MATH 564, FALL 2009. LEBESGUE INTEGRATION: SUMMARY OF THE MATERIAL IN RUDIN

1. Measurability and Fubini's Theorem

Recall that for measurable $f: \mathbf{R}^2 \to \mathbf{R}$, its sections f_x and f_y are defined by

$$f_x(y) = f_y(x) := f(x, y).$$

Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces with their corresponding σ -algebras; as usually, we denote by $\mathcal{S} \times \mathcal{T}$ the smallest σ -algebra on $X \times Y$ containing all the rectangles.

The following proposition follows easily from the measurability property of sections of measurable sets in $S \times T$:

Proposition 1.1. Let $f : X \times Y \to \mathbf{R}$ be $S \times T$ -measurable. Then f_x is T-measurable and f_y is S-measurable.

The analogues of Theorems 1.10 and 1.12 in Lieb/Loss are proved next, using the definition if the integral through simple functions.

2. Completion of Product Measures

Let \mathcal{L}_k denote the Lebesgue measure on \mathbf{R}^k . Let $\mathcal{L}_m \times \mathcal{L}_k$ denote the smallest σ -algebra on $\mathbf{R}^m \times \mathbf{R}^k$ containing all rectangles. That measure is *not* complete.

Proposition 2.1. The completion of $\mathcal{L}_m \times \mathcal{L}_k$ is \mathcal{L}_{m+k} .

Fubini's theorem for completions of measures:

Theorem 2.2. Let (X, S, μ) and (Y, T, λ) , and let $(S \times T)^*$ be the completion of $S \times T$, relative to the measure $\mu \times \lambda$. Let f be $(S \times T)^*$ -measurable on $X \times Y$. Then

i) If $0 \le f \le \infty$, then $\phi(x) := \int_Y f_x d\lambda$ is defined for μ -a.e. x; $\psi(y) := \int_X f_y d\mu$ is defined for λ -a.e. y; ϕ is S-measurable, ψ is T-measurable, and

(1)
$$\int_{X} \phi d\mu = \int_{Y} \psi d\lambda = \int_{X \times Y} f d(\mu \times \lambda)$$

- ii) If $f : X \times Y \to \mathbf{C}$, let $\phi^*(x) = \int_Y |f|_x d\lambda$. Assume $\int_X \phi^* d\mu < \infty$. Then $f \in L^1(\mu \times \lambda)$, i.e. $\int_{X \times Y} |f| d(\mu \times \lambda) < \infty$.
- iii) If f ∈ L¹(μ × λ), then f_x ∈ L¹(λ) for μ-a.e. x ∈ X; f_y ∈ L¹(μ) for λ-a.e. y ∈ y. The function φ defined in (i) is in L¹(μ), and the function ψ defined in (i) is in L¹(λ), and (1) holds.