This idea came from discussions with Daniel W. Stroock when the first author was studying
at MIT.
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where Ik,Kk are the modified Bessel functions of order k ∈ N. Then,

(1), given x ∈ R4 and ε1 ≥ ε2 > 0,

(2.3) EW
[
V xε1
(
V xε2
)>]

=

(
− 1

4π2

)
A (ε1)B> (ε2) .

In particular, {V xε : ε > 0} is a vector-valued Gaussian reversed Markov process in
the sense that for every Borel A ⊆ R2,

W
(
V xε2 ∈ A|σ

{
V xη : η ≥ ε1

})
=W

(
V xε2 ∈ A|V

x
ε1

)
,

where σ
{
V xη : η ≥ ε1

}
is the σ−algebra generated by

{
V xη : η ≥ ε1

}
.

(2), given x, y ∈ R4, x 6= y, and ε1, ε2 > 0 with ε1 > |x− y|+ ε2,

(2.4) EW
[
V xε1
(
V yε2
)>]

=

(
− 1

2π2

)
A (ε1)C (|x− y|)B> (ε2) .

(3), given x, y ∈ R4, x 6= y, and ε1, ε2 > 0 with |x− y| > ε1 + ε2,

(2.5) EW
[
V xε1
(
V yε2
)>]

=

(
− 1

2π2

)
B (ε1)D (|x− y|)B> (ε2) .

The proof of (2.3)-(2.5) relies heavily on the integral formulas and identities of
Bessel functions. The complete detailed computations are given in the appendix.
Here we only make the following observations.

First, we claim that the distribution of
{
V xε : x ∈ R4, ε > 0

}
is invariant under

isometries in spatial variables in the sense that
{
V
T (x)
ε : x ∈ R4, ε > 0

}
has exactly

the same distribution as
{
V xε : x ∈ R4, ε > 0

}
for every T : R4 → R4 satisfying

|T (x)− T (y)| = |x− y| for all x, y ∈ R4. Perhaps the most straightforward way
to see this is to write down the covariance matrix of the family, or equivalently,
the H−2 inner product of

{
σxε , dσ

x
ε : x ∈ R4, ε > 0

}
in the integral form using (2.1)

and (2.2). We will actually do this in the appendix (formulas (7.1)-(7.6)). The
result shows that the only dependence of the covariance matrix on spatial variables
is through the distance between centers of the spheres that are involved.

Second, we point out that all the matrices above A (r), B (r), C (r) and D (r) are
invertible for all r > 0. This fact can certainly be verified by direct computations
using the explicit formulas given above, but it also follows, more generally, from
the simple fact that dσxε is linearly independent of σyε for every x, y ∈ R4 and
ε > 0. Therefore, assuming (2.3) is true, then given x fixed and ε1 ≥ ε2 > 0, the
conditional expectation of V xε2 conditioning on V xε1 equals

EW
[
V xε2
(
V xε1
)>] (EW [V xε1 (V xε1)>])−1

V xε1 = B (ε2)B−1 (ε1)V xε1 .

On the other hand, we observe that for all η ≥ ε1,

EW
[(
V xε2 −B (ε2)B−1 (ε1)V xε1

) (
V xη
)>]

= 0.

This means,
V xε2 −B (ε2)B−1 (ε1)V xε1

is independent of V xη for all η ≥ ε1, which certainly implies the reversed Markov
property.
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Next, we observe that under the circumstances as prescribed in Lemma 1, the
covariance matrix of

{
V xε : x ∈ R4, ε > 0

}
is “separable” in the sense that it splits

into factors each of which only depends on one of the variables ε1, ε2 and |x− y|.
A second look at the formulas (2.3)-(2.5) suggests that we should “normalize” V xε
by B−1 (ε). Namely, if denote Uxε ≡ B−1 (ε)V xε , then the previous observations
imply that given x fixed, {Uxε : ε > 0} is a vector-valued Gaussian process with
independent (reversed) increment whose distribution does not depend on x. More-
over, (2.4) and (2.5) show that EW

[
Uxε1

(
Uyε2
)>] only depends on ε1 and |x− y|

when3 Bε2 (y) ⊆ Bε1 (x), and the same matrix only depends on |x− y| when
Bε2 (y) ∩ Bε1 (x) = ∅. Because Uxε has these properties, we are one step closer
to finding a plausible replacement for the circular average of the two dimensional
GFF.

Clearly, for any constant ζ = (ζ1, ζ2)
> ∈ R2, (Uxε , ζ)R2 is a scalar valued Gaussian

random variable (in fact, it is a Paley-Wiener integral), which, when parametrized
by x ∈ R4 and ε > 0, forms a Gaussian family that preserves the properties de-
scribed above. Our goal is to find a proper ζ ∈ R2 such that the random variable

θ ∈ Θ 7→ (Uxε , ζ)R2 (θ) = ζ>B−1 (ε)V xε (θ)

becomes a “legitimate” approximation for a multiple of the value of θ at point x for
every x ∈ R4. Namely, we want to choose ζ so that if µxε ∈ H−2 is given by

(2.6) µxε ≡ ζ>B−1 (ε)

(
σxε
dσxε

)
,

then µxε converges to a constant multiple of the point mass δx at x as ε ↓ 0 in the
sense of tempered distribution. We can reach this goal by writing down the formula
of B−1 (ε) explicitly and examining the asymptotics of the Bessel functions near
the origin (detailed computations are given in the appendix). As a result, we find
that ζ = (1, 1)

> will serve the purpose, in which case µxε → 2δx as ε ↓ 0 for every
x ∈ R4. From now on, we will assume µxε is as in (2.6) with ζ = (1, 1)

>. Since
I
(
hµxε
)

= ζ>B−1 (ε)V xε , we can transfer the results in Lemma 1 to the Gaussian
family

{
I
(
hµxε
)

: x ∈ R4, ε > 0
}
.

Theorem 2. Define the positive function G : r ∈ (0,∞) 7→ G (r) ∈ (0,∞) by

G (r) ≡
(
− 1

4π2

)
2I1 (r)K1 (r) + 2I2 (r)K0 (r)− 1

I2
1 (r)− I0 (r) I2 (r)

.(2.7)

Then, we have
(1), given x ∈ R4 and ε1 ≥ ε2 > 0,

(2.8) EW
[
I
(
hµxε1

)
I
(
hµxε2

)]
= EW

[
I2
(
hµxε1

)]
= G (ε1) .

In particular,
{
I
(
hµxε
)

: ε > 0
}
is a Gaussian process with independent reversed in-

crements in the sense that I
(
hµxε2

)
−I
(
hµxε1

)
is independent of σ

{
I
(
hµxη

)
: η ≥ ε1

}
.

(2), given x, y ∈ R4, x 6= y, and ε1, ε2 > 0 with ε1 > |x− y|+ ε2,

EW
[
I
(
hµxε1

)
I
(
hµyε2

)]
= I0 (|x− y|)G (ε1)− 1

4π2

I2 (|x− y|)
I2
1 (ε1)− I0 (ε1) I2 (ε1)

.(2.9)

3The notation “Br (x)” (“Br (x)”) denotes the open (closed) ball centered at x with radius r.



GAUSSIAN FREE FIELDS AND KPZ RELATION IN R4 8

(3), given x, y ∈ R4, x 6= y, and ε1, ε2 > 0 with |x− y| > ε1 + ε2,

(2.10) EW
[
I
(
hµxε1

)
I
(
hµyε2

)]
=

1

2π2
K0 (|x− y|) .

There is not much to be said about the proof since everything follows from
straightforward computations and the results in Lemma 1. However, we should
point out the following facts.

First, it is an easy matter to check that G : (0,∞) → (0,∞) is smooth and
strictly decreasing with limr↓0G (r) = +∞ and limr↑∞G (r) = 0. Therefore, G−1

is defined and also strictly decreasing on (0,∞). Fix a positive constant R, and for
every r ∈ (0, R], define

(2.11) 0 ≤ t ≡ G (r)−G (R) and Xt ≡ I
(
hµx

G−1(t+G(R))

)
− I

(
hµxR

)
.

Then {Xt : t ≥ 0}, as a Gaussian process on Θ under W, has the same distribution
as the standard Brownian motion, which in particular is independent of the choice
of x. In other words,

{
I
(
hµxε
)

: 0 < ε ≤ R
}

has the distribution of a Brownian
motion up to a non-random time change.

Second, the formulas (2.9) and (2.10) indicate that the covariance function does
not depend on ε2 when Bε2 (y) ⊆ Bε1 (x) and does not even depend on ε1 or ε2 when
Bε2 (y) ∩Bε1 (x) = ∅. If one does the calculation with circular averages of the two
dimensional GFF in each case analogously, one would see the same phenomenon.
Namely, the smaller radius does not appear in the covariance function if one circle is
entirely contained in the disk bounded by the other circle, while neither of the radii
matters if the two disks bounded by the two circles respectively don’t intersect.
Such properties are consequences of the mean value theorem applied to the Green’s
function of the Laplace operator ∆ in two dimensions, and these special properties
of harmonic functions are no longer available to us in four dimensions. Nonetheless,
we have seen from the above that by substituting

{
I
(
hµxε
)

: x ∈ R4, ε > 0
}
for the

circular average, we will recover in the four-dimensional setting properties similar
to those in two dimensions.

Finally, by examining the asymptotics of the Bessel functions near the origin,
one finds that function G as defined in (2.7) is asymptotic to − 1

2π2 log r when r is
small. Therefore, in both case (1) and case (2) from above, the covariance function
is asymptotic to − 1

2π2 log ε1 for sufficiently small ε1, while in case (3), the right hand
side of (2.10) is asymptotic to − 1

2π2 log |x− y| for sufficiently small |x− y|. In this
sense, the covariance function of

{
I
(
hµxε
)

: x ∈ R4, ε > 0
}

does have logarithmic
growth near diagonal as one would have expected.

By now, one should be able to believe that
{
I
(
hµxε
)

: x ∈ R4, ε > 0
}
is a rea-

sonable replacement for the circular average of the 2D GFF in order to construct
a random measure on R4. Indeed, the construction based on this Gaussian family
will be carried out in the next section. We close this section with an important
observation about I

(
hµxε
)
as a mapping from the variable x ∈ R4 to a random

variable on Θ under W.

Corollary 3. Given ε > 0, the mapping x ∈ R4 7→ I
(
hµxε
)
∈ L2 (W) is continuous.

Moreover, if α ∈
(
0, 1

2

)
, then for almost every θ ∈ Θ , x ∈ R4 7→ I

(
hµxε
)

(θ) ∈ R is
Hölder continuous with Hölder constant α.
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Proof. By Kolmogorov’s continuity criterion ([S11], §4.3) applied to Gaussian ran-
dom variables, in order to prove both statements in Corollary 3, it would be suffi-
cient if we can show that there exist constant β > 0 and 0 < Cβ,ε < ∞ such that
for every x, y ∈ R4, ∥∥I (hµxε )− I (hµyε )∥∥2

L2(W)
≤ Cβ,ε |x− y|β .

To simplify the notations, we write µxε as µxε ≡ f1 (ε)σxε + f2 (ε) dσxε , where both
f1 and f2 are actually analytic functions in ε ∈ [0, R] (the explicit formulas for f1

and f2 are given by (7.9) in the appendix). Therefore, we only need to show that
both ‖σxε − σyε ‖

2
H−2 and ‖dσxε − dσyε ‖

2
H−2 are bounded by Cβ,ε |x− y|β . Perhaps

the most straightforward way to see this is writing down the integral expressions
for ‖σxε − σyε ‖

2
H−2 and ‖dσxε − dσyε ‖

2
H−2 . Again, we refer to the formulas (7.1)-(7.6)

in the appendix. From there, together with the series expression for the Bessel
functions ([Wat], §3.1), it is an easy matter to check that one can get the desired
upper bound for ‖σxε − σyε ‖

2
H−2 and ‖dσxε − dσyε ‖

2
H−2 so long as β ∈ (0, 1). �

3. Construction of Random Measure

In this section, we will use the Gaussian family
{
I
(
hµxε
)

: x ∈ R4, ε > 0
}

to
construct a random measure on R4 which “formally” can be written as “m (dx) =
e2γθ(x)dx” where θ ∈ Θ is chosen under the distribution of W, γ ≥ 0 is a constant
and dx is the Lebesgue measure on R4. Recall that at every x ∈ R4, µxε tends
to 2δx as ε ↓ 0 in the sense of tempered distribution, so we can take the value of
the random variable θ 7→ 1

2I
(
hµxε
)

(θ) as the approximation for “θ (x)” as ε ↓ 0.
Furthermore, Corollary 3 certainly guarantees that with ε fixed, one can always
make the mapping

(x, θ) ∈ R4 ×Θ 7→ I
(
hµxε
)

(θ) ∈ R
measurable with respect to BR4 ×BΘ. In addition, we can assume for every θ ∈ Θ,
the function

x ∈ R4 7→ Eθε (x) ≡ exp

(
γI
(
hµxε
)

(θ)− γ2

2
G (ε)

)
is positive and continuous, and hence if mθ

ε (dx) ≡ Eθε (x) dx, then mθ
ε (dx) is a

positive regular and σ−finite Borel measure on R4. Moreover, given any Borel
B ⊆ R4, the mapping

θ ∈ Θ 7→ mθ
ε (B) =

ˆ
B

Eθε (x) dx ∈ R

is also non-negative and measurable. Hence by Tonelli’s Theorem and the fact that
EW

[
Eθε (x)

]
= 1 for every x ∈ R4 and ε > 0,

EW
[
mθ
ε (B)

]
=

ˆ
B

EW
[
Eθε (x)

]
dx = vol (B) .

Since mθ
ε (dx) is simply the Lebesgue measure on R4 when γ = 0, from now on

we will only consider the case when γ > 0. We want to study the convergence of
mθ
ε (dx) as ε ↓ 0. In order to have the desired convergence, we only consider ε taking

values along a sequence {εn ≡ εn0 : n ≥ 1} for some fixed ε0 ∈ (0, 1). Without loss
of generality, we will assume mθ

εn (dx) is well defined as above for all n ≥ 1 and
every θ ∈ Θ. For the sake of convenience in later discussions, we will abuse the
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notation by identifying “mθ
ε0 (dx)” with 0. We want to show that as n → ∞, al-

most surely the sequence
{
mθ
εn (dx)

}
converges weakly to a limit measure mθ (dx),

written as mθ
εn (dx) ⇀ mθ (dx), in the sense that

´
R4 f (x)mθ

εn (dx) converges to´
R4 f (x)mθ (dx) for every f ∈ Cc

(
R4
)
which is the space of continuous and com-

pactly supported functions on R4. To reach this goal, it suffices to show the con-
vergence of

´
R4 f (x)mθ

εn (dx) when f is any continuous function on Γ for any given
compact set Γ ⊆ R4. In fact, we have the following result that holds for more
general f so long as f is bounded and measurable on Γ.

Lemma 4. Assume 0 < γ2 < 2π2 and Γ ⊆ R4 is compact. There exists a square
integrable random variable θ ∈ Θ 7→ mθ (Γ) ∈ R+ such that

N−1∑
n=0

∣∣∣mθ
εn+1

(Γ)−mθ
εn (Γ)

∣∣∣ converges to mθ (Γ) as N →∞

almost surely as well as in L2 (W).
Similarly, for every bounded measurable function f with supp (f) ⊆ Γ, there

exists Mθ (f) ∈ L2 (W) such that

Mθ
εn (f) ≡

ˆ
R4

f (x)mθ
εn (dx) converges to Mθ (f) as n→∞

almost surely as well as in L2 (W), and
∣∣Mθ (f)

∣∣ ≤ mθ (Γ) ‖f‖u almost surely.

Proof. To prove the first statement, we rewrite
(
mθ
εn+1

(Γ)−mθ
εn (Γ)

)2

, n ≥ 1, as
the following double integral:¨

Γ2

[
Eθεn+1

(x)Eθεn+1
(y) + Eθεn (x)Eθεn (y)− 2Eθεn+1

(x)Eθεn (y)
]
dxdy.

By Tonelli’s Theorem, the W-expectation of above equals
¨

Γ2

{
e
γ2E

[
I
(
hµxεn+1

)
I
(
hµyεn+1

)]
+ e

γ2E
[
I
(
hµxεn

)
I
(
hµyεn

)]
− 2e

γ2E
[
I
(
hµxεn+1

)
I
(
hµyεn

)]}
dxdy.

We split this integral by dividing the domain into two parts:¨
|x−y|>2εn

and
˜

0≤|x−y|≤2εn
.

The formula (2.10) implies the integrand is always zero in the designated domain of
the first part. As for the second part, the integrand is always bounded by 2eγ

2G(εn+1)

while the volume of the integral domain is bounded by Cε4n for some constant4 C.
Together with the observations made in Section 2 about the asymptotics of G, one
finds that

EW
[∣∣∣mθ

εn+1
(Γ)−mθ

εn (Γ)
∣∣∣2] ≤ Ce−(8π2−γ2)G(εn).(3.1)

4Throughout this section, “C” denotes a positive finite constant that is universal in εn. The
value of C may change from line to line.
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The square root of the right hand side of (3.1) is summable in n ≥ 1 and meanwhile
mθ
ε1 (Γ) is clearly square integrable, so

(3.2) mθ (Γ) ≡
∞∑
n=0

∣∣∣mθ
εn+1

(Γ)−mθ
εn (Γ)

∣∣∣
is square integrable and the convergence takes place in L2 (W). Furthermore, the
series

∑N
n=0

∣∣∣mθ
εn+1

(Γ)−mθ
εn (Γ)

∣∣∣ also converges to mθ (Γ) almost surely along a

subsequence, but since the series is monotonic in N , it must converge to mθ (Γ)
almost surely along the full sequence.

The second statement of the lemma follows from the same arguments. In fact,
given a bounded measurable function f with supp (f) ⊆ Γ, if one replacesmθ

εn (Γ) by

Mθ
εn (f) in every step of the proof above, one can see that

∑∞
n=0

∣∣∣Mθ
εn+1

(f)−Mθ
εn (f)

∣∣∣
is also square integrable. The rest of the proof is straightforward. �

Theorem 5. Assume 0 < γ2 < 2π2. For almost every θ ∈ Θ, there exists a
non-negative regular σ−finite Borel measure mθ (dx) on R4 such that

mθ
εn (dx) ⇀mθ (dx) as n→∞,

and for every compact set Γ ⊆ R4,
∥∥mθ

∥∥
var,Γ ≤ mθ (Γ) where

∥∥mθ
∥∥
var,Γ is the

total variation of mθ (dx) over Γ and mθ (Γ) is as defined in (3.2).
In particular, for every f ∈ Cc

(
R4
)
,ˆ

R4

f (x)mθ
εn (dx) converges to

ˆ
R4

f (x)mθ (dx) as n→∞

almost surely as well as in L2 (W).

Proof. Clearly we only need to prove the first statement of the theorem, because
assuming mθ

εn (dx) ⇀mθ (dx) almost surely, the second statement is simply repeat-
ing the second result in Lemma 4 with Mθ (f) =

´
R4 f (x)mθ (dx) for f ∈ Cc

(
R4
)
.

As we mentioned earlier, to obtain the limit measure mθ (dx), it suffices to show
the convergence of mθ

εn (dx) on any compact set Γ ⊆ R4. We will achieve this goal
via the Riesz representation theorem. We have already seen from the second part
of Lemma 4 that, if denote Mθ

εn (f) ≡
´
R4 f (x)mθ

εn (dx) for every n ≥ 1 and every
bounded measurable function f supported on Γ, then

(3.3) Mθ (f) ≡ lim
n→∞

Mθ
εn (f) exists and

∣∣Mθ (f)
∣∣ ≤ ‖f‖umθ (Γ) <∞

with probability one. However, to get the almost sure existence of mθ (dx), we need
to argue that with probability one, the statement above holds simultaneously for all
functions f from a “large enough” class. To this end, we make use of the separability
of the Banach space C (Γ) (when equipped with the uniform norm ‖·‖u). Namely,
we can choose a countable sequence {fk : k ≥ 1} which is a dense subset of C (Γ),
so almost surely the statement (3.3) holds5 simultaneously for all fk, k ≥ 1.

Now let’s focus on θ ∈ Θ such that (3.3) holds for all fk, k ≥ 1. Given a general
f ∈ C (Γ), let

{
fkj : j ≥ 1

}
be a subsequence such that fkj → f in ‖·‖u as j →∞,

5In this discussion, we will simply assume f ≡ 0 outside Γ for every f ∈ C (Γ), so Mθ (f) and
Mθ
εn

(f) are still well defined.
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then for every l, n ≥ 1,∣∣Mθ
εl

(f)−Mθ
εn (f)

∣∣ ≤ ∣∣Mθ
εl

(f)−Mθ
εl

(
fkj
)∣∣+

∣∣Mθ
εl

(
fkj
)
−Mθ

εn

(
fkj
)∣∣

+
∣∣Mθ

εn

(
fkj
)
−Mθ

εn (f)
∣∣

≤ 2mθ (Γ)
∥∥f − fkj∥∥u +

∣∣Mθ
εl

(
fkj
)
−Mθ

εn

(
fkj
)∣∣ .

Obviously
{
Mθ
εn (f) : n ≥ 1

}
forms a Cauchy sequence which immediately implies

that (3.3) also holds for f and in addition Mθ (f) = limj→∞Mθ
(
fkj
)
. Therefore,

for almost every θ ∈ Θ, f 7→ Mθ (f) is a linear and bounded functional on C(Γ),
which, by the Riesz representation theorem, gives rise to a unique regular Borel
measure mθ (dx) on Γ such that Mθ (f) =

´
Γ
f (x)mθ (dx) for all f ∈ C (Γ) and

the total variation of mθ (dx) is equal to the operator norm ofMθ which is bounded
by mθ (Γ). It’s also clear that mθ (dx) is non-negative and mθ

εn (dx) ⇀mθ (dx). �

Compared with the second statement in Lemma 4, the second statement in The-
orem 5 seems “weaker” since we have restricted ourselves to f ∈ Cc

(
R4
)
. However,

we point out that the same statement, i.e., Mθ
εn (f) converges to

´
R4 f (x)mθ (dx)

both almost surely and in L2 (W), is no longer true if f is only assumed to be
a bounded measurable function with compact support. The reason is the follow-
ing: for such a function f , although the existence of Mθ (f) = limn→∞Mθ

εn (f)
is guaranteed by Lemma 4, in general one cannot draw any conclusion on the re-
lation between Mθ (f) and

´
R4 f (x)mθ (dx), because mθ

εn (dx) only converges to
mθ (dx) weakly and one does not have control over

∥∥mθ
εn −m

θ
∥∥
var,supp(f)

. How-
ever, under some circumstances, we can derive a relation between the two random
variables Mθ (f) and

´
R4 f (x)mθ (dx). For example, if f = χA is the indicator

function of a bounded open set A ⊆ R4, then the weak convergence result implies
mθ (A) ≤ limn→∞mθ

εn (A) almost surely. Meanwhile, the L2 (W) convergence of
mθ
εn (A) certainly leads to

EW
[

lim
n→∞

mθ
εn (A)

]
= lim
n→∞

EW
[
mθ
εn (A)

]
= vol (A) ;

on the other hand, let {fl : l ≥ 1} ⊆ Cc
(
R4
)
be a sequence such that 0 ≤ fl ↗ χA

as l → ∞, then by the monotone convergence theorem and the second statement
in Theorem 5,

EW
[
mθ (A)

]
= lim
l→∞

EW
[ˆ

R4

fl (x)mθ (dx)

]
= lim
l→∞

ˆ
R4

fl (x) dx = vol (A) .

This can only be possible if mθ (A) = limn→∞mθ
εn (A) almost surely. More gen-

erally ([S11], §9.1), if f is bounded and upper semicontinuous (or lower semicon-
tinuous or mθ−almost surely continuous), then it follows from a similar argument
that Mθ (f) = limn→∞Mθ

εn (f) almost surely, so the second statement in Theorem
5 also holds for f .

The fact as stated above that EW
[
mθ (A)

]
= vol (A) for every bounded open

set guarantees that the limit measure mθ (dx) cannot be almost everywhere triv-
ial, i.e., W

(
mθ (dx) = 0

)
< 1. In fact, we will prove later (in Lemma 10) that

W
(
mθ (dx) = 0

)
= 0, so mθ (dx) is almost surely a positive measure. On the

other hand, the following simple observation shows that mθ (dx) almost surely does
not assign positive mass to any given point. To see this, recall the assumption
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0 < γ2 < 2π2 and the fact that G (r) is asymptotic to − 1
2π2 log r when r is small.

Then it is an easy matter to check that for any fixed x ∈ R4,

EW
[
lim sup
n→∞

e4γ2G(εn)mθ
(
Bεn (x)

)]
= 0.

Therefore, if denote

(3.4) Θx ≡
{
θ ∈ Θ : lim

n→∞
e4γ2G(εn)mθ

(
Bεn (x)

)
= 0
}
,

then Θx is clearly a measurable subset of Θ and W (Θx) = 1.
We will close this section by a remark about the condition of the constant6 γ.

Readers may have noticed that the constraint 0 < γ2 < 2π2 in Lemma 4 and
Theorem 5 is more than what the proofs require. However, one reason of having
this condition on γ is that it guarantees the proof of Lemma 4 being correct even
if one replaces γ by 2γ. In other words, if we denote

mθ,2γ
εn (dx) ≡ e2γI

(
hµxεn

)
(θ)−2γ2G(εn)

dx

and define mθ,2γ (Γ) similarly using mθ,2γ
εn (Γ) for any compact set Γ ⊆ R4, then

mθ,2γ (Γ) is also square integrable and in particularmθ,2γ (Γ) is almost surely finite.
Some proofs in Section 5 make use of this consideration and hence the condition
0 < γ2 < 2π2 becomes necessary there. We will remind readers when it comes to
those situations.

4. KPZ Relation

Throughout later discussions, we will always assume 0 < γ2 < 2π2 and for every
θ ∈ Θ, mθ (dx) is a non-negative regular and σ−finite Borel measure on R4 and
mθ
εn (dx) ⇀mθ (dx) (otherwise one simply assigns mθ

εn (dx) = mθ (dx) = dx for all
n ≥ 1 on a measurable null set of Θ). In this section, we would like to establish
a KPZ relation between the Euclidean scaling exponent of a bounded (fractal)
Borel set on R4 and its counterpart under the random measure mθ (dx). We first
recall from [DS11] some definitions. Given a bounded Borel D ⊆ R4, the constant
κ ∈ [0, 1] is called the Euclidean scaling exponent of D if

lim
λ↓0

log vol (Dλ)

log λ4
= κ,

where λ > 0 and Dλ ≡ ∪x∈DBλ (x) is the canonical λ−neighborhood of D. In
the random measure setting, for every Λ > 0, we first consider the mapping from
R4 ×Θ to [0,∞]:

(4.1) (x, θ) 7→ rΛ (x, θ) ≡

{
sup

{
r > 0 : mθ (Br (x)) ≤ Λ

}
if θ ∈ Θx,

0 otherwise,

where Θx is as determined in (3.4), then define the isothermal Λ−neighborhood of
D by

(4.2) DΛ,θ ≡

{
x ∈ R4 :

either rΛ (x, θ) > 0 and dist (x,D) < rΛ (x, θ)

or rΛ (x, θ) = 0 and x ∈ D

}
.

6In this article, we don’t have particular emphasis on the potential physics meaning of γ.
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Intuitively, BrΛ(x,θ) (x) is the “largest” ball (in radius) centered at x with volume Λ

under the random measure mθ (dx), and DΛ,θ is the “neighborhood” obtained by
covering D with all such balls with equal volume. If there exists constant K ∈ [0, 1]
such that

(4.3) lim
Λ↓0

logEW
[
mθ
(
DΛ,θ

)]
log Λ

= K,

then K is called the quantum scaling exponent of D. K can be viewed as the
“expected” scaling exponent and as such the counterpart of κ under the random
measure mθ (dx). In two dimensions, κ and K satisfy the so-called KPZ relation
which is a quadratic relation. Our goal in this section is to extend such a relation
to the four dimensional setting.

However, we haven’t yet justified the “meaning” of the notations in (4.3). First
we have to check that DΛ,θ is a Borel set in R4 for every θ ∈ Θ, which requires
us to verify the measurability of (x, θ) 7→ rΛ (x, θ) with respect to BR4 × BΘ.
To this end, we observe that (x, θ) 7→ mθ (Br (x)) is measurable for every r > 0
because there certainly exists continuous mapping x ∈ R4 7→ ρxl ∈ Cc

(
R4
)
for

every l ≥ 1 with 0 ≤ ρxl ↗ χBr(x) and hence Mθ (ρxl ) ↗ mθ (Br (x)) as l → ∞
for every (x, θ). From this we conclude that {(x, θ) : θ ∈ Θx} is a Borel set in
R4×Θ, and then the measurability of rΛ (x, θ) follows simply by identifying the set
{(x, θ) : 0 < rΛ (x, θ) ≤ a} with

{
(x, θ) : θ ∈ Θx,m

θ (Ba (x)) ≥ Λ
}
for every a > 0.

Therefore, for every θ, DΛ,θ is a Borel set in R4 since it is the θ−section of the
following Borel set in R4 ×Θ:

(D ×Θ) ∪ {(x, θ) : rΛ (x, θ) > 0, dist (x,D) < rΛ (x, θ)} .

Next, we need to show that θ 7→ mθ
(
DΛ,θ

)
is measurable with respect to BΘ.

More generally, if C ∈ BR4 ×BΘ and Cθ ≡
{
x ∈ R4 : (x, θ) ∈ C

}
is the θ−section

of C, we claim that θ 7→ mθ
(
Cθ
)
is measurable with respect to BΘ. To see this,

denote CθN ≡ Cθ ∩ BN (0) for every N ≥ 1 and choose a sequence of mollifiers
{ϕk ∈ [0, 1] : k ≥ 1} ⊆ Cc

(
R4
)
such that gθk ≡ ϕk ? χCθN converges to χCθN under

‖·‖u as k →∞. Moreover, for every k ≥ 1, since C ∈ BR4 ×BΘ,

(x, θ) 7→ gθk (x) =

ˆ
(y,θ)∈C,|y|<N

ϕk (x− y) dy

is also measurable with respect to BR4 × BΘ. Thus, because gθk ∈ Cc
(
R4
)
and∥∥gθk∥∥u ≤ 1 for every k ≥ 1 and mθ

εn (dx) ⇀mθ (dx),

mθ
(
Cθ
)

= lim
N→∞

lim
k→∞

lim
n→∞

ˆ
R4

gθk (x)Eθεn (x) dx,

which is a measurable function in θ.
At this point, one can already tell that it is convenient to consider the spa-

tial variable x and the GFF θ at the same time. In particular, if M (dxdθ) ≡
mθ (dx)W (dθ), then it’s clear from the preceding thatM (dxdθ) is a non-negative
σ−finite Borel measure on the product space R4 × Θ. To connect κ with K, it
is natural to investigate the distribution of rΛ (x, θ) under the M (dxdθ). To get
started, we will first look at the distribution of mθ (Br (x)) underM (dxdθ) for any
given r > 0. The following lemma says that we can change our “perspective” by first
choosing a “base” point x ∈ R4 and then examine the distribution of mθ (Br (x))
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at x. This is realized by a procedure of exchanging the order of integration. The
proof of Lemma 6 is given in Section 5.

Lemma 6. For every x ∈ R4, let Θx be the measurable subset of Θ as determined
in (3.4), and define

(4.4) θ 7→ m̂θ,x (dy) ≡

{
exp

(
γ2

2π2K0 (|x− y|)
)
mθ (dy) if θ ∈ Θx,

mθ (dy) otherwise.

Then almost surely m̂θ,x (dy) is also a non-negative regular and σ−finite Borel
measure on R4.

Moreover, for every r > 0, compact set Γ ⊆ R4 and F ∈ C0

(
R4 × [0,∞)

)
,

ˆ
Θ

ˆ
Γ

F
(
x,mθ (Br (x))

)
mθ (dx)W (dθ) =

ˆ
Γ

ˆ
Θ

F
(
x, m̂θ,x (Br (x))

)
W (dθ) dx.

(4.5)

In particular, this implies that for every r > 0, the joint distribution of
(
x,mθ (Br (x))

)
underM (dxdθ) is the same as the distribution of

(
x, m̂θ,x (Br (x))

)
underW (dθ) dx,

whose marginal distribution on Θ at x is independent of x.

Based on Lemma 6, instead of mθ (Br (x)) under M (dxdθ), we may as well
study the distribution of m̂θ,x (Br (x)) under W (dθ) dx. Similarly, to understand
rΛ (x, θ) underM (dxdθ), we only need to look at the random variable given by

(4.6) (x, θ) 7→ r̂Λ (x, θ) ≡

{
sup

{
r > 0 : m̂θ,x (Br (x)) ≤ Λ

}
if θ ∈ Θx,

0 otherwise.

under W (dθ) dx, whose marginal distribution on Θ at x is again independent of x.
To proceed from here, we will follow the same strategy as in [DS11]. For the

sake of completeness, we will still present the main steps here. For every r > 0
and Λ > 0, since the distribution of m̂θ,x (Br (x)) and r̂Λ (x, θ) under W does not
depend on x, we can assume x is the origin and simplify the notation by denoting
Br ≡ Br (0), r̂Λ (θ) ≡ r̂Λ (0, θ) and m̂θ (Br) ≡ m̂θ,0 (Br (0)). We want to find an
“approximation” for m̂θ (Br) by conditioning on the value of the GFF restricted
to the “boundary” of Br. To be precise, recall from the definition (2.11) that if
r (t) ≡ G−1 (t+G (R)) with t ≥ 0, then Xt = I

(
hµ0

r(t)

)
− I

(
hµ0

R

)
has the same

distribution of a standard Brownian motion. We want to investigate the conditional
expectation of m̂θ

(
Br(t)

)
given Xt. To do this, we need to relate m̂θ

(
Br(t)

)
to the

approximating measures mθ
εn (dx), which requires us to overcome the singularity of

e
γ2

2π2K0(|·|) at the origin. To this end, assume {fl : l ≥ 1} ⊆ Cc
(
BR
)
is a sequence

with 0 ≤ fl ↗ χBr(t) as l→∞, then7

Cc
(
BR
)
3 dl (·) ≡ fl (·) e

γ2

2π2 (K0(|·|)∧l) ↗ χBr(t) (·) e
γ2

2π2K0(|·|).

Therefore, one can apply the convergence results in Theorem 5 to dl for every l ≥ 1.
Together with the monotone convergence theorem, one sees that for every t ≥ 0,

(4.7) EW
[
m̂θ
(
Br(t)

)
|Xt

]
= lim
l→∞

lim inf
n→∞

EW
[
Mθ
εn (dl) |Xt

]
.

7The notation “α ∨ β” denotes “max {α, β}” and “α ∧ β” denotes “min {α, β}”.



GAUSSIAN FREE FIELDS AND KPZ RELATION IN R4 16

Given the order of taking limits in the right hand side of (4.7), for every l ≥ 1

and eventually all large n, we have Bεn (y) ⊆ Br(t) ⊆ BR for every y ∈ supp (dl).
Thus by a simple exercise on conditional expectations of Gaussian random variables
along with (2.9), we can derive from (4.7) that

(4.8)

EW
[
m̂θ
(
Br(t)

)
|Xt

]
=

ˆ
Br(t)

e
γ2

2π2K0(|y|) exp [(I0 (|y|)− I2 (|y|)P (t)) γXt]

· exp

[
−γ

2t

2
(I0 (|y|)− I2 (|y|)P (t))

2

]
dy,

where P (t) ≡
(
4π2t

)−1
[(
I2
1 − I0I2

)−1
(r (t))−

(
I2
1 − I0I2

)−1
(R)
]
.

If one carefully examines the asymptotics near the origin of the Bessel functions
involved, one realizes that (4.8) suggests the conditional expectation of m̂θ

(
Br(t)

)
given Xt, when t is large, is “approximately”

(4.9) m̂θ∗ (Br(t)) ≡ exp

(
γXt −

(
8π2 − γ2

2

)
t

)
.

For the moment we will “pretend” m̂θ
(
Br(t)

)
is just m̂θ∗ (Br(t)) and formulate the

KPZ relation under this circumstance.
For every Λ > 0, we define the stopping time:

(4.10) T ∗Λ ≡ inf

{
t ≥ 0 : m̂θ∗ (Br(t)) = exp

(
γXt −

(
8π2 − γ2

2

)
t

)
≤ Λ

}
.

The distribution of T ∗Λ can be completely determined by a martingale argument,
which is straightforward but worth repeating. Namely, for every s ≤ 0, by Doob’s
stopping time theorem,

{
exp

[
sXt∧T∗

Λ
− s2

2 (t ∧ T ∗Λ)
]

: t ≥ 0
}
is a uniformly bounded

martingale. Furthermore, the continuity of Brownian motion implies that

XT∗
Λ

=
log Λ

γ
+

(
8π2 − γ2

2

)
T ∗Λ
γ
.

Therefore, the fact that the expectation of the martingale at t = 0 is equal to that
at t = T ∗Λ leads to the formula of the moment generating function of T ∗Λ:

(4.11) EW
exp

−γs2 − 2s
(

8π2 − γ2

2

)
2γ

T ∗Λ

 = Λ−s/γ .

From here we can derive our first version of the KPZ relation which is easy but
revealing.

Lemma 7. Assume D ⊆ R4 is a bounded Borel set with Euclidean scaling exponent
κ ∈ [0, 1], i.e.,

(4.12) lim
λ↓0

logVol (Dλ)

log λ4
= κ.

For every Λ > 0, let T ∗Λ be as in (4.10) and define the random “radius”:

θ 7→ r∗Λ (θ) ≡ G−1 (T ∗Λ (θ) +G (R)) ,

and the random “neighborhood”:

θ 7→ DΛ∗,θ ≡ ∪x∈DBr∗Λ(θ) (x) .
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Then, we have

(4.13) lim
Λ↓0

logEW
[
mθ
(
DΛ∗,θ)]

log Λ
= lim

Λ↓0

logEW
[
(r∗Λ)

4κ
]

log Λ
= K

where K ∈ [0, 1] is determined by the following quadratic relation with κ:

(4.14) κ = K

(
1− γ2

16π2

)
+

γ2

16π2
K2.

Proof. Clearly in this setting, we want to cover D with open balls that all have the
same “critical” radius determined by the stopping time associated with the martin-
gale m̂θ∗ (Br(t)) (defined in (4.9)). We don’t have to worry about the measurability
of θ 7→ mθ

(
DΛ∗,θ) because both θ 7→ r∗Λ (θ) and (θ, r) 7→ mθ (Dr) are measurable.

Conditioning on r∗Λ = r ∈ (0, R], DΛ∗,θ is bounded and open, and the conditional
expectation of mθ

(
DΛ∗,θ) is a multiple (reciprocal of the probability density func-

tion of r∗Λ at r) of vol (Dr), which, according to (4.12), 8“≈” r4κ for every r ∈ (0, R].
This means EW

[
mθ
(
DΛ∗,θ)] ≈ EW

[
(r∗Λ)

4κ
]
and further ≈ EW

[
exp

(
−8π2κT ∗Λ

)]
.

Given (4.11), clearly one wants to set 8π2κ to be s2

2 −
s
γ

(
8π2 − γ2

2

)
for some

s ∈ [−γ, 0], in which case

lim
Λ↓0

logEW
[
mθ
(
DΛ∗,θ)]

log Λ
= lim

Λ↓0

logEW
[
exp

(
−8π2κT ∗Λ

)]
log Λ

= − s
γ
.

The results in (4.13) and (4.14) follow immediately after setting K ≡ − s
γ . �

Next, we argue that m̂θ∗ (Br) is indeed a “legitimate” approximation for m̂θ (Br)
in the sense that r∗Λ, as defined in Lemma 7, approximates r̂Λ : θ 7→ r̂Λ (θ) when
“compared” in the limit of the logarithm ratio.

Lemma 8. Assume the pair (κ,K) ∈ [0, 1]
2 satisfies the quadratic relation in

(4.14). Then,

(4.15) lim
Λ↓0

logEW
[
(r̂Λ)

4κ
]

log Λ
= K or equivalently lim

Λ↓0

logEW
[
(r̂Λ)

4κ
]

logEW
[
(r∗Λ)

4κ
] = 1.

The proof of this lemma is given in Section 5. There we also prove a preliminary
result (Lemma 10) which actually implies the almost sure non-triviality of the
measure m̂θ (dx) as well as mθ (dx). Most importantly, this lemma builds up the
final passage to the KPZ relation for mθ (dx), the “true” case in which we are
interested. Again, we will only present the statement here and leave the proof to
the next section.

Theorem 9. Let D ⊆ R4 be a bounded Borel set with Euclidean scaling exponent
κ ∈ [0, 1]. Then D has quantum scaling exponent K ∈ [0, 1] as defined in (4.3),
where K is related to κ by (4.14).

8Throughout this article, the notation “≈” means “bounded from above and below by a uni-
versal constant multiple of”.
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5. Proofs of Results in Section 4

We will now prove Lemma 6. The strategy is to relate mθ (dx) to the approx-
imating measures mθ

εn (dx) and recognize that, by the Cameron-Martin formula,

the density of mθ
εn (dx), i.e., Eθεn (x) = exp

(
γI
(
hµxεn

)
(θ)− γ2

2 G (εn)
)
, is just the

Radon-Nikodym derivative with respect to W of the Gaussian measure induced by
the translation θ 7→ θ + γhµxεn under W. Note that the constraint 0 < γ2 < 2π2

becomes necessary in this proof.

Proof of Lemma 6: Let m̂θ,x (dy) be the measure as defined in (4.4). The claim
that m̂θ,x (dy) is non-negative regular and σ−finite follows from the observation
that exp

(
γ2

2π2K0 (|x− ·|)
)
is locally integrable with respect to mθ (dx) if θ ∈ Θx.

Without loss of generality, we will assume x = 0. The only possible problem comes
from the singularity at 0. However, if we rewrite

ˆ
Bε0 (0)

e
γ2

2π2K0(|y|)mθ (dy) =

∞∑
k=0

ˆ
εk≤|y|<εk−1

e
γ2

2π2K0(|y|)mθ (dy)

≤
∞∑
k=0

e
γ2

2π2K0(εk)mθ
(
Bεk−1

(0)
)
,

then the criterion (3.4) for Θx guarantees that the series in the right hand side of
above is convergent.

Now we move on to the second part of the lemma. Clearly both mappings

(x, θ) 7→ F
(
x,mθ (Br (x))

)
and (x, θ) 7→ F

(
x, m̂θ,x (Br (x))

)
are measurable with respect to BR4 × BΘ, so the two integrals in (4.5) are well
defined and in fact finite. Choose a continuous mapping x ∈ Γ 7→ ρx ∈ C0

(
R4
)
with

0 ≤ ρx < χBr(x). We first show (4.5) holds with χBr(x) replaced by ρx. Namely,
we claim thatˆ

Θ

ˆ
Γ

F
(
x,Mθ (ρx)

)
mθ (dx)W (dθ) =

ˆ
Γ

ˆ
Θ

F

(
x,Mθ

(
ρxe

γ2

2π2K0(|x−·|)
))
W (dθ) dx.

(5.1)

We start with rewriting the left hand side of (5.1). Since F
(
x,Mθ (ρx)

)
is

continuous in x ∈ Γ, the weak convergence result implies thatˆ
Γ

F
(
x,Mθ (ρx)

)
mθ (dx) = lim

n→∞

ˆ
Γ

F
(
x,Mθ (ρx)

)
mθ
εn (dx) ,

which, by the dominated convergence theorem, leads toˆ
Θ

ˆ
Γ

F
(
x,Mθ (ρx)

)
mθ (dx)W (dθ) =

lim
n→∞

ˆ
Θ

ˆ
Γ

F
(
x,Mθ (ρx)

)
Eθεn (x) dxW (dθ)

.(5.2)

By Fubini’s Theorem and the consideration (about viewing Eθεn (x) as the Radon-
Nikodym derivative of the translated Wiener measure) we made before the proof,
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we have that the right hand side of (5.2) equals

lim
n→∞

ˆ
Γ

ˆ
Θ

F
(
x,M

θ+γhµxεn (ρx)
)
W (dθ) dx.

Now given x ∈ R4, the Cameron-Martin theorem guarantees that also with proba-
bility 1,m

θ+γhµxεn
εk (dy) weakly converges tomθ+γhµxεn (dy) as k →∞ simultaneously

for all n ≥ 1. In particular,

M
θ+γhµxεn (ρx) = lim

k→∞
M

θ+γhµxεn
εk (ρx)

= lim
k→∞

ˆ
R4

ρx (y) exp
(
γ2E

[
I
(
hµyεk

)
I
(
hµxεn

)])
Eθεk (y) dy.

At this point, it is clear that (5.1) would follow if we can show that for every θ ∈ Θx,

lim
n→∞

lim
k→∞

ˆ
R4

ρx (y) exp
(
γ2E

[
I
(
hµyεk

)
I
(
hµxεn

)])
Eθεk (y) dy

=

ˆ
R4

ρx (y) exp

(
γ2

2π2
K0 (|x− y|)

)
mθ (dy) <∞.

(5.3)

The right hand side of (5.3) is finite for θ ∈ Θx as we have seen in the proof of
the first part of this lemma. To establish the equation in (5.3), we assume n ≥ 1
is sufficiently large and k ≥ n and divide the integral in the left hand side of (5.3)
into three pieces:

{ˆ
|y−x|<εn−εk

+

ˆ
εn−εk≤|y−x|≤εn+εk

+

ˆ
|y−x|>εn+εk

}

ρx (y) exp

{
γI
(
hµyεk

)
(θ) + γ2E

[
I
(
hµyεk

)
I
(
hµxεn

)]
− γ2

2
G (εk)

}
dy.

(5.4)

We will investigate the limit as k →∞ and then n→∞ of each piece separately.
By (2.10), the last integral in (5.4) equals

(5.5)
ˆ
|y−x|>εn+εk

ρx (y) e
γ2

2π2K0(|x−y|)Eθεk (y) dy.

If the domain in (5.5) is replaced by {y : |y − x| > εn}, then the integral would beˆ
|y−x|>εn

ρx (y) e
γ2

2π2K0(|x−y|)Eθεk (y) dy =

Mθ
εk

(
ρxe

γ2

2π2K0(|x−·|∨εn)

)
− e

γ2

2π2K0(εn)

ˆ
|x−y|≤εn

ρx (y)Eθεk (y) dy.

(5.6)

As k →∞ and then n→∞, the first term in the right hand side of (5.6) converges

to
´
R4 ρ

x (y) e
γ2

2π2K0(|x−y|)mθ (dy) (which is the term we want and also the only
term that should survive in the limit). On the other hand, as k → ∞, the second

term on the right hand side of (5.6) is bounded by e
γ2

2π2K0(εn)mθ
(
Bεn (x)

)
, which,

because θ ∈ Θx, converges to zero when n → ∞. As for the “redundant annulus”
which is the difference between the left hand side of (5.6) and (5.5), it’s bounded
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by e
γ2

2π2K0(εn) times the integral of Eθεk over the annulus {εn < |x− ·| ≤ εn + εk}.
One can apply the Schwarz inequality to see that this integral is bounded by

e
γ2

2 G(εk)vol ({εn < |x− ·| ≤ εn + εk})
1
2

(
mθ,2γ (2Γ)

) 1
2(5.7)

where 2Γ ≡ {2y : y ∈ Γ}. Given the considerations at the end of Section 2, without
loss of generality, we can assume mθ,2γ (2Γ) is finite and hence the limit of (5.7) as
k →∞ with n fixed is zero (because the volume of the annulus ≈ εk ≈ e−2π2G(εk)

and 2π2 > γ2), so this “annulus” is negligible.
The second integral in (5.4) becomes negligible by a similar argument. This time

the Schwarz inequality implies that the second integral is bounded by

eγ
2
√
G(εk)G(εn)e

γ2

2 G(εk)vol
1
2 ({εn − εk < |x− ·| < εn + εk})

(
mθ,2γ (2Γ)

) 1
2

where we use the simple estimate E
[∣∣∣I (hµyεk) I (hµxεn)∣∣∣] ≤√G (εk)G (εn). Again,

with n fixed, the factor that involves k converges to zero.
As for the first integral, because of (2.9) and the asymptotics of the Bessel

functions involved, E
[
I
(
hµyεk

)
I
(
hµxεn

)]
is bounded by ηG (εn) for some constant

η ∈ (1, 2) for all sufficiently large n. Therefore, with n fixed, the integral as k →∞
is bounded by eηγ

2G(εn)mθ
(
Bεn (x)

)
, and as n→∞ it therefore converges to zero.

So far we have proved the claim (5.1). To reach (4.5), one takes a sequence
{ρxl : l ≥ 1} ⊆ C∞c

(
R4
)
such that 0 ≤ ρxl ↗ χBr(x) as l →∞, and for every l ≥ 1,

x ∈ R4 7→ ρxl ∈ C0

(
R4
)
is continuous. So (5.1) holds for each l ≥ 1. After carefully

examining the integrals on both sides of (5.1), one realizes that the limit as l→∞
can be passed all the way inside to produce (4.5). At the end, it’s clear that given x,
the distribution of m̂θ,x (Br (x)) underW is independent of x due to the translation
invariance of measure mθ (dy). Hence we have completed the proof to Lemma 6. �

Now we move on to the proofs of the KPZ results. The techniques we adopt
here differ from those used in the two dimensional proofs in [DS11], partly because
of the absence in our setting of the two dimensional conformal structure as well
as the compactness of the domain. For example, the next lemma is the “tail esti-
mate” which is the key estimate in proving both Lemma 8 and Theorem 9. In the
two dimensional counterpart, the corresponding estimate ([DS11], §4.3) is a super-
exponential type of estimate. Below we prove an exponential type of estimate in
the four dimensional setting, but by carefully “tuning” the exponential decay rate,
we can still make it sufficient for our purposes. Again, the occurrence of m̂θ (dy)

in the next lemma refers to the measure e
γ2

2π2K0(|y|)mθ (dy) assuming θ ∈ Θ0. In
other words, only balls centered at the origin are concerned. However, since the
distribution of m̂θ,x (Br (x)) under W does not depend on x, the same result will

hold for m̂θ,x (dy) = e
γ2

2π2K0(|x−y|)mθ (dy) (assuming θ ∈ Θx) no matter what x is.

Lemma 10. Let B be the closed ball in R4 centered at the origin with unit volume

under e
γ2

2π2K0(|y|)dy,i.e.,
´
B
e
γ2

2π2K0(|y|)dy = 1. If δ and ρ are constants satisfying

0 < δ < 4π2 − 2γ2 and
4π2 + γ2

8π2 − γ2 − δ
< ρ < 1,
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then there exists C > 0 such that9 for all sufficiently large A > 0,

(5.8) W
(
m̂θ (B) ≤ e−Aγ

)
≤ C exp

[
−2ρ

γ

(
8π2 − γ2 − γ2

ρ
− δ
)
A

]
.

Proof. Since B is closed, it suffices to estimate W
(
lim supn→∞ m̂θ

εn (B) ≤ e−Aγ
)

where m̂θ
εn (dy) has density e

γ2

2π2K0(|y|) with respect to mθ
εn (dy). By the same

argument as used in deriving the estimate (3.1), we can show that there exists
constant C > 0 such that for all n ≥ 1,

EW
[∣∣∣m̂θ

εn+1
(B)− m̂θ

εn (B)
∣∣∣2] ≤ Ce−(8π2−γ2)G(εn).

For any δ with 0 < δ < 4π2 − 2γ2, denote A′n, n ≥ 1, the measurable set{
∀l ≥ n,

∣∣∣m̂θ
εl+1

(B)− m̂θ
εl

(B)
∣∣∣ ≤ e−Aγe− δ2G(εl)

}
.

Then it follows easily from Chebyshev’s inequality and the Borel-Cantelli Lemma
that W (

⋃∞
n=1A′n) = 1. Moreover, if A1 = A′1 and An = A′n\A′n−1 for n ≥ 2, then

there exists constant C > 0 such that for all n ≥ 2,

(5.9) W (An) ≤ Ce2Aγe−(8π2−γ2−δ)G(εn).

Set B ≡
{

lim supn→∞ m̂θ
εn (B) ≤ e−Aγ

}
, then W (B) =

∑∞
n=1W (B ∩ An) and

it’s clear that θ ∈ B∩An implies m̂θ
εn (B) ≤ cδe−Aγ where cδ = 1+

∑∞
n=1 e

− δ2G(εn).
Given any ρ such that 4π2+γ2

8π2−γ2−δ < ρ < 1 (notice that such ρ always exists since
0 < δ < 4π2 − 2γ2 and 4π2 + γ2 < 8π2 − γ2 − δ), we set up the “threshold” N ∈ N
which is the unique (recall that G is strictly decreasing on (0,∞)) integer such that

(5.10) G (εN ) <
2ρA

γ
but G (εN+1) ≥ 2ρA

γ
.

The desired estimate (5.8) is trivial when n ≥ N + 1, because (5.9) and (5.10)
implies

∞∑
n=N+1

W (B ∩ An) ≤ Ce2Aγe−(8π2−γ2−δ)G(εN+1)

≤ C exp

[
−2ρ

γ

(
8π2 − γ2 − γ2

ρ
− δ
)
A

]
.

When n = 1, · · · , N , we apply Jensen’s inequality to see that

W
(
m̂θ
εn (B) ≤ cδe−Aγ

)
≤ W

(
exp

[ˆ
B

(
γI
(
hµyεn

)
(θ)− γ2

2
G (εn)

)
e
γ2

2π2K0(|y|)dy

]
≤ cδe−Aγ

)
≤ W

(ˆ
B

I
(
hµyεn

)
(θ) e

γ2

2π2K0(|y|)dy ≤ −A+
γ

2
G (εn) +

log cδ
γ

)
.

(5.11)

By Corollary 3, without loss of generality, we can assume that for all n ≥ 1 and
every θ, the function y ∈ B 7→ I

(
hµyεn

)
(θ) is continuous and hence uniformly

9Throughout this section, C denotes a constant that may depend on γ, δ, ρ and R, but universal
in A, εn, x and Λ. The values of C may change from line to line.
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continuous on B. Therefore, one can easily check (for example, by writing the
integral as the limit of a discrete sum of Gaussian random variables) that

θ ∈ Θ 7→
ˆ
B

I
(
hµyεn

)
(θ) e

γ2

2π2K0(|y|)dy ∈ R

is also a centered Gaussian random variable for every n ≥ 1, and furthermore, the
variance can be bounded by a constant M that is universal in n ≥ 1. In fact, M
can be taken as a constant multiple of¨

B×B
K0 (|x− y|) e

γ2

2π2 (K0(|x|)+K0(|y|))dxdy.

Since G (εn) < 2ρA
γ for n = 1, · · · , N , A − γ

2G (εn) > (1 − ρ)A, and (5.11) implies
that when A is sufficiently large,

W
(
m̂θ
εn (B) ≤ cδe−Aγ

)
≤ exp

[
− 1

2M

(
A− γ

2
G (εn)− 1

γ
log cδ

)2
]

≤ exp

[
− 1

2M

(
(1− ρ)A− 1

γ
log cδ

)2
]

≤ exp

[
− 1

4M
(1− ρ)

2
A2

]
.

In addition, (5.10) implies that N is approximately a constant multiple of A. There-
fore, when A is large,

N∑
n=1

W (B ∩ An) ≤
N∑
n=1

W
(
m̂θ
εn (B) ≤ cδe−Aγ

)
≤ CAe−

(1−ρ)2A2

4M .

So
∑N
n=1W (B ∩ An) actually decays super-exponentially fast as A→∞, and this

estimate can certainly be transformed into the desired form as in (5.8). �

We are now ready to prove Lemma 8. Recall the notation r̂Λ : θ 7→ r̂Λ (0, θ)

where r̂Λ (0, θ) is as defined in (4.6) with x being the origin. Let (κ,K) ∈ [0, 1]
2 be

a pair as in (4.14). In order to get (4.15), it suffices to show that

(5.12) C−1 ≤ Λ−KEW
[
(r̂Λ)

4κ
]
≤ C

for some constant C > 0 universal in Λ as Λ ↓ 0. We will prove the existence of the
upper bound and the lower bound in (5.12) separately.

Proof of the upper bound in (5.12): For notational convenience, we introduce
the “stopping time” corresponding to r̂Λ, i.e., TΛ ≡ G (r̂Λ) − G (R). We want
to show Λ−KEW

[
exp

(
−8π2κTΛ

)]
is bounded from above uniformly in small Λ.

It’s clear, from (5.8) and the fact that W (Θ0) = 1, where Θ0 is as in (3.4), that
TΛ ∈ (−G (R) ,∞) almost surely. Let constant δ and ρ be as in the statement of
Lemma 10. Set

S ≡ − log Λ

8π2 − γ2

2ρ
(

8π2 − γ2 − γ2

ρ − δ
)
−Kγ2

2ρ
(

8π2 − γ2 − γ2

ρ − δ
) .
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Then the expectation of exp
(
−8π2κTΛ

)
can be written as

EW
[
exp

(
−8π2κTΛ

)
χ{−G(R)<TΛ<S}

]
+ EW

[
exp

(
−8π2κTΛ

)
χ{S≤TΛ<∞}

]
.

In the first term, TΛ < S implies that the volume of the closed ball centered at
the origin with radius r (S) = G−1 (S +G (R)) ( ≈ exp

(
−2π2S

)
) is no greater

than Λ under the measure m̂θ (dy), while this ball has volume ≈ (r (S))
4− γ2

2π2

(≈ exp
(
−
(
8π2 − γ2

)
S
)
) under the measure e

γ2

2π2K0(|y|)dy. However, by Lemma
10, the probability of this event is bounded by

C exp

(
−2ρ

γ

(
8π2 − γ2 − γ2

ρ
− δ
)(
− log Λ

γ
− 8π2 − γ2

γ
S

))
,

which, given this particular choice of S, is equal to a constant multiple of ΛK .
Therefore, the first piece of integral causes no trouble.

The second integral is bounded by e−8π2κS . Hence we only need to check that
Λ−Ke−8π2κS , or equivalently, exp

(
−K log Λ− 8π2κS

)
stays bounded as Λ ↓ 0. In

fact, we will show that for all possible values of (κ,K) and all sufficiently small
Λ > 0, K log Λ + 8π2κS ≥ 0, that is (assuming log Λ < 0),

(5.13) K ≤ 8π2κ

8π2 − γ2

2ρ
(

8π2 − γ2 − γ2

ρ − δ
)
−Kγ2

2ρ
(

8π2 − γ2 − γ2

ρ − δ
) .

To simplify the notations, let’s write ζ ≡ 2ρ
(

8π2 − γ2 − γ2

ρ − δ
)
. Recall from the

statement of Lemma 10 that 0 < δ < 4π2− 2γ2 and 4π2+γ2

8π2−γ2−δ < ρ < 1, so ζ > 8π2.
If we express κ in terms of K according to (4.14), then the statement in (5.13) is
equivalent to

F (K) ≡ γ2K2 +
(
16π2 − γ2 − ζ

)
K − ζ ≤ 0

for all possible values of K ∈ [0, 1]. However, this is clearly true since F is quadratic
and F (0) = −ζ < 0 as well as F (1) = 16π2 − 2ζ < 0. �

Proof of the lower bound in (5.12): Recall that T ∗Λ is the stopping time (as de-
fined in (4.10)) associated with the “approximating” measure m̂θ∗, and

EW
[
exp

(
−8π2κT ∗Λ

)]
= ΛK .

We observe that EW
[
exp

(
−8π2κTΛ

)]
is greater than the integral of exp

(
−8π2κTΛ

)
over the subset {TΛ ≤ T ∗Λ}, where the integrand is greater or equal to exp

(
−8π2κT ∗Λ

)
.

Therefore, we have

EW
[
exp

(
−8π2κTΛ

)]
≥ EW

[
exp

(
−8π2κT ∗Λ

)]
− EW

[
exp

(
−8π2κT ∗Λ

)
χ{TΛ>T∗

Λ}
]
.

It is clear that in order to get the desired lower bound, we need to find constant
0 < c < 1 such that

(5.14) Λ−KEW
[
exp

(
−8π2κT ∗Λ

)
χ{TΛ>T∗

Λ}
]
≤ c

uniformly in small Λ. Conditioning on T ∗Λ = T , TΛ > T implies m̂θ
(
Br(T )

)
> Λ

and hence
m̂θ(Br(T ))
m̂θ∗(Br(T ))

> 1. By Chebyshev’s inequality, other than a factor given

by the probability density function of T ∗Λ, the conditional probability of {TΛ > T}
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is bounded by the expectation of
m̂θ(Br(T ))
m̂θ∗(Br(T ))

, which, given the expression in (4.8)

(which is the conditional expectation of the numerator given the denominator), can
be bounded by constant c ∈ (0, 1) which is universal in Λ and T . So the estimate
in (5.14) will be satisfied by this choice of c. �

Proof of Theorem 9: Assume D ⊆ BN (0) for some sufficently large N ≥ 1. Let
rΛ (x, θ) and DΛ,θ be as defined in (4.1) and (4.2). Denote N (dθdx) ≡ W (dθ) dx.
Based on Lemma 6, EW

[
mθ
(
DΛ,θ

)]
equals

M ({(x, θ) : either x ∈ D or dist (x,D) < rΛ (x, θ)})
= N ({(x, θ) : |x| ≤ 2N, dist (x,D) < r̂Λ (x, θ)})

+ lim
2N≤M→∞

N ({(x, θ) : 2N ≤ |x| ≤M, dist (x,D) < r̂Λ (x, θ)}) .
(5.15)

In the first term of the right hand side of (5.15), conditioning on r̂Λ (x, θ) under
N (dθdx), since its marginal distribution on Θ does not depend on x, the conditional
probability of the set is proportional to vol

(
Dr̂Λ(x,θ) ∩B2N (0)

)
. We further split

the set into two cases: r̂Λ (x, θ) > N and r̂Λ (x, θ) ≤ N , the later of which also
implies Dr̂Λ(x,θ) ⊆ B2N (0). Therefore, the first term can be rewritten as (up to a
constant depending on N)

EW
[
vol
(
Dr̂Λ(x,θ)

)
χ{r̂Λ(x,θ)≤N}

]
+ EW

[
vol
(
Dr̂Λ(x,θ) ∩B2N (0)

)
χ{r̂Λ(x,θ)>N}

]
=EW

[
vol
(
Dr̂Λ(x,θ)

)]
− EW

[
vol
(
Dr̂Λ(x,θ)

)
χ{r̂Λ(x,θ)>N}

]
+ EW

[
vol
(
Dr̂Λ(x,θ) ∩B2N (0)

)
χ{r̂Λ(x,θ)>N}

]
.

According to the assumption (4.12) and Lemma 8, EW
[
vol
(
Dr̂Λ(x,θ)

)]
≈ ΛK when

Λ is sufficiently small. On the other hand, given r̂Λ (x, θ) > N , Dr̂Λ(x,θ) is always
contained in the ball centered at the origin with radius 2r̂Λ (x, θ), so the last two
terms in the right hand side of the equation above are both bounded by (up to a
constant)

(5.16) EW
[
(r̂Λ (x, θ))

4
χ{r̂Λ(x,θ)>N}

]
≤ 4

ˆ
[1,∞)

u3W (r̂Λ (x, θ) > u) du.

If ζ ≡ 2ρ
(

8π2 − γ2 − γ2

ρ − δ
)
where δ and ρ are the same as in the statement of

Lemma 10, then by (5.8),

W (r̂Λ (x, θ) > u) ≤ W
(
m̂θ,x (Bu (x)) ≤ Λ

)
≤ CΛ

ζ

γ2 u
− ζ

γ2

(
4− γ2

2π2

)
.

Given the particular range of δ, ρ and ζ, one sees that not only is the integral in
(5.16) finite, but it also converges to zero faster than ΛK as Λ ↓ 0 for any possible
value of K ∈ [0, 1].

In the second term in (5.15), since D ⊆ BN (0), the assumptions |x| ≥ 2N and
dist (x,D) < r̂Λ (x, θ) imply r̂Λ (x, θ) > 1

2 |x| whose probability, as we have seen

earlier, is bounded by CΛ
ζ

γ2 |x|−
ζ

γ2

(
4− γ2

2π2

)
which is integrable (with respect to dx)

in the entire domain {|x| ≥ 2N}. Therefore the second term also converges to zero
faster than ΛK as Λ ↓ 0. To summarize, we have shown that EW

[
mθ
(
DΛ,θ

)]
is

a constant multiple of ΛK + o
(
ΛK
)
as Λ ↓ 0 which is sufficient for the desired

conclusion. �
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6. Possible Generalizations

Generalizations to R2n: In this subsection, we outline a possible generalization
of the four dimensional treatments carried out in previous sections to higher even
dimensions R2n with n ≥ 2. We consider the GFF on R2n with the underlying
Hilbert space H ≡ Hn

(
R2n

)
which is the completion of the Schwartz test function

space S
(
R2n

)
under the inner product ((I −∆)

n ·, ·)L2 . Similarly, for every x ∈ R2n

and ε > 0, σxε denotes the tempered distribution which is to take the spherical
average of a test function over the sphere Sε (x). In this setting, σxε ∈ H−n

(
R2n

)
and again if hσxε ≡ (I −∆)

−n
σxε , then hσxε ∈ H and the Paley-Wiener integral

I
(
hσxε
)
can be viewed as the “generalized” action of σxε on the GFF. Moreover,

the higher order of the operator (I −∆)
n allows us to take higher “derivatives” of

σxε in the radial variable ε. If dmσxε ≡ dm

dεmσ
x
ε is defined in the sense of tempered

distribution for every m ∈ N, then simple computations of the Fourier transforms
show that

σ̂xε (ξ) = Cne
i(x,ξ)R2n (ε |ξ|)1−n

Jn−1 (ε |ξ|)

and (dmσxε )
ˆ

(ξ) =
dm

dεm
σ̂xε (ξ) = Cne

i(x,ξ)R2n
dm

dεm

(
Jn−1 (ε |ξ|)
(ε |ξ|)n−1

)
,

where Cn > 0 is a dimensional constant. In particular, we can write

(dmσxε )
ˆ

(ξ) = Cne
i(x,ξ)R2nϕ(m) (ε |ξ|) |ξ|m

where ([Wat], §3.31) ϕ (r) ≡ Jn−1(r)
rn−1 for r > 0 and ϕ(m) (r) is analytic in r near 0

and asymptotic to r−(n− 1
2 ) as r → ∞ for every m ∈ N. Therefore, σxε and dmσxε

for 1 ≤ m ≤ n− 1 are in H−n
(
R2n

)
.

We can mimic the approach in Section 2 and define the vector-valued Gaussian
random variable on Θ: for every x ∈ R2n and ε > 0,

V xε ≡
(
I
(
hσxε
)
, I
(
hdσxε

)
, · · · , I

(
hdn−1σxε

))>
.

It turns out that in this setting we can also compute the covariance matrix of
the family

{
V xε : x ∈ R2n, ε > 0

}
explicitly under each circumstance as prescribed

in Lemma 1, and the covariance matrix also has a similar “separability” property
as in four dimensional case. In fact, following a similar computation as the one
(provided in the appendix) conducted to prove Lemma 1, it is not hard to see
that there exist invertible n × n matrices A (r), B (r), C (r) and D (r) for every
r ∈ (0,∞), such that all the entries of A (r) and D (r) are functions in the linear
span of

{
r−`Kk (r) : 0 ≤ ` ≤ k ≤ 2n− 2

}
, while all the entries of B (r) and C (r)

are in the linear span of
{
r−`Ik (r) : 0 ≤ ` ≤ k ≤ 2n− 2

}
. Moreover, given x ∈ R2n

and ε1 ≥ ε2 > 0, EW
[
V xε1
(
V xε2
)>]

= A (ε1)B> (ε2); given x, y ∈ R2n with x 6= y and

ε1 > |x− y| + ε2, EW
[
V xε1
(
V yε2
)>]

= A (ε1)C (|x− y|)B> (ε2); given x, y ∈ R2n

with x 6= y and |x− y| > ε1 + ε2, EW
[
V xε1
(
V yε2
)>]

= B (ε1)D (|x− y|)B> (ε2).
Therefore, if we similarly defined the “normalized” vector Uxε ≡ B−1 (ε)V xε , then
the Gaussian family

{
Uxε : x ∈ R2n, ε > 0

}
will have the same properties as those

of the corresponding family (also denoted by Uxε ) in four dimensions.
On the other hand, all the entries of the matrix B (ε) are linear combinations of

ε−lIk (ε) with 0 ≤ l ≤ k ≤ 2n − 2, and if one lets ε2 ↓ 0 in the covariance matrix
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obtained in the second circumstance (when ε1 > |x− y|+ε2) from above, combined
with integral expressions for the entries of the covariance matrix, then one can easily
conclude that there exists constant matrix B which is non-degenerate (hence so is
B−1) such that B (ε) converges to B as ε ↓ 0. Therefore, all the entries of B−1 (ε)
must be analytic in ε near zero. In particular, by examining the asymptotics of the
entries of B−1 (ε) near zero, one can find the appropriate constant vector ζ ∈ R2n

such that (Uxε , ζ)R2n “approximates” the GFF at x when ε is small in the same sense
as described in Section 2.

Clearly, (Uxε , ζ)R2n has all the properties of I
(
hµxε
)
in four dimensions as stated

in Theorem 2. When ε1 ≥ ε2 > 0,

G (ε1) ≡ EW
[(
Uxε1 , ζ

)2
R2n

]
= EW

[(
Uxε1 , ζ

)
R2n

(
Uxε2 , ζ

)
R2n

]
;

when ε1 > ε2 + |x− y|, EW
[(
Uxε1 , ζ

)
R2n

(
Uyε2 , ζ

)
R2n

]
= c (ε1, |x− y|) which is in-

dependent of ε2; when |x− y| > ε1 + ε2, EW
[(
Uxε1 , ζ

)
R2n

(
Uyε2 , ζ

)
R2n

]
= d (|x− y|)

which is independent of ε1 and ε2. In principle, we can derive the explicit formulas
of G (ε1), c (ε1, |x− y|) and d (|x− y|), and one can expect that they have loga-
rithmic growth when ε1 and |x− y| are small because the Green’s function of the
operator (I −∆)

n on R2n has logarithmic growth near the diagonal. Therefore,
it’s reasonable to believe that if one takes (Uxε , ζ)R2n to construct a sequence of
approximating measures, i.e.,

mθ
εk

(dx) ≡ exp

(
γ
(
Uxεk , ζ

)
R2n (θ)− γ2

2
G (εk)

)
dx,

then the sequence
{
mθ
εk

: k ≥ 1
}
will almost surely admit a limit measure in the

sense of weak convergence. Furthermore, the quantum scaling component of a
bounded set on R2n under this limit measure should also satisfy a quadratic relation
with its counterpart under the Lebesgue measure. However, the amount and the
complexity of computations quickly become considerable as n increases.

Generalizations to Manifolds: In this last part we explain a more conceptual
approach to constructing analogues of the two-dimensional GFF on compact even-
dimensional manifolds. As we have remarked in the introduction, in dimension two,
the GFF defines a measure on a conformal class of metrics on a Riemann surface Σ,
constructed starting with a reference metric g0 on Σ, but in the end independent
of g0. In fact, the GFF inner product of two functions f1, f2 ∈ C∞c (Σ) is defined
by ([Sh, DS11, DS09, HMP])

(f1, f2)∆g0
≡ (f1,∆g0f2) ≡

ˆ
Σ

f1(x)(∆g0f2)(x)dvolg0(x),

where ∆g0
is the Laplace-Beltrami operator on Σ with respect to g0. This inner

product is conformally invariant. Indeed, if the metric g0 is changed conformally
to g1 = e2ωg0 for some ω ∈ C∞c (Σ), then the volume element changes as

dvolg1
= e2ωdvolg0

,

while the Laplacian is changed as ∆g1
= e−2ω∆g0

. Therefore, after obvious cancel-
lations we find that

(f1, f2)∆g1
= (f1, f2)∆g0

.

It seems natural to define a similar measure for conformal classes of metrics
in higher dimensions. Below, we explain how to do that for certain conformal
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classes on compact manifolds M of even dimension 2n. In the construction, we find
it convenient to use conformally covariant elliptic operators described below. In
the discussion, we restrict ourselves to even-dimensional manifolds, although the
corresponding operators can be defined in odd dimensions as well.

Let M be a manifold of even dimension 2n, n ≥ 2, and g0 a Riemannian metric
on M. Then, there exists on M an elliptic operator P = Pg0

of order 2n, called the
dimension-critical GJMS operator, constructed by Graham-Jenne-Mason-Sparling
in [GJMS], with the following properties:

P = ∆n + lower order terms;

in fact, P has a polynomial expression in (Levi-Civita connection) ∇ and (scalar
curvature) R, with coefficients that are rational in dimension 2n; P is formally self-
adjoint ([GZ, FG]); under a conformal change of metric g1 = e2ωg0, the operator
P changes as Pg1 = e−2nωPg0 .

Given these properties, we can imitate the construction of the GFF in dimension
2: for f1, f2 ∈ C∞(M), the inner product is defined by

(f1, f2)Pg0 ≡
ˆ
M

f1(x)(Pg0f2)(x)dvolg0(x).

Then, this inner product is also conformally invariant. When the metric g0 is
changed conformally to g1 = e2ωg0, the volume element changes as

dvolg1
= e2nωdvolg0

,

while P changes as Pg1
= e−2nωPg0

. Again, we get the relation

(f1, f2)Pg1 = (f1, f2)Pg0 ,

just like in dimension two.
When n = 2, the dimension-critical GJMS operator

P4 = ∆2
g0

+ δ[(2/3)Rg0
g0 − 2Ricg0

]d

is also called the Paneitz operator. If M is flat, then the Paneitz operator is equal
to ∆2, hence in R4 it is natural to work with ∆2. However, since R4 is not compact,
we need to consider the operator on a compact domain, in which case we have to
choose proper boundary operators in order to preserve the conformal covariance
property. This will be further explored in future work.

On the compact 2n-dimensional manifold M, if we construct a Gaussian random
field using the dimension-critical GJMS operator P , then the covariance function of
the field is given by the Green’s function GP (x, y) of the operator P . Let d (x, y) be
the Riemannian distance between x and y on M. Then, it is known ([CY, Nd, Pon])
that as d (x, y) ↓ 0, GP (x, y) is asymptotic to −Cn log d(x, y) where Cn > 0 depends
only on the dimension. This is similar to the well-known behavior of the Green’s
function of the Laplace-Beltrami operator ∆ in dimension two. This will become an
important ingredient in the construction of the random measure on the manifold,
which we intend to explore in a future paper.

7. Appendix

This section contains all the computations with the Bessel functions. We start
with the Fourier transforms of σxε and dσxε , and list all the integral expressions for
the covariance function of the family

{
I
(
hσxε
)
, I
(
hdσxε

)
: x ∈ R4, ε > 0

}
.
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Lemma 11. Recall from (2.1) and (2.2) that the Fourier transforms of σxε and dσxε
are, respectively,

σ̂xε (ξ) = 2 (ε |ξ|)−1
J1 (ε |ξ|) ei(x,ξ)R4

and ˆdσxε (ξ) =
d

dε
σ̂xε (ξ) = −2ε−1J2 (ε |ξ|) ei(x,ξ)R4 .

Therefore, both σxε and dσxε are in H−2
(
R4
)
. In fact, for ε1, ε2 > 0,

(7.1) EW
[
I
(
hσxε1

)
I
(
hσxε2

)]
=

1

2π2ε1ε2

ˆ ∞
0

τ

(1 + τ2)
2 J1 (ε1τ) J1 (ε2τ) dτ,

(7.2) EW
[
I
(
hσxε1

)
I
(
hdσxε2

)]
=

−1

2π2ε1ε2

ˆ ∞
0

τ2

(1 + τ2)
2 J1 (ε1τ) J2 (ε2τ) dτ,

and

(7.3) EW
[
I
(
hdσxε1

)
I
(
hdσxε2

)]
=

1

2π2ε1ε2

ˆ ∞
0

τ3

(1 + τ2)
2 J2 (ε1τ) J2 (ε2τ) dτ.

Furthermore, for x, y ∈ R4, x 6= y, and ε1, ε2 > 0,

(7.4)
EW

[
I
(
hσxε1

)
I
(
hσyε2

)]
=

1

π2ε1ε2 |x− y|

ˆ ∞
0

1

(1 + τ2)
2 J1 (ε1τ) J1 (ε2τ) J1 (|x− y| τ) dτ,

EW
[
I
(
hσxε1

)
I
(
hdσyε2

)]
=

−1

π2ε1ε2 |x− y|

ˆ ∞
0

τ

(1 + τ2)
2 J1 (ε1τ) J2 (ε2τ) J1 (|x− y| τ) dτ,

(7.5)

and

EW
[
I
(
hdσxε1

)
I
(
hdσyε2

)]
=

1

π2ε1ε2 |x− y|

ˆ ∞
0

τ2

(1 + τ2)
2 J2 (ε1τ) J2 (ε2τ) J1 (|x− y| τ) dτ.

(7.6)

Proof. Everything follows from straightforward computations in spherical coordi-
nates in R4 and applications of the following integral expression of the Bessel func-
tions ([Wat], §3.3 ): for every k ≥ 1 and r > 0,

Jk (r) =

(
r
2

)k
Γ
(
k + 1

2

)
Γ
(

1
2

) ˆ π

0

eir cos(θ) sin2k θdθ.

In addition, as we have indicated in Section 2, the asymptotic expansion ([Wat],
§7.1) of Jk says that Jk (r) = O

(
r−1/2

)
as r →∞, which is sufficient to guarantee

the convergence of each integral involved in (7.1)-(7.6). �

It will be convenient to recognize that all the covariance functions involved in
the previous lemma, i.e.,

EW
[
I
(
hσxε1

)
I
(
hσyε2

)]
, EW

[
I
(
hσxε1

)
I
(
hdσyε2

)]
and EW

[
I
(
hdσxε1

)
I
(
hdσyε2

)]
,
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are continuous in all variables x, y ∈ R4 and ε1, ε2 > 0. In fact,

EW
[
I
(
hσxε1

)
I
(
hdσyε2

)]
=

d

dε2
E
[
I
(
hσxε1

)
I
(
hσyε2

)]
and

EW
[
I
(
hdσxε1

)
I
(
hdσyε2

)]
=

d2

dε1dε2
E
[
I
(
hσxε1

)
I
(
hσyε2

)]
.

These simply follow from the dominated convergence theorem and the fact that
both Jk (r) and Jk (r) /r are bounded on r ∈ (0,∞) for every k ≥ 1 .

Proof of Lemma 1: The proof of all the formulas (2.3) to (2.5) is based on the
following integral formulas of Bessel functions which can be found in [Wat], §13.53,
pp 429-430: if a ≥ b > 0 and p > 0, then

(7.7)
ˆ ∞

0

τ

τ2 + p2
J1 (aτ) J1 (bτ) dτ = K1 (ap) I1 (bp) ;

if a > b+ c and p > 0, then

(7.8)
ˆ ∞

0

1

τ2 + p2
J1 (aτ) J1 (bτ) J1 (cτ) dτ = p−1K1 (ap) I1 (bp) I1 (cp) .

We hereby provide an alternative proof of these two formulas, and complete the
computations in Lemma 1. For a fixed p > 0, we define the function

B (a, b) ≡ 1

2π2ab

ˆ ∞
0

τ

τ2 + p2
J1 (aτ) J1 (bτ) dτ for a, b > 0.

Given a > 0, we observe that if δx is the point mass at x ∈ R4, then the following
integral is finite: (

1

2π

)4 ˆ
R4

1

p2 + |ξ|2
· ei(x,ξ) · 2J1 (a |ξ|)

a |ξ|
dξ

=
1

2π2a |x|

ˆ ∞
0

τJ1 (aτ) J1 (|x| τ)

p2 + τ2
dτ = B (a, |x|) .

But this integral is also “formally” equal to
((
p2 −∆

)−1
σ0
a, δx

)
L2
. In other words,((

p2 −∆
)−1

σ0
a

)
(x) = B (a, |x|)

is a point-wise defined, radially symmetric function in x ∈ R4. Therefore, in the
sense of tempered distribution,(

p2 −∆
)
B (a, |x|) = σ0

a,

which, when written in spherical coordinates, implies(
p2 − ∂2

b −
3

b
∂b

)
B (a, b) = 0 for all 0 < b 6= a.

The above is a Bessel-type ordinary differential equation, all the solutions of which
are in the form of

C1 (a)
K1 (bp)

b
+ C2 (a)

I1 (bp)

b
,

where C1 and C2 are two functions only depending on a. Without loss of generality,
we can assume b < a. If one examines the behavior of B (a, b) when b is close to
zero, then one finds that C1 (a) ≡ 0 because bB (a, b) converges to zero whileK1 (bp)
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blows up as b ↓ 0. On the other hand, with b > 0 fixed, one can apply exactly the
same arguments to see that B (a, b) also satisfies(

p2 − ∂2
a −

3

a
∂a

)
B (a, b) = 0 for all a > b.

Hence, C2 (a) must be in the form of

C2 (a) = C
K1 (ap)

a
+ C ′

I1 (ap)

a

for some constant C and C ′. This time, the boundedness of aB (a, b) as a ↑ ∞
implies C ′ = 0.

Thus, the only thing left is to determine the constant C. To this end, we observe

2π2a2B (a, a) =

ˆ ∞
0

u

u2 + a2p2
J2

1 (u) du

−→
ˆ ∞

0

J2
1 (u)

u
du as a ↓ 0.

However, one can easily verify that

d

du

(
−J

2
0 (u) + J2

1 (u)

2

)
=
J2

1 (u)

u
.

So lima↓0 2π2a2B (a, a) = 1
2 . Meanwhile, lima↓0 I1 (ap)K1 (ap) = 1

2 , which implies
C = 1

2π2 . Therefore,

B (a, b) =
1

2π2ab
I1 (bp)K1 (ap) for a > b > 0.

For the formula (7.8), we define

C (a, b, c) =
1

π2abc

ˆ ∞
0

1

τ2 + p2
J1 (aτ) J1 (bτ) J1 (cτ) dτ for a, b, c > 0.

Assume a > b+ c. One can verify, by direct computations inside the integral signs
and the dominated convergence theorem, that

p2C (a, b, c)− ∂2

∂c2
C (a, b, c)− 3

c

∂

∂c
C (a, b, c) = 0 for 0 < c < a− b,

and lim
c↓0

C (a, b, c) = B (a, b) .

Similarly as above, one has

C (a, b, c) =
2I1 (cp)

cp
B (a, b) =

1

π2abcp
K1 (ap) I1 (bp) I1 (cp) .

Thus, (7.7) and (7.8) are proved.
Given (7.7), notice that EW

[
I
(
hσxε1

)
I
(
hσxε2

)]
can be computed by applying

the operator −1
2p

d
dp |p=1 to both sides of (7.7) with a = ε1 ∨ ε2 and b = ε1 ∧ ε2.

Then from there, based on the earlier observations, the complete expression for the
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covariance matrix in the concentric case can be obtained by taking derivatives in ε1
and ε2 accordingly. The detailed computations are as follows. When ε1 ≥ ε2 > 0,

EW
[
I
(
hσxε1

)
I
(
hσxε2

)]
=

(
− 1

2p

d

dp
|p=1

)
B (ε1, ε2)

=
−1

4π2

(
K ′1 (ε1)

I1 (ε2)

ε2
+
K1 (ε1)

ε1
I ′1 (ε2)

)
=
−1

4π2

(
K ′1 (ε1) K1 (ε1) /ε1

)( I1 (ε2) /ε2
I ′1 (ε2)

)
.

Thus,

EW
[
V xε1
(
V xε2
)>]

=

(
1 ∂

∂ε2
∂
∂ε1

∂2

∂ε1∂ε2

)
EW

[
I
(
hσxε1

)
I
(
hσxε2

)]
=
−1

4π2

(
K ′1 (ε1) K1 (ε1) /ε1
K ′′ (ε1) (K1 (ε1) /ε1)

′

)(
I1 (ε2) /ε2 (I1 (ε2) /ε2)

′

I ′1 (ε2) I ′′1 (ε2)

)
.

Besides, one realizes that

(
K1 (ε1)

ε1

)′
= −K2 (ε1)

ε1
and

(
I1 (ε2)

ε2

)′
=
I2 (ε2)

ε2
,

and the formula (2.3) follows.
The non-concentric case is very similar. Given (7.8), we assign a = ε1 in case (2)

and a = |x− y| in case (3). By a similar procedure, i.e., applying −1
2p

d
dp |p=1 to (7.8)

and taking derivatives in ε1 and ε2, we will be able to compute the non-concentric
covariance matrix in either (2) or (3). To be specific, when ε1 > |x− y| + ε2,
EW

[
I
(
hσxε1

)
I
(
hσyε2

)]
equals

(
− 1

2p

d

dp
|p=1

)
C (ε1, ε2, |x− y|)

=
−1

2π2

(
K ′1 (ε1)

I1 (ε2)

ε2

I1 (|x− y|)
|x− y|

+
K1 (ε1)

ε1
I ′1 (ε2)

I1 (|x− y|)
|x− y|

)
− 1

2π2

(
K1 (ε1)

ε1

I1 (ε2)

ε2
I ′1 (|x− y|)− K1 (ε1)

ε1

I1 (ε2)

ε2

I1 (|x− y|)
|x− y|

)
=
−1

2π2

(
K ′1 (ε1)

I1 (ε2)

ε2

I1 (|x− y|)
|x− y|

+
K1 (ε1)

ε1
I ′1 (ε2)

I1 (|x− y|)
|x− y|

+
K1 (ε1)

ε1

I1 (ε2)

ε2
I2 (|x− y|)

)
=
−1

2π2

(
K ′1 (ε1) K1(ε1)

ε1

)( I1(|x−y|)
|x−y| 0

I2 (|x− y|) I1(|x−y|)
|x−y|

)(
I1 (ε2) /ε2
I ′1 (ε2)

)
;
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when |x− y| > ε1 + ε2, EW
[
I
(
hσxε1

)
I
(
hσyε2

)]
equals(

− 1

2p

d

dp
|p=1

)
C (|x− y| , ε1, ε2)

=
−1

2π2

(
K ′1 (|x− y|) I1 (ε1)

ε1

I1 (ε2)

ε2
− K1 (|x− y|)

|x− y|
I1 (ε1)

ε1

I1 (ε2)

ε2

)
− 1

2π2

(
K1 (|x− y|)
|x− y|

I1 (ε1)

ε1
I ′1 (ε2) +

K1 (|x− y|)
|x− y|

I ′1 (ε1)
I1 (ε2)

ε2

)
=
−1

2π2

(
−K2 (|x− y|) I1 (ε1)

ε1

I1 (ε2)

ε2
+
K1 (|x− y|)
|x− y|

I1 (ε1)

ε1
I ′1 (ε2) +

K1 (|x− y|)
|x− y|

I ′1 (ε1)
I1 (ε2)

ε2

)
=
−1

2π2

(
I1(ε1)
ε1

I ′1 (ε1)
)( −K2 (|x− y|) K1(|x−y|)

|x−y|
K1(|x−y|)
|x−y| 0

)(
I1 (ε2) /ε2
I ′1 (ε2)

)
.

The rest is straightforward. Thus we have finished the proof of Lemma 1. �
Before continuing, we point out that similar computations can be carried out

in higher even dimensions R2n with n ≥ 2. In fact, the formulas (7.7) and (7.8)
remain true if one replaces J1 by Jn−1 in the integrands, times a factor of τ2−n

to the integrand of (7.8), and replaces K1 by Kn−1, I1 by In−1 respectively in the
results. Therefore, one can use these modified results to compute the covariance
function of the Gaussian family

{
I
(
hσxε
)

: x ∈ R2n, ε > 0
}
(as defined in Section

6.1) by applying the operator
(
− 1

2p
d
dp

)n−1

|p=1 to the modified version of (7.7) and
(7.8). The rest follows similarly as above.

Next, we want to provide details in the deriving the formulas for µεx (2.6) and
G (ε) (2.7) as well as the results (2.8)-(2.10) in Theorem 2.6. It’s an easy matter to
check that for every ε > 0,

detB (ε) = ε−1
(
I2
1 (ε)− I0 (ε) I2 (ε)

)
> 0,

where we applied the Bessel function identities ([Wat], §3.71) I ′1 (ε) = −I1(ε)
ε +I0 (ε)

and I ′′1 (ε) = −I2(ε)
ε + I1 (ε) . Therefore,

B−1 (ε) =
1

I2
1 (ε)− I0 (ε) I2 (ε)

(
εI1 (ε)− I2 (ε) I1 (ε)− εI0 (ε)
−I2 (ε) I1 (ε)

)
.

Recall that Uxε = B−1 (ε)V xε , when computed explicitly,

Uxε =
1

I2
1 (ε)− I0 (ε) I2 (ε)

(
(εI1 (ε)− I2 (ε)) I

(
hσxε
)

+ (I1 (ε)− εI0 (ε)) I
(
hdσxε

)
−I2 (ε) I

(
hσxε
)

+ I1 (ε) I
(
hdσxε

) )
,

and if ζ = (1, 1)
>, then µxε = f1 (ε)σxε + f2 (ε) dσxε where

(7.9) f1 (ε) ≡ εI1 (ε)− 2I2 (ε)

I2
1 (ε)− I0 (ε) I2 (ε)

and f2 (ε) ≡ −εI2 (ε)

I2
1 (ε)− I0 (ε) I2 (ε)

,

from which one sees that µxε has the “right” limit as ε ↓ 0. In addition, we can apply
more Bessel function identities:

I ′1 (ε) =
1

ε
I1 (ε) + I2 (ε) , I0 (ε)− I2 (ε) =

2

ε
I1 (ε) ,

K ′1 (ε) =
1

ε
K1 (ε)−K2 (ε) and I1 (ε)K2 (ε) + I2 (ε)K1 (ε) =

1

ε
,
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to write down B−1 (ε)A (ε) explicitly as
(
I2
1 (ε)− I0 (ε) I2 (ε)

)−1 times(
−
(
1 + ε−2

)
I1 (ε)K1 (ε) + I2 (ε)K0 (ε) + ε−2

I1 (ε)K1 (ε) + I2 (ε)K0 (ε) + ε−2 −ε−2

)
.

Therefore we have:
(1), given x ∈ R4 and ε1 ≥ ε2 > 0,

EW
[
I
(
hµxε1

)
I
(
hµxε2

)]
= G (ε) ≡

(
− 1

4π2

)
ζ>B−1 (ε)A (ε) ζ (with ζ> = (1, 1))

=

(
− 1

4π2

)
2I1 (ε)K1 (ε) + 2I2 (ε)K0 (ε)− 1

I2
1 (ε)− I0 (ε) I2 (ε)

;

(2), given x, y ∈ R4, x 6= y, and ε1, ε2 > 0 with ε1 > |x− y|+ε2, EW
[
I
(
hµxε1

)
I
(
hµxε2

)]
equals −1

2π2

(
I2
1 − I0I2

)−1
(ε1) times

ζ>B−1 (ε1)A (ε1)C (|x− y|) ζ.

=
(

(I1K1 + I2K0) (ε1)− 1 (I1K1 + I2K0) (ε1)
)( I1(|x−y|)

|x−y|
I2 (|x− y|) + I1(|x−y|)

|x−y|

)

=

(
2I1 (|x− y|)
|x− y|

+ I2 (|x− y|)
)(

(I1K1 + I2K0) (ε1)− 1

2

)
+

1

2
I2 (|x− y|)

=I0 (|x− y|)
(

(I1K1 + I2K0) (ε1)− 1

2

)
+

1

2
I2 (|x− y|) ;

(3), given x, y ∈ R4, x 6= y, and ε1, ε2 > 0 with |x− y| > ε1 + ε2,

EW
[
I
(
hµxε1

)
I
(
hµxε2

)]
=

(
− 1

2π2

)
ζ>D (|x− y|) ζ.

=

(
− 1

2π2

)(
2K1 (|x− y|)
|x− y|

−K2 (|x− y|)
)

=
1

2π2
K0 (|x− y|) .
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