Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

Gauss curvature of random metrics

Y. Canzani (McGill), canzani@math.mcgill.ca D. Jakobson (McGill), jakobson@math.mcgill.ca I. Wigman (Cardiff), Wigmanl@cardiff.ac.uk ERA, Vol. 17 (2010) arXiv:1002.0030

December 28, 2011

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- (*M*, *g*) is a compact surface with a Riemannian metric *g*.
- Goal: study Gauss curvature *K* of *random* Riemannian metrics on *M*.
- Gauss curvature: Geometric meaning: as $r \rightarrow 0$,

$$\operatorname{vol}(B_M(x_0, r)) = \pi r^2 \left[1 - \frac{K(x_0)r^2}{12} + O(r^4) \right]$$

 $K > 0 \Rightarrow$ surface in \mathbf{R}^3 is *convex*; volume grows *slower* han in \mathbf{R}^2 .

 $K < 0 \Rightarrow$ surface in **R**³ is *concave*; volume grows *faster* han in **R**².

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- (*M*, *g*) is a compact surface with a Riemannian metric *g*.
- Goal: study Gauss curvature *K* of *random* Riemannian metrics on *M*.
- Gauss curvature: Geometric meaning: as $r \rightarrow 0$,

$$\operatorname{vol}(B_M(x_0, r)) = \pi r^2 \left[1 - \frac{K(x_0)r^2}{12} + O(r^4) \right]$$

 $K > 0 \Rightarrow$ surface in **R**³ is *convex*; volume grows *slower* than in **R**². $K < 0 \Rightarrow$ surface in **R**³ is *concave*; volume grows *faster*.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- (*M*, *g*) is a compact surface with a Riemannian metric *g*.
- Goal: study Gauss curvature *K* of *random* Riemannian metrics on *M*.
- Gauss curvature: Geometric meaning: as $r \rightarrow 0$,

$$\operatorname{vol}(B_M(x_0, r)) = \pi r^2 \left[1 - \frac{K(x_0)r^2}{12} + O(r^4) \right]$$

 $K > 0 \Rightarrow$ surface in \mathbf{R}^3 is *convex*; volume grows *slower* than in \mathbf{R}^2 .

 $K < 0 \Rightarrow$ surface in \mathbf{R}^3 is *concave*; volume grows *faster* than in \mathbf{R}^2 .

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

 Conformal class: Metric g₁ is conformally equivalent to g₀ if for all x ∈ M and U, V ∈ T_xM,

 $g_1(x)(U,V)=F(x)\cdot g_0(x)(U,V),\qquad F(x)>0.$

The set of all such metrics is called a *conformal class* $[g_0]$ of g_0 .

- Uniformization theorem: in every conformal class, there exists a unique metric of constant Gauss curvature K₀. K₀ > 0 for M = S², K₀ = 0 for M = T², and K₀ < 0 for surfaces of genus γ ≥ 2.
- **Gauss-Bonnet theorem:** $\int_M K dA = 2\pi \chi(M)$, where χ is the *Euler characteristic*, $\chi(sphere with \gamma handles) = 2 2\gamma$, e.g.

 $\chi(S^2) = 2, \chi(\mathbf{T}^2) = 0$ etc.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

 Conformal class: Metric g₁ is conformally equivalent to g₀ if for all x ∈ M and U, V ∈ T_xM,

 $g_1(x)(U,V)=F(x)\cdot g_0(x)(U,V),\qquad F(x)>0.$

The set of all such metrics is called a *conformal class* $[g_0]$ of g_0 .

- Uniformization theorem: in every conformal class, there exists a unique metric of constant Gauss curvature K₀. K₀ > 0 for M = S², K₀ = 0 for M = T², and K₀ < 0 for surfaces of genus γ ≥ 2.
- **Gauss-Bonnet theorem:** $\int_M K dA = 2\pi \chi(M)$, where χ is the *Euler characteristic*, $\chi(sphere with \gamma handles) = 2 2\gamma$, e.g. $\chi(S^2) = 2, \chi(\mathbf{T}^2) = 0$ etc.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

 Conformal class: Metric g₁ is conformally equivalent to g₀ if for all x ∈ M and U, V ∈ T_xM,

 $g_1(x)(U, V) = F(x) \cdot g_0(x)(U, V), \qquad F(x) > 0.$

The set of all such metrics is called a *conformal class* $[g_0]$ of g_0 .

- Uniformization theorem: in every conformal class, there exists a unique metric of constant Gauss curvature K₀. K₀ > 0 for M = S², K₀ = 0 for M = T², and K₀ < 0 for surfaces of genus γ ≥ 2.
 - Gauss-Bonnet theorem: $\int_M K dA = 2\pi \chi(M)$, where χ is the *Euler characteristic*, $\chi(sphere with \gamma handles) = 2 2\gamma$, e.g. $\chi(S^2) = 2, \chi(\mathbf{T}^2) = 0$ etc.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- **Questions:** Assume $M \neq \mathbf{T}^2$, and g_0 has *non-vanishing* curvature K_0 . What is the *probability* that a random metric g_1 in the conformal class $[g_0]$ also has non-vanishing curvature K_1 ?
- Use *Laplacian* to define random metrics in a *conformal class* and to estimate that probability.

 Techniques: differential geometry; spectral theory of Laplacian; Gaussian random fields on manifolds (Borell, Tsirelson-Ibragimov-Sudakov, Adler-Taylor).

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- Questions: Assume M ≠ T², and g₀ has non-vanishing curvature K₀. What is the probability that a random metric g₁ in the conformal class [g₀] also has non-vanishing curvature K₁?
- Use *Laplacian* to define random metrics in a *conformal class* and to estimate that probability.
- Techniques: differential geometry; spectral theory of Laplacian; Gaussian random fields on manifolds (Borell, Tsirelson-Ibragimov-Sudakov, Adler-Taylor).

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- Questions: Assume M ≠ T², and g₀ has non-vanishing curvature K₀. What is the probability that a random metric g₁ in the conformal class [g₀] also has non-vanishing curvature K₁?
- Use *Laplacian* to define random metrics in a *conformal class* and to estimate that probability.

 Techniques: differential geometry; spectral theory of Laplacian; Gaussian random fields on manifolds (Borell, Tsirelson-Ibragimov-Sudakov, Adler-Taylor).

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- g₀ reference metric on *M*. Conformal class of g₀: {g₁ = e^f · g₀}; f is a random (suitably regular) function on *M*.
- Δ_0 Laplacian of g_0 . Spectrum: $\Delta_0 \phi_j + \lambda_j \phi_j = 0, \quad 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$ Define *f* by

$$f(x) = -\sum_{j=1}^{\infty} a_j c_j \phi_j(x), \qquad (1)$$

where $a_j \sim \mathcal{N}(0, 1)$ are i.i.d standard Gaussians, $c_i = F(\lambda_i) \rightarrow 0$ are *decreasing*.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- g₀ reference metric on *M*. Conformal class of g₀: {g₁ = e^f · g₀}; *f* is a random (suitably regular) function on *M*.
- Δ_0 Laplacian of g_0 . Spectrum: $\Delta_0 \phi_j + \lambda_j \phi_j = 0, \ 0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$ Define f by

$$f(\mathbf{x}) = -\sum_{j=1}^{\infty} a_j c_j \phi_j(\mathbf{x}), \tag{1}$$

where $a_j \sim \mathcal{N}(0, 1)$ are i.i.d standard Gaussians, $c_j = F(\lambda_j) \rightarrow 0$ are *decreasing*.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• Functions on \mathbf{T}^2 : $h(x) = \sum_m c_m e^{i(x,m)}, m \in \mathbf{Z}^2$. Sobolev norm: $(||f||_{H^s})^2 = \sum_m |c_m|^2 (1 + ||m||^2)^s$. General surface: $f(x) = \sum_j c_j \phi_j(x)$. $||f||_{H^s}^2 = \sum_j c_j^2 (1 + \lambda_j)^s$. Sobolev embedding theorem: If s > k + 1, and $||f||_{H^s} < \infty$, then $f \in C^k(M)$. Weyl's law: $\lambda_j \asymp const \cdot j$.

• Random functions: f as in (1), then

$$\mathbb{E}(||f||_{H^s}^2) = \sum_j c_j^2 (1+\lambda_j)^s.$$

Proposition 1: If c_j < C/λ^s_j, s > 1, then f ∈ C⁰(M) a.s;
 if c_j < C/λ^s_j, s > 2, then f ∈ C²(M) a.s.

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• Functions on \mathbf{T}^2 : $h(x) = \sum_m c_m e^{i(x,m)}, m \in \mathbf{Z}^2$. Sobolev norm: $(||f||_{H^s})^2 = \sum_m |c_m|^2 (1 + ||m||^2)^s$. General surface: $f(x) = \sum_j c_j \phi_j(x)$. $||f||_{H^s}^2 = \sum_j c_j^2 (1 + \lambda_j)^s$. Sobolev embedding theorem: If s > k + 1, and $||f||_{H^s} < \infty$, then $f \in C^k(M)$. Weyl's law: $\lambda_j \simeq const \cdot j$.

• Random functions: f as in (1), then

$$\mathbb{E}(||f||_{H^s}^2) = \sum_j c_j^2 (1+\lambda_j)^s.$$

• **Proposition 1:** If $c_j < C/\lambda_j^s$, s > 1, then $f \in C^0(M)$ a.s; if $c_j < C/\lambda_j^s$, s > 2, then $f \in C^2(M)$ a.s.

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• Functions on \mathbf{T}^2 : $h(x) = \sum_m c_m e^{i(x,m)}, m \in \mathbf{Z}^2$. Sobolev norm: $(||f||_{H^s})^2 = \sum_m |c_m|^2 (1 + ||m||^2)^s$. General surface: $f(x) = \sum_j c_j \phi_j(x)$. $||f||_{H^s}^2 = \sum_j c_j^2 (1 + \lambda_j)^s$. Sobolev embedding theorem: If s > k + 1, and $||f||_{H^s} < \infty$, then $f \in C^k(M)$. Weyl's law: $\lambda_j \simeq const \cdot j$.

• Random functions: f as in (1), then

$$\mathbb{E}(||f||^2_{H^{\mathcal{S}}}) = \sum_j c_j^2 (1+\lambda_j)^{\mathcal{S}}.$$

Proposition 1: If c_j < C/λ^s_j, s > 1, then f ∈ C⁰(M) a.s;
 if c_j < C/λ^s_j, s > 2, then f ∈ C²(M) a.s.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• The covariance function $r_f(x, y) := \mathbb{E}[f(x)f(y)] = \sum_{j=1}^{\infty} c_j^2 \phi_j(x) \phi_j(y)$, for $x, y \in M$.

• For $x \in M$, f(x) is mean zero Gaussian of variance $r_f(x, x) = \sum_{j=1}^{\infty} c_j^2 \phi_j(x)^2.$

• Area change: Let $A_0 = \operatorname{area}(M, g_0)$. If $g_1 := g_1(a) = e^{2af}g_0$, then $dA_1 = e^{2af}dA_0$. One can show that $\lim_{a\to 0} \mathbb{E}[\operatorname{area}(M, g_1(a))] = A_0$.

・ ロ ト ス 厚 ト ス 回 ト ー

-

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• The covariance function $r_f(x, y) := \mathbb{E}[f(x)f(y)] = \sum_{j=1}^{\infty} c_j^2 \phi_j(x) \phi_j(y)$, for $x, y \in M$.

- For $x \in M$, f(x) is mean zero Gaussian of variance $r_f(x,x) = \sum_{j=1}^{\infty} c_j^2 \phi_j(x)^2$.
- Area change: Let $A_0 = \operatorname{area}(M, g_0)$. If $g_1 := g_1(a) = e^{2af}g_0$, then $dA_1 = e^{2af}dA_0$. One can show that $\lim_{a\to 0} \mathbb{E}[\operatorname{area}(M, g_1(a))] = A_0$.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

• The covariance function $r_f(x, y) := \mathbb{E}[f(x)f(y)] = \sum_{j=1}^{\infty} c_j^2 \phi_j(x) \phi_j(y)$, for $x, y \in M$.

- For $x \in M$, f(x) is mean zero Gaussian of variance $r_f(x,x) = \sum_{j=1}^{\infty} c_j^2 \phi_j(x)^2.$
- Area change: Let $A_0 = \operatorname{area}(M, g_0)$. If $g_1 := g_1(a) = e^{2af}g_0$, then $dA_1 = e^{2af}dA_0$. One can show that $\lim_{a\to 0} \mathbb{E}[\operatorname{area}(M, g_1(a))] = A_0$.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

• Let $g_1 = e^{2af}g_0$. Then

- Gauss curvature
- Question
- Random metrics

R₁ changes sign

- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

$$K_1 = e^{-2af}[K_0 - a\Delta_0 f]$$

$$M \neq \mathbf{T}^2$$
. Estimate the probability of $\{\operatorname{Sgn}(K_1) = \operatorname{Sgn}(K_0)\}$

- Observation: If K₀ ≠ 0, then Sgn(K₁) = Sgn(K₀)Sgn(1 - a△₀f/(K₀)).
 Let P(a) := Prob{∃x : SgnK₁(x) ≠ SgnK₀}, or
 - Let $P(a) := \operatorname{Prob}\{\exists x : \operatorname{Sgn}K_1(x) \neq \operatorname{Sgn}K_0\}$, or $P(a) = \operatorname{Prob}\{\exists x \in M : 1 = a(A \circ f)(x)/K_0(x) < 0\}$

 $P(a) = \operatorname{Prob}\{\sup_{x \in M} (\Delta_0 f)(x) / K_0(x) > 1/a\}$

Consider the random field $v = (\Delta_0 f)/K_0$. Then

$$r_{\nu}(x,y) = \frac{\sum_{j} (c_j \lambda_j)^2 \phi_j(x) \phi_j(y)}{K_0(x) K_0(y)}.$$

・ロト・日下・ヨー シャン

(2)

• Let $g_1 = e^{2af}g_0$. Then

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

$$K_1 = e^{-2af} [K_0 - a\Delta_0 f] \tag{2}$$

 $M \neq \mathbf{T}^2$. Estimate the probability of

 $\{\operatorname{Sgn}(K_1) = \operatorname{Sgn}(K_0)\}$

- **Observation:** If $K_0 \neq 0$, then $\operatorname{Sgn}(K_1) = \operatorname{Sgn}(K_0)\operatorname{Sgn}(1 - a\Delta_0 f/(K_0)).$
 - Let $P(a) := \operatorname{Prob}\{\exists x : \operatorname{Sgn}K_1(x) \neq \operatorname{Sgn}K_0\}$, or

 $P(a) = \text{Prob}\{\exists x \in M : 1 - a(\Delta_0 f)(x) / K_0(x) < 0\}.$ Then

 $P(a) = \operatorname{Prob}\{\sup_{x \in M} (\Delta_0 f)(x) / K_0(x) > 1/a\},\$

Consider the random field $v = (\Delta_0 f)/K_0$. Then

$$r_{\nu}(x,y) = \frac{\sum_{j} (c_j \lambda_j)^2 \phi_j(x) \phi_j(y)}{K_0(x) K_0(y)}.$$

<ロ>
<日>
<日>
<日>
<日>
<10>
<10>
<10>
<10>
<10</p>
<1

• Let $g_1 = e^{2af}g_0$. Then

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

$$K_1 = e^{-2af} [K_0 - a\Delta_0 f] \tag{2}$$

 $M \neq \mathbf{T}^2$. Estimate the probability of

 $\{\operatorname{Sgn}(K_1) = \operatorname{Sgn}(K_0)\}$

• **Observation:** If
$$K_0 \neq 0$$
, then
 $\operatorname{Sgn}(K_1) = \operatorname{Sgn}(K_0)\operatorname{Sgn}(1 - a\Delta_0 f/(K_0)).$

• Let
$$P(a) := \operatorname{Prob}\{\exists x : \operatorname{Sgn}K_1(x) \neq \operatorname{Sgn}K_0\}$$
, or

 $P(a) = \text{Prob}\{\exists x \in M : 1 - a(\Delta_0 f)(x) / K_0(x) < 0\}.$ Then

$$P(a) = \operatorname{Prob}\{\sup_{x \in M} (\Delta_0 f)(x) / K_0(x) > 1/a\}$$

Consider the random field $v = (\Delta_0 f)/K_0$. Then

$$r_{\nu}(x,y) = \frac{\sum_{j} (c_{j}\lambda_{j})^{2} \phi_{j}(x) \phi_{j}(y)}{K_{0}(x) K_{0}(y)}$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へへ</p>

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- We shall estimate P(a) in the limit $a \rightarrow 0$. Geometrically, this implies that a.s. $g_1(a) \rightarrow g_0$, so $P(a) \rightarrow 0$. We want to estimate the *rate*.
- First use Proposition 2 (Borell, TIS, 1975-76): Let *v* be a centered Gaussian process, a.s. bounded on *M*, and σ_v² := sup_{x∈M} E[v(x)²]. Let ||v|| := sup_{x∈M} v(x); then E{||v||} < ∞, and ∃α so that for τ > E{||v||} we have

$$\operatorname{Prob}\{||\mathbf{V}|| > \tau\} \le \mathbf{e}^{\alpha \tau - \tau^2/(2\sigma_{\mathbf{v}}^2)}$$

• Assume that $K_0 \in C^0$, s > 2, then $v \in C^0(M)$ a.s. and Proposition 2 applies. In our situation, $\tau = (1/a) \to \infty$ as $a \to 0$, so $P(a) \le \exp[C_2/a - 1/(2a^2\sigma_v^2)]$.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- We shall estimate P(a) in the limit $a \to 0$. Geometrically, this implies that a.s. $g_1(a) \to g_0$, so $P(a) \to 0$. We want to estimate the *rate*.
- First use Proposition 2 (Borell, TIS, 1975-76): Let *v* be a centered Gaussian process, a.s. bounded on *M*, and σ_v² := sup_{x∈M} E[v(x)²]. Let ||v|| := sup_{x∈M} v(x); then E{||v||} < ∞, and ∃α so that for τ > E{||v||} we have

$$\operatorname{Prob}\{||\mathbf{V}|| > \tau\} \le \mathbf{e}^{\alpha \tau - \tau^2/(2\sigma_{\mathbf{v}}^2)}$$

 Assume that K₀ ∈ C⁰, s > 2, then v ∈ C⁰(M) a.s. and Proposition 2 applies. In our situation, τ = (1/a) → ∞ as a → 0, so P(a) ≤ exp[C₂/a − 1/(2a²σ_v²)].

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- We shall estimate P(a) in the limit $a \to 0$. Geometrically, this implies that a.s. $g_1(a) \to g_0$, so $P(a) \to 0$. We want to estimate the *rate*.
- First use Proposition 2 (Borell, TIS, 1975-76): Let *v* be a centered Gaussian process, a.s. bounded on *M*, and σ_v² := sup_{x∈M} E[v(x)²]. Let ||v|| := sup_{x∈M} v(x); then E{||v||} < ∞, and ∃α so that for τ > E{||v||} we have

$$\operatorname{Prob}\{||\boldsymbol{\nu}|| > \tau\} \le \boldsymbol{e}^{\alpha \tau - \tau^2/(2\sigma_{\boldsymbol{\nu}}^2)}$$

うっつ 川 山 マ マ マ マ マ マ マ マ マ マ マ

• Assume that $K_0 \in C^0$, s > 2, then $v \in C^0(M)$ a.s. and Proposition 2 applies. In our situation, $\tau = (1/a) \to \infty$ as $a \to 0$, so $P(a) \le \exp[C_2/a - 1/(2a^2\sigma_v^2)]$.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- To estimate P(a) from below choose $x_0 \in M$ where the variance $r_v(x, x)$ attains its supremum σ_v^2 . Clearly, $\operatorname{Prob}(||v|| > 1/a) \ge \operatorname{Prob}(v(x_0) > 1/a) = \frac{1}{\sqrt{2\pi}} \int_{1/(a\sigma_v)}^{\infty} e^{-t^2/2} dt$. Combine the estimates:
- **Theorem 3:** Assume that $R_0 \in C^0$, $c_j = O(\lambda_j^{-s})$, s > 2. Then $\exists C_1 > 0$, $C_2 > 0$ such that

 $(C_1 a)e^{-1/(2a^2\sigma_v^2)} \le P(a) \le e^{C_2/a - 1/(2a^2\sigma_v^2)},$

as $a \to 0$. In particular $\lim_{a\to 0} a^2 \ln P(a) = \frac{-1}{2\sigma^2}$.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- To estimate P(a) from below choose $x_0 \in M$ where the variance $r_v(x, x)$ attains its supremum σ_v^2 . Clearly, $\operatorname{Prob}(||v|| > 1/a) \ge \operatorname{Prob}(v(x_0) > 1/a) = \frac{1}{\sqrt{2\pi}} \int_{1/(a\sigma_v)}^{\infty} e^{-t^2/2} dt$. Combine the estimates:
- Theorem 3: Assume that $R_0 \in C^0$, $c_j = O(\lambda_j^{-s})$, s > 2. Then $\exists C_1 > 0, C_2 > 0$ such that

$$(C_1 a) e^{-1/(2a^2 \sigma_v^2)} \le P(a) \le e^{C_2/a - 1/(2a^2 \sigma_v^2)},$$

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

as $a \to 0$. In particular $\lim_{a\to 0} a^2 \ln P(a) = \frac{-1}{2\sigma_v^2}$.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• Random real-analytic metrics. Choose the coefficients $c_i = e^{-\lambda_i T/2} / \lambda_i$. Then

$$r_{v}(x, x, T) = e^{*}(x, x, T)/(K_{0}(x))^{2}.$$

where $e^*(x, x, T)$ is the heat kernel, without the constant term.

• Small T asymptotics of $e^*(x, x, T)$ imply that as $T \rightarrow 0^+$,

$$\sigma_v^2 \sim \frac{1}{4\pi T \inf_{x \in \mathcal{M}} (K_0(x))^2}$$

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

Random real-analytic metrics. Choose the coefficients c_i = e^{-λ_iT/2}/λ_i. Then

$$r_{v}(x, x, T) = e^{*}(x, x, T)/(K_{0}(x))^{2}.$$

where $e^*(x, x, T)$ is the heat kernel, without the constant term.

• Small *T* asymptotics of $e^*(x, x, T)$ imply that as $T \rightarrow 0^+$,

$$\sigma_v^2 \sim \frac{1}{4\pi T \inf_{x \in M}(K_0(x))^2}.$$

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• **Theorem 4.** $M \neq \mathbf{T}^2$. Let g_0 and g_1 have equal areas, R_0 and R_1 have constant sign, $K_0 \equiv const$ and $K_1 \not\equiv const$. Then $\exists a_0 > 0, T_0 > 0$ (that depend on g_0, g_1) such that for any $0 < a < a_0$ and for any $0 < t < T_0$, we have $P(a, T, g_1) > P(a, T, g_0)$.

• **Proof:** By Gauss-Bonnet, $\int_M K_0 dA_0 = \int_M K_1 dA_1$. Since $A(M, g_0) = A(M, g_1)$; and since $K_0 \equiv const$ and $K_1 \neq const$, it follows that

 $b_0 := \min_{x \in M} (K_0(x))^2 > \min_{x \in M} (K_1(x))^2 := b_1.$ Accordingly, as $T \to 0^+$, we have

$$\frac{\sigma_v^2(g_1,T)}{\sigma_v^2(g_0,T)} \asymp \frac{b_0}{b_1} > 1.$$

The result follows easily from Theorem 3.

・ロト ・ 母 ト ・ ヨ ト ・ 国 ・ クタマ

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• **Theorem 4.** $M \neq \mathbf{T}^2$. Let g_0 and g_1 have equal areas, R_0 and R_1 have constant sign, $K_0 \equiv const$ and $K_1 \neq const$. Then $\exists a_0 > 0, T_0 > 0$ (that depend on g_0, g_1) such that for any $0 < a < a_0$ and for any $0 < t < T_0$, we have $P(a, T, g_1) > P(a, T, g_0)$.

- **Proof:** By Gauss-Bonnet, $\int_M K_0 dA_0 = \int_M K_1 dA_1$. Since $A(M, g_0) = A(M, g_1)$; and since $K_0 \equiv const$ and $K_1 \neq const$, it follows that
 - $b_0 := \min_{x \in M} (K_0(x))^2 > \min_{x \in M} (K_1(x))^2 := b_1.$ Accordingly, as $T \to 0^+$, we have

$$\frac{\sigma_v^2(g_1,T)}{\sigma_v^2(g_0,T)} \asymp \frac{b_0}{b_1} > 1.$$

The result follows easily from Theorem 3.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• Large *T* asymptotics:

 λ_1 - the smallest nonzero eigenvalue of $-\Delta_0$. Let $m = m(\lambda_1)$ be the multiplicity of λ_1 , and let

$$F := \sup_{x \in M} \frac{\sum_{j=1}^{m} \phi_j(x)^2}{K_0(x)^2}.$$
(3)

One can show that

$$\lim_{T\to\infty}\frac{\sigma_v^2(T)}{Fe^{-\lambda_1 T}}=1.$$

• **Theorem 5.** Let g_0 and g_1 be two metrics (of equal area) on a compact surface M, such that K_0 and K_1 have constant sign, and such that $\lambda_1(g_0) > \lambda_1(g_1)$. Then there exist $a_0 > 0$ and $0 < T_0 < \infty$ (that depend on g_0, g_1), such that for all $a < a_0$ and $T > T_0$ we have $P(a, T; g_0) < P(a, T; g_1)$.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• Large *T* asymptotics:

 λ_1 - the smallest nonzero eigenvalue of $-\Delta_0$. Let $m = m(\lambda_1)$ be the multiplicity of λ_1 , and let

$$F := \sup_{x \in M} \frac{\sum_{j=1}^{m} \phi_j(x)^2}{K_0(x)^2}.$$
(3)

One can show that

$$\lim_{T\to\infty}\frac{\sigma_{\nu}^2(T)}{Fe^{-\lambda_1 T}}=1.$$

• **Theorem 5.** Let g_0 and g_1 be two metrics (of equal area) on a compact surface M, such that K_0 and K_1 have constant sign, and such that $\lambda_1(g_0) > \lambda_1(g_1)$. Then there exist $a_0 > 0$ and $0 < T_0 < \infty$ (that depend on g_0, g_1), such that for all $a < a_0$ and $T > T_0$ we have $P(a, T; g_0) < P(a, T; g_1)$.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

• Large *T* asymptotics:

 λ_1 - the smallest nonzero eigenvalue of $-\Delta_0$. Let $m = m(\lambda_1)$ be the multiplicity of λ_1 , and let

$$F := \sup_{x \in M} \frac{\sum_{j=1}^{m} \phi_j(x)^2}{K_0(x)^2}.$$
 (3)

$$\lim_{T\to\infty}\frac{\sigma_{\nu}^2(T)}{Fe^{-\lambda_1 T}}=1.$$

• **Theorem 5.** Let g_0 and g_1 be two metrics (of equal area) on a compact surface M, such that K_0 and K_1 have constant sign, and such that $\lambda_1(g_0) > \lambda_1(g_1)$. Then there exist $a_0 > 0$ and $0 < T_0 < \infty$ (that depend on g_0, g_1), such that for all $a < a_0$ and $T > T_0$ we have $P(a, T; g_0) < P(a, T; g_1)$.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

• To summarize: Small $T \Rightarrow$ metrics with $K_0 \equiv const$ extremal.

- Large $T \Rightarrow$ metrics with the largest λ_1 extremal.
- Genus 0: (*S*², *round*) extremal for *both* small *T* and large *T* (Hersch). **Conjecture:** extremal for *all T*.

• Genus $\gamma \ge 2$: Small $T \Rightarrow$ hyperbolic metrics extremal.

- Large *T*: By a 1985 theorem of R. Bryant, hyperbolic metrics *never* maximize λ_1 in their conformal class.
- Genus 2: Metrics maximizing λ_1 for surfaces of genus 2 of fixed area are branched coverings of the round S^2 (J, Levitin, Nigam, Nadirashvili, Polterovich).
- **Question:** Which metrics are extremal for intermediate *T*?

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- To summarize: Small $T \Rightarrow$ metrics with $K_0 \equiv const$ extremal.
- Large $T \Rightarrow$ metrics with the largest λ_1 extremal.
- Genus 0: (*S*², *round*) extremal for *both* small *T* and large *T* (Hersch). **Conjecture:** extremal for *all T*.
- Genus $\gamma \ge 2$: Small $T \Rightarrow$ hyperbolic metrics extremal.
- Large *T*: By a 1985 theorem of R. Bryant, hyperbolic metrics *never* maximize λ_1 in their conformal class.
- Genus 2: Metrics maximizing λ_1 for surfaces of genus 2 of fixed area are branched coverings of the round S^2 (J, Levitin, Nigam, Nadirashvili, Polterovich).
- **Question:** Which metrics are extremal for intermediate *T*?

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- To summarize: Small $T \Rightarrow$ metrics with $K_0 \equiv const$ extremal.
- Large $T \Rightarrow$ metrics with the largest λ_1 extremal.
- Genus 0: (*S*², *round*) extremal for *both* small *T* and large *T* (Hersch). **Conjecture:** extremal for *all T*.
- Genus $\gamma \ge 2$: Small $T \Rightarrow$ hyperbolic metrics extremal.
- Large *T*: By a 1985 theorem of R. Bryant, hyperbolic metrics *never* maximize λ_1 in their conformal class.
- Genus 2: Metrics maximizing λ_1 for surfaces of genus 2 of fixed area are branched coverings of the round S^2 (J, Levitin, Nigam, Nadirashvili, Polterovich).
- **Question:** Which metrics are extremal for intermediate *T*?

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

- To summarize: Small $T \Rightarrow$ metrics with $K_0 \equiv const$ extremal.
- Large $T \Rightarrow$ metrics with the largest λ_1 extremal.
- Genus 0: (*S*², *round*) extremal for *both* small *T* and large *T* (Hersch). **Conjecture:** extremal for *all T*.
- Genus $\gamma \ge$ 2: Small $T \Rightarrow$ hyperbolic metrics extremal.
- Large *T*: By a 1985 theorem of R. Bryant, hyperbolic metrics *never* maximize λ_1 in their conformal class.
- Genus 2: Metrics maximizing λ_1 for surfaces of genus 2 of fixed area are branched coverings of the round S^2 (J, Levitin, Nigam, Nadirashvili, Polterovich).
- **Question:** Which metrics are extremal for intermediate *T*?

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

- To summarize: Small $T \Rightarrow$ metrics with $K_0 \equiv const$ extremal.
- Large $T \Rightarrow$ metrics with the largest λ_1 extremal.
- Genus 0: (*S*², *round*) extremal for *both* small *T* and large *T* (Hersch). **Conjecture:** extremal for *all T*.
- Genus $\gamma \ge$ 2: Small $T \Rightarrow$ hyperbolic metrics extremal.
- Large *T*: By a 1985 theorem of R. Bryant, hyperbolic metrics *never* maximize λ₁ in their conformal class.
- Genus 2: Metrics maximizing λ_1 for surfaces of genus 2 of fixed area are branched coverings of the round S^2 (J, Levitin, Nigam, Nadirashvili, Polterovich).
- **Question:** Which metrics are extremal for intermediate *T*?

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

- To summarize: Small $T \Rightarrow$ metrics with $K_0 \equiv const$ extremal.
- Large $T \Rightarrow$ metrics with the largest λ_1 extremal.
- Genus 0: (*S*², *round*) extremal for *both* small *T* and large *T* (Hersch). **Conjecture:** extremal for *all T*.
- Genus $\gamma \ge$ 2: Small $T \Rightarrow$ hyperbolic metrics extremal.
- Large *T*: By a 1985 theorem of R. Bryant, hyperbolic metrics *never* maximize λ_1 in their conformal class.
- Genus 2: Metrics maximizing λ_1 for surfaces of genus 2 of fixed area are branched coverings of the round S^2 (J, Levitin, Nigam, Nadirashvili, Polterovich).
- **Question:** Which metrics are extremal for intermediate *T*?

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

- To summarize: Small $T \Rightarrow$ metrics with $K_0 \equiv const$ extremal.
- Large $T \Rightarrow$ metrics with the largest λ_1 extremal.
- Genus 0: (*S*², *round*) extremal for *both* small *T* and large *T* (Hersch). **Conjecture:** extremal for *all T*.
- Genus $\gamma \ge$ 2: Small $T \Rightarrow$ hyperbolic metrics extremal.
- Large *T*: By a 1985 theorem of R. Bryant, hyperbolic metrics *never* maximize λ_1 in their conformal class.
- Genus 2: Metrics maximizing λ_1 for surfaces of genus 2 of fixed area are branched coverings of the round S^2 (J, Levitin, Nigam, Nadirashvili, Polterovich).
- **Question:** Which metrics are extremal for intermediate *T*?

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- We next indicate how to obtain a better estimate for P(a) for M = S². ∃! conformal class [g₀] on S²; g₀ is the round metric, K₀ ≡ 1.
- The isometry group acts transitively on (S^2, g_0) , so the random fields f(x), v(x) are *isotropic* and in particular have *constant variance*. That allows us to apply results of Adler and Taylor and obtain more precise *asymptotic* estimates for P(a).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- We next indicate how to obtain a better estimate for P(a) for M = S². ∃! conformal class [g₀] on S²; g₀ is the round metric, K₀ ≡ 1.
- The isometry group acts transitively on (S^2, g_0) , so the random fields f(x), v(x) are *isotropic* and in particular have *constant variance*. That allows us to apply results of Adler and Taylor and obtain more precise *asymptotic* estimates for P(a).

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

Since Δ₀ on (S², g₀) is highly degenerate, we normalize our random Fourier series differently.

- \mathcal{E}_m space of spherical harmonics of degree m, dimension $N_m = 2m + 1$; the corresponding eigenvalue is $E_m = m(m + 1)$. Let $B_m = \{\eta_{m,k}\}_{k=1}^{N_m}$ be an orthonormal basis of \mathcal{E}_m .
- Let $f(x) = -\sqrt{|S^2|} \sum_{m \ge 1, k} \frac{\sqrt{c_m}}{E_m \sqrt{N_m}} a_{m,k} \eta_{m,k}(x)$, where $a_{m,k}$ are standard Gaussian i.i.d. and $c_m > 0$ are (suitably decaying) constants satisfying $\sum_{m=1}^{\infty} c_m = 1$.
- It follows that $v = \sqrt{|S^2|} \sum_{m \ge 1, k} \frac{\sqrt{c_m}}{\sqrt{N_m}} a_{m,k} \eta_{m,k}(x)$ has unit variance, and covariance $r_v(x, y) = \sum_{m=1}^{\infty} c_m P_m(\cos(d(x, y)))$, where P_m is the Legendre polynomial.

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^{∞} bounds
- Conclusion

- Since Δ₀ on (S², g₀) is highly degenerate, we normalize our random Fourier series differently.
- \mathcal{E}_m space of spherical harmonics of degree m, dimension $N_m = 2m + 1$; the corresponding eigenvalue is $E_m = m(m + 1)$. Let $B_m = \{\eta_{m,k}\}_{k=1}^{N_m}$ be an orthonormal basis of \mathcal{E}_m .
- Let $f(x) = -\sqrt{|S^2|} \sum_{\substack{m \ge 1, k \\ E_m \sqrt{N_m}}} a_{m,k} \eta_{m,k}(x)$, where $a_{m,k}$ are standard Gaussian i.i.d. and $c_m > 0$ are (suitably decaying) constants satisfying $\sum_{m=1}^{\infty} c_m = 1$.
- It follows that $v = \sqrt{|S^2|} \sum_{m \ge 1, k} \frac{\sqrt{c_m}}{\sqrt{N_m}} a_{m,k} \eta_{m,k}(x)$ has unit variance, and covariance $r_v(x, y) = \sum_{m=1}^{\infty} c_m P_m(\cos(d(x, y)))$, where P_m is the Legendre polynomial.

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^{∞} bounds
- Conclusion

- Since Δ₀ on (S², g₀) is highly degenerate, we normalize our random Fourier series differently.
- \mathcal{E}_m space of spherical harmonics of degree m, dimension $N_m = 2m + 1$; the corresponding eigenvalue is $E_m = m(m + 1)$. Let $B_m = \{\eta_{m,k}\}_{k=1}^{N_m}$ be an orthonormal basis of \mathcal{E}_m .
- Let $f(x) = -\sqrt{|S^2|} \sum_{\substack{m \ge 1, k \\ E_m \sqrt{N_m}}} a_{m,k} \eta_{m,k}(x)$, where $a_{m,k}$ are standard Gaussian i.i.d. and $c_m > 0$ are (suitably decaying) constants satisfying $\sum_{m=1}^{\infty} c_m = 1$.
- It follows that $v = \sqrt{|S^2|} \sum_{m \ge 1, k} \frac{\sqrt{c_m}}{\sqrt{N_m}} a_{m,k} \eta_{m,k}(x)$ has unit variance, and covariance $r_v(x, y) = \sum_{m=1}^{\infty} c_m P_m(\cos(d(x, y)))$, where P_m is the Legendre polynomial.

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Since Δ₀ on (S², g₀) is highly degenerate, we normalize our random Fourier series differently.
- \mathcal{E}_m space of spherical harmonics of degree m, dimension $N_m = 2m + 1$; the corresponding eigenvalue is $E_m = m(m + 1)$. Let $B_m = \{\eta_{m,k}\}_{k=1}^{N_m}$ be an orthonormal basis of \mathcal{E}_m .
- Let $f(x) = -\sqrt{|S^2|} \sum_{\substack{m \ge 1, k}} \frac{\sqrt{c_m}}{E_m \sqrt{N_m}} a_{m,k} \eta_{m,k}(x)$, where $a_{m,k}$ are standard Gaussian i.i.d. and $c_m > 0$ are (suitably decaying) constants satisfying $\sum_{m=1}^{\infty} c_m = 1$.
- It follows that $v = \sqrt{|S^2|} \sum_{m \ge 1, k} \frac{\sqrt{c_m}}{\sqrt{N_m}} a_{m,k} \eta_{m,k}(x)$ has unit variance, and covariance $r_v(x, y) = \sum_{m=1}^{\infty} c_m P_m(\cos(d(x, y)))$, where P_m is the Legendre polynomial.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- In the new normalization, if $c_m = O(M^{-s})$, s > 7, then $(Delta_0 f)(x) \in C^2(S^2)$ a.s.
- Applying results of A-T, we can prove

 Theorem 6: Notation as above, let
 c_m = O(m^{-s}), s > 7. Let C = ¹/_{√2π} ∑_{m≥1} c_mE_m. Then
 there exists α > 1, s.t. in the limit a → 0, P(a) satisfies

$$P(a) = \frac{C}{a} \exp\left(-\frac{1}{2a^2}\right) + \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{1}{2a^2}\right) + o\left(\exp(-\frac{\alpha}{2a^2})\right)$$

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Note that we now have an *asymptotic* expression for *P(a)*.

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- In the new normalization, if $c_m = O(M^{-s})$, s > 7, then $(Delta_0 f)(x) \in C^2(S^2)$ a.s.
- Applying results of A-T, we can prove
- Theorem 6: Notation as above, let
 c_m = O(m^{-s}), s > 7. Let C = ¹/_{√2π} ∑_{m≥1} c_mE_m. Then
 there exists α > 1, s.t. in the limit a → 0, P(a) satisfies

$$P(a) = \frac{C}{a} \exp\left(-\frac{1}{2a^2}\right) + \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{1}{2a^2}\right) + o\left(\exp(-\frac{\alpha}{2a^2})\right)$$

• Note that we now have an *asymptotic* expression for *P*(*a*).

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^{∞} bounds

Conclusion

- In the new normalization, if $c_m = O(M^{-s})$, s > 7, then $(Delta_0 f)(x) \in C^2(S^2)$ a.s.
- Applying results of A-T, we can prove

Theorem 6: Notation as above, let c_m = O(m^{-s}), s > 7. Let C = ¹/_{√2π} Σ_{m≥1} c_mE_m. Then there exists α > 1, s.t. in the limit a → 0, P(a) satisfies

$$egin{aligned} \mathcal{P}(a) &= rac{C}{a} \exp\left(-rac{1}{2a^2}
ight) + rac{2}{\sqrt{2\pi}} \exp\left(-rac{1}{2a^2}
ight) \ &+ o\left(\exp(-rac{lpha}{2a^2})
ight) \end{aligned}$$

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

• Note that we now have an *asymptotic* expression for *P*(*a*).

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

- In the new normalization, if $c_m = O(M^{-s})$, s > 7, then $(Delta_0 f)(x) \in C^2(S^2)$ a.s.
- Applying results of A-T, we can prove

Theorem 6: Notation as above, let c_m = O(m^{-s}), s > 7. Let C = ¹/_{√2π} Σ_{m≥1} c_mE_m. Then there exists α > 1, s.t. in the limit a → 0, P(a) satisfies

$$egin{aligned} \mathcal{P}(a) &= rac{C}{a} \exp\left(-rac{1}{2a^2}
ight) + rac{2}{\sqrt{2\pi}} \exp\left(-rac{1}{2a^2}
ight) \ &+ o\left(\exp(-rac{lpha}{2a^2})
ight) \end{aligned}$$

• Note that we now have an *asymptotic* expression for *P*(*a*).

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

Conclusion

• We next estimate the probability of the event $\{||K_1 - K_0||_{\infty} < u\}, u > 0$; we shall do that for $g_1 = e^{af}g_0$, in the limit $a \to 0$. The result below hold for any compact orientable surface, including \mathbf{T}^2 .

• To state the result, we define a new random field *w* on *M*:

$$w=\Delta_0 f+2K_0 f.$$

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

We denote its covariance function by $r_w(x, y)$, and we define $\sigma_w^2 = \sup_{x \in M} r_w(x, x)$.

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- We next estimate the probability of the event $\{||K_1 K_0||_{\infty} < u\}, u > 0$; we shall do that for $g_1 = e^{af}g_0$, in the limit $a \to 0$. The result below hold for any compact orientable surface, including \mathbf{T}^2 .
- To state the result, we define a new random field *w* on *M*:

$$w=\Delta_0 f+2K_0 f.$$

We denote its covariance function by $r_w(x, y)$, and we define $\sigma_w^2 = \sup_{x \in M} r_w(x, x)$.

うつん 川 エー・エー・ エー・ ひゃう

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

We can now state

Theorem 7: Assume that the random metric is chosen so that the random fields f, w are a.s. C^0 . Let $a \to 0$ and $u \to 0$ so that $(u/a) \to \infty$. Then

$$\log \operatorname{Prob}(\|K_1 - K_0\|_{\infty} > u) \sim -\frac{u^2}{2a^2\sigma_w^2}.$$

- The proof uses Borell-TIS inequality. The condition
 (u/a) → ∞ ensures that the application of Borell-TIS
 gives an asymptotic result for
 log Prob(||K₁ K₀||∞ > u).
 - The condition u → 0 is needed to estimate (from above) the probability of certain *exceptional* events.

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

We can now state

Theorem 7: Assume that the random metric is chosen so that the random fields f, w are a.s. C^0 . Let $a \to 0$ and $u \to 0$ so that $(u/a) \to \infty$. Then

$$\log \operatorname{Prob}(\|K_1 - K_0\|_{\infty} > u) \sim -\frac{u^2}{2a^2\sigma_w^2}.$$

- The proof uses Borell-TIS inequality. The condition

 (u/a) → ∞ ensures that the application of Borell-TIS
 gives an asymptotic result for
 log Prob(||K₁ K₀||∞ > u).
 - The condition u → 0 is needed to estimate (from above) the probability of certain *exceptional* events.

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

We can now state

Theorem 7: Assume that the random metric is chosen so that the random fields f, w are a.s. C^0 . Let $a \to 0$ and $u \to 0$ so that $(u/a) \to \infty$. Then

$$\log \operatorname{Prob}(\|K_1 - K_0\|_\infty > u) \sim -rac{u^2}{2a^2\sigma_w^2}.$$

- The proof uses Borell-TIS inequality. The condition

 (u/a) → ∞ ensures that the application of Borell-TIS
 gives an asymptotic result for
 log Prob(||K₁ K₀||∞ > u).
 - The condition u → 0 is needed to estimate (from above) the probability of certain *exceptional* events.

Question

Random metrics

R₁ changes sign

Using Borell-TIS

Real-analytic metrics

Using A-T

 L^∞ bounds

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension n ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension n ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension n ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^{∞} bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension n ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^{∞} bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension *n* ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension *n* ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension *n* ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension *n* ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension *n* ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).

- Gauss curvature
- Question
- Random metrics
- R₁ changes sign
- Using Borell-TIS
- Real-analytic metrics
- Using A-T
- L^∞ bounds
- Conclusion

- Improve estimates in [CJW] for the *scalar curvature* in higher dimensions.
- Consider "rough" metrics that arise in 2D quantum gravity.
- Study the case when $a \rightarrow 0$.
- Study Ricci and sectional curvatures in high dimensions.
- Consider the space of all metrics, not just those in a conformal class (interesting in dimension *n* ≥ 3).
- Study differential geometry of random metrics, e.g. distance between two points, diameter etc.
- Study geodesic and frame flows and their ergodicity; existence of conjugate points; entropy etc.
- Δ : small eigenvalues, heat kernel asymptotics.
- Prove *quantitative* estimates (spectral gaps, level spacing).