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• (M,g) is a compact surface with a Riemannian metric
g.

• Goal: study Gauss curvature K of random Riemannian
metrics on M.

• Gauss curvature: Geometric meaning: as r → 0,

vol(BM(x0, r)) = πr2
[
1− K (x0)r2

12
+ O(r4)

]
.

K > 0⇒ surface in R3 is convex; volume grows slower
than in R2.
K < 0⇒ surface in R3 is concave; volume grows faster
than in R2.



Gauss
curvature

Question

Random
metrics

R1 changes
sign

Using
Borell-TIS

Real-analytic
metrics

Using A-T

L∞ bounds

Conclusion

• (M,g) is a compact surface with a Riemannian metric
g.

• Goal: study Gauss curvature K of random Riemannian
metrics on M.

• Gauss curvature: Geometric meaning: as r → 0,

vol(BM(x0, r)) = πr2
[
1− K (x0)r2

12
+ O(r4)

]
.

K > 0⇒ surface in R3 is convex; volume grows slower
than in R2.
K < 0⇒ surface in R3 is concave; volume grows faster
than in R2.



Gauss
curvature

Question

Random
metrics

R1 changes
sign

Using
Borell-TIS

Real-analytic
metrics

Using A-T

L∞ bounds

Conclusion

• (M,g) is a compact surface with a Riemannian metric
g.

• Goal: study Gauss curvature K of random Riemannian
metrics on M.

• Gauss curvature: Geometric meaning: as r → 0,

vol(BM(x0, r)) = πr2
[
1− K (x0)r2

12
+ O(r4)

]
.

K > 0⇒ surface in R3 is convex; volume grows slower
than in R2.
K < 0⇒ surface in R3 is concave; volume grows faster
than in R2.



Gauss
curvature

Question

Random
metrics

R1 changes
sign

Using
Borell-TIS

Real-analytic
metrics

Using A-T

L∞ bounds

Conclusion

• Conformal class: Metric g1 is conformally equivalent
to g0 if for all x ∈ M and U,V ∈ TxM,

g1(x)(U,V ) = F (x) · g0(x)(U,V ), F (x) > 0.

The set of all such metrics is called a conformal class
[g0] of g0.

• Uniformization theorem: in every conformal class,
there exists a unique metric of constant Gauss
curvature K0. K0 > 0 for M = S2, K0 = 0 for M = T2,
and K0 < 0 for surfaces of genus γ ≥ 2.

• Gauss-Bonnet theorem:
∫

M KdA = 2πχ(M), where χ
is the Euler characteristic,
χ(sphere with γ handles) = 2− 2γ, e.g.
χ(S2) = 2, χ(T2) = 0 etc.
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• Questions: Assume M 6= T2, and g0 has
non-vanishing curvature K0. What is the probability that
a random metric g1 in the conformal class [g0] also has
non-vanishing curvature K1?

• Use Laplacian to define random metrics in a conformal
class and to estimate that probability.

• Techniques: differential geometry; spectral theory of
Laplacian; Gaussian random fields on manifolds
(Borell, Tsirelson-Ibragimov-Sudakov, Adler-Taylor).
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• g0 - reference metric on M. Conformal class of g0:
{g1 = ef · g0}; f is a random (suitably regular) function
on M.

• ∆0 - Laplacian of g0. Spectrum:
∆0φj + λjφj = 0, 0 = λ0 < λ1 ≤ λ2 ≤ . . . . Define f by

f (x) = −
∞∑

j=1

ajcjφj(x), (1)

where aj ∼ N (0,1) are i.i.d standard Gaussians,
cj = F (λj)→ 0 are decreasing.
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• Functions on T2: h(x) =
∑

m cmei(x ,m),m ∈ Z2. Sobolev
norm: (||f ||Hs )2 =

∑
m |cm|2(1 + ||m||2)s.

General surface: f (x) =
∑

j cjφj(x).
||f ||2Hs =

∑
j c2

j (1 + λj)
s.

Sobolev embedding theorem: If s > k + 1, and
||f ||Hs <∞, then f ∈ Ck (M).
Weyl’s law: λj � const · j .

• Random functions: f as in (1), then

E(||f ||2Hs ) =
∑

j

c2
j (1 + λj)

s.

• Proposition 1: If cj < C/λs
j , s > 1, then f ∈ C0(M) a.s;

if cj < C/λs
j , s > 2, then f ∈ C2(M) a.s.
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• The covariance function
rf (x , y) := E[f (x)f (y)] =

∞∑
j=1

c2
j φj(x)φj(y), for x , y ∈ M.

• For x ∈ M, f (x) is mean zero Gaussian of variance

rf (x , x) =
∞∑

j=1
c2

j φj(x)2.

• Area change: Let A0 = area(M,g0). If
g1 := g1(a) = e2af g0, then dA1 = e2af dA0. One can
show that lima→0 E[area(M,g1(a))] = A0.
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• Let g1 = e2af g0. Then

K1 = e−2af [K0 − a∆0f ] (2)

M 6= T2. Estimate the probability of

{Sgn(K1) = Sgn(K0)}

• Observation: If K0 6= 0, then
Sgn(K1) = Sgn(K0)Sgn(1− a∆0f/(K0)).

• Let P(a) := Prob{∃x : SgnK1(x) 6= SgnK0}, or
P(a) = Prob{∃x ∈ M : 1− a(∆0f )(x)/K0(x) < 0}. Then

P(a) = Prob{sup
x∈M

(∆0f )(x)/K0(x) > 1/a},

Consider the random field v = (∆0f )/K0. Then

rv (x , y) =

∑
j(cjλj)

2φj(x)φj(y)

K0(x)K0(y)
.
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• We shall estimate P(a) in the limit a→ 0.
Geometrically, this implies that a.s. g1(a)→ g0, so
P(a)→ 0. We want to estimate the rate.

• First use Proposition 2 (Borell, TIS, 1975-76): Let v be
a centered Gaussian process, a.s. bounded on M, and
σ2

v := supx∈M E[v(x)2]. Let ||v || := supx∈M v(x); then
E{||v ||} <∞, and ∃α so that for τ > E{||v ||} we have

Prob{||v || > τ} ≤ eατ−τ
2/(2σ2

v ).

• Assume that K0 ∈ C0, s > 2, then v ∈ C0(M) a.s. and
Proposition 2 applies. In our situation, τ = (1/a)→∞
as a→ 0, so P(a) ≤ exp[C2/a− 1/(2a2σ2

v )].
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• To estimate P(a) from below choose x0 ∈ M where the
variance rv (x , x) attains its supremum σ2

v . Clearly,
Prob(||v || > 1/a) ≥ Prob(v(x0) > 1/a) =

1√
2π

∫∞
1/(aσv )

e−t2/2dt . Combine the estimates:

• Theorem 3: Assume that R0 ∈ C0, cj = O(λ−s
j ), s > 2.

Then ∃C1 > 0,C2 > 0 such that

(C1a)e−1/(2a2σ2
v ) ≤ P(a) ≤ eC2/a−1/(2a2σ2

v ),

as a→ 0. In particular lima→0 a2 ln P(a) = −1
2σ2

v
.
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• Random real-analytic metrics. Choose the
coefficients cj = e−λj T/2/λj . Then

rv (x , x ,T ) = e∗(x , x ,T )/(K0(x))2.

where e∗(x , x ,T ) is the heat kernel, without the
constant term.

• Small T asymptotics of e∗(x , x ,T ) imply that as
T → 0+,

σ2
v ∼

1
4πT infx∈M(K0(x))2 .
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• Theorem 4. M 6= T2. Let g0 and g1 have equal areas,
R0 and R1 have constant sign, K0 ≡ const and
K1 6≡ const . Then ∃a0 > 0,T0 > 0 (that depend on
g0,g1) such that for any 0 < a < a0 and for any
0 < t < T0, we have P(a,T ,g1) > P(a,T ,g0).

• Proof: By Gauss-Bonnet,
∫

M K0dA0 =
∫

M K1dA1. Since
A(M,g0) = A(M,g1); and since K0 ≡ const and
K1 6≡ const , it follows that
b0 := minx∈M(K0(x))2 > minx∈M(K1(x))2 := b1.
Accordingly, as T → 0+, we have

σ2
v (g1,T )

σ2
v (g0,T )

� b0

b1
> 1.

The result follows easily from Theorem 3.
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• Large T asymptotics:
λ1 - the smallest nonzero eigenvalue of −∆0. Let
m = m(λ1) be the multiplicity of λ1, and let

F := sup
x∈M

∑m
j=1 φj(x)2

K0(x)2 . (3)

• One can show that

lim
T→∞

σ2
v (T )

Fe−λ1T = 1.

• Theorem 5. Let g0 and g1 be two metrics (of equal
area) on a compact surface M, such that K0 and K1
have constant sign, and such that λ1(g0) > λ1(g1).
Then there exist a0 > 0 and 0 < T0 <∞ (that depend
on g0,g1), such that for all a < a0 and T > T0 we have
P(a,T ; g0) < P(a,T ; g1).
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• Large T asymptotics:
λ1 - the smallest nonzero eigenvalue of −∆0. Let
m = m(λ1) be the multiplicity of λ1, and let

F := sup
x∈M

∑m
j=1 φj(x)2

K0(x)2 . (3)

• One can show that

lim
T→∞

σ2
v (T )

Fe−λ1T = 1.

• Theorem 5. Let g0 and g1 be two metrics (of equal
area) on a compact surface M, such that K0 and K1
have constant sign, and such that λ1(g0) > λ1(g1).
Then there exist a0 > 0 and 0 < T0 <∞ (that depend
on g0,g1), such that for all a < a0 and T > T0 we have
P(a,T ; g0) < P(a,T ; g1).
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• To summarize: Small T ⇒ metrics with K0 ≡ const
extremal.

• Large T ⇒ metrics with the largest λ1 extremal.
• Genus 0: (S2, round) extremal for both small T and

large T (Hersch). Conjecture: extremal for all T .
• Genus γ ≥ 2: Small T ⇒ hyperbolic metrics extremal.
• Large T : By a 1985 theorem of R. Bryant, hyperbolic

metrics never maximize λ1 in their conformal class.
• Genus 2: Metrics maximizing λ1 for surfaces of genus 2

of fixed area are branched coverings of the round S2 (J,
Levitin, Nigam, Nadirashvili, Polterovich).

• Question: Which metrics are extremal for intermediate
T ?
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• We next indicate how to obtain a better estimate for
P(a) for M = S2. ∃! conformal class [g0] on S2; g0 is
the round metric, K0 ≡ 1.

• The isometry group acts transitively on (S2,g0), so the
random fields f (x), v(x) are isotropic and in particular
have constant variance. That allows us to apply results
of Adler and Taylor and obtain more precise asymptotic
estimates for P(a).
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• Since ∆0 on (S2,g0) is highly degenerate, we
normalize our random Fourier series differently.

• Em - space of spherical harmonics of degree m,
dimension Nm = 2m + 1; the corresponding eigenvalue
is Em = m(m + 1). Let Bm = {ηm,k}Nm

k=1 be an
orthonormal basis of Em.

• Let f (x) = −
√
|S2|

∑
m≥1, k

√
cm

Em
√

Nm
am,kηm,k (x), where am,k

are standard Gaussian i.i.d. and cm > 0 are (suitably

decaying) constants satisfying
∞∑

m=1
cm = 1.

• It follows that v =
√
|S2|

∑
m≥1, k

√
cm√
Nm

am,kηm,k (x) has unit

variance, and covariance

rv (x , y) =
∞∑

m=1
cmPm(cos(d(x , y))), where Pm is the

Legendre polynomial.
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• In the new normalization, if cm = O(M−s), s > 7, then
(Delta0f )(x) ∈ C2(S2) a.s.

• Applying results of A-T, we can prove
• Theorem 6: Notation as above, let

cm = O(m−s), s > 7. Let C = 1√
2π

∑
m≥1 cmEm. Then

there exists α > 1, s.t. in the limit a→ 0, P(a) satisfies

P(a) =
C
a

exp
(
− 1

2a2

)
+

2√
2π

exp
(
− 1

2a2

)
+ o

(
exp(− α

2a2 )
)

• Note that we now have an asymptotic expression for
P(a).
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• We next estimate the probability of the event
{||K1 − K0||∞ < u},u > 0; we shall do that for
g1 = eaf g0, in the limit a→ 0. The result below hold for
any compact orientable surface, including T2.

• To state the result, we define a new random field w on
M:

w = ∆0f + 2K0f .

We denote its covariance function by rw (x , y), and we
define σ2

w = supx∈M rw (x , x).
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• We can now state
Theorem 7: Assume that the random metric is chosen
so that the random fields f ,w are a.s. C0. Let a→ 0
and u → 0 so that (u/a)→∞. Then

log Prob(‖K1 − K0‖∞ > u) ∼ − u2

2a2σ2
w
.

• The proof uses Borell-TIS inequality. The condition
(u/a)→∞ ensures that the application of Borell-TIS
gives an asymptotic result for
log Prob(‖K1 − K0‖∞ > u).

• The condition u → 0 is needed to estimate (from
above) the probability of certain exceptional events.
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• Improve estimates in [CJW] for the scalar curvature in
higher dimensions.

• Consider “rough” metrics that arise in 2D quantum
gravity.

• Study the case when a 9 0.
• Study Ricci and sectional curvatures in high

dimensions.
• Consider the space of all metrics, not just those in a

conformal class (interesting in dimension n ≥ 3).
• Study differential geometry of random metrics, e.g.

distance between two points, diameter etc.
• Study geodesic and frame flows and their ergodicity;

existence of conjugate points; entropy etc.
• ∆: small eigenvalues, heat kernel asymptotics.
• Prove quantitative estimates (spectral gaps, level

spacing).
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