Math 564, Fall 2008

D. Jakobson

PROBLEM SET 3, additional problems

due date TBA.

Do all the problems. Every problem is worth 5 points. Some problems will not be graded because of time constraints.

Problem 9

- a) Let $N \ge n+1$ and let A_1, A_2, \ldots, A_N be a finite collection of convex subsets of \mathbf{R}^n such that any (n+1) of them have nonempty intersection; prove that $\bigcap_{j=1}^N A_j \neq \emptyset$.
- b) Prove that if we assume that A_{α} is convex and *compact* for all α , then the conclusion of a) holds for an arbitrary *infinite* collection $\{A_{\alpha}\}$.

Problem 10 Let 1/p + 1/q + 1/r = 1, where p, q, r > 0. Let $f \in L^p(X, \mu), g \in L^q(X, \mu), h \in L^p(X, \mu)$. Prove that $fgh \in L^1(X, \mu)$ and that

$$||fgh||_1 \leq ||f||_p \cdot ||g||_q \cdot ||h||_r.$$

Problem 11 Let $f \in L^p(\mathbf{R})$. Show that for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $|t| < \delta$, we have

$$\int_{-\infty}^{+\infty} |f(x+t) - f(x)|^p dx < \epsilon.$$