PROBLEM SET 1

The problems are taken from Chapter 1 of the Lecture Notes by W. W. L. Chen, located at

http://www.maths.mq.edu.au/~wchen/lnentfolder/ent01-df.pdf

Problem 1. Chen, chapter 1, # 2. Prove that if $n \in \mathbf{N}$ is composite, then n has a prime factor not exceeding \sqrt{n} .

Problem 2. Chen, chapter 1, # 4. Prove that the three natural numbers n, n+2, n+4 cannot be simultaneously prime unless n = 3.

Problem 3. Chen, chapter 1, # 6. Prove that $24|n(n^2 - 1))$ for every odd $n \in \mathbb{N}$.

Problem 4. Chen, chapter 1, # 8. Suppose that $a, b, c \in \mathbf{N}$.

- (i) Prove that if $3|(a^2+b^2)$, then 3|ab.
- (ii) Prove that if $9|(a^3 + b^3 + c^3)$, then 3|abc.

Problem 5. Chen, chapter 1, # 11(i). Suppose that p is a prime. Prove that $\binom{p}{k}$ is divisible by p for every k = 1, 2, ..., p - 1. Here

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)\cdot\ldots\cdot(p-k+1)}{1\cdot 2\cdot\ldots\cdot k}$$

is a *binomial coefficient*; we shall discuss them in a future lecture.