Review of point set topology and metric spaces

A distance (p,q) between points p,q in a metric space satisfies

- $\operatorname{dist}(p,q) > 0 \text{ if } p \neq q; \operatorname{dist}(p,p) = 0.$
- $\operatorname{dist}(p,q) = \operatorname{dist}(q,p)$.
- $\operatorname{dist}(p,q) + \operatorname{dist}(q,r) \ge \operatorname{dist}(p,r)$.

A sequence p_k converges to p in a metric space X iff for any $\varepsilon > 0$ there exists a natural number N such that for every k > N, $\operatorname{dist}(p_k, p) < \varepsilon$. A sequence p_k is Cauchy iff for any $\varepsilon > 0$ there exists a natural number N such that for every k, l > N, $\operatorname{dist}(p_k, p_l) < \varepsilon$. A sequence in \mathbf{R}^n converges iff all the coordinate sequences converge.

Let X, Y be metric spaces, and let f be a function from X to Y. f is continuous at $x \in X$ iff one of the following two equivalent conditions holds:

- for any sequence $x_k \to x$ in X, $f(x_k) \to f(x)$ in Y;
- for any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $\operatorname{dist}_X(x', x) < \delta$ then $\operatorname{dist}_Y(f(x'), f(x)) < \varepsilon$.

The function f is continuous iff one of the following three equivalent conditions holds:

- f is continuous at every point of X;
- for any open set $U \subset Y$, $f^{-1}(U)$ is open in X.
- for any closed set $V \subset Y$, $f^{-1}(V)$ is closed in X.

A function $f: \mathbf{R}^n \to \mathbf{R}^m$ is continuous iff all its coordinate functions are continuous. \mathbf{R}^n review:

- inner products and norm in \mathbb{R}^n ; Cauchy-Schwarz inequality;
- different definitions of distance give rise to the same open sets in \mathbb{R}^n .

Some useful facts about \mathbb{R}^n :

- a subset of \mathbb{R}^n is *compact* iff it is *closed* and *bounded*.
- a ball in \mathbf{R}^n is convex.
- an *open* subset of \mathbb{R}^n is connected iff it's path connected (not true for arbitrary subsets of \mathbb{R}^n).

Open and closed sets:

- a set A is open iff every point x in A is an *interior point* of A, i.e. if x has a neighborhood (an open ball centered a t x) which is contained in A.
- a set A is closed iff every limit point x of A (a limit of a sequence of points in A) is contained in A;
- A is open iff its complement is closed;
- arbitrary union of open sets is open, arbitrary intersection of closed sets is closed:
- finite intersection of open sets is open, finite union of closed sets is closed;
- the empty set and the whole space are both open and closed.

Interior, exterior, and boundary:

- a point x is in the *interior* of A (denoted IntA) iff it's an interior point of A;
- a point x is in the exterior of A (denoted ExtA) iff it's an interior point of the complement A;

1

- a point x is on the *boundary* of A (denoted BdA) iff it's neither an interior nor an exterior point of A, i.e. if in every neighborhood of x there are points from A and the complement of A;
- Int A, Ext A and BdA are disjoint; their union is the whole space;
- A is open iff A = Int A, B is closed iff $BdB \subseteq B$.

Let f,g be continuous functions into \mathbf{R} , and let a,b be real numbers. Then af+bg,fg are continuous, and f/g is continuous provided $g\neq 0$. Also, if $f:X\to Y$ is continuous, $g:Y\to Z$ is continuous on f(X), then their composition g(f(x)) is a continuous function from X to Z. Continuous functions map compact (connected, path connected) sets into compact (connected, path connected) sets. Compact sets:

- A is *compact* iff every sequence in A has a subsequence converging to a point in A;
- a closed subset of a compact set is compact;
- a continuous function attains a maximum and a minimum on a compact set (extreme value theorem);
- a continuous function on a compact set is uniformly continuous.

Complete sets:

- A is *complete* iff every Cauchy sequence in A converges to a point in A;
- a closed subset of a complete metric space is complete;
- \mathbf{R}^n is complete;
- the space of continuous functions on an interval where $dist(f, g) = \max |f g|$ is complete (here convergence is equivalent to the uniform convergence).

Convex, path connected and connected sets:

- a subset A of a vector space X is convex iff for every $x, y \in A$ the segment from x to y (i.e. the set $t \cdot x + (1 t) \cdot y, 1 \ge t \ge 0$) is contained in A;
- A is path(wise) connected iff every two points in A can be joined by a path (a continuous mapping from a closed interval into X) in A;
- A is connected iff it is not a union of two nonempty, disjoint, relatively open (in A) sets;
- a metric space X is connected if the only subsets of X which are both open and closed are the empty set and X itself;
- (convex) implies (path connected) implies (connected), but not vice versa!
- a subset or **R** is connected iff it's an interval;
- a continuous function into **R** maps connected sets into intervals (i.e. intermediate value theorem holds for connected sets);
- a ball in \mathbf{R}^n is convex.

Two more useful facts about such sets:

- an arbitrary intersection of convex sets is convex;
- an arbitrary union of (path) connected sets whose intersection is nonempty is also (path) connected.