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1 Elliptic Operators Associated to Generic

Metrics

1.1 Introduction

A real symmetric matrix has simple (i.e. distinct) eigenvalues λi iff its dis-
criminant

∏
i<j(λi−λj)2 is nonzero. The discriminant happens to be sum of

squares in the matrix elements (see [9]). For 2× 2 matrices, for instance,

Discriminant

(
a c
c b

)
= (a+ b)2 − 4(ab− c2) = (a− b)2 + 4c2.

There are hence two constraints on the elements of a non-simple sym-
metric 2 × 2 matrix, so the non-simple matrices have codimension 2 in the
space of symmetric matrices. The codimension of the set of n×n symmetric
matrices with given eigenvalue multiplicity is known: see [20].

Self-adjoint elliptic operators1 are analogous to positive-definite symmet-
ric matrices, so it’s natural to ask whether within a given family of self-adjoint
elliptic operators, the non-simple ones have codimension two. The answer is
often positive: see Teytel [17] and Arnold [2].

For instance, we can study the question

(∆− λ)φ = 0

on Ω ⊂ Rn or a riemannian manifold M , with Dirichlet boundary condi-
tions. We then have Weyl’s law:

#{λi < r} ∼ r
n
2 × volume(Ω).

We can view ∆ as an element of the following operator families:

• ∆ + tV where V is a smooth potential function.

• ∆Ω where we vary Ω by deforming its boundary.

• ∆g where we vary the metric g with respect to which ∆ is defined.2

1For the definitions and a few properties, see section 1.3.
2For instance, if we define a family of metrics on the torus by g = eth(x,y)(dx2 + dy2),

then ∆g = e−th(x,y)( ∂2

∂x2 + ∂2

∂y2 ).
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Albert [1] showed that eigenvalues of ∆ are simple for a generic ∆ + tV ,
by breaking up higher dimensional eigenspaces with small perturbations of
the operator. This is the subject of the next section.

1.2 Perturbing the spectrum

We show how to perturb the operator ∆ + tV to obtain a simple spectrum,
following Albert in [1]. Consider ∆ + tV, 0 ≤ t ≤ 1, V ∈ C∞(M), λ an
eigenvalue of ∆, Eλ the (finite) eigenspace for λ, dim(Eλ) = mλ = m.

As we vary t, each eigenvalue λt of ∆ + tV varies continuously. In fact,

|λ(t+ h)− λ(t)| ≤ h|V |.

This can be proved by the minimax principle. It follows that if we fix N , for
small enough perturbations of t no new multiplicities appear in the region
λ < N .

By a theorem of Rellich (see [13]) one can choose an orthonormal basis
of Eλ depending on V , {φ1,0, φ2,0, . . . , φm,0}, such that for all k we have

(∆+tV )(φk,0+tφk,1+t2φk,2+. . .) = (λ+tλk,1+t2λk,2+. . .)(φk,0+tφk,1+t2φk,2+. . .).
(1)

where the φk(t) = (φk,0 + tφk,1 + t2φk,2 + . . .) are orthonormal. Comparing
the coefficients of t in (1), we get

V φk,0 + ∆φk,1 − λk,1φk,0 − λφk,1 = 0 (2)

Contract with φk,0 to get

0 = < φk,0, V φk,0 > + < φk,0,∆φk,1 > − < φk,0, λk,1φk,0 > − < φk,0, λφk,1 >

= < φk,0, V φk,0 > + < ∆φk,0, φk,1 > −λk,1
= < φk,0, V φk,0 > −λk,1.

The second equality follows from ||φk,0||2 = 1 and < φk,0, φk,1 >= 0,
which in turn follows from ||φ(t)||2 = 1 Contract (2) with φk′ ,0 (k

′ 6= k) to
get

0 = < φk′ ,0, V φk,0 > + < φk′ ,0,∆φk,1 > −λk,1 < φk′ ,0, φk,0 > −λ < φk′ ,0, φk,1 >

= < φk′ ,0, V φk,0 > +λ < φk′ ,0, φk,1 > −λ < φk′ ,0, φk,1 >

= < φk′ ,0, V φk,0 > .
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Hence λk,1 are the eigenvalues of the operator B = ΠλmV : Eλ → Eλ
where Πλ is projection onto Eλ and mV represents multiplication by V . If we
find a V such that λk′ ,1 6= λk,1 for some k

′
, k, then for small t, λk′ (t) 6= λk(t).

Moreover, for small enough perturbations, no new multiplicities can appear
for λ < N (for some arbitrarily large N). It follows that for such a V , a small
perturbation will decrease the multiplicity of λ by at least 1. A sequence of
such perturbations will then kill all the multiplicity for λ < N .

Hence we need only find an appropriate V . For instance, one can check
that either V = φ1,0φ2,0 or V = φ2

1,0 − φ2
2,0 works. If we can show that

such V are residual in C∞, then the intersection of the sets of admissible V
corresponding to the different λ will be dense by the Baire Category theorem
(since the spectrum is countable) and hence we can choose a V which breaks
up all Eλ simultaneously.

1.3 Elliptic Regularity (Phil Sosoe)

We discuss the regularity of elliptic operators (this section is self-contained).
Let α ∈ Zn have non-negative entries. We define the operator

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

.

For ζ ∈ Rn, we define

< ζ >= (1 + |ζ|2)
1
2 .

This behaves like the norm function for large vectors, but never vanishes.
We call

S = {f ∈ C∞(Rn) | ∀ α, ∀ p(x) ∈ R[x1, . . . , xn], sup(p(x)Dαf(x)) <∞}

the Schwarz space, and give it the obvious Frechet seminorms. Schwarz
functions (and their derivatives) decay faster than any inverse polynomial at
infinity.

One can show that the Fourier transform F is an isomorphism of the
Schwarz space. Denote by S

′
the dual of S, which we call the tempered

distributions. We can define the Fourier transform of l ∈ S ′ by

F (l)(s) = l(F (s)) ∀s ∈ S.

This in turn allows us to define

Hs = {u ∈ S ′ | < ζ >s û(ζ) ∈ L2}
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An operator

P (D) =
∑
|α|≤m

aαD
α

is said to be elliptic if when we replace Dα by ζα = xα1
1 x

α2
2 · · ·xαn

n and
view P as a polynomial in the xi (i.e. we take the Fourier transform of P ),
then

|L(ζ)| ≥ λ|ζ|m

for |ζ| ≥ A, where |ζ| is the standard norm on n-vectors and A is some
constant. ∂̄ and ∆ are both elliptic: the fact that their kernels consist of
smooth functions follows from the theorem we are about to prove, together
with the embedding of Hs ⊂ Ck for s� k.

We are given an elliptic operator P of order m, which maps Hs+m into
Hs. We want to prove

Lu ∈ Hs ⇒ u ∈ Hs+m,

i.e. that applying P to a function always kills m Sobolev derivatives.
Better still, we will prove

||u||s+m ≤ C(||Pu||s + ||u||2) (3)

for some constant C. This is called elliptic regularity.
P (D)u ∈ Hs is equivalent to < ζ >s P (ζ)û(ζ) ∈ L2. Consider∫
< ζ >2(s+m) |û(ζ)|2dζ =

∫
|ζ|≤A

< ζ >2(s+m) |û(ζ)|2dζ+

∫
|ζ|>A

< ζ >2(s+m) |û(ζ)|2dζ

We have ∫
|ζ|≤A

< ζ >2(s+m) |û(ζ)|2dζ < C

∫
|û(ζ)|2dζ

where

C = sup
|ζ|≤A

< ζ >2(s+m) .

We bound the second term by
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∫
|ζ|>A

∫
< ζ >2(s+m) |û(ζ)|2dζ ≤

∫
|ζ|>A

< ζ >2s< ζ >2m |û(ζ)|2dζ

≤ 1

λ

∫
|ζ|>A

< ζ >2s |P (ζ)|2|û(ζ)|2dζ

=
1

λ

∫
|ζ|>A

< ζ >2s |P̂ (D)u(ζ)|2dζ =
1

λ
||Pu||s.

This proves (3). The analogous statement on the level of distributions is
as follows: define the singular support of a distribution u as by

singsupp(u)c = {x ∈ Rn : ∃φ ∈ C∞, φ(x) 6= 0, φu ∈ C∞}.

Then if P is elliptic,

singsuppu = singsuppPu.

These results can be extended to manifolds using a “local” version of
Fourier transforms: this is the field of microlocal analysis.

1.4 Summary of a paper of Uhlenbeck

(Michael McBreen)
We summarize part of [19]. The aim is to prove that for certain fam-

ilies of elliptic operators on a compact manifold (possibly with boundary)
parametrized by Banach spaces, the following properties hold for residual3

sets of operators:

1. The spectrum is simple.

2. The eigenfunctions are Morse functions when restricted to the interior
of M (i.e. they have a finite number of critical points, and the Hessian
is non-degenerate at each critical point).

3. Zero is not a critical value for the eigenfunctions restricted to the inte-
rior of M (i.e. the nodal sets are submanifolds).

4. Zero is not a critical value of dφ
dn

on ∂M , where dφ
dn

is the derivative of
the eigenfunction φ in the normal direction to the boundary.

3A set is residual if it is the countable intersection of open dense sets. In complete
metric spaces, residual sets are dense by the Baire category theorem.
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These results are proved with transversality theory. We’ll need the fol-
lowing results:

Sard Smale Theorem: Let f : M → N be a Fredholm map of class
C l, where l > max(0, index(f)) and M,N are separable Banach manifolds.
Then the regular (i.e. non-critical) values of f are residual in N .

Transversality Theorem 1: Let ψ : H × B → E be a Ck map with
0 ∈ E as a regular value, where H,E,B are Banach manifolds and H,E are
separable. If ψ(−, b) is Fredholm of index < k, then there is a residual set of
b ∈ B such that ψ(−, b) has 0 as a regular value.

Transversality Theorem 2: Let f : Q × X → Y be transverse to
Y
′ ⊂ Y , where X, Y are finite dimensional and Q is separable. Suppose f is

Ck with k > max(1, dimX + dimY
′ − dimY ), and suppose that there is a

Ck map π : Q→ B of Fredholm index zero, where B is a separable Banach
manifold. Then the set of b ∈ B such that fb = f |π−1(b) is transverse to Y

′
is

residual in B.
Sard-Smale tells us that regularity (or transversality) is generic. The

other two theorems say that if the evaluation map of a family of operators is
transverse to something, then most of the operators are transverse too.

Now, pick a family of degree 2 elliptic operators Lb where b ∈ B, a Banach
space. Let W k,p be the space of functions on M whose k first weak derivatives
are p-integrable, with the Sobolev norm

||f ||k,p =

∫
M

|∇kf |p + . . .+ |f |p.

Let W k,p
0 be the closure of the smooth functions of compact support on

the interior of M in W k,p. Then we fix some k ≥ 1 and consider

Lb : W k,p ∩W 1,p
0 → W k−2,p.

Restricting the domain to W 1,p
0 amounts to imposing Dirichlet conditions

(of a sort) on the boundary.
The theory of elliptic operators tells us that if the coefficients of Lb are

Ck, then for λ ∈ R,

Lb + λ : W k,p ∩W 1,p
0 → W k−2,p

is Fredholm of index 0. 4

Uhlenbeck proves the following in [19]: Let

4Note that since the inclusion W k,p ⊂ W k−2,p is compact, so is λ : W k,p → W k−2,p.
Since the Fredholm property and the index are invariant under compact perturbations, it
suffices to show the claim for one choice of λ.
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Sk,p = {u ∈ W k,p ∩W 1,p
0 ,

∫
X

|u|2dvol = 1}.

Let

φ : Sk,p × R×B → W k−2,p

be given by

φ(u, λ, b) = (Lb + λ)u.

Then φ is also Fredholm of index zero.
Clearly, (u, λ, b) ∈ φ−1(0) iff u is an eigenfunction of Lb with eigenvalue

λ. We claim that λ is simple5 iff (u, λ) is a regular point of φb = φ(−,−, b).
To prove this, consider the linearization of φb:

Dφb(δu, δλ) = (Lb + λ)δu+ δλu.

Here δu ∈ TSk,p iff
∫
M
uδudvol = 0. The image of (Lb + λ) is the L2

orthogonal complement of the eigenspace for λ. Hence Dφb is surjective iff u
spans the eigenspace.

It follows that Lb has a simple spectrum iff 0 is a regular value for φ.
If φ : Sk,p × R× B → W k−2,p is C2 and has 0 as a regular value, then it

follows from Transversality theorem 1 that for a residual set of b, φb has zero
as a regular value. Hence Lb has simple spectrum for a residual set of b.

So we’ve reduced the problem to showing that for a given family of oper-
ators, φ has zero as a regular value. The linearization of φ has the form

Dφ(δu, δλ, δb) = (Lb + λ)δu+ δλu+Dbφ(δb)

where Dbφ is the restriction of the linearization of φ to the tangent space of
B. Showing that zero is a regular value will therefore come down to showing
that for all eigenfunctions u and all ρ ∈ W k−2,p, there exists δb, δλ and δu
satisfying ∫

uδudvol = 0

and such that

(Lb + λ)δu+ δλu+Dbφ(δb) = ρ.

5i.e. λ corresponds to a one-dimensional eigenspace
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Uhlenbeck verifies this for certain common families of operators.
Similarly, one proves that the nodal sets of a residual set of Lb are mani-

folds by examining the evaluation map
Φ : W k,p ×M → R, (u,m)→ u(m).
Note that this is only defined for kp > n, which ensures that W k,p ⊂ C0.

We restrict Φ to the set of eigenfunctions E = φ−1(0). Assuming that zero
is a regular value of φ, E is a Banach submanifold of Sk,p × R × B, and
Φ(u, λ, b,m) = u(m). If Φ(u,−) has zero as a regular value, then the nodal
set is a submanifold of M by the implicit function theorem.

There is a projection map π : E → B, which can be checked to be
Fredholm of index zero. If the spectrum of Lb is simple, then eigenfunctions
for that b are isolated from one another and it suffices to check that Φ|π−1(b) ⊂
E has zero as a regular value. Transversality theorem 2 says that if zero
is regular for Φ|E, it’s regular for Φ|π−1(b) for a residual set of b, and the
intersection of these with the residual set of ’simple spectrum’ b will be
residual and hence dense.

Once again, Uhlenbeck checks this for particular families of operators.

1.5 Domain types

We can learn much about the domain Ω of an elliptic operator by studying
the billiard flow on its unit sphere bundle S(TΩ). For simplicity we will take
dim(Ω) = 2. The billiard flow Φt takes a unit vector (x, v) to (γx,v(t), w)
where γx,v(t) is the geodesic satisfying γ(0) = x and γ

′
(t)|t=0 = v and w is

the parallel transport of v. If the geodesic hits ∂Ω, it is ’reflected’ at an angle
equal to its angle of incidence.

A domain is said to have ergodic billiards if this flow is ergodic, i.e. if any
invariant set in S(TΩ) has either full measure or measure 0. Examples of
ergodic billiards are a square domain with a circle removed (Sinai billiards),
or a generic polygon (see Zelditch and Zworski [22]). One can check that
geodesic flow on the the flat torus or the torus with metric

ds2 = (f(x) + g(y))(dx2 + dy2)

is non-ergodic (for the standard torus this is clear, as geodesics are simply
projections of straight lines on R2).

On the other hand, a domain is said to be integrable if it is foliated by
invariant subsets of dimension one or zero.

A smooth closed curve in Ω is called a caustic if any billiard trajectory
tangent to Ω remains tangent to it after each reflection off the boundary. For
instance, an ellipse Ω ⊂ R2 has infinitely many caustics, namely the smaller
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confocal ellipses and the hyperbolas through Ω. A domain with a continuous
family of caustics isn’t ergodic, because the set of trajectories tangent to the
family of caustics is invariant and will have positive measure. In general, one
expects a convex surface with a smooth boundary to have many caustics.
In fact, Lazutkin [10] showed that if ∂Ω is sufficiently differentiable and has
curvature bounded away from zero and infinity, then there is a one-parameter
family of curves ct, t ∈ [0, 1] converging to the boundary and a set A ⊂ [0, 1]

such that for t ∈ A ⊂ [0, 1], ct is a caustic, and µ(A∩[0,ε])
ε

→ 1 as ε→ 0.
However, there exist ergodic convex domains, such as the Bunimovich

stadium, which looks like a rectangle with rounded corners and two strictly
convex sides.

1.6 Random wave conjectures

The length scale for eigenfunction behavior is 1
λ
, so for very large λ, the

large scale structure of the manifold becomes less important. For instance,
the effect of the boundary on the behavior of eigenfunctions on the interior
of M diminishes according to the distance from the boundary, measured in
wavelengths.

In [4], Michael Berry conjectured that high energy (large λ) eigenfunc-
tions have the same properties as random Fourier series. These conjectures
generally fail for ”nice” manifolds with many symmetries.

One domain with interesting eigenfunctions to which the conjecture can
be applied is H, the upper half plane with the metric ds2 = dx2+dy2

y2
. SL(2,Z)

acts on H by isometries

z → az + b

cz + d
,

which are generated by the operations T (z) = z + 1 and S(z) = −1
z

,
corresponding to translation and ’inversion’ of the half-plane. One can show
by elementary arithmetic that the set

D = {x+ iy,−1

2
< x ≤ 1

2
, x2 + y2 ≥ 1}

is a fundamental domain for this action. The quotient H/SL(2,Z) can
be given a complex structure which makes it isomorphic to C. The eigen-
functions of the Laplacian on the quotient space have deep number-theoretic
significance: see Sarnak [14].

Let φ be one such eigenfunction with ∆φ = (1
4

+ t2)φ.
If we expand
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φ(x, y) =
∑
n6=0

fn(y)ewπinx

then according to the conjecture fn(y) = cnKit(2y|n|) where Kit(2y|n|)
are Bessel functions and the cn are distributed normally.

In general, if you have a sequence of functions satisfying some mild as-
sumptions and look at successive random linear combinations of the first n
terms, then certain properties of these sums are universal, i.e. don’t depend
on the particular sequence of functions. For instance, it is known that the
maximum of the random linear combinations grows as

√
log(n). We also

know ∀ε > 0, ||ψλ||∞ < λε. Does perhaps ||ψλ||∞ ∼ (log(λ))k for k = 1
2

or
1
4
? See Kahane [7] for more details.

On a flat torus, the eigenfunctions are actually bounded. Perhaps one can
prove that if a completely integrable manifold has bounded eigenfunctions,
then that manifold is a torus.

There are known cases when the above conjectures fail. For instance,
certain manifolds have “Heegner points” where most of the eigenfunctions of
∆ vanish (see [15]). However, by the local version of Weyl’s law,∑

√
λj≤λ

φ2 ∼ cλn +O(λn−1).

This implies that some of the eigenfunctions which don’t vanish at the
Heegner points take large values there, contradicting the bounds on random
series. For generic metrics, this (hopefuly) shouldn’t happen.

Suppose M is compact or K ⊂ Rn is compact. Let

fλ(a, b) =
V ol{x ∈M s.t. φλ(x) ∈ [a, b]}

V ol(M)
,

∫
M

φ2dvol = 1.

It would follow from the conjectures of Berry that after a suitable nor-
malisation,

lim
λ→∞

fλ(a, b) =

∫ b

a

e−
x2

c dx.

It turns out that this is equivalent to∫
φkλ → µk
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where µk is the kth moment of the Gaussian distribution (under certain
regularity conditions, if you know all the moments of a distribution, you
know the distribution itself). In particular, for odd k the integal tends to
zero, since the Gaussian is even. This clearly holds for k = 1, since∫

φ1
λ =< φλ, 1 >= 0

since φλ and 1 are eigenfunctions of ∆ with distinct eigenvalues (at least
for Neumann boundary conditions).

The conjecture seems to hold on the modular domain for special classes
of eigenfunctions and is known for k = 3, 4. It has been tested on supercom-
puters: see [3].

1.7 The distribution of eigenvalues of ∆ + tV

Let M be a compact negatively curved surface, and V ∈ C∞(M), f ∈
C∞0 ([0,∞]). Let λi be the eigenvalues of ∆ and µi the eigenvalues of ∆ + V .
Then

lim
N→∞

1

N

N∑
j=1

f(λj+1 − λj)

exists iff

lim
N→∞

1

N

N∑
j=1

f(µj+1 − µj)

does, and if so, they are equal. For higher dimensional manifolds, one

must take λ
2
n
k instead, so that Weyl’s law gives

λ
2
n
k

k
→ constant.

Proof for surfaces: Let λ(t)j be an eigenvalue of ∆ + tV , t ∈ [0, 1]. Let
xj(t) = λj+1(t)− λj(t). It is enough to show

1

N

N∑
j=1

[f(xj(t))− f(xj)]→ 0.

We have∣∣∣∣∣ ddt
N∑
j=1

f(xj(t))

∣∣∣∣∣ =

∣∣∣∣∣
N∑
j=1

f
′
(xj(t))× [λ

′

j+1(t)− λ′j(t)]

∣∣∣∣∣ ≤ c
N∑
j=1

∣∣∣λ′j(t)∣∣∣
For each t, there is an orthonormal basis of eigenvectors {ψj(t)} such that
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λ
′

j =

∫
M

V ψ2
j (t)dvol.

Hence our bound becomes∣∣∣∣∣ ddt
N∑
j=1

f(xj(t))

∣∣∣∣∣ ≤ c

N

N∑
j=1

∣∣∣∣∫
M

V ψ2
j (t)dvol

∣∣∣∣ .
Without loss of generality, we can take

∫
M
V dvol = 0. We now quote the

quantum (or semi-classical) ergodicity theorem: if the geodesic flow on M is
ergodic, then

lim
N→∞

1

N

N∑
j=1

∣∣∣∣∫
M

V ψ2
j (t)dvol

∣∣∣∣ = 0.

This concludes the proof.
Along the same lines, we have the following theorem from [21] : Let

M be a smooth, compact, negatively curved surface. The the following are
equivalent:

1. There exists a limiting distribution of λi+1(∆)− λi(∆).6

2. There exists a limiting distribution of λj+1(∆ + V )− λj(∆ + V ).

For instance, on a sphere the limiting distribution is δ(x).
We verify quantum unique ergodicity for the circle. M = S1 has ergodic

flow if we restrict our attention to right movers. The eigenfunctions of the
laplacian are

φn(x) =
sin(nx)√

(2)

and

ψn(x) =
cos(nx)√

(2)
.

We will consider only the φn(x); the other case is identical.
For V ∈ C∞(S1),

∫
V = 0, we have∫

S1

V ψ2
n(t)dx =

1

2

∫
S1

V sin(nx)2(t)dx =

∫
S1

V (1− cos(2nx))dθ
n→ 0

The last limit is simply the Riemann-Lebesgue lemma. This proves quan-
tum ergodicity for the circle.

6In dimension n one should consider λ
2
n
i+1 − λ

2
n
i , because #{λj < λ} ∼ cλn

2 .
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2 Geodesics on Negatively Curved Manifolds

2.1 Geodesic flow on negatively curved manifolds

The geodesic flow on a Riemannian manifold (M, g) is defined as follows.
Define a flow on TM by

ψt : (x, v)→ (expx(tv), dexpx(tv)(v)),

i.e. the map that takes the basepoint to the time t image of the geodesic
based at x with initial velocity v. This map is not in general continuous near
the zero section (small vectors pointing in opposite directions get sent to very
different places) but if we restrict it to the sphere bundle SM associated to
TM , i.e. the set of length-one vectors, it becomes a diffeomorphism.

For example, we can look at the geodesic flow on the compact quotient
of the hyperbolic plane

Hn = {x1, . . . , xn|xn > 0; ds2 =
Σidx

2
i

x2
n

},

which has constant curvature K = −1, by a subgroup Γ ⊂ SL(2,R):

H2/Γ = [PSL(2,R)/SO(2)]/Γ.

Since SL(2,R) acts by isometries, we can use the hyperbolic metric on H
to define a metric on the quotient. The unit sphere bundle of H2/Γ is just
PSL(2,R)/Γ. The geodesic flow on PSL(2,R) is given by left multiplication
by (

et 0
0 e−t

)
.

We now use the geodesic flow to show why the universal cover of a nega-
tively curved manifold is Rn.

The rate at which geodesics diverge from each other (or converge) is
measured by Jacobi vector fields. Let γ0(t) be part of a one-parameter family
of geodesics γu(t), not necessarily with the same endpoints. Then J(t) =
dγu(t)
du
|u=0 is a vector field along γ(t) satisfying

∇2
tJ(t) +R

(
dγ(t)

dt
, J(t)

)
J(t) = 0

where R(−,−) is the Riemann curvature tensor and ∇ is the Levi-Civita
connection. (see [12], Part III). Conversely, any such vector field corresponds
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to a family of geodesics. If the norm of J increases along γ, then the geodesics
in the corresponding family diverge from γ as t increases. If J vanishes at
some point, then the family intersects γ there.

The exponential map expx : TxM → M takes a tangent vector v at x to
the endpoint of the geodesic with initial velocity v. If geodesics with distinct
angles starting at x don’t intersect, then this map is a covering of M by TxM .
We can sometimes use the Jacobi field associate to the family of geodesics
parametrized by the initial angle to determine whether intersections occur.
For instance, in two dimensions, the relevant Jacobi fields satisfy an equation
roughly of the form

J(t)
′′

+KJ(t) = 0, J(0) = 0, J
′
(0) = 1

where K is the curvature (a scalar). For constant positive curvature,

we then get J(t) ≈ sin(
√
Kt)√
K

, which vanishes infinitely often. For negative

curvature, J(t) ≈ sinh(
√
Kt)√

K
, which only vanishes at the origin. We expect

the exponential map to be injective everwhere except at Jacobi conjugate
points7, i.e. points x, y where γ(0) = x, γ(t) = y J(t) = 0). By the above,
there are no conjugate points in negative curvature, hence the exponential
map realizes the tangent space at x as the universal cover of M .

One can use the universal cover to find a bijection between conjugacy
classes in π1(M) and closed geodesics: see [6].

2.2 Heat and wave traces

Let φj(x) and {λj} be the eigenfunctions and eigenvalues of ∆ on a manifold.
The fundamental solution of the heat equation ( ∂

∂t
−∆)φ = 0 on the manifold

is ∑
j

e−tλjφj(x)φj(y).

We define the heat trace∑
j

e−tλj = Tr(et∆).

We can study this function’s behavior as t→ 0 to learn about the number
of eigenvalues in some range. The coefficients of the asymptotic expansion as

7To complete this argument, one must show that geodesics who intersect twice are
linked by a continuous family of geodesics intersecting at the same points.
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t → 0+ are called heat invariants. It so happens that the zeroth order term
only cares about the volume and dimension of M . Other terms are usually
integrals of curvature polynomials. See [5] for more details.

The fundamental solution of the wave equation ( ∂
2

∂t2
−∆)φ = 0 is∑

j

cos(t
√
λj)φj(x)φj(y).

Just as with the heat equation, we define the “wave trace” as∑
j

cos(t
√
λj) = Even(Tr(eit

√
∆)).

There is an obvious singularity at t = 0, and additional singularities at t =
length of a closed geodesic. In a certain sense, geodesic loops at x control the
local wave kernel at x. This is due to Helton, Collin de Verdier, Duistermat,
Guillemin, and on the physics side, Gutzwiller.

2.3 Separation of geodesics in phase space

We want to understand and prove (a special case of) the statement ’closed
trajectories of hyperbolic dynamical systems (eg. geodesic loops on manifolds
of negative curvature) are separated in phase space.

Take the two dimensional torus T 2 = R2/Z2 as an example. We consider
geodesic flow on the unit sphere bundle of T 2 with the standard flat metric
inherited from R2. The tangent bundle of T 2 is trivial: it inherits a global
coordinate system from the tangent bundle of R2. The unit sphere bundle of
T 2 is therefore T 3.

To study geodesics on T 2 it is useful to look at its universal cover R2,
which is tiled by units squares corresponding to different fundamental do-
mains for the quotient map R2 → T 2. A geodesic γ(t) in T 2 is simply a
straight line on the unit square, and it can be lifted to a straight line l in
R2. Suppose γ(0) = (0, 0) (where we are identifying T 2 with the square
[0, 1]× [0, 1]. Then γ closes on itself iff l intersects the corner of another unit
square with integer coordinates. The angle θ of l is therefore arctan(m

n
),

where m,n are relatively prime integers.
We call a closed geodesic primitive if it doesn’t loop twice around its

image. The number of primitive geodesics of length l(γ) ≤ T starting at
(0, 0) is

#{γ : l(γ) < T} ≈ πT 2

ζ(2)
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where πT 2 corresponds to the number of pairs (m,n) such that m2 +n2 ≤
T 2, and ζ(2) compensates for the non-primitive geodesics counted this way
(which correspond to points (m,n) where m and n aren’t relatively prime).

Clearly, if we have one closed geodesic, then we get a one-dimensional
family of them by moving the starting point around on the torus while keep-
ing the angle fixed. We will show that these families are isolated from each
other, in the following sense:

There exists c > 0 such that the elements of

GT = {θ = arctan(
m

n
) |
√
m2 + n2 ≤ T}

are separated by gaps of size ≥ c
T 2 .

Proof: Given two pairs m,n and m
′
, n
′

satisfying the conditions defining

T , we have |m
n
− m

′

n′
| = |mn

′−m′n
nn′

| ≥ 1
T 2 . Now,

d

dx
arctan(x) =

1

1 + x2
.

Hence for m/n < 1, the spacing between consecutive θ ∈ GT is at least
half the spacing between consecutive fractions. By symmetry, this holds for
m/n > 1 too. The claim follows.

The result can be extended to higher dimensions.

2.4 Counting closed geodesics on negatively curved man-
ifolds

One can try to count the number of closed geodesics geodesics of length
≤ T on a closed negatively curved manifold M . This problem was solved
by Huber for constant negative curvature and by Margulis [11] for variable
negative curvature. They found (counting all geodesics, not only primitive
ones)

#{γ : L(γ) ≤ T} ∼ C
ehT

hT

where h is the topological entropy of the geodesic flow on M , and depends
on the metric. This is explained as follows: for a point u ∈ U in the universal
cover of M (the hyperbolic half-space), the volume of a ball B(u, T ) of radius
T centered at u grows as ehT . The number of closed geodesics starting at the
projection of u will be roughly proportional to the number of fundamental
domains covered by B(u, T ), i.e. proportional to its volume.

When K ≡ −1, the topological entropy is n− 1. For variable K we only
have −K2

1 ≤ K ≤ −K2
2 ⇒ (n− 1)K2 ≤ h ≤ (n− 1)K1.
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2.5 Entropy rigitidy

Besson, Courtois and Gallot proved that if M1 and M2 are negatively curved,
curv(M1) ≡ −1, vol(M1) = vol(M2) and entropy(M1) = entropy(M2), then
curv(M2) ≡ −1. Entropy is therefore quite a rigid property.

Suppose M has a negatively curved metric. How does the entropy vary
as the metric varies? Negatively curved manifolds of dimension greater than
2 are rigid: deforming the metric while preserving the curvature yields an
isometric manifold. In dimension 2, on the other hand negatively curved
metrics on a surface of genus g live in a Teichmuller space Tg of dimension
6g − 6 for g ≥ 2 and of dimension 2 and 0 for g = 1 and g = 0 respectively.
Katok proved that in dimension 2, the space of metrics of constant curvature
is a local extremum for entropy.

2.6 Separating geodesic lengths

The following “spaghetti lemma” is proved in [18]: define a c-spaghetti neigh-
bourhood of a closed geodesic γ of length T as

Cγ ≡ {(x, ξ) ∈ SM, distanceSM [(x, ξ), γ] ≤ e−cT}

Then there is a positive c > h s.t. the Cγ are pairwise disjoint as γ runs
over all closed geodesics of length less than T .

One can use the spaghetti neighbourhoods to perturb the metric so that a
given pair of geodesics have different lengths (simply use a bump deformation
within the disjoint neighbourhoods).

It is known that for generic metrics, all geodesics have different lengths.
Contrast this with the constant curvature case in dimensions 2 and 3, where
there are always geodesics of the same length.

2.7 Spectral rigidity

Definition: A deformation of the metric g is called trivial if gt = φ∗tg0,
where φt is a smooth diffeomorphism of the manifold.

The following results were published in [8] and [16].
Theorem 1: If M is negatively curved and compact, and gt preserves

the spectrum σ(∆) of the Laplacian, then gt is trivial.

Theorem 2: If M is negatively curved and compact, and has simple
length spectrum, then σ(∆ + q1) = σ(∆ + q2) ⇒ q1 = q2 where q1, q2 are
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smooth potentials.

We will outline the proof of Theorem 2. If you know σ(∆ + q) then you
know ΣL(γ)=T

∫
γ
q for all T , using the trace formula.

Now, in constant negative curvature, if q ∈ C∞(M) and
∫
γ
q = 0 for all

closed geodesics γ, then q ≡ 0. (the abundance of geodesics in the hyperbolic
plane is inherited by its quotients).8

Hence, if all L(γ) are distinct,
∫
γ
q1 − q2 = 0 for all γ implies q2 = q2.

This concludes the proof.
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