
INTRODUCTION TO GRAPH THEORY

D. JAKOBSON

1. Definitions

• A graph G consists of vertices {v1, v2, . . . , vn} and edges {e1, e2, . . . , em}
connecting pairs of vertices. An edge e = (uv) is incident with the vertices
u and v. The vertices u, v connected by an edge are called adjacent. An
edge (u, u) connecting the vertex u to itself is called a loop. Example: v2

is adjacent to v1, v3, v6 in Figure 1.
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Figure 1: The cube.
• A degree deg(u) of a vertex u is the number of edges incident to u, e.g.

every vertex of a cube has degree 3 (such graphs are called cubic graphs).
Let V be the number of vertices of G, and E be the number of edges. Then∑

v∈G

deg(v) = 2 · E

It follows that G has an even number of vertices of odd degree.
• A walk is a sequence of vertices v0, v1, v2, . . . , vk where vi and vi+1 are

adjacent for all i, i.e. (vi, vi+1) is an edge. If vk = v0, the walk is closed.
Example: v1, v2, v6, v7, v3, v2, v1.

• If all the edges in the walk are distinct, the walk is called a path. G is
connected if every 2 vertices of G are connected by a path. A closed walk
that is also a path is called a closed path. Example: v1, v2, v6, v7, v8, v5, v1.
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2. Eulerian paths and circuits

• An Eulerian path visits every edge exactly once. A closed Eulerian path
is called an Eulerian circuit. Example: remove snow from all streets in a
neighborhood, passing every street exactly once.

• Theorem: A connected graph G has an Eulerian circuit if and only if all
vertices of G have even degrees. The circuit can start at any vertex.
Such graphs are called Eulerian or unicursal.

• G has an Eulerian path if it has exactly two vertices of odd degree. An
Eulerian path must start at one of these vertices, and must end at another
one.

Figure 2: G has exactly 2 vertices of odd degree.

• These notions were studied by Leonard Euler in a 1736 paper, considered
to be the first paper on graph theory. Euler considered the following graph:

Figure 3: “Seven bridges of Königsberg” graph.

Sketch of the proof of the theorem about Eulerian circuits.

• One direction is easy: let an Eulerian circuit C start and end at v0. Every
time a vertex vj 6= v0 is visited, we “go in” along one edge, and “go out”
along another edge, hence two edges are traversed during each visit. Since
C contains every edge, the degrees of all vj 6= v0 are even.

• For v0, the argument is similar: C starts and ends at v0 (thus two edges
are traversed), and all other visits to v0 are similar to the visits to vj 6= v0.

• Now, suppose G is connected and all vertices have even degrees. Assume
for contradiction that G doesn’t have an Eulerian circuit; choose such G
with as few edges as possible. One can show that G contains a closed path
(Exercise!). Let C be such a path of maximal length.

• By assumption, C is not an Euler circuit, so G \ E(C) (G with edges of
C removed) has a component G1 with at least one edge. Also, since C is
Eulerian, all its vertices have even degrees, therefore all vertices of G1 also
have even degrees.

• Since G1 has fewer edges than G, G1 is Eulerian; let C1 be an Eulerian
circuit in G1. C1 shares a common vertex v0 with C; assume (without loss
of generality) that C1 and C both start and end at v0. Then C followed
by C1 is a closed path in G with more edges than C, which contradicts our
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assumption that C has the maximal number of edges. The contradiction
shows that G is Eulerian.

3. Planar graphs and Euler characteristic

Let G be a connected planar graph (can be drawn in the plane or on the surface
of the 2-sphere so that edges don’t intersect except at vertices). Then the edges
of G bound (open) regions that can be mapped bijectively onto the interior of the
disc; in the plane R2 there will be a single unbounded region. These regions are
called faces.

• Draw graphs of 2 or 3 of your favorite polyhedra (e.g. tetrahedron, cube,
octahedron, prism, pyramid), and count the number V of vertices, the
number E of edges, and the number F of faces for each graph. Try adding
and subtracting these 3 numbers; is there a linear combination that is the
same for all graphs that you drew?

• You have just discovered Euler’s formula:

V − E + F = 2.

This formula holds for all connected planar graphs!

• Outline of the proof: Any connected graph on S2 can be obtained from a
trivial graph consisting of a single point by a finite sequence of the following
operations:

• (1) Add a new vertex connected by an edge to one of the old vertices. Then

Vnew = Vold + 1, Enew = Eold + 1, Fnew = Fold,

so Vnew − Enew + Fnew = Vold − Eold + Fold.
• (2) Add an edge connecting 2 vertices that were not connected before. Then

Vnew = Vold, Enew = Eold + 1, Fnew = Fold + 1,

so Vnew − Enew + Fnew = Vold − Eold + Fold.
• (3) Add a new vertex in the middle of existing edge (subdivide). Then

Vnew = Vold + 1, Enew = Eold + 1, Fnew = Fold,

so Vnew − Enew + Fnew = Vold − Eold + Fold.

Figure 4: Operations 1, 2, 3.

• Since for the trivial graph V = F = 1, F = 0, we get V − E + F = 2 for
that graph. Since the linear combination does not change under operations
(1), (2) or (3), we find that V −E + F = 2 for any connected graph on the
sphere.



4 D. JAKOBSON

Dual graph: let G be a graph in the plane or on S2 (planar graph). A dual
graph G̃ is obtained as follows: faces of G become vertices of G̃; two vertices of G̃ are
adjacent (connected by an edge) if the two corresponding faces of G have a common
edge. It is easy to see that there is a bijection between faces of G̃ and vertices of
G. Example: tetrahedron is dual to itself, and cube is dual to octahedron. A dual
of G̃ is isomorphic to G.

Figure 5: Dual graphs.

We have

V (G̃) = F (G), F (G̃) = V (G), E(G̃) = E(G).

4. Regular Polyhedra

• We shall apply Euler’s formula to describe all regular polyhedra (platonic
solids).

• Let G be a planar graph corresponding to a regular polyhedron, with V
vertices, E edges and F faces. Let all vertices of G have degree a, and let
all of the faces have b edges.

• Homework exercise: Prove that

a · V = 2 · E = b · F.

Hint: every edge belongs to the boundary of exactly 2 faces.
• It follows that V = 2E/a, F = 2E/b.
• Substituting into Euler’s formula, we get E(2/a− 1 + 2/b) = 2, or

1/a + 1/b− 1/2 = 1/E > 0.

• We cannot have a ≥ 4, b ≥ 4, since then 1/a + 1/b − 1/2 ≤ 0, so either
a ≤ 3 or b ≤ 3. Also, a ≥ 3, b ≥ 3.

• Now it is easy to check that only the following combinations of a, b, E are
possible:

• a = b = 3, E = 6, V = F = 4: tetrahedron;

Figure 6: Tetrahedron.

• a = 3, b = 4, E = 12, V = 8, F = 6: cube;
• a = 4, b = 3, E = 12, V = 6, F = 8: octahedron;
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Figure 7: Octahedron.
• a = 3, b = 5, E = 30, V = 20, F = 12: dodecahedron;

Figure 8: Dodecahedron.
• a = 5, b = 3, E = 30, V = 12, F = 20: icosahedron.

5. Problems

• 1. Prove that the complete graph K5 (5 vertices all adjacent to each other)
is not planar.

Figure 9: The graph K5.
• 2. Consider a complete bipartite graph K3,3 (each of the vertices {u1, u2, u3}

is adjacent to each of the vertices {v1, v2, v3}, but ui is not adjacent to uj ,
and vi is not adjacent to vj for i 6= j). Sometimes it is called “3 houses, 3
utilities graph.” Prove that K3,3 is not planar.

Figure 10: The graph K3,3.
• An important Kuratowski’s theorem states that any graph that is not pla-

nar contains a subgraph that can be obtained from either K5 or K3,3 by
repeatedly subdividing the edges. That theorem is not easy, so I am not
asking you to prove it.


