McGill University Math 564: Advanced Real Analysis

Practice problems

not for credit

Problem 1. Determine whether the family of $\mathcal{F} = \{f_n\}$ functions $f_n(x) = x^n$ is uniformly equicontinuous.

1st Solution: The family \mathcal{F} is clearly uniformly bounded. If it were uniformly equicontinuous, we could apply Arzela-Ascoli's theorem to conclude that a sequence f_n has a subsequence that converges uniformly in C[0,1]; the limit would have to be a continuous function g(x). However, it is easy to see that $f_n(x) \to h(x)$ as $n \to \infty$, where

$$h(x) = \begin{cases} 0, & x \in [0, 1), \\ 1, & x = 1. \end{cases}$$

This function has a jump discontinuity at x = 1 and so the convergence cannot be uniform, hence \mathcal{F} is not uniformly equicontinuous.

2nd Solution: Alternatively, we can show that for any sequence n_k , the sequence of functions f_{n_k} cannot be a Cauchy sequence in C[0,1] (which would be necessary for uniform convergence). Indeed, fix some $m = n_k$, and consider the d_{∞} distance between x^m and $x^n, n = n_{k+1}, n_{k+2}, \ldots$ We claim that $\limsup_{n\to\infty} d_{\infty}(x^m, x^n) \ge 1/2$.

Indeed, choose x_0 s.t. $x_0^m > 3/4$, say. Then let N be such that $x_0^n < 1/4$ for n > N. Then for any $n_k > N$, we have $x_0^m - x_0^{n_k} \ge 3/4 - 1/4 = 1/2$, hence the same inequality holds for d_∞ , QED. **3rd Solution:** Finally, take x = 1 in the definition of the uniform equicontinuity. Then for any fixed $\delta > 0$, we clearly have $\lim_{n\to\infty} (1-\delta)^n = 0 \neq 1 = f_n(1)$, which shows that for large enough n, $|f_n(1-\delta) - f_n(1)| \ge 1/2$, and so the family \mathcal{F} cannot be uniformly equicontinuous at x = 1.

Problem 2. Suppose $f_n : \mathbb{R} \to \mathbb{R}$ is differentiable for each $n \in \mathbb{N}$. Suppose also that $\{f'_n\}$ converges uniformly on \mathbb{R} and that $\{f_n(0)\}$ converges. Then $\{f_n\}$ converges pointwise on \mathbb{R} . Solution Fix $r \in \mathbb{R}$ $r \neq 0$ and let c > 0 be given Since $\{f_n(0)\}$ converges it is Cauchy so we

Solution. Fix $x \in \mathbb{R}, x \neq 0$, and let $\epsilon > 0$ be given. Since $\{f_n(0)\}$ converges it is Cauchy, so we may choose $N_1 \in \mathbb{N}$ so that

$$m, n \ge N_1$$
 implies $|f_n(0) - f_m(0)| < \frac{\epsilon}{2}$

Furthermore, since $\{f'_n\}$ is uniformly convergent it is uniformly Cauchy. Therefore we may choose $N_2 \in \mathbb{N}$ so that

$$m, n \ge N_2$$
 implies $|f'_n(y) - f'_m(y)| < \frac{\epsilon}{2|x|}$ for all $y \in \mathbb{R}$

Now set $N = \max(N_1, N_2)$ and fix any $m, n \ge N$. Then use the mean value theorem to choose $c \in (0, x)$ so that

$$(f_n - f_m)'(c)(x - 0) = (f_n - f_m)(x) - (f_n - f_m)(0)$$

Then using the above inequalities we find that

$$\begin{aligned} |f_n(x) - f_m(x)| &\leq |f_n(0) - f_m(0)| + |f_n(x) - f_n(0) + f_m(0) - f_m(x)| \\ &= |f_n(0) - f_m(0)| + |(f_n - f_m)(x) - (f_n - f_m)(0)| \\ &= |f_n(0) - f_m(0)| + |(f_n - f_m)'(c)(x - 0)| \\ &= |f_n(0) - f_m(0)| + |f'_n(c) - f'_m(c)||x| \\ &< \epsilon \end{aligned}$$

We conclude that $\{f_n(x)\}$ is Cauchy and hence convergent. Thus $\{f_n\}$ converges pointwise.

Problem 3. Let the Borel set $A \subset [0,1]$ satisfy the following property: there exists $0 \leq \tau < 1$ such that for any interval $I \subset [0,1]$, $m(A \cap I) \leq \tau \cdot m(I)$. Prove that m(A) = 0 (here *m* denotes the Lebesgue measure).

Problem 4.

Prove that for p > 0,

$$\int_{0}^{1} \frac{x^{p}}{1-x} \log\left(\frac{1}{x}\right) dx = \sum_{k=1}^{\infty} \frac{1}{(p+k)^{2}}$$

Justify all your steps. Hint: expand 1/(1-x) in Taylor series and integrate by parts. **Problem 5.** Determine whether the following sequences of functions converge uniformly or pointwise (or neither) in the regions indicated; explain why.

a)

$$f_n(x) = \begin{cases} \frac{\sin nx}{nx}, & x \neq 0\\ 1, & x = 0. \end{cases}$$

for $x \in [-\pi, \pi]$.

- b) $f_n(x) = x^2/(3+2nx^2)$ for $x \in [0,1]$.
- c) Find $\lim_{n\to\infty} f_n(x)$ in a); is it continuous?

Solution. The limiting function $g = \lim_{n\to\infty} f_n(x)$ in a) is equal to 1 at x = 0 and to 0 for $x \neq 0$ (since $|\sin nx| \leq 1$ while $nx \to \infty$ for $0 < |x| \leq \pi$). Since f_n is continuous for every n $(\lim_{x\to 0} (\sin(nx)/(nx)) = 1)$, the convergence cannot be uniform, since a uniform limit of continuous functions is continuous. So, the functions in a) converge only pointwise. The functions in b) converge uniformly to the zero function on [0, 1]. Since $f_n(0) = 0$, there is nothing to prove there. For $0 < x \leq 1$, we can estimate f_n as follows:

$$0 < \frac{x^2}{3+2nx^2} = \frac{1}{2n+3/x^2} < \frac{1}{2n}$$

Accordingly, as $n \to \infty$, $0 \le f_n(x) \le 1/(2n)$ and thus converges to zero uniformly by the "squeezing principle".

Problem 6. Determine whether the following sets are open, closed (or neither open nor closed) and explain why.

- a) The set of all $(x, y, z) \in \mathbf{R}^3$ such that $|\cos(2x + 3y + 5z)| < 1/2$ and $x^2 + y^2 + z^2 < 180$.
- b) The set of all continuous functions $f \in C([0,1])$ (with the uniform distance) such that $|f(1/n)| \leq 1/n^2$ for every natural $n \geq 1$.

Solution. The functions $f_1(x, y, z) = \cos(2x + 3y + 5z)$ and $f_2(x, y, z) = x^2 + y^2 + z^2$ are continuous everywhere (by results about the continuity of sum and composition of continuous functions, and since linear and quadratic functions and $\cos x$ are continuous everywhere). Accordingly, the sets $U_1 = f_1^{-1}((-1/2, 1/2))$ and $U_2 = f_2^{-1}((-\infty, 180))$ are open, since they are inverse images of open sets by continuous functions. Accordingly, the set U in a) is open, since it is an intersection of two

open sets U_1 and U_2 . It is easy to see that U is nonempty and that $U \neq \mathbb{R}^3$. Since \mathbb{R}^3 is connected, U cannot be both closed and open, so it is not closed.

For b), let B_k be the set of all continuous functions f on [0,1] such that $|f(1/k)| \leq 1/k^2$ for a fixed $k \geq 1$. Then the set V in b) is equal to $\bigcap_{k=1}^{\infty} B_k$. If we show that B_k is closed for all k, then we can conclude that B is also closed as an intersection of closed sets. The set V is nonempty (the zero function lies in V), and its complement is also nonempty (the function $f(x) \equiv 2000$ is not in V). Since the space of continuous functions on [0,1] is connected (being convex), the set V cannot be both open and closed. It remains to be shown that B_k is closed. Suppose a sequence of functions $f_j \in B_k$ converges to a function f (which is continuous by a theorem about uniform convergence, but we are only considering continuous functions anyway, so we may as well assume that it's continuous!). Since dist $(f_j, f) = \max |f_j(x) - f(x)|$ goes to 0 as $j \to \infty$ by the definition of convergence, we see that $|f_j(1/k) - f(1/k)| \to 0$ as $j \to \infty$. Since the interval $[-1/k^2, 1/k^2]$ is closed, we conclude that $f(1/k) \in [-1/k^2, 1/k^2]$, and so $f \in B_k$ and the set B_k is closed, QED.

Problem 7. Prove that for the double integral

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \, dy$$

both repeated integrals exist, but that they are not equal. Why is there no contradiction with Fubini's theorem?

Problem 8. Verify Lusin's theorem for the function $f(x) = \arcsin(1/x^2), x \in (0, 1]$.

Problem 9. For which values of α and β , the function $f(x) = x^{\alpha} (\sin x)^{\beta}$ is Lebesgue integrable on (0, 1]?

Problem 10. For $n \ge 0$, let

$$f(x,y) = \begin{cases} 2^{2n}, & 2^{-n} \le x \le 2^{-n+1}, 2^{-n} \le y < 2^{-n+1}; \\ -2^{2n+1}, & 2^{-n-1} \le x \le 2^{-n}, 2^{-n} \le y < 2^{-n+1}; \\ 0, & \text{otherwise.} \end{cases}$$

Show that iterated integrals exist but are not equal to each other.

Problem 11. Prove that the set of points at which a sequence of measurable real-valued functions converges to a finite limit is measurable.

Problem 12. Suppose ν_j is a sequence of positive measures. If $\nu_j \perp \mu$ for all j, then $\sum_j \nu_j \perp \mu$. If $\nu_j \ll \mu$ for all j, then $\sum_j \nu_j \ll \mu$.

Problem 13. If E is a Borel set in \mathbb{R}^n , the density $D_E(x)$ is defined as

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}$$

whenever the limit exists.

a) Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in \mathbf{R}^n \setminus E$.

- b) Find examples of E and x s.t. $D_E(x)$ is a given number $\alpha \in (0, 1)$, or such that $D_E(x)$ does not exist.
- Problem 14. Verify the assertions in Example 3.25 in Folland.
- Problem 15. Folland, Problem 3.28.
- Problem 16. Folland, Problem 4.44.
- Problem 17. Folland, Problem 4.54.
- Problem 18. Folland, Problem 4.61.
- Problem 18. Folland, Problem 4.68.