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Conjectures in Quantum Chaos: Random Wave conjecture,
GOE level spacing conjecture, conjectures about nodal sets
etc.

Integration on manifolds of metrics:

D. Ebin defined L2 metric on manifolds of metrics. Restricted to
the space of hyperbolic metrics on a compact surface, we get
Weil-Petersson metric on moduli spaces of hyperbolic metrics
(singular manifolds!). Many people studied differentiation on
manifolds of metrics; such notions as Levi-Civita connection,
geodesics, parallel transport etc. have been defined.

Want to define integration. Our spaces of metrics are
infinite-dimensional, so it is convenient to define Gaussian
measures on those spaces.



Fix a compact smooth Riemannian manifold M". We shall
discuss several measures on manifolds of metrics on M.

e Measures on conformal classes of metrics: concentrated near
a reference metric go, supported on regular (e.g. Soboleyv,
real-analytic) metrics a.s. Applications to the study of Gauss
curvature.

e Measures on manifolds of metrics with the fixed volume form,
applications to the study of L2 (Ebin) distance function, and to
integrability of the diameter, eigenvalue and volume entropy
functionals.

e Remark: All measures are invariant by the action of
diffeomorphisms.



Conformal class: g - reference metric on M. Conformal class
of go: {g1 = €' - go}; f is a random (suitably regular) function on
M.

Ag - Laplacian of gy. Spectrum:

Dodj+Ajgj =0, 0= <A <A< ... Define f by

f(x) = - aigai(x),
=

aj ~ N(0,1) are i.i.d standard Gaussians, ¢; = F()\;) = 0
(damping):



The covariance function

ri(x,y) == E[f(x)f(y)] = ,i ¢ oj(x)¢j(y), for x, y € M.
Forx e M, f(x) is mean zero Gaussian of variance
ri(x, x) = z c2y(x)2.

Examples

e Random Sobolev metric: ¢; = A", =

r(x,y) =Y il A)i’ Y) spectral zeta function.

e Random rea/-ana/ytic metric ¢; = e, =
ri(x,y) = 32; 6j(x)0;(y) eV, heat kernel.




Sobolev regularity: If

E||f]|2s = Zc + )

then f € H3(M) a.s. Weyl's law + Sobolev embedding imply
Proposition: If ¢; = O();°), s > n/2, then f € C% as; f
¢ = O(\%),s > n/2+1,then f € C* as.



e [CJW]: Let n = 2, and let gy have non-vanishing Gauss
curvature (M # T?). Can estimate the probability that after a
random conformal perturbation, the Gauss curvature will
change sign somewhere on M.

e Techniques: curvature transformation in 2d under conformal
changes of metrics, large deviation estimates (Borell,
Tsirelson-lbragimov-Sudakov, Adler-Taylor).

e n > 3: related results for scalar curvature and Q-curvature.



» Random (Sobolev) embeddings into R¥: 1-dimensional
i.i.d. Gaussians — k-dimensional i.i.d. Gaussians.
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Random (Sobolev) embeddings into R*: 1-dimensional
i.i.d. Gaussians — k-dimensional i.i.d. Gaussians.

F. Morgan (1979): M = S', k = 3: a.s. results about
minimal surfaces spanned by random “knots.”

F. Morgan (1982): general compact M, a.s. Whitney
embedding theorems + applications.

We shall use similar ideas to define Gaussian measures
on manifolds of metrics with fixed volume form; transverse
to conformal classes.



» Metrics = sections of Pos(M) C Sym(M) c Hom(TM, T*M)
(positive-definite, symmetric maps); symmetric matrices in
local coordinates. GL( TxM) acts on Posy(M) with stabilizer
isomorphic to O(n).

Fix a volume form v, consider Met, (M). SL(TxM) acts on
the fibre Posy (M) by

h.gx =h" ogyoh;
stabilizer isomorphic to SO(n). We have

Posy (M) = SL,(R) /SO,
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Fix a volume form v, consider Met, (M). SL(TxM) acts on
the fibre Posy (M) by

h.gx =h" ogyoh;
stabilizer isomorphic to SO(n). We have
Posy (M) = SL,(R)/SOn

» Fix g° € Met,; dv(x \/|detg0 x)|dxq A ... A dx,. Let
Gy = SL(TxM), KX - SO(gX)



» f, frame in TyM orthonormal w.r.to g2, Ay C Gy positive
diagonal matrices of determinant 1 (w.r. to ).
Every g} € Pos’(M) can be represented as

9} = (kvax)g?,  kx € Kx,ax € Ax;

unique up to S, acting on f.



» f, frame in TyM orthonormal w.r.to g2, Ay C Gy positive
diagonal matrices of determinant 1 (w.r. to ).
Every g} € Pos’(M) can be represented as

9} = (kvax)g?,  kx € Kx,ax € Ax;

unique up to S, acting on f.
» Assumption: M is parallelizable (3 global section of the
frame bundle). Examples:
¢ All 3-manifolds;
e All Lie groups;
¢ The frame bundle of any manifold;
e The sphere S"iff n € {1,3,7}.
Necessary condition: vanishing of the 2nd Stiefel-Whitney
class. For orientable <= spin.



M parallelizable. Choose a global section O of the frame
bundle orthonormal w.r. to g°.

To define g}, we apply to /0 a composition of a rotation

kx € SO(TxM) and a diagonal unimodular transformation

ay € SL(TxM) which will define an orthonormal basis #; for g..
By construction, g° and g' will have the same volume form.
We let ay = exp(H(x)), where H: M — a = R"1 is the Lie
algebra of Diagy(n) C SL,. Similarly, let kx = exp h(x), where
h: M — so,, the Lie algebra of SO,. Choice of g° +
parallelizability makes the above construction well-defined.



We define Gaussian measures on {H: M — a} and
{h: M — so,} as in Morgan. In the sequel, only need H;
constructions are analogous.



Let
Z 7"'n 5]1/1/ (1 )

where
o A+ Ay = 0;
e A; are i.i.d standard Gaussians in R";

emh:R" = {xcR":x-(1,...,1) = 0} ~ R"~" - projection into
the hyperplane S X=0;
o Bj = Fa()\j) >0, where Fo(t) is (eventually) monotone

decreasing functlon of t, F(t) - 0as t — oc.



» Smoothness: Morgan showed
Proposition 1: If 3, = O(j~") where r > (¢ + o)/n+1/2,
then H converges a.s. in C%*(M,R"1).



» Smoothness: Morgan showed
Proposition 1: If 3, = O(j~") where r > (¢ + o)/n+1/2,
then H converges a.s. in C%*(M,R"1).

» Proposition 1 + Weyl's law —-
Proposition 2: If 3; = O(X; °) where s > g/2 + n/4, then
H converges a.s. in CI(M,R"1).



Lipschitz distance p:

In

p(9o,91) =sSup  sup (2)

xeM 0££€TM

(o] (575) ‘
9(§,€)

A related expression appeared in the paper by Bando-Urakawa.
If g1(x) = (k(x)d(x))go(x) then p only depends on the diagonal
part d(x).

Tail estimate for p:

One can show that for large R,

Prob{p(90,91) > R} <2"(n+¢€) - Prob{sup di(x) > R/2} (3)
xeM



Definition of d;:
Recall from (1): H(x) = Z mn(Aj) B ().
Define D(x) = ((x),.. -, dn(x)) by

x) =D Aibui(x)
j=1

(“don’t project A/”).
The covariance function for dy(x):

rd1 X y Zﬁkwk

Define o2 by

= o(dy)? 1= sup rg,(x, X).

xeM



Borell-TIS theorem applied to the random field d; implies
Proposition 3. Let o be as in (4). Then

. InProb{p(g0,91) > R} —1
< —,
Am R2 = 852 ©)

More precise result:
Proposition 4. There exists « > 0 such that for a fixed e > 0
and for large enough R, we have

R R?
Prob{p(91,90) > R} < 2"(n+¢)exp <042 - &‘2> :



p controls diameter and eigenvalues:
Proposition 5.
Assume that dvol(gg) = dvol(g1) and p(go, 91) < R. Then

R dlal’l’l(/\/’7 g1) R
€= diam(M, go) =6 ©
and (A
9_2R§ k( (g1)) < GZR. (7)

Ak(A(90))



Propositions 4 and 5 imply
Theorem 6.
Let h: R™ — R* be a monotonically increasing function such

that for some § > 0
h(e¥) = O (exp [y2(1/(802) - 5)}) .

Then h(diam(gy)) is integrable with respect to the probability
measure dw(gy) constructed earlier.

and

Theorem 7. Let h: R™ — R™ be a monotonically increasing
function such that for some 6 > 0

h(e¥) = O (exp [y2(1/(802) - 5)}) .

Then h(A«(A(g1))) is integrable with respect to the probability
measure dw(gy) constructed earlier.



Similar results can be established for volume entropy,

. InvolB(x, s)
Ao = Jim ——g



» L2 or Ebin distance between can be computed as follows
[Ebin, Clarke]:

%(g°. g") /d“ ). 9" (x))2dv(x)

where do »(g°(x), g'(x)) is the distance in SL,/SOp;

= [ (HOO. HOO1 gy (),



» L2 or Ebin distance between can be computed as follows
[Ebin, Clarke]:

9B(e°.") = [ dar(a(x).9" ()P (x)
where do »(g°(x), g'(x)) is the distance in SL,/SOp;
:/M<H(X),H(X)>g0(x)dv(x).

» For us Q3 is a random variable whose distribution we shall
compute. Note: only depends on H, hence it suffices to
consider the Gaussian measure on {H : M — a}.



In local coordinates, let

ax = diag(exp(b(x)), exp(b2(x)), - . ., exp(bn(x))),
where 37, bj(x) = 0,¥x € M. Then

(95, 9x)? Zb

Accordingly,

Q(9°,9')? = /M (Z bj(X)z) av(x).

=1



mn: R" — {x : ) x; = 0} standard projection. P, - matrix of 7,
(in the usual basis of R") with singular values

(1,...,1,0) ;= pjp, 1 <i<n

Then in distribution
D n
QF =D 57D ui Wiy
j i=1

where W;; ~ x2 are i.i.d. We get Q2 2 > B2V; where
V, ~x2_, arei.id.



Theorem 8.
Moment generating function of Q3:

MQZ( ) = E(exp( th ) = HHM tﬂ/ nﬁj)

joi=1

n
= [T110 —2tu?88)7"2 = T[(1 - 2t57) (172

joi= J

Characteristic function of Q3:

n
ITTIC - 2ituz,82)7"2 = T (1 —2itg?)~ ("=

j =t j



Corollary 9.
Tail estimates for Qg: applying results of Laurent-Massart, one
can show that

Prob{Q3 > 5%} < exp(—s2/(25?)).
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