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Practice problems not for credit

Problem 1. Determine whether the family of F = {fn} functions fn(x) = xn is uniformly equicon-
tinuous.
1st Solution: The family F is clearly uniformly bounded. If it were uniformly equicontinuous, we
could apply Arzela-Ascoli’s theorem to conclude that a sequence fn has a subsequence that converges
uniformly in C[0, 1]; the limit would have to be a continuous function g(x). However, it is easy to
see that fn(x)→ h(x) as n→∞, where

h(x) =

{
0, x ∈ [0, 1),

1, x = 1.

This function has a jump discontinuity at x = 1 and so the convergence cannot be uniform, hence
F is not uniformly equicontinuous.
2nd Solution: Alternatively, we can show that for any sequence nk, the sequence of functions fnk

cannot be a Cauchy sequence in C[0, 1] (which would be necessary for uniform convergence). Indeed,
fix some m = nk, and consider the d∞ distance between xm and xn, n = nk+1, nk+2, . . . We claim
that lim supn→∞ d∞(xm, xn) ≥ 1/2.

Indeed, choose x0 s.t. xm0 > 3/4, say. Then let N be such that xn0 < 1/4 for n > N . Then for
any nk > N , we have xm0 − x

nk
0 ≥ 3/4− 1/4 = 1/2, hence the same inequality holds for d∞, QED.

3rd Solution: Finally, take x = 1 in the definition of the uniform equicontinuity. Then for any
fixed δ > 0, we clearly have limn→∞(1− δ)n = 0 6= 1 = fn(1), which shows that for large enough n,
|fn(1− δ)− fn(1)| ≥ 1/2, and so the family F cannot be uniformly equicontinuous at x = 1.

Problem 2. Suppose fn : R→ R is differentiable for each n ∈ N. Suppose also that {f ′n} converges
uniformly on R and that {fn(0)} converges. Then {fn} converges pointwise on R.
Solution. Fix x ∈ R, x 6= 0, and let ε > 0 be given. Since {fn(0)} converges it is Cauchy, so we
may choose N1 ∈ N so that

m,n ≥ N1 implies |fn(0)− fm(0)| < ε

2

Furthermore, since {f ′n} is uniformly convergent it is uniformly Cauchy. Therefore we may choose
N2 ∈ N so that

m,n ≥ N2 implies |f ′n(y)− f ′m(y)| < ε

2|x|
for all y ∈ R

Now set N = max(N1, N2) and fix any m,n ≥ N . Then use the mean value theorem to choose
c ∈ (0, x) so that

(fn − fm)′(c)(x− 0) = (fn − fm)(x)− (fn − fm)(0)

Then using the above inequalities we find that

|fn(x)− fm(x)| ≤ |fn(0)− fm(0)|+ |fn(x)− fn(0) + fm(0)− fm(x)|
= |fn(0)− fm(0)|+ |(fn − fm)(x)− (fn − fm)(0)|
= |fn(0)− fm(0)|+ |(fn − fm)′(c)(x− 0)|
= |fn(0)− fm(0)|+ |f ′n(c)− f ′m(c)||x|
< ε



We conclude that {fn(x)} is Cauchy and hence convergent. Thus {fn} converges pointwise.

Problem 3. Let the Borel set A ⊂ [0, 1] satisfy the following property: there exists 0 ≤ τ < 1 such
that for any interval I ⊂ [0, 1], m(A ∩ I) ≤ τ · m(I). Prove that m(A) = 0 (here m denotes the
Lebesgue measure).

Problem 4.
Prove that for p > 0, ∫ 1

0

xp

1− x
log

(
1

x

)
dx =

∞∑
k=1

1

(p+ k)2
.

Justify all your steps. Hint: expand 1/(1− x) in Taylor series and integrate by parts.
Problem 5. Determine whether the following sequences of functions converge uniformly or pointwise
(or neither) in the regions indicated; explain why.

a)

fn(x) =

{
sinnx
nx , x 6= 0

1, x = 0.

for x ∈ [−π, π].

b) fn(x) = x2/(3 + 2nx2) for x ∈ [0, 1].

c) Find limn→∞ fn(x) in a); is it continuous?

Solution. The limiting function g = limn→∞ fn(x) in a) is equal to 1 at x = 0 and to 0 for
x 6= 0 (since | sinnx| ≤ 1 while nx → ∞ for 0 < |x| ≤ π). Since fn is continuous for every n
(limx→0(sin(nx)/(nx)) = 1), the convergence cannot be uniform, since a uniform limit of continuous
functions is continuous. So, the functions in a) converge only pointwise. The functions in b)
converge uniformly to the zero function on [0, 1]. Since fn(0) = 0, there is nothing to prove there.
For 0 < x ≤ 1, we can estimate fn as follows:

0 <
x2

3 + 2nx2
=

1

2n+ 3/x2
<

1

2n

Accordingly, as n→∞, 0 ≤ fn(x) ≤ 1/(2n) and thus converges to zero uniformly by the “squeezing
principle”.

Problem 6. Determine whether the following sets are open, closed (or neither open nor closed) and
explain why.

a) The set of all (x, y, z) ∈ R3 such that | cos(2x+ 3y + 5z)| < 1/2 and x2 + y2 + z2 < 180.

b) The set of all continuous functions f ∈ C([0, 1]) (with the uniform distance) such that
|f(1/n)| ≤ 1/n2 for every natural n ≥ 1.

Solution. The functions f1(x, y, z) = cos(2x+3y+5z) and f2(x, y, z) = x2 +y2 +z2 are continuous
everywhere (by results about the continuity of sum and composition of continuous functions, and
since linear and quadratic functions and cosx are continuous everywhere). Accordingly, the sets
U1 = f−11 ((−1/2, 1/2)) and U2 = f−12 ((−∞, 180)) are open, since they are inverse images of open
sets by continuous functions. Accordingly, the set U in a) is open, since it is an intersection of two



open sets U1 and U2. It is easy to see that U is nonempty and that U 6= R3. Since R3 is connected,
U cannot be both closed and open, so it is not closed.
For b), let Bk be the set of all continuous functions f on [0, 1] such that |f(1/k)| ≤ 1/k2 for a fixed
k ≥ 1. Then the set V in b) is equal to ∩∞k=1Bk. If we show that Bk is closed for all k, then we
can conclude that B is also closed as an intersection of closed sets. The set V is nonempty (the zero
function lies in V ), and its complement is also nonempty (the function f(x) ≡ 2000 is not in V ).
Since the space of continuous functions on [0, 1] is connected (being convex), the set V cannot be
both open and closed. It remains to be shown that Bk is closed. Suppose a sequence of functions
fj ∈ Bk converges to a function f (which is continuous by a theorem about uniform convergence, but
we are only considering continuous functions anyway, so we may as well assume that it’s continous!).
Since dist(fj , f) = max |fj(x) − f(x)| goes to 0 as j → ∞ by the definition of convergence, we see
that |fj(1/k)− f(1/k)| → 0 as j →∞. Since the interval [−1/k2, 1/k2] is closed, we conclude that
f(1/k) ∈ [−1/k2, 1/k2], and so f ∈ Bk and the set Bk is closed, QED.

Problem 7. Prove that for the double integral∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dxdy

both repeated integrals exist, but that they are not equal. Why is there no contradiction with
Fubini’s theorem?

Problem 8. Verify Lusin’s theorem for the function f(x) = arcsin(1/x2), x ∈ (0, 1].

Problem 9. For which values of α and β, the function f(x) = xα(sinx)β is Lebesgue integrable on
(0, 1]?

Problem 10. For n ≥ 0, let

f(x, y) =


22n, 2−n ≤ x ≤ 2−n+1, 2−n ≤ y < 2−n+1;

−22n+1, 2−n−1 ≤ x ≤ 2−n, 2−n ≤ y < 2−n+1;

0, otherwise.

Show that iterated integrals exist but are not equal to each other.

Problem 11. Prove that the set of points at which a sequence of measurable real-valued functions
converges to a finite limit is measurable.

Problem 12. Suppose νj is a sequence of positive measures. If νj⊥µ for all j, then
∑
j νj⊥µ. If

νj � µ for all j, then
∑
j νj � µ.

Problem 13. If E is a Borel set in Rn, the density DE(x) is defined as

DE(x) = lim
r→0

m(E ∩B(r, x))

m(B(r, x))

whenever the limit exists.

a) Show that DE(x) = 1 for a.e. x ∈ E and DE(x) = 0 for a.e. x ∈ Rn \ E.



b) Find examples of E and x s.t. DE(x) is a given number α ∈ (0, 1), or such that DE(x) does
not exist.

Problem 14. Verify the assertions in Example 3.25 in Folland.

Problem 15. Folland, Problem 3.28.

Problem 16. Folland, Problem 4.44.

Problem 17. Folland, Problem 4.54.

Problem 18. Folland, Problem 4.61.

Problem 18. Folland, Problem 4.68.


