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SPECTRAL THEOREM FOR BOUNDED SELF-ADJOINT OPERATORS

Dana Mendelson and Alexandre Tomberg

We introduce the concepts of functional calculus and spectral measure for bounded linear operators on a Hilbert space.

We state the spectral theorem for bounded self-adjoint operators in the cyclic case. We also compute the spectrum and

the spectral measure in two concrete examples: a self-adjoint linear operator on a finite dimensional Hilbert space, and the

discrete Laplacian operator on ℓ2(Z).

1 INTRODUCTION

Diagonalization is one of the most important topics one

learns in an elementary linear algebra course. Unfortu-

nately, it only works on finite dimensional vector spaces,

where linear operators can be represented by finite matri-

ces.

Later, one encounters infinite dimensional vector spaces

(spaces of sequences, for example), where linear operators

can be thought of as ”infinite matrices”1. Extending the idea

of diagonalization to these operators requires some new ma-

chinery. We present it below for the (relatively simple) case

of bounded self-adjoint operators.

It is important to note that this generalization is not

merely a heuristic desire: infinite dimensions are in-

escapable. Indeed, mathematical physics is necessarily

done in an infinite dimensional setting. Moreover, quantum

theory requires the careful study of functions of operators

on these spaces – the functional calculus.

This may seem awfully abstract at first, but an example

of a function of operators is known to anyone familiar with

systems of linear ODEs. Given a system of ordinary linear

differential equation of the form

x′(t) = Ax(t)

where A is a constant matrix, the solution is given by

x(t) = exp(tA)x(0) .

This is an instance of the matrix exponential, an operation

that is well defined for finite dimensions.

Yet, quantum mechanics demands that we are able to de-

fine objects like this for any operator. In particular, the time

evolution of a quantum mechanical state, ρ is expressed by

conjugating the state by exp(itH) where H is the Hamil-

tonian of the system. This motivates the development of

a functional calculus which allows us to define operator-

valued equivalents of real functions.

But enough motivation, let us get on with the theory!

2 OPERATORS & SPECTRUM

2.1 Self-adjoint operators

Let H be a Hilbert space and A ∈ B(H ), the set of

bounded linear operators on H . In particular, in this ex-

position, we will focus on self-adjoint operators. In finite

dimensions, an operator A is called self-ajoint if, as a ma-

trix, A = A∗, where A∗ denotes the conjugate transpose of

A, i.e. A∗ = A
T

.

Of course, in infinite dimensional space, this definition

does not apply directly. We first need the notion of an ad-

joint operator in a Hilbert space. We begin by stating a re-

sult that we will use several times in this exposition.

Let T ∈B(H ), for y ∈H , the map

x
φ7−→ 〈y |T x 〉

defines a bounded linear operator. Riesz’s representation

theorem for Hilbert spaces then tells us that ∃ ! z ∈H , such

that

φ(x) = 〈y |T x 〉= 〈z | x 〉
We can now write T ∗(y) = z and define the adjoint T ∗ this

way.

Definition. An operator A∈B(H ) is said to be self-adjoint

if

〈Ax | y 〉= 〈x |Ay 〉
for all x,y ∈H , that is if A = A∗ with respect to our defini-

tion of the adjoint above.

Definition. λ is an eigenvalue of A if there exists v 6= 0,

v ∈H such that Av = λv.

Equivalently, λ is an eigenvalue if and only if (A−λ I)
is not injective.

Several important properties of self-adjoint operators

follow directly from our definition. First, the eigenvalues

of a self-adjoint operator, A, are real. Indeed, let

Av = λv

then,

λ 〈v | v 〉= 〈Av | v 〉= 〈v |Av 〉= λ 〈v | v 〉
so λ = λ . Moreover, if

Av = λv, Au = µu

then

λ 〈v |u 〉= 〈Av |u 〉= 〈v |Au 〉= µ 〈v |u 〉
Since λ 6= µ = µ , we conclude that 〈v |u 〉 = 0, Which

tells us that the eigenspaces of A corresponding to differ-

ent eigenvalues are orthogonal.

1Matrices with lots of dots!
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These two simple facts are not only reassuring, but cru-

cial for the study of quantum mechanical systems. In fact,

for a quantum system, the Hamiltonian is a self-adjoint op-

erator whose eigenvalues correspond to the energy levels of

the bound states of the system. We can sleep well at night

knowing that these energy levels are real values.

2.2 Spectrum

The spectrum of an infinite dimensional operator is an en-

tirely different beast than just the sets of eigenvalues we are

used to. To describe it, it is best to introduce some new

terminology. We define this for a general operator T :

Definition. The resolvent set of T , ρ(T ) is the set of all

complex numbers λ such that

Rλ (T ) := (λ I−T )−1

is a bijection with a bounded inverse. The spectrum of T ,

σ(T ) is then given by C\ρ(T ).

In general, the spectrum of a linear operator T is com-

prised of two disjoint components:

1. The set of eigenvalues is now called the point spec-

trum.

2. The remaining part is called the continuous spectrum.

Before we discuss some examples of continuous spec-

tra, let us prove a simple result about σ(T ) that will be nec-

essary later in the development of the functional calculus.

Lemma 1. The spectrum of a bounded linear operator is a

closed and bounded subset of C. In fact,

σ(T )⊆ {z ∈ C : |z| ≤ ‖T‖}
Proof. Recall that σ(T ) = C\ρ(T ).

Closed Enough to show that ρ(T ) is open. Indeed,

remark that by the convergence of the Neumann series,

namely if ‖S‖ < 1 then (I− S) is invertible and its inverse

is given by

(I−S)−1 =
∞

∑
n=0

Sn.

Let λ ∈ ρ(T ). For any µ ∈ C,

µI−T = (λ I−T )−1
[
(µ−λ )(λ I−T )−1− I

]

exists if |µ−λ |
∥
∥(λ I−T )−1

∥
∥ < 1.

Bounded Now, let λ ∈ C be such that |λ | > ‖T‖. Then,

∃δ ∈ R,

|λ |> δ > ‖T‖
This means that ∀x ∈H ,

‖T x‖ ≤ ‖T‖< ‖δx‖< ‖λx‖
And thus, ∀x,

0 <
∥
∥(λ I−T )−1x

∥
∥ <

∥
∥(δ I−T )−1x

∥
∥ < ∞

so that λ ∈ ρ(T ).

2.3 Examples of continuous spectra

The phenomenon of a purely continuous spectrum is

uniquely found in infinite dimensional spaces, so for those

who might never have ventured into these spaces before,

this may seem a bit bizarre at first glance.

To offer a simple example, we consider the space

C([0,1]) of continuous functions defined on [0,1] and the

operator A defined by

Ax(t) = tx(t).

Then (A−λ I)x(t) = (t−λ )x(t) so

(A−λ I)−1x(t) =
1

(t−λ )
x(t)

We cannot have that tx(t) = λx(t) so this operator has no

eigenvalues. However, the spectrum is any value λ for

which t−λ vanished. Thus, the whole interval [0,1] is in

the spectrum of A. Hence A has purely continuous spec-

turm.

Consider now a much more realistic example that will

arise later in our treatment. We let H = l2(Z), the Hilbert

space of doubly infinite, square summable sequences and

we let A = ∆, the discrete Laplacian. If x = (xn),

(Ax)(n) = xn+1 + xn−1−2xn .

Then A is self-adjoint and has no eigenvalues. We will

later see that its continuous spectrum is the entire interval

[0,4].

3 FUNCTIONAL CALCULUS

3.1 Operator-valued functions

In finite dimenional case, there is a natural way to write

down the formula of a linear operator with solely the knowl-

edge of its eigenvalues (i.e. spectrum) and eigenvectors. In

fact, if M ∈ Mn(C) with eigenvalues {λk} and associated

eigenvectors {vk}, then

M =
K

∑
k=1

λkPk

where Pk is the orthogonal projection on vk.

We can view this linear combination as an operator-

valued function defined on the spectrum of M:

σ(M)→Mn(C), λk 7→ λkPk
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We can use this idea to define functions of operators. In-

deed, if f : σ(M)→ C we can set

f (M) :=
K

∑
k=1

f (λk)Pk

Note that as the spectrum consists of finitely many points,

this construction allows us to define f (M) for any complex-

valued f defined on the spectrum. For instance, in the case

of the matrix exponential, mentioned in the introduction, we

obtain

exp(M) =
∞

∑
n=0

Mn

n!
=

K

∑
k=1

eλk Pk.

We can think of this definition as a mapping associating

an operator-valued equivalent to functions on σ(M):

f (z)
φ7−→ f (M)

However, as we pointed out above, in infinite dimen-

sional case, the spectrum need not be pure point. Hence, we

need to extend this idea to a larger class of functions.

For this section, our goal is to extend the mapping φ
above to all continuous functions defined on the spectrum

of a bounded self-adjoint operator A. Before we begin, let

us introduce the notion of an algebra-morphism.

Definition. An algebra-morphism is a map

φ : X → Y

preserving scalar multiplication, addition and multiplication

in the spaces X and Y . In other words, ∀x ∈ X , y ∈ Y and

all scalars α ,

1. φ(αx) = αφ(x)

2. φ(x+ y) = φ(x)+φ(y)

3. φ(xy) = φ(x)φ(y)

Note that these properties simply reflect our notions of

pointwise addition and multiplication of functions. Indeed,

we want the operator-valued equivalents defined by φ to

obey these notions, and so, requiring φ to be an algebra-

morphism is a natural constraint.

3.2 Continuous functional calculus

For this section, we let A be a bounded, self-adjoint opera-

tor. Let P be a polynomial, with

P(x) =
n

∑
k=0

αkxk

then we define

P(A) :=
n

∑
k=0

αkAk

We thus have a map ϕ : C[x]−→B(H ) with

P
ϕ7−→ P(A)

This ϕ is an algebra-morphism and satisfies ϕ(P) = ϕ(P)∗.
Moreover, if λ is an eigenvalue of A then P(λ ) is an eigen-

value of P(A). This fact can be reformulated as the follow-

ing

Lemma 2 (Spectral Mapping Theorem).

σ
(
P(A)

)
= {P(λ ) : λ ∈ σ(A)}

Proof. Let λ ∈ σ(A) and consider Q(x) = P(x)−P(λ ) then

λ is a root of Q(x) and so there is a polynomial R ∈ C[x]
such that Q(x) = (x−λ )R(x). Thus

P(A)−P(λ ) = (A−λ I)R(A) = R(A)(A−λ I)

Since (A−λ I) is not invertible for λ ∈ σ(A), P(A)−P(λ )
is not invertible, so P(λ ) ∈ σ

(
P(A)

)
. Conversely, let µ ∈

σ
(
P(A)

)
then, by factoring we obtain that

P(x)−µ = α(x−λ1) · · ·(x−λn)

and

P(A)−µ = α(A−λ1) · · ·(A−λn)

Since µ ∈ σ
(
P(A)

)
, P(A)−µ is not invertible and so there

is some i ∈ {1, . . . ,n} such that A−λi is not invertible. This

λi ∈ σ(A) but P(λi) = µ by the first part of this discus-

sion.

Before developing a continuous functional calculus, we

require one more simple technical claim.

Lemma 3.

‖P(A)‖= sup{|P(λ )| : λ ∈ σ(A)}

Proof.

‖P(A)‖2 = ‖P(A)∗P(A)‖= ‖PP(A)‖=

= r
(
PP(A)

)

Now, by the above lemma we have that

r
(
PP(A)

)
= sup{|µ| : µ ∈ σ

(
PP(A)

)
}

= sup{|PP(λ )| : λ ∈ σ(A)}
= sup{|P2(λ )| : λ ∈ σ(A)}

This brings us to the main result of this section:

Theorem 4 (Continuous Functional Calculus). Let C
(
σ(A)

)

be the continuous functions defined on the spectrum of A.

There exists a unique map ϕ : C
(
σ(A)

)
−→B(H ),

ϕ( f ) = f (A)

such that

1. ϕ is an algebra-morphism.

2. f (A)∗ = f (A).
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3. If f (x) = x then f (A) = A.

4. ‖ f (A)‖= ‖ f‖∞.

5. σ
(

f (A)
)

= { f (λ ) : λ ∈ σ(A)} and if λ is an eigen-

value of A then f (λ ) is and eigenvalue of f (A).

Proof. Due to 1 and 3, ϕ must coincide with our previously

defined map on the polynomials. We only need to extend it

uniquely to C
(
σ(A)

)
, the space of continuous functions

σ(A)→ C

Recall the Stone-Weierstrass theorem:

If X is compact, the set of polynimials over X

is dense in C(X).

By lemma 1, σ(A) is closed and bounded in C, and hence,

compact by Heine-Borel theorem. Thus, the map ϕ is

densely defined on C
(
σ(A)

)
and can be extended by con-

tinuity. The uniqueness of such an extension is guaranteed

by the isometry from lemma 3.

Finally, taking limits in lemmas 2 and 3 proves the prop-

erties 5 and 4 respectively.

So far, this has been a natural extension, but what fol-

lows is a miracle.

4 SPECTRAL MEASURES &

BOREL FUNCTIONAL CALCULUS

We let A be as before and, given any ψ ∈H , we define

L : C
(
σ(A)

)
−→ C

f
L7−→ 〈ψ | f (A)ψ 〉

L is a continuous linear functional with

| 〈ψ | f (A)ψ 〉 |2 ≤ ‖ f (A)‖‖ψ‖2 ≤ ‖ f‖∞‖ψ‖2

Moreover, L is positive. Indeed, if f ≥ 0, by theorem 4(5),

σ
(

f (A)
)

= f
(
σ(A)

)
⊆ (0,∞)

Also, by continuity of f , σ
(

f (A)
)

is compact. Recall

the Riesz-Markov theorem for a locally compact Hausdorff

space X :

For any positive linear functional Φ on Cc(X),
there exists a unique Borel measure µ on X

such that ∀ f ∈Cc(X),

Φ( f ) =
∫

X
f dµ

As we have seen before, σ(A) is compact, so every continu-

ous function on it is compactly supported, i.e. Cc

(
σ(A)

)
=

C
(
σ(A)

)
.

Thus, by the Riesz-Markov theorem, there is a positive

Borel measure µψ such that for all f ∈C
(
σ(A)

)
,

L( f ) = 〈ψ | f (A)ψ 〉=
∫

f dµψ

Something interesting has just happened here. The right

hand side makes sense even if f is not continuous, just mea-

surable. So we can extend our definition of L to an arbitrary

measurable g by setting

〈ψ |g(A)ψ 〉 :=
∫

gdµψ

We can push our luck a bit further. Using the polarization

identity, we define for all ϕ , ψ ∈H

〈ϕ |g(A)ψ 〉 :=
1

4

[
〈ϕ +ψ |g(A)ϕ +ψ 〉−

−〈ϕ−ψ |g(A)ϕ−ψ 〉+
+i〈ϕ + iψ |g(A)ϕ + iψ 〉−
−i〈ϕ− iψ |g(A)ϕ− iψ 〉

]

Given g and ψ , ϕ 7−→ 〈ϕ |g(A)ψ 〉 is linear and con-

tinuous. We can (yet again!) apply Riesz’s representation

theorem. It states that for such a bounded linear functional,

there is a unique hg,ψ ∈H such that

〈ϕ |g(A)ψ 〉=
〈
ϕ
∣
∣hg,ψ

〉

for all ϕ ∈H .

Remark. Be careful to note that the left-hand side is merely

notation for our extended definition of the inner product,

while the right-hand side is the true inner product of our

Hilbert space.

We should also note that the above is sheer magic. It

is a good day when we can unite both forms of the Riesz

representation theorem in one proof.

We now let g(A) : H −→H with ψ 7−→ hg,ψ .

Theorem 5. All the properties of g(A) that hold for a con-

tinuous g also hold for a measurable g.

The proof is left as exercise for the reader.

Special Case. If g(x) = χA(x), then g(A) is an orthogonal

projection.

Proof. By the algebra property, g(A)2 = g2(A), and as χ2
A =

χA, we get that g(A)2 = g(A). Hence, g(A) is a projection.

g(A)∗ = g(A) = g(A)

Thus, g(A) is an orthogonal projection.

Definition. ψ ∈H is called a cyclic vector of A if

{P(A)ψ : P ∈ C[x]}

is dense in H .
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Theorem 6 (Spectral theorem for self-adjoint operators).

Let A be a self-adjoint operators on a Hilbert space H and

suppose that ψ is a cyclic vector of A. Then there is a mea-

surable function f : σ(A)−→ R and a unitary map

U : H −→ L2(σ(A),µψ)

so that

(UAU−1 f )(λ ) = λ f (λ ) .

Remark. In finite dimensions, a unitary matrix is a change

of basis matrix from one orthonormal basis to another.

Thus, the unitary operator U can be though of as a change

of basis operator. In fact, diagonalization of finite matrices

produces a similar result:

D = PAP−1

where P is the matrix changing standard basis to the eigen-

basis of A.

Now, if A does not admit of a cyclic vector on the entire

space, we are not entirely out of luck.The decomposition

theorem for Hilbert spaces (see [2]) comes to our aid. It

assures us that we may decompose our Hilbert space into

orthogonal subspaces Hn and our operator into correspond-

ing components An, such that An has a cyclic vector on Hn.

The proof of this theorem as well as the proof of the general

case of the spectral theorem will be ommitted here.

5 EXAMPLES

5.1 Finite dimensional case

Let H = C
n, and, as in section 3, set

A =
k

∑
j=1

λ jPj f (A) =
k

∑
j=1

f (λ j)Pj.

This can always be done, as any self-adjoint operator on a fi-

nite dimensional vector space is necessarily diagonalizable.

Fix ψ ∈ C
n, then

∫

f dµψ = 〈ψ | f (A)ψ 〉

=
k

∑
j=1

f (λ j)
〈
ψ
∣
∣Pjψ

〉

=
k

∑
j=1

f (λ j)
∥
∥Pjψ

∥
∥2

.

=⇒∀ f ,

∫

f dµψ =
k

∑
j=1

f (λ j)
∥
∥Pjψ

∥
∥2

Thus, using the second equation in theorem 6, we can con-

clude that

µψ =
k

∑
j=1

∥
∥Pjψ

∥
∥2

δ (λ −λ j).

That is, the spectral measure is a counting measure, where

each λ j is weighted according to the norm of the corre-

sponding Pjψ vector.

−→When does A admit a cyclic vector?

By definition above, ψ is cyclic if

{P(A)ψ : P ∈ C[x]}= C
n ⇐⇒

⇐⇒ {

dimk
︷ ︸︸ ︷

k

∑
j=1

P(λ j)Pjψ : P ∈ C[x]}= C
n ← dimn

Hence, ψ is cyclic if k = n, i.e. there are n distinct (simple)

eigenvalues.

ψ is cyclic ⇐⇒ spectrum is simple.

5.2 Discrete Laplacian

Let ∆ be the discrete Laplacian on ℓ2(Z). For ψ ∈ ℓ2(Z), ∆

acts as

(∆ψ)(n) = ψn+1 +ψn−1−2ψn

Given ψ ∈ ℓ2(Z) we can define ψ̂ ∈ L2
(
[0,2π)

)
by

ψ̂(ξ ) = ∑
n∈Z

einξ ψn

with

ψn =
1

2π

∫ 2π

0
einξ dξ

then the map

U : ℓ2(Z)−→ L2([0,2π),
dξ

2π
)

ψ
U7−→ ψ̂

is unitary. We wish to investigate the behaviour of ∆ un-

der this map, that is what does U∆U−1 give us. Take

f (ξ ) ∈ L2
(
[0,2π)

)
then (∆U−1 f )(n) =

=
1

2π

∫ 2π

0

[

e−i(n+1)ξ +e−i(n−1)ξ +e−inξ
]

f (ξ )dξ

=
1

2π

∫ 2π

0
e−inξ (e−iξ +eiξ −2) f (ξ )dξ .

Hence (U∆U−1)(ξ ) = (2cosξ −2) f (ξ ).

Remark (about analysis, the universe and life in general2).

Note that the unitary map U defined above is the discrete

Fourier transform on ℓ2(Z). Thus, this provides us with an

example of the Fourier transform mapping a complicated

looking operator on a sequence space, to a multiplication

operator on the familiar space L2([0,2π), dξ
2π ). Fairy tales

really do come true!

2Many thanks to Prof. Jakobson.
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Spectrum Now that we have the form of our operator in

Fourier space, we are equipped to determine what its spec-

trum is. We look at the resolvent set

ρ(∆) = {λ : (λ −∆) is invertible}
= {λ : λ −2cosξ +2 6= 0 ∀ξ ∈ [0,2π)}
= C\ [−4,0]

Hence σ(∆) = [−4,0].

Spectral measure Lastly, for f ∈ C([−4,0]), in Fourier

space f (∆) is just multiplication by f (2cosξ − 2). Fix

ψ ∈ l2(Z) and let ψ̂ be the corresponding function in

L2
(
[0,2π)

)
. Then

∫

f (∆)dµψ = 〈ψ | f (∆)ψ 〉ℓ2

=
〈
U−1Uψ

∣
∣ f (∆)U−1Uψ

〉

ℓ2

=

〈

Uψ

∣
∣
∣
∣

(

U f (∆)U−1

)

Uψ

〉

L2

= 〈ψ̂ | f (2cosξ −2)ψ̂ 〉L2

=
1

2π

∫ 2π

0
ψ̂ f (2cosξ −2)ψ̂ dξ

=
1

2π

∫ 2π

0
f (2cosξ −2) |ψ̂(ξ )|2 dξ .

Now splitting the region of integration into two equal parts

and applying the change of variables

λ = 2cosξ −2

yields

∫

f dµψ =
∫ 0

−4
f (λ )

[∣
∣
∣
∣
ψ̂

(

arccos(
λ +2

2
)

)∣
∣
∣
∣

2

+

+

∣
∣
∣
∣
ψ̂

(

−arccos(
λ +2

2
+2π)

)∣
∣
∣
∣

2
]

dλ√
−λ 2−4λ

Thus,

dµψ = [. . .]
dλ√

−λ 2−4λ

6 CONCLUSION

We conclude this article with an interesting result. We re-

call Lebesgue’s decomposition theorem that states that any

measure µ on R has a unique decomposition into

µ = µpp + µac + µsing,

the pure-point, absolutely continuous and singularly con-

tinuous parts. Moreover, these three measures are mutually

singular.

Given a self-adjoint operator, A ∈B(H ), we define

Hpp = {ψ|µψ is pure point}

and similarly for Hac and Hsing. We then have that

H = Hpp⊕Hac⊕Hsing

where each subspace is invariant under A. We can now de-

fine σpp(A) to be the spectrum of A restricted to Hpp and

we further have that

σ(A) = σpp(A)∪σac(A)∪σsing(A)

where this union might not be disjoint. In quantum mechan-

ics, in particular, self-adjoint operators represent physical

observables of a given system and their spectra correspond

to the outcomes of measurements. Roughly speaking, the

absolutely continuous spectrum corresponds to free states

while the pure point corresponds to bound states.

However, the observables are not necessarily bounded

(take the momentum and position operators, say). Hence,

in order to fully appreciate and apply spectral theory in a

quantum mechanical setting, one must turn to spectral the-

ory for unbounded operators.
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