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Chapter 1

Introduction

Section 1.1

Banach-Tarski Paradox

Consider B1, the unit ball in 3-space. Chop it into pieces, then using rotations and translations (rigid
motions), we can produce two balls equal in radius. Thus, we want

lim
n→∞

∫
x

fn(x)dx =

∫
x

lim
n→∞

fn(x)dx

This, however, is not necessarily true for Riemann integration.

Section 1.2

Existence & Uniqueness Of Lebesgue’s Integral

We have the set
Cc(Rn) = {f : Rn → R : f continuous, supp(f) compact}

where
supp(f) = {x ∈ Rn : f(x) 6= 0}

1. f ∈ Cc(Rn)
Norm is ∫

Rn
|f(x)|dx =

∫
supp(f)

|f(x)|dx = ‖f‖1

Ĉc(R) = Cc(Rn)/ ∼

where the slash is modulo which is an equivalence relation. We have

f ∼ g ⇐⇒
∫
x

|f(x)− g(x)|dx = 0

Also, Ĉc(Rn), ‖ · ‖ is a normed space. Now, if we let L1(Rn) be the Banach space of all Lebesge
measurable functions, then we have that Cc(Rn) is dense in L1(Rn).

2. Define a bounded linear functional φ : Ĉc(Rn)→ R where

φ(f) =

∫
Rn
fdx

Theorem 1. The functional φ from above extends uniquely to a bounded linear functional Φ : L1(Rn)→ R
such that Φ(f) = φ(f) if f ∈ Cc(Rn), and we call Φ(f) Lebesgue’s integral.
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Example 1. Let X = [0, 1]× [0, 1] and let

∆X\Q2(x) =

{
1 x ∈ X\Q2

0 x ∈ Q2

so the Lebesgue integral ∫
X

∆X\Q2(x)dx = 1

The approach is to define

1. Measurable sets and measure.

2. Measurable functions and integrals.

So, consider Rn for n = 2 and take a large rectangle X = [M1,M2]× [N1, N2] 6= ∅ and we want to measure
this set.

Definition 1. A measure is a function µ : F → R such that

(i) Extend area.

(ii) µ(A ∪B) = µ(A) + µ(B) whenever A ∩B = ∅.

(iii) A ⊆ B =⇒ µ(A) ≤ µ(B).

We now go over the Lebesgue measurable sets in X.

1. Rectangles:

Ii = [ai, bi], [ai, bi), (ai, bi], (ai, bi)

so R = I1 × I2 then
R(x) = {R ⊂ X : R rectangle}

and φ,X ∈ R. Here, the measure is m : R(X)→ R and m(R) = |bi − ai| · |b2 − a2| ≥ 0 and m(∅) = 0.
Also, if R is the disjoint union of the Ri’s where 1 ≤ i ≤ n, then

m(R) =

n∑
i=1

m(Ri)

2. Elementary sets:
Let

E =

n⋃
i=1

Ri

where R ∈ R(X), then let

E(X) =

{
E =

n⋃
i=1

Ri : Ri ∈ R(X)

}

Theorem 2. Let E,F ∈ E(X), then

E ∪ F,E ∩ F,E\F ∈ E(X)
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Now, m̂ : E(X)→ R and if the Ri’s are disjoint, and

E =

n⋃
i=1

Ri =

k⋃
j=1

R′j

then

m̂(E) =

n∑
i=1

m(Ri) =

k∑
j=1

m(R′j)

Theorem 3 (Additivity). If E and F are disjoint, then

m̂(E ∪ F ) = m̂(E) + m̂(F )

Definition 2. We say that the rectangle R is an HV Rectangle if its edges are horizontal and vertical.

Definition 3. We say that A tB is a Disjoint Union and it is equivalent to A ∪B where A ∩B = ∅.

We let X = [M1,M2]× [N1, N2].

1. Rectangle (hv):

R(X) = {R ⊆ X : R hv Rectangle}

and ∅, X ∈ R(X), so m : R(X)→ R where

m(R) = area(R)

and
m(R1 tR2) = m(R1) +m(R2)

2. Elementary Sets (Technical Tool to Approximate Measure Sets):

E(X) = {E = tni=1Ri : n ∈ N, Ri hv Rectangle}

and
m̂ : E(X)→ R

so if
E = tkj=1R

′
j = tni=1Ri

then

m̂(E) =

k∑
j=1

m(R′j) =

n∑
i=1

m(Ri)

3. Lebesgue’s Measurable Sets (LM Sets):
First, we define

Exp(X) = {All subsets of X}

Second, we define Outer Measure to be

µ∗ : Exp(X)→ R
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so that if A ∈ X, then

µ∗(A) = inf

{ ∞∑
n=1

m(Rn) : A ⊆
∞⋃
n=1

Rn, Rn hv Rectangle

}

Third, we define Inner Measure to be

µ∗ : Exp(X)→ R

so that if A ⊆ X, then
µ∗(A) = m(X)− µ∗(X\A)

In general, we always have that
µ∗(A) ≤ µ∗(A)

Fourth, we define Lebesgue Measurable Sets to be the sets A such that

µ∗(A) = µ∗(A)

and we say that
M(X) = {A ⊆ X : µX(A) = µ∗(A)}

is the Space of Lebesgue Measurable Sets.

This is the right thing to do because of the following theorem
Theorem 4. The following properties are true:

(i) Extends Area

E ∈ E(X) =⇒ E ∈M(X)

and µ(E) = m̂(E).

(ii) Classification of LM Sets

A ∈M(X)⇐⇒ ∀ ε > 0, ∃ E ∈ E(X) s.t.

µ∗(A4E) < ε

where A4E = (A ∪ E)\(A ∩ E).

(iii) Algebra
Let A,B ∈M(X), then ∅, X,A ∩B,A ∪B and A\B ∈M(X).

(iv) Additivity
Let A,B ∈M(X) be disjoint, then

µ(A tB) = µ(A) + µ(B)

and

µ
(
tkn=1Ak

)
=

k∑
n=1

µ(An)

(v) σ-Algebra

{An}∞n=1 ⊆M(X) =⇒
∞⋃
n=1

An,

∞⋂
n=1

An ∈M(X)
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(vi) σ-Additivity
If {An}kn=1 ∈M(X) are disjoint, then

µ (t∞n=1An) =

∞∑
n=1

µ(An)

(vii) Monotonicity
Let A ⊆ B, then

µ(A) ≤ µ(B)

(viii) Continuity

a. If · · · ⊆ A2 ⊆ A1 ∈M(X), then

µ

( ∞⋂
n=1

An

)
= lim
n→∞

µ(An)

b. If A1 ⊆ A2 ⊆ · · · ∈ M(X), then

µ

( ∞⋃
n=1

An

)
= lim
n→∞

µ(An)

(ix) Let A ∈ X and let µ∗(A) = 0, then A ∈M(X) and µ(A) = 0.

(x) Translation Invariance
Let A ∈M(X), then

A+ x0 = {x+ x0 : x ∈ A} ∈ M(X)

and
µ(A+ x0) = µ(A)

Proposition 5. Every open set is a countable union of hv rectangles.

To make a final note, we have that

R(X) ⊆ E(X) ⊆ {open/closed sets} ⊆ M(X)

Definition 4. We say that A is a Lebesgue Measurable Set On All Of Rn or just A ∈ M(Rn)
whenever

A ∩Xm,n ∈M(Xm,n)

where
Xm,n = [m,m+ 1]× [n, n+ 1]

with measure

µ(A) =

∞∑
m,n=−∞

µ(A ∩Xm,n)
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Section 1.3

Non-Measurable Sets

Suppose that x, y ∈ X and let α be an irrational number, so α /∈ Q, and x ∼ y ⇐⇒ x − y = nα mod 1
where n ∈ Z.

Theorem 6 (Axiom Of Choice). We can choose a single representative from each equivalence class. We
note that this is NOT a theorem, it is simply a widely accepted mathematical axiom.

Let us call the set of all these representatives Φ.

Proposition 7. Φ is not Lebesgue measurable.
Proof.
Let

Φn = {x+ nα mod 1 : x ∈ Φ}

We now claim that all the Φn’s are pairwise disjoint. Suppose then for a contradiction that x ∈ Φn ∩ Φm
where n 6= m. This implies that there exists x1 ∈ Φ and y1 ∈ Φ such that

x1 + nαy1 +mα mod 1

then
x1 − y1 = (m− n)α mod 1

and so x1 ∼ y1, and thus y1 ∈ {x1} - equivalence class. But Φ contains only a single element from each
equivalence class. This contradiction yields our first claim.
We now claim that ⋃

n

Φn = S1

Now, suppose for another contradiction that Φ is in fact measurable. Then, there exists 0 ≤ a = µ(Φ). Now,
suppose that a > 0. Then

µ(Φn) = µ(Φm) = a

Then

(∗) µ([0, 1]) = 1 =

∞∑
n=−∞

a =∞

Thus, a = 0. But then (∗) gives that
0 = µ([0, 1]) = 1 �
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Chapter 2

Collections Of Sets

Definition 5. We say that the collection R 6= ∅ of sets is a Ring if for any A,B ∈ R, we have that

A ∩B,A4B ∈ R

Corollary 8. R is closed under operations of taking unions, intersections, differences, and symmetric
differences.

Remark. A ∪B = (A ∩B) ∪ (A4B).
We also note that every ring contains ∅ since ∅ = A\A so that the smallest possible ring is {∅}.

Definition 6. We say that the set E is Unit in R if for any set A ∈ R, we have that A ∩ E = A.

Remark. It is important to note that E is unique.

Definition 7. A ring R together with a unit E is called an Algebra.

Example 2. We will list some rings and algebras. First, let A be any set.

1. Let R be all the subsets of A. Then E = A.

2. Let R = {∅, A}.

3. Let R b e all the finite subsets of A. R has a unit (and it would be A) if and only if A is a finite set.

4. Let R be all bounded subsets of R. Then R has no unit.

Theorem 9. If Rα is a ring for all α ∈ I, then ∩α∈IRα is also a ring.
Proof.
We know that A,B ∈ ∩α∈IRα if and only if A,B ∈ Rα for each α ∈ I. Then A ∩ B,A4B ∈ Rα for each
α ∈ I. Thus,

A ∩B,A4B ∈
⋃
α∈I
Rα �

Definition 8. A is called a Semi-Ring if

(i) ∅ ∈ A

(ii) A,B ∈ A =⇒ A ∩B ∈ A

(iii) If A ∈ A and A1 ⊆ A, where A1 ∈ A then there exists A2, . . . , Ak such that

A = A1 ∪A2 ∪ · · · ∪Ak
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and Ai ∩Aj = ∅ for i 6= j where Ai ∈ A for all i ≤ k.

Remark. Every ring is a semi-ring.

Definition 9. From the definition above, we say that the sets A1, . . . , Ak form a Finite Partition of A.

Lemma 10. Let A1, . . . , An ∈ A where A is a semi-ring and Ai ∩ Aj = ∅, if i 6= j and Ai ⊆ A for all
i ≤ n. Then there exists sets An+1, . . . , As such that

(∗) A = A1 ∪ · · · ∪An ∪An+1 ∪ · · · ∪As

and such that (∗) is a finite partition of A (i.e. the Ai’s are pairwise disjoint).
Proof.
We proceed by induction. If n = 1, then this holds by the definition of a semi-ring. For the rest of this
induction, see Kolmogorov & Fomin.

Lemma 11. If A1, . . . , An ∈ A where A is a semi-ring, then there exists finitely many disjoint sets
B1, . . . , Bt such that every for each Ak there exists Ik such that

Ak =
⋃
s∈Ik

Bs

Proof.
We proceed by induction. Trivially, it holds for n = 1 (just take B1 = A1). Now, suppose that it’s true for
n = m. We wish to show that it holds for n = m+ 1. Let A1, . . . , Am, Am+1 ∈ A and let B1, . . . , Bt be the
elements of A that satisfy the conclusion of the lemma for A1, . . . , Am. Now, let Bs,1 = Am+1 ∩ Bs. We
know that B1,1, . . . , Bt,1 are disjoint subsets of Am+1 so we can apply Lemma 10.
Lemma 10 implies that

Am+1 = ∪ts=1Bs,1 =

q⋃
p=1

B′p

so that the B′p form a finite partition. Also, by the definition of a semi-ring, there exists a finite partition

Bs = Bs,1 ∪Bs,2 ∪ · · ·

It is clear that {B1,1, . . . , B1,f1 ;B2,1, B2,2, . . . , B2,f2 ;Bt,1, . . . , Bt,ft ;B
′
1, . . . , B

′
q} would satisfy the conclusion

of this lemma fo A1, . . . , Am+1 �

Lemma 12. Let A be a semi-ring. Then, the ring generated by A, R(A) is the collection B

A =

n⋃
k=1

Ak

where Ak ∈ A.
Proof.
This proof makes use of Lemmas 10 and 11 and can be found in Kolmogorov & Fomin.

Theorem 13. If A is an arbitrary collection of sets, then there exists a unique ring R(A)

(i) Containing all sets of A.

(ii) R(A) is contained in every ring satisfying (i).
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It is called a Minimal Ring over A, or the Ring Generated By A.
Proof.
We shall prove this in a special case with semi-rings.

Section 2.1

Sigma Algebras

Definition 10. We say that R is a σ-ring if and only if A1, . . . , An, . . . where Ai ∈ R implies that

∞⋃
j=1

Ai ∈ R

Now, if R is an algebra of subsets of a set X, then(⋃
n

An

)C
=
⋂
n

(An)C

If An ∈ R, then (An)C ∈ R which implies that

∞⋂
n=1

ACn ∈ R

Definition 11. We say that R is a δ-ring if and only if A1, . . . , An, . . . where Ai ∈ R implies that

∞⋂
j=1

Ai ∈ R

Definition 12. If a σ-ring is an algebra, then it is also a δ-ring. Such algebras are called Borel Algebras.

Theorem 14. If Σ is a collection of sets, then there exists ”the smallest” σ-algebra containing all the sets
in Σ and contained in every σ-algebra that contains Σ. It is called the Minimal σ-Algebra over Σ, or
just the MinimalB −Algebra generated by Σ. In R, the Borel σ-algebra is the σ-algebra generated by all
(closed) intervals.

We now wish to know what functions do to rings. Let f : X → Y where y = f(x), and suppose thatM is a
collection of subsets of X and that N is a collection of subsets of Y .

Definition 13. For notational purposes, we say

f(M) = {f(B), B ∈M}

and we say
f−1(N ) = {f−1(C) : C ∈ N}
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Proposition 15. We list some properties of the above objects:

(i) If R is a ring of subsets of Y , then f−1(R) is also a ring of subsets of X.
Proof.
If A,B ∈ R then

f−1(A ∩B) = f−1(A) ∩ f−1(B)

and
f−1(A\B) = f−1(A)\f−1(B)

so that
f−1(A4B) = f−1((A\B) ∪ (B\A))

= f−1(A\B) ∪ f−1(B\A)

= (f−1(A)\f−1(B)) ∪ (f−1(B)\f−1(A))

= f−1(A)4f−1(B)

(ii) If A is an algebra, then f−1(A) is an algebra. That is, there exists E ∈ A such that f−1(E) = unit in
f−1(A).

(iii) If A is a σ-algebra, then f−1(A) is also a σ-algebra.

(iv) The ring generated by f−1(N ) is equal to

f−1(ring generated by N )

(v) The σ-algebra generated by f−1(N ) is equal to

f−1(σ-algebra generated by N )
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Chapter 3

Measures

Suppose that R is a semi-ring, then we define

µ : R → R+ = {x ∈ R : x ≥ 0}

If A = ∪∞k=1Ak is a finite partition of A where Ak ∈ R for each k. Then

µ(A) =

n∑
k=1

µ(Ak)

Proposition 16. Let R be a semi-ring and let µ : R → R+ be a measure. Let A1, . . . , Ak be pairwise
dijoint subsets of the set A such that Aj , A ∈ R for each j. Then

k∑
j=1

µ(Aj) ≤ µ(A)

Proof.
Let B1, . . . , Bl be such that

A = A1 ∪ · · · ∪Ak ∪B1 ∪ · · · ∪Bl
then

µ(A) = µ(A1) + · · ·+ µ(Ak) + µ(B1) + · · ·+ µ(Bl)

where each of the measures of the Bi’s are non-negative. �

Theorem 17. Let S be a semi-ring and let µ be a measure. Let A1, . . . , An;A ∈ S (not necessarily
disjoint) be such that

A ⊆
n⋃
k=1

Ak

then

µ(A) ≤
n∑
k=1

µ(Ak)

Proof.
By a property of semi-rings, there exists sets B1, . . . , Bt such that the Bi’s are pariwise disjoint and

A =
⋃
s∈I0

Bs

and
Ak =

⋃
s∈Ik

Bs

for each k, so that

A =
⋃
s∈I0

Bs ⊆
n⋃
k=1

⋃
s∈Ik

Bs
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and so

µ(A) =
∑
s∈I0

µ(Bs) ≤
n∑
k=1

∑
s∈Ik

µ(Bs) �

Corollary 18. If A1 ⊆ A2, then µ(A1) ≤ µ(A2).

Definition 14. An Extension µ of a measure m satisfies

(i) Ring Sm ⊆ Sµ.

(ii) For any A ∈ Sm, we have that µ(A) = m(A).

Theorem 19. Any measure m(A) on a semi-ring Sm has a unique extension µ(A) such that

Sµ = {ring generated by Sm} = R(Sm)

Proof (Sketch).
Recall that any set in R(Sm) has a partition

A =

n⋃
k=1

Bk

where Bk ∈ Sm. Now, let

(∗) µ(A) =

n∑
k=1

m(Bk)

We now claim that (∗) doesn’t depend on the sets Bk’s that we used. To show this, we note that any two
ways to assemble A have a common refinement.
This gives an extension of m to R(Sm).

For uniqueness, suppose that µ1 and µ2 both extend m. Let A ∈ R(Sm), then

A =

n⋃
k=1

Bk

where the Bk’s form a partition of A, and so

µ1(A) =

n∑
k=1

µ1(Bk) =

n∑
k=1

m(Bk) �

We note that for the complete proof, see Kolmogorov & Fomin.

Definition 15. We say that µ is Countably/Completely/σ-Additive if we have a countable family of
pairwise disjoint subsets in Sµ, A1, . . . , An, . . . that we can measure, and if we have

A =

∞⋃
n=1

An

then

µ(A) =

∞∑
n=1

µ(An)
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Example 3. Here, we list some countably additive measures.

1. Lebesgue Measure is σ-additive.

2. Let p1, . . . , pn, . . . be non-negative numbers such that

∞∑
n=1

pn = 1

and let
Sµ = {all subsets of N}

where
µ({n}) = pn

If I ⊆ N, then

µ(I) =
∑
n∈I

pn =⇒ µ(N) =

∞∑
n=1

= 1

This measure that we just described is σ-additive.

We note that there do exist measures that are additive but are not σ-additive.

Theorem 20. If m defined on Sm is σ-additive, then its extension µ = r(m) to the ring R(Sm) is also
σ-additive.
Proof (Sketch).
Suppose that A ∈ R(Sm) and that for each k, we have Bk ∈ R(Sm). Now, suppose that the Bk’s are disjoint
and

A =

∞⋃
k=1

Bk

We want that

µ(A) =

∞∑
k=1

µ(Bk)

We know that for a finite combination of Aj ∈ Sm and Bn,i, we can write

A =
⋃
j

Aj

where the Aj’s are disjoint, and we can write

Bn =
⋃
i

Bn,i

where the Bi’s are disjoint. Now, define
Cn,i,j = Aj ∩Bn,i

then we have that

A =
⋃
n

(⋃
i

Cn,i,j

)
Bn,i =

⋃
j

Cn,i,j

so that
m(Aj) =

∑
n

∑
i

m(Cn,i,j) m(Bn,i) =
∑
j

m(Cn,i,j)
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and so
µ(A) =

∑
j

m(Aj) =
∑
j

∑
n

∑
i

m(Cn,i,j)

µ(Bn) =
∑
i

m(Bn,i) =
∑
i

∑
j

m(Cn,i,j)

and finally, since n lives in N, our sum over all n is an infinite series, and so

µ(A) =

∞∑
n=1

µ(Bn) �

Section 3.1

The Borel-Cantelli Lemma

Definition 16. Consider a sequence A1, . . . , An, . . . ⊆ X, then we define

B = lim sup
n→∞

An =
⋂
n≥1

⋃
k≥n

Ak

 = {x : x ∈ Ak for infinitely many k}

Lemma 21 (Borel-Cantelli). Suppose that

∞∑
n=1

µ(An) <∞

Then
µ(B) = 0

Theorem 22. If a measure µ is σ-additive, and A1, . . . , An, . . . ∈ Sµ, and

A ⊆
∞⋃
n=1

An

then

µ(A) ≤
∞∑
n=1

µ(An)

Proof (Idea).
First, let

Bn = (A ∩An)\

(
n−1⋃
k=1

Ak

)
and

A =

∞⋃
n=1

Bn

and so our Bn’s are disjoint. Now we apply Theorem 20 to finish the proof.
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Section 3.2

Lebesgue Extension of Measure on a Semi-Ring with Unit

Consider a σ-additive measure m defined on Sm with the unit E.

Definition 17. Let A ⊆ E, then we define the Outer Measure µ∗ to be

µ∗(A) = inf

{∑
n

m(Bn) : A ⊆
⋃
n

Bn

}

for Bn ∈ Sm.

Definition 18. Let A ⊆ E, then we define the Inner Measure µ∗ to be

µ∗(A) = m(E)− µ∗(E\A)

where µ∗ is the outer measure.

Proposition 23. We have that
µ∗(A) ≤ µ∗(A)

Proof.
We know that

µ∗(A) = m(E)− µ∗(E\A)

and we want to show that
m(E) ≤ µ∗(A) + µ∗(E\A)

so
µ∗(A) = inf

A⊆∪nBn

∑
n

m(Bn)

µ∗(E\A) = inf
E\A⊆∪mCm

∑
m

m(Cm)

Now, we have

E ⊆

(⋃
n

Bn

)
∪

(⋃
m

Cm

)
and this implies that

m(E) ≤ inf

∞∑
n=1

m(Bn) + inf

∞∑
m=1

m(Cm)

and this finally implies that

µ∗(A) = m(E)− µ∗(E\A) ≤ µ∗(A)− µ∗(E\A) + µ∗(E\A) = µ∗(A) �

Definition 19. We say that A ⊆ E is Lebesgue Measurable if and only if

µ∗(A) = µ∗(A)

in which case, we define
µ(A) = µ∗(A) = µ∗(A)
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Remark. Also, if A is measurable, then so is its compliment E\A.

Proposition 24. If µ is a σ-additive extension of m, then

µ∗(A) ≤ µ(A) ≤ µ∗(A)

Corollary 25. If A is Lebesgue measurable, then for any σ-finite extension µ of m, we have that

µ(A) = µ∗(A) = µ∗(A)

Definition 20. A is Lebesgue Measurable if and only if

µ∗(A) + µ∗(E\A) = m(E)

Theorem 26. Suppose that

A ⊆
∞⋃
n=1

An

then we have that

µ∗(A) ≤
∞∑
n=1

µ∗(An)

Proof.
For any ε > 0, there exists a cover {Pn,k} each measurable with respect to m such that

∞∑
k=1

m(Pn,k) ≤ µ∗(An) +
ε

2n

Now,

A ⊆
∞⋃
n=1

∞⋃
k=1

Pn,k

and so

µ∗(A) ≤
∞∑
k=1

∞∑
n=1

m(Pn,k) ≤
∞∑
n=1

µ∗(An) +

∞∑
n=1

ε

2n
=

∞∑
n=1

µ∗(An) + ε

but ε is arbitrarily small, so this yields our claim. �

Theorem 27. If A ∈ R where R is the collection of sets measurable with respect to the old measure, then

µ∗(A) = m′(A) = µ∗(A)

where m is the old measure.
Proof.
For a detailed proof, see Kolmogorov & Fomin, §33.

Lemma 28. For any sets A,B ⊆ E, we have that

|µ∗(A)− µ∗(B)| ≤ µ∗(A4B)
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Proof.
WLOG, we can assume that

µ∗(A) ≥ µ∗(B)

so, we have
A ⊆ B ∪ (A4B) =⇒ µ∗(A) ≤ µ∗(B) + µ∗(A4B)

which completes the proof. �

Theorem 29. The set A is measurable if and only if for any ε > 0, there exists a set B ∈ R(Sm) (contained
in the minimal ring generated by Sm) such that

µ ∗ (A4B) < ε

Proof (Sketch).

(i) Sufficiency.
Suppose that for any ε > 0, there exists a set B such that µ∗(A4B) ≤ ε. Now, by Lemma 28, we get
that

|µ∗(A)−m′(B)| ≤ ε

Now,
(E\A)4(E\B)−A4B

Now, we have
|µ∗(E\A)−m′(E\B)| < ε

and B is elementary, so
m′(B) +m′(E\B) = m(E)

Now, we finally get that
|µ∗(A) + µ∗(E\A)−m(E)| < 2ε

but this gives that
µ∗(A) + µ∗(E\A)−m(E) = 0

which implies that A is measurable, so we have sufficiency.

(ii) Necessity.
Suppose that

µ∗(A) + µ∗(E\A) = m(E) = 1

Then for all ε > 0, there exists elementary sets {Bn} and {Cn} such that

A ⊆
⋃
n

Bn E\A ⊆
⋃
n

Cn

and ∑
n

m(Bn) ≤ µ∗(A) +
ε

3

∑
n

m(Cn) ≤ µ∗(E\A) +
ε

3

We know that ∑
n

m(Bn) <∞

so choose N such that ∑
n>N

m(Bn) <
ε

3

18



and let

B =

N⋃
n=1

Bn

so
P =

⋃
n>N

Bn

forms an open cover of A\B, and let

Q =
⋃
n

(B ∩ Cn)

which is a cover of B\A. Now,
A4B ⊆ P ∪Q

so that
µ∗(P ) ≤

∑
n≥N

m(Bn) <
ε

3

We now claim that

µ∗(Q) <
2ε

3

the proof for which can be found in Kolmogorov & Fomin. Using this, we arrive at

µ∗(A4B) ≤ µ∗(P ) + µ∗(Q) <
2ε

3
+
ε

3
= ε

which gives necessity. �

Remark. B = B(ε).

Theorem 30. The collection M of all Lebesgue Measurable sets is a ring.

Proof (Sketch).
We know that

A1 ∩A2 = A1\(A1\A2)

and that
A1 ∪A2 = E\[(E\A1) ∩ (E\A2)]

It suffices to show that if A1, A2 are measurable, then A1\A2 is also measurable. Now there exists B1, B2

such that
µ∗(Aj4Bj) <

ε

2

for j = 1, 2. Let B = B1\B2. Then we claim that

(A1\A2)4(B14B2) ⊆ (A1\B1)4(A2\B2)

We will leave the proof of this claim as an excercise. Assuming the above, we have that

µ∗((A1\A2)4(B14B2)) ≤ µ∗((A1\B1)4(A2\B2)) < 2
ε

2
= ε

and since ε is arbitrary, we have that A1\A2 are measurable as needed. �
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Theorem 31. Let E ∈ M where M is an algebra with unit E. Then µ is additive on M. That is, if
A1, . . . , An ∈M are disjoint, then

µ

(
n⋃
k=1

Ak

)
=

n∑
k=1

µ(Ak)

Proof (Sketch).
It is enough to show this for n = 2. So, there exists B1, B2 elementary sets such that

µ∗(A14B1) < ε

and
µ∗(A24B2) < ε

and we claim that
B1 ∩B2 ⊆ (A14B1) ∪ (A24B2)

the proof of which is left as an excercise. Assuming this, we arrive at

µ∗(B1 ∩B2) < 2ε

and we have that
|µ∗(B1)− µ∗(A1)| = |m′(B1)− µ∗(A1)| < µ∗(A14B1) < ε

and similarly,
|m′(B2)− µ∗(A2)| < ε

Now, let B = B1 ∪B2, then we get

m′(B) = m′(B1) +m′(B2)−m′(B1 ∩B2)

≥ µ∗(A1) + µ∗(A2)− ε− ε− 2ε

µ∗(A1) + µ∗(A2)− 4ε

Now we claim that
(A4B) ⊆ (A14B1) ∪ (A24B2)

and the proof to this is left as another excercise. Assuming this, we get

µ∗(A) ≥ m′(B)− µ∗(A4B)

≥ m′(B)− 2ε

≥ µ∗(A1) + µ∗(A2)− 6ε

and since ε is arbitrarily small, we finally get that

µ∗(A) ≥ µ∗(A1) + µ∗(A2)

and since we get the other inequality for free, we have that

µ∗(A) = µ∗(A1) + µ∗(A2)

and then the fact that µ = µ∗ completes the proof. �
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Theorem 32. The measure µ is σ-additive on M.

Proof (Sketch).
Let

A =

∞⋃
n=1

An

and assume that the An’s are disjoint. Then,

µ∗(A) ≤
∞∑
n=1

µ(An)

Theorem 31 tells us that

µ∗(A) ≥ µ∗
(

N⋃
k=1

Ak

)
=

N∑
k=1

µ∗(Ak)

Now, let N →∞, which gives

µ∗(A) ≥
∞∑
n=1

µ∗(An)

and we have equality. �

We say that µ on M is the Lebesgue Extension of m.

Theorem 33. M is a Borel σ-algebra with unit E.

Proof.
It is enough to show that if A1, . . . , An, . . . ∈M, then ∪∞n=1An is measurable. To show this, let

A′n = An\

(
n−1⋃
k=1

Ak

)

then the A′n are disjoint and
∞⋃
n=1

A′n =

∞⋃
n=1

An

and A′n ∈M then
n∑
k=1

µ(A′k) = µ

(
n⋃
k=1

A′k

)
≤ µ∗(A)

Hence,
∞∑
n=1

µ(A′n) <∞

This means that for any ε > 0, there exits N > 0 such that∑
n>N

µ(A′n) <
ε

2
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Now, look at

C =

N⋃
n=1

A′n

which is measurable. Hence, there exists an elementary set B such that

µ(C4B) <
ε

2

We have that

A4B ⊆ (C4B) ∪

( ⋃
n>N

A′n

)
and this gives us that

µ∗(A4B) ≤ µ(C4B) +
∑
n>N

µ∗(A′n) <
ε

2
+
ε

2
= ε �

Proposition 34. The proposition has two parts.

(i) If A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · where Aj ∈M for each j. Then

A =
⋂
n

An

is measurable, and
µ(A) = lim

n→∞
µ(An)

(ii) The same conclusion for A1 ⊆ · · · ⊆ An ⊆ · · · with a slight difference. We get

µ

( ∞⋃
n=1

An

)
= lim
n→∞

µ(An)
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Chapter 4

Measurable Functions

We begin with a definition.

Definition 21. Consider (X,Σ1), (Y,Σ2) and we have f : X → Y . Then we say that f is Measurable
With Respect To Σ1,Σ2 if and only if for every A ∈ Σ2, we have f−1(A) ∈ Σ1.

Suppose that Y = R and that Σ2 is the Lebesgue measurable sets. Assume that X has a measure µ that is
σ-additive and say that Σ1 is the algebra of µ measurable sets with µ(X) < ∞ with X as the unit of Σ1.
We then say that in this special case, f : X → R is µ-measurable if and only if for any A ⊆ R, we have
f−1(A) ∈ Σ1.

Remark. It is true that the Borel sets in R can be generated (by unions, complements, etc) by (−∞, C)
so that

f−1((−∞, C)) = {x : f(x) < C}

Section 4.1

The Measurability Of f

Theorem 35. The function f is µ measurable if and only if for any C ∈ R, we have

{x ∈ X : f(x) < C} ∈ Σ1

Theorem 36. Let fn(x) → f(x) for every x ∈ X. Now, suppose that fn is µ measurable for every n.
Then f is also µ measurable.

Proof.
We know that {x ∈ X : f(x) < C} is µ measurable for any C ∈ R. Now, we claim that

(∗) {x ∈ X : f(x) < C} =
⋃
k

⋃
n

( ⋂
m>n

{
x ∈ X : fm(x) < C − 1

k

})

It is not hard to see that this claim implies the theorem. To prove the claim, we note that if f(x) < C, then
there exists k such that

f(x) < C − 2

k

Now,
f(x) = lim

m→∞
fm(x)

and so

fm(x) < C − 1

k
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where m is large enough, say m > n. This would now mean that x is contained in the RHS set of (∗). Thus,
LHS ⊆ RHS.
Now, suppose that x ∈ RHS, so there exists k and n such that

fm(x) < C − 1

k

for all m > n. Then we have

f(x) = lim
m→∞

fm(x) ≤ C − 1

k
< C

and so RHS ⊆ LHS and so we have equality. �

Definition 22. We say that f : X → R is Simple if f is µ measurable and the image of X under f
({f(x) : x ∈ X}) is finite or countable.

Let c1, . . . , cn, . . . be values taken by f and let An = {x : f(x) = cn}. First, we have that An ⊆ X is
measurable. Now, all Aj are disjoint, so

f =

∞∑
n=1

cnχAn

Also, the An’s form a partition of X. These are essentially step functions. A basic example could be attained
by letting only finitely many cj ’s be non-zero, so that c1, . . . , cn−1 6= 0, cn = 0 and An = X\(A1∪· · ·∪An−1).

Aside. We have that ∫
f(x)dµ(x) =

∞∑
n=1

cnµ(An)

only if the sum converges.

Theorem 37. The function f(x) is µ measurable if and only if f is a limit of a uniformly convergent
sequence of measurable simple functions.

Proof.
(⇐=): This direction is given by Theorem 36.

(=⇒): Given n ∈ N, there exists m ∈ Z such that

m

n
≤ f(x) <

m+ 1

n

Now, let

fn(x) =
m

n

We now claim that fn is measurable. Let Am,n =
{
x : fn(x) = m

n

}
and A is measurable and

fn =
∑
m∈Z

m

n
χAm,n

Now, for any x, we have

|f(x)− fn(x)| < 1

n

so we get that fn → f(x) as needed. �
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Theorem 38. If f, g is measurable, then so is f + g.

Proof. We use Theorem 37. Let fn → f and gn → g be simple (measurable) functions.
Now we claim that fn + gn is simple and measurable. This claim implies the theorem. To prove this, we
write

fn =
∑
k

ckχAk gn =
∑
l

dlχBl

Now, fn + gn takes values in {ck + dl : k, l ∈ Z} = V . Now, let z ∈ V , then

{x : fn(x)− gn(x) = z} =
⋃

(k,l):ck+dl=z

(Ak ∩Bl)

is measurable for each k, l ∈ Z which yields our claim and proves the theorem.

Theorem 39 (Compositions). A Borel measurable function of a µ- measurable function is µ-measurable.

Proof. Let ψ : X → R be µ-measurable and let φ : R → Y be Borel measurable. Then if A ∈ ΣY , then
R ⊇ φ−1(A) is Borel measurable. Now, we also have that ψ−1(φ−1(A)) ∈ ΣX where ΣX is the set of
µ-measurable functions. Thus, [φ ◦ ψ]−1(A) ∈ ΣX as needed.

Definition 23. We say that f ∼ g if and only if

µ{x : f(x) 6= g(x)} = 0

and it is easy to see that this is an equivalence relation.

Definition 24. A property P is satisfied a.e. - (Almost Everwhere) if and only if P holds except on
some set of measure zero.

Proposition 40. If f, g are continuous on [a, b] such that f = g a.e., then f(x) = g(x) for any x ∈ [a, b].

Proof. Suppose that f(x0) 6= g(x0) for some point x0, then there exists an interval I containing x0 such that
f(y) 6= g(y) for each y ∈ I. But then we have

µ{y : f(y) 6= g(y)} > 0

which contradicts the assumption of equality a.e. and yields our claim.

Proposition 41. If f ∼ g and g is measurable, then f must also be measurable.

Proof. We have that
µ
(
f−1((−∞, c))4g−1((−∞, c))

)
= 0

but then we have that f−1((−∞, c)) is also µ measurable as needed.
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Theorem 42 (Lusin). The function f is measurable on [a, b] if and only if for every ε > 0, there exists a
continuous function φ defined on [a, b] such that

µ{x : f(x) 6= φ(x)} < ε

Proof. To be proven later.

Section 4.2

Sequences Of Measurable Functions

Definition 25. We say that fn(x)→ f(x) a.e. if and only if

µ{x : fn(x)→ f(x)} = 0

Theorem 43. If fn(x)→ f(x) a.e., and fn is measurable, then f(x) is measurable.

Theorem 44 (Egorov). Let fn(x) be a sequence of measurable functions, and let fn(x) → f(x) a.e. on
X. Then for every δ > 0, there exists Xδ such that

(i) µ(xδ) > µ(X)− δ.

(ii) fn(x)→ f(x) uniformly on Xδ.

Proof. Suppose that f(x) is measurable and let

Xm
n =

⋂
k≥n

{
x : |fk(x)− f(x)| < 1

m

}

=

{
x : |fk(x)− f(x)| < 1

m
,∀ k ≥ n

}
Now, let

Xm =
⋃
n

Xm
n

and remark that
Xm

1 ⊆ Xm
2 ⊆ · · · ⊆ Xm

n · · ·
and m is fixed. Now, µ is σ-additive, so we get

µ(Xm) = lim
n→∞

µ(Xm
n )

and then for any δ > 0, there exists an index n(m) such that

µ(Xm\Xm
n(m)) <

δ

2m

Now, we claim that if we let

Xδ =
⋂
m

Xm
n(m)

then this set will have the required property.
To prove this, we note that we get uniform convergence on Xδ since for all i ≥ n(m), we have

(∗) |fi(x)− f(x)| < 1

m
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and since
x ∈

⋂
m

Xm
n(m)

the inequality (∗) eventually holds for all m.
As for estimating µ(X\Xδ), we first note that

µ(X\Xm) = 0 ∀ m

since if x0 ∈ X\Xm then for infinitely many indices {i0} we have that fi0(x0) 9 f(x0) and thus, by
assumption, we have that

µ{x : fi(x) 9 f(x)} = 0

Now, we have that

µ(X\Xm
n(m)) = µ(Xm\Xm

n(m)) <
δ

2m

and so

µ(X\Xδ) = µ

(
X\

(⋂
m

Xm
n(m)

))

≤ µ

(⋃
m

(X\Xm
n(m))

)
and thus ∑

m

µ(X\Xm
n(m)) <

∞∑
m=1

δ

2m
= δ

which yields our claim.

Definition 26. We say that a sequence fn(x) converges to f(x) In Measure if and only if for every
δ > 0, we have

lim
n→∞

µ{x : |fn(x)− f(x)| ≥ δ} = 0

Theorem 45. Suppose that fn(x)→ f(x) a.e., then fn(x)→ f(x) in measure.

Proof. Let
A = {x : fn(x)→ f(x)}

then µ(A) = 0 by assumption. Now, let

Xk(δ) = {x : |fk(x)− f(x)| ≥ δ}

and let

Rn(δ) =

∞⋃
k=n

Xk(δ)

and let

M =

∞⋃
n=1

Rn(δ) = {x : |fk(x)− f(x)| ≥ δ for infinitely many k}

So, R1(δ) ⊇ R2(δ) ⊇ · · · ⊇ Rn(δ) ⊇ · · · , and thus

µ(Rn(δ))→ µ(M)
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as n → ∞. We now claim that M ⊆ A which holds from the definition of M . This implies that µ(M) = 0
and thus

µ(Rn(δ))→ 0

as n→∞ and thus
µ(X\Rn(δ)→ µ(X)

as needed.

Remark 1. We note that the converse of the theorem is false. Convergence a.e. is more powerful than
convergence in measure. An example of this can by constructed. Let

fki (x) = χ[ ik ,
i+1
k ](x)

We claim that fki → 0 in measure as k →∞, but

{x : fki (x)→ 0} = ∅

which gives us convergence in measure but not convergence a.e.

Remark 2. If fn → f in measure and f ∼ g, thne fn → g in measure as n→∞.

Theorem 46. Suppose that fn(x)→ f(x) in measure. Then, there exists a natural subsequence {nk} such
that

{fnk(x)} → f(x) a.e.

Proof. Let ε1 > ε2 > · · · > εn > · · · ≥ 0 so that εn → 0 as n→∞. Now, let ηj > 0 such that

∞∑
j=1

ηj <∞

and now let n1 be such that
µ{x : |fn1

(x)− f(x)| ≥ ε1} < η1

and let n2 be such that
µ{x : |fn2

(x)− f(x)| ≥ ε1} < η2

and so on. Now, we claim that fnk(x)→ f(x) a.e.
Let

Ri =

∞⋃
k=i

{x : fnk(x)− f(x)| ≥ εk}

and let

Q =

∞⋂
i=1

Ri

and we have that R1 ⊇ · · · ⊇ Rn ⊇ · · · and then

µ(Rk)→ µ(Q)
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as k →∞ so that

µ(Ri) ≤
∞∑
k=i

µ{x : fnk(x)− f(x)| ≥ εk}

≤
∞∑
k=i

ηk → 0

as i→∞. Thus, µ(Q) = 0 and we claim that fnk(x)→ f(x) for x /∈ Q. To show this, let x0 ∈ X\Q. Then
there exists i0 such that x0 /∈ Ri0 . It follows that for any k ≥ i0, we have that

x0 /∈ {y : fnk(y)− f(y)| ≥ εk}

which implies that
|fnk(x0)− f(x0)| < εk

for every k ≥ i0 and since εk → 0, we are done.
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Chapter 5

The Lebesgue Integral

Section 5.1

The Lebesgue Integral For Simple Functions

Suppose that f(x) is simple with values yn, n ≥ 1 such that yi 6= yj for i 6= j. We then define the Integral
of f over the set A as

(∗)
∫
A

f(x)dµ =
∑
n

ynµ({x : x ∈ A, f(x)− yn})

Definition 27. We say that a simple function f(x) is µ-integrable over A if the series (∗) is absolutely
convergent and we call the series (∗) the Integral of f over A.

Lemma 47. Suppose that

A =
⋃
k

Bk, Bi ∩Bj = ∅, i 6= j

and that f(x) assumes only one value on each set Bk. Then∫
A

f(x)dµ =
∑
k

ckµ(Bk)

where f is integrable over A if and only if the series above is absolutely convergent.

Proof. It’s clear that
An = {x : x ∈ A, f(x) = yn}

is the union of all sets Bk for which ck = yn. Thus,∑
n

ynµ(An) =
∑
n

yn
∑
ck=yn

µ(Bk) =
∑
k

ckµ(Bk)

Now, since measure is non-negative, we have that∑
n

|yn|µ(An) =
∑
n

|yn|
∑
ck=yn

µ(Bk) =
∑
k

|ck|µ(Bk)

so that the series ∑
n

ynµ(An),
∑
k

ckµ(Bk)

are either both absolutely convergent or both divergent.

We will now list some properties of the Lebesgue integral of f for f simple.
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(i) We have ∫
A

f(x)dµ+

∫
A

g(x)dµ =

∫
A

(f(x) + g(x))dµ

where the existence of the integrals on the LHS implies the existence of the integral on the RHS.

(ii) We also have for every constant k that

k

∫
A

f(x)dµ =

∫
A

(kf(x))dµ

where the existence of the integral on the LHS implies the existence of the integral on the RHS.

(iii) A simple function f(x) bounded on a set A is integrable over A and∣∣∣∣∫
A

f(x)dµ

∣∣∣∣ ≤Mµ(A)

where |f(x)| ≤M on A.

Section 5.2

General Definition and Properties of Lebesgue Integral

Definition 28. We say that a general function f(x) is Integrable over a set A if there exists a sequence
of simple functions fn(x) all integrable over A and uniformly convergent to f . We then say that the limit of
the integrals of the fn

lim
n→∞

∫
A

fn(x)dµ =

∫
A

f(x)dµ

is the Integral of f .

Theorem 48. The above definition holds if:

(i) The limit for an arbitrary uniformly convergent sequence of simple functions integrable over A exists.

(ii) The limit, for fixed f(x) is independent of the choice of sequence fn(x).

(iii) For simple functions, this definition of integrability is equivalent to that of the previous section.

Proof. (i) Because of the three properties of integrals of simple functions discussed in the previous section,
we have that ∣∣∣∣∫

A

fn(x)dµ−
∫
A

fm(x)dµ

∣∣∣∣ ≤ µ(A) sup{|fn(x)− fm(x) : x ∈ A}

which yields the first result.

(ii) We consider two sequences {fn(x)} and {f∗n(x)} and use the fact that∣∣∣∣∫
A

fn(x)dµ−
∫
A

f∗n(x)dµ

∣∣∣∣ ≤ µ(A) sup{|fn(x)− f(x) : x ∈ A}

+ sup{|f∗n(x)− f(x)| : x ∈ A}

which yields the second result.
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(iii) Now, it’s sufficient to consider the sequence fn(x) = f(x) for all n, and we’re done.

We now generalize the properties listed in the previous section into full-blown theorems about general
functions.

Theorem 49. We have ∫
A

1 · dµ = µ(A)

Theorem 50. For every constant k, we have

k

∫
A

f(x)dµ =

∫
A

(kf(x))dµ

where the existence of the integral on the LHS implies the existence of the integral on the RHS.

Theorem 51. We have that ∫
A

f(x)dµ+

∫
A

g(x)dµ =

∫
A

(f(x) + g(x))dµ

where the existence of the integrals on the LHS implies the existence of the integral on the RHS.

Theorem 52. A function f(x) bounded on a set A is integrable over A.

Proof. We prove this by simply passing to the limit of property (iii) of Theorem 48.

Theorem 53. If f(x) ≥ 0, then ∫
A

f(x)dµ ≥ 0

assuming that the integral exists.

Proof. For simple functions, the theorem follows immediately from the definition of the integral. In general
though, we base the proof on the fact that we can approximate a nonnegative function by simple functions
arbitrarily well.

Corollary 54. If f(x) ≥ g(x), then ∫
A

f(x)dµ ≥
∫
A

g(x)dµ
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Corollary 55. If m ≤ f(x) ≤M on A, then

mµ(A) ≤
∫
A

f(x)dµ ≤Mµ(A)

Theorem 56. Suppose that

A =
⋃
n

An, Ai ∩Aj = ∅, i 6= j

then we have that ∫
A

f(x)dµ =
∑
n

∫
An

f(x)dµ

where the existence of the integral on the LHS implies the existence of the integrals and absolute convergence
of the series on the RHS.

Corollary 57. If f(x) is integrable over A, then f(x) is integrable over an arbitrary A′ ⊆ A.

Theorem 58. If a function φ(x) is integrable over A and |f(x)| ≤ φ(x), then f(x) is also integrable over A.

Proof. If both f and φ are simple functions, then A can be written as the union of a countable number of
sets on each of which f and φ are constant so that

f(x) = an φ(x) = αn

where |an| ≤ αn. The integrability of φ implies that∑
n

|an|µ(An) ≤
∑
n

αnµ(An) =

∫
A

φ(x)dµ

Thus, we have that f is also integrable, and∣∣∣∣∫
A

f(x)dµ

∣∣∣∣ =

∣∣∣∣∣∑
n

anµ(An)

∣∣∣∣∣
≤
∑
n

|an|µ(An)

=

∫
A

|f(x)|dµ

≤
∫
A

φ(x)dµ

and the theorem is proved by passing to the limit.

Theorem 59. The integrals

I1 =

∫
A

f(x)dµ, I2

∫
A

|f(x)|dµ

either both exist or both do not.
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Theorem 60 (Chebychev Inequality). If φ(x) ≥ 0 on A, then

µ({x : x ∈ A, φ(x) ≥ c}) ≤ 1

c

∫
A

φ(x)dµ

Proof. First, set
A′ = {x : x ∈ A, φ(x) ≥ c}

and we have ∫
A

φ(x)dµ =

∫
A′
φ(x)dµ+

∫
A\A′

φ(x)dµ ≥
∫
A′
φ(x)dµ ≥ cµ(A′)

as needed.

Corollary 61. If ∫
A

|f(x)|dµ = 0

then f(x) = 0 a.e.

Proof. By the Chebychev Inequality, we get

µ

{
x : x ∈ A, |f(x)| ≥ 1

n

}
≤ n

∫
A

|f(x)|dµ = 0

for all n. Therefore,

µ{x : x ∈ A, f(x) 6= 0} ≤
∞∑
n=1

µ

{
x : x ∈ A, |f(x)| ≥ 1

n

}
= 0

as needed.

Theorem 62. Suppose that fn → f on A and that

|fn(x)| ≤ φ(x)

for every n where φ(x) is integrable over A. Then f is integrable over A and∫
A

fn(x)dµ→
∫
A

f(x)dµ

Proof. It is easy to see that |f(x)| ≤ φ(x). Now, let A = {x : k − 1 ≤ φ(x) < k} and let

Bm =
⋃

k≥m+1

Ak = {x : φ(x) ≥ m}

By Theorem 56, we know that ∫
A

φ(x)dµ =
∑
k

∫
Ak

φ(x)dµ

and that the series above converges absolutely. Thus, we get that∫
Bm

φ(x)dµ =
∑

k≥m+1

∫
Ak

φ(x)dµ
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and the convergence of the first sum gives that there exists an m such that∫
Bm

φ(x)dµ <
ε

5

and φ(x) < m is true on A\Bm. By Egorov’s Theorem, we get that A\Bm can be written as C ∪D where
µ(D) < ε

5m and the sequence fn converges uniformly to f on C. Now, pick N so large that

|fn(x)− f(x)| < ε

5µ(C)

for each n > N and x ∈ C. This gives that∫
A

(fn(x)− f(x))dµ =

∫
Bm

fn(x)dµ−
∫
Bm

f(x)dµ+

∫
D

fn(x)dµ−
∫
D

f(x)dµ

+

∫
C

(fn(x)− f(x))dµ < 5
ε

5
= ε

which yields our claim.

Remark. The values of f on a set of measure zero don’t effect the integral but we’ll still want to assume
that fn converges a.e. in the above theorem.

Corollary 63. Suppose that |fn(x)| ≤M and that fn → f . Then∫
A

fn(x)dµ→
∫
A

f(x)dµ

Theorem 64. Suppose that
f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ · · ·

on a set A where the functions fn(x) are integrable and their integrals are bounded from above. That is,∫
A

fn(x)dµ ≤ K

Then we have that the limit
f(x) = lim

n→∞
fn(x)

exists a.e. on A. Also, we have that f is integrable on A and∫
A

fn(x)dµ→
∫
A

f(x)dµ

This theorem also holds for a decreasing sequence of functions all of whom are bounded from below.

Proof. WLOG, assume that f(x) ≥ 0, since we can write gn(x) = fn(x)− f1(x). Let

Ω = {x : x ∈ A, fn(x)→∞}

Now, if we let
Ω(r)
n = {x : x ∈ A, fn(x) > r}
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then it is clear to see that
Ω =

⋂
r

⋃
n

Ω(r)
n

By the Chebychev Inequality, we get that

µ(Ω(r)
n ) ≤ K

r

Now, since Ω
(1)
1 ⊆ · · · ⊆ Ω

(r)
n ⊆ · · · , it follows that

µ

(⋃
n

Ω(r)
n

)
≤ K

r

for every r, and so

µ(Ω) ≤ K

r

Now, since r is arbitrary, we get that µ(Ω) = 0. This shows that the monotone sequence fn has a finite limit
f a.e. on A. Now, let φ(x) = r for each x so that

r − 1 ≤ f(x) < r

It remains to show that φ(x) is integrable on A, since the rest follows from Theorem 62. Let Ar be the set
of all points x ∈ A such that φ(x) = r and define

Bs =

s⋃
r=1

Ar

Now, since fn and f are bounded on Bs, and φ(x) ≤ f(x) + 1, we get that∫
Bs

φ(x)dµ ≤
∫
Bs

f(x)dµ+ µ(A)

= lim
n→∞

∫
Bs

fn(x)dµ+ µ(A) ≤ K + µ(A)

but ∫
Bs

φ(x)dµ =

s∑
r=1

rµ(Ar)

and since the partial sums above are bounded, the series

∞∑
r=1

rµ(Ar) =

∫
A

φ(x)dµ

must then converge. Thus, φ(x) is integrable over A.

Corollary 65. Suppose that ψn(x) ≥ 0 and that

∞∑
n=1

∫
A

ψn(x)dµ = M <∞

then the series
∑∞
n=1 ψn(x) converges a.e. on A and∫

A

( ∞∑
n=1

ψn(x)

)
dµ =

∞∑
n=1

∫
A

ψn(x)dµ
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Proof. Let

Fn =

n∑
k=1

ψk(x)

Then Fn(x) is an increasing sequence. Thus∫
X

Fn(x)dµ =

n∑
k=1

∫
X

ψkdµ ≤M

Then Theorem 64 implies that Fn(x)→ φ(x) <∞ a.e. where

φ(x) =

∞∑
n=1

ψn(x)

and so ∫
φdµ = lim

n→∞

∫
X

Fndµ

as needed.

Example 4. Let f : X → R and let µ be a σ-additive measure on X. We claim that f is measurable if
and only if for each r ∈ Q, f−1((−∞, r)) is measurable. To this end, we need to show that for each t ∈ R,
we have that the set

f−1((−∞,−t))
is measurable. Now f(x) ≥ t if and only if f(x) ≥ r for each r ∈ Q, r ≤ t. Then

X\[f−1((−∞,−t))] =
⋂
r≤t
r∈Q

X\[f−1((−∞, r))]

where each set in the intersection is measurable. We now have a countable intersection of measurable sets
which is also measurable. Thus, the preimage is measurable.

Theorem 66 (Fatou). Suppose that fn : X → R is measurable and that fn(x)→ f a.e. on X and∫
X

fn(x)dµ ≤ K

Then f(x) is integrable on X and ∫
X

f(x)dµ ≤ K

We note that an alternate way to state this is that∫
X

(lim inf
n→∞

fn(x))dµ ≤ lim inf
n→∞

∫
X

fn(x)dµ

Proof. Let φn(x) = infk≥n{fk(x)} and note that

{x : φn(x) < C} =
⋃
k≥n

{fk(x) < C}

where the LHS set is measurable, and each set in the RHS intersection is also measurable. Thus, φn is
measurable. Now, 0 ≤ φn ≤ fn. Thus, we have∫

X

φndµ ≤
∫
X

fndµ ≤ K
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and also φ1(x) ≤ · · · ≤ φn(x) ≤ · · · . We remark that if we don’t assume that

fn(x)→ f(x)

Then
lim
n→∞

φn(x) = lim inf
n→∞

fn(x)

and so
lim
n→∞

φn(x) = f(x)

and now we apply Theorem 64 to get the desired result. Now, to prove the alternate statement of the
theorem, we remark that the smallest number K that works is exactly

lim inf
n→∞

∫
X

fn(x)dµ

as needed.

Theorem 67. Let
X =

⋃
n≥1

An, (Ai ∩Aj = ∅, i 6= j)

and suppose that ∑
n

∫
An

|f(x)|dµ <∞

then f is integrable on X and ∫
X

f(x)dµ =
∑
n

∫
An

f(x)dµ

Sketch of Proof. First, we must prove this for simple functions f(x) = ci for x ∈ Bi. Then, let

An,i = An ∩Bi

so that ∫
An

|f(x)|dµ =
∑
i

|ci| · µ(An,i)

We note that ∪iBi = X, so that∑
n

∑
i

|ci| · µ(An,i) =
∑
i

∑
n

|ci| · µ(An ∩Bi)

=
∑
i

|ci| · µ(Bi) <∞

where the second equality comes from the assumption of the theorem. Thus,∑
n

∫
An

|f(x)|dµ <∞

which gives ∫
X

f(x)dµ =
∑
i

ciµ(Bi)
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Now, for a general function g, there exists a simple function f such that |g − f | < ε. Then∫
An

|f(x)|dµ ≤
∫
An

|g(x)|dµ+ ε · µ(An)

so that ∑
n

∫
An

|f(x)|dµ ≤
∑
n

∫
An

|g(x)|dµ+ ε
∑
n

µ(An)

where the first RHS term converges by assumption and the second converges as well since
∑
n µ(An) = µ(X)

must be finite. Thus, if f is integrable, then so is g.

Section 5.3

Comparing Riemann & Lebesgue Integrals

The reason why we need the Lebesgue integral is because the Riemann integral falls short in many applica-
tions (particularly in probability theory), so this tool is useful for us.

Theorem 68. If the Riemann integral

J = (R)

∫ b

a

f(x)dx

exists, then f(x) is Lebesgue integrable on [a, b] and∫
[a,b]

f(x)dµ = J

Proof. Consider the partition of [a, b] into 2n subintervals by the points

xk = a+
k

2n
(b− a)

and the Darboux sums

Sn =
b− a

2n

2n∑
k=1

Mnk

Sn =
b− a

2n

2n∑
k=1

mnk

where Mnk is the supremum of f(x) on the interval [xk−1, xk] and mnk is the infimum of f(x) on the same
interval. Now, by definition, the Riemann integral is

J = lim
n→∞

Sn = lim
n→∞

Sn

Now, we define
fn(x) = Mnk xk−1 ≤ x ≤ xk
f
n
(x) = mnk xk−1 ≤ x ≤ xk

The functions fn and f
n

can be extended to the point x = b arbitrarily. Clearly, we have∫
[a,b]

fn(x)dµ = Sn

39



∫
[a,b]

f
n
(x)dµ = Sn

Now, since the sequence fn is a nonincreasing sequence and the sequence f
n

is a nondecreasing sequence,
we get that

fn(x)→ f(x) ≥ f(x) a.e.

f
n
(x)→ f(x) ≤ f(x) a.e.

By Theorem 64, we get that∫
[a,b]

f(x)dµ = lim
n→∞

Sn = J = lim
n→∞

Sn =

∫
[a,b]

f(x)dµ

and thus ∫
[a,b]

|f(x)− f(x)|dµ =

∫
[a,b]

(f(x)− f(x))dµ = 0

and thus
f(x) = f(x) = f(x) a.e.

Finally, we arrive at ∫
[a,b]

f(x)dµ =

∫
[a,b]

f(x)dµ = J

as needed.

Remark. We note that the function f is continuous at x if and only if

f(x) = f(x)

Section 5.4

Midterm Review

The following chosen homework problems are given as theorems.

Theorem 69 (Inclusion-Exclusion Principle). Suppose that R is a ring of measurable subsets of X with
measure µ, then

(i) If A,B ∈ R, then
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

(ii) If A,B,C ∈ R, then

µ(A ∪B ∪ C) = µ(A) + µ(B) + µ(C)− µ(A ∩B)− µ(A ∩ C)− µ(B ∩ C) + µ(A ∩B ∩ C)

(iii) If A1, . . . , An ∈ R, then

µ

(
n⋃
k=1

Ak

)
=

n∑
k=1

µ(Ak)−
∑

1≤j<k≤n

µ(Aj ∩Ak) +
∑

1≤i<j<k≤n

µ(Ai ∩Aj ∩Ak)

− · · ·+ (−1)k−1
∑

1≤i1<···<ik≤n

µ

 k⋂
j=1

Aij


+ · · ·+ (−1)n−1µ

(
n⋂
k=1

Ak

)
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Example 5. We wish to compute the probability that two numbers are relatively prime. Thus, we want

P [GCD(m,n) = 0] = P [m and n are not both divisible by some prime p]

Thus, the event where 2|m and 2|n is independent of 3|m, 3|n. Thus, E1, E2 are independent, so

P [E1 ∩ E2] = P [E1]P [E2]

Now, it is a fact that if {E1, . . . , En} are independent, then so are {EC1 , . . . , ECn }.

We claim that the events p|m, p|n are independent for different primes p, and from here, we wish to find the
probability of the union of the complements of these events. So, we have that

P
[
{p|m, p|n}C

]
=

(
1− 1

p2

)
and now

P [m and n are relatively prime] =
∏

p prime

(
1− 1

p2

)
so we write ∏

p

1(
1− 1

p2

) =
∏
p

(
1 +

1

p2
+ · · ·+ 1

p2n
+ · · ·

)
=

∞∑
n=1

1

n2
= ζ(2)

and since
1

P [ m,n are relatively prime]
= ζ(2) =

π2

6

we have

P [GCD(m,n) = 1] =
1

ζ(2)
=

6

π2

Now, let’s try to find P [GCD(n1, n2, n3) = 1]. We write

1

P [GCD(n1, n2, n3) = 1]
=

1∏
p

(
1− 1

p3

) =
∏
p

(
1

1

p3
+ · · ·+ 1

p3n
+ · · ·

)

=

n∑
n=1

1

n3
= ζ(3)

so that

P [GCD(n1, n2, n3) = 1] =
1

ζ(3)

From here, it’s fairly easy to see that

P [GCD(n1, . . . , nk) = 1] =
1

ζ(k)

Proposition 70. Consider a function f : X → [0,∞), and suppose that∫
X

f(x)dµ = C <∞

Then we have

lim
n→∞

∫
X

n ln

(
1 +

(
f

n

)α)
dµ =


C, α = 1

0, 1 < α <∞
∞, 0 < α < 1
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Proof. Let

fn(x) = n ln

(
1 +

(
f

n

)α)
= ln

[(
1 +

(
f

n

)α)n]
Now, nα is increasing, and so we have that

nα−1fn = ln

[(
1 +

(
f

n

)α)nα]
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Chapter 6

Products of Sets & Measures

We denote the set Z defined as the sets of ordered sequences (x1, . . . , xn) where x1 ∈ X1, . . . , xn ∈ Xn

as
Z = ×ni=1Xi

and if X1 = · · · = Xn = X, then Z = Xn. The same reasoning applies to collections of sets. We wish to
define the collection of subsets of Z = ×ni=1Xi representable as

A = ×ni=1Ai

where Ai ⊆ Xi for each i and Fi is the collection of subsets of Xi. Then we denote this collection as

F = ×ni=1Fi

Theorem 71. Suppose that R1, . . . ,Rn are semi-rings, then R = ×ni=1Ri is semi-ring.

Proof. To satisfy the definition of a semi-ring, we must show that A,B ∈ R implies that A ∩ B ∈ R and
also that B ⊆ A implies that A = ∪mi=1Ci where C1 = B,Ci ∩ Cj = ∅ for i 6= j and Ci ∈ R for each i. We
will prove this for n = 2.

Suppose that A,B ∈ R1×R2. Then A = A1×A2 and B = B1×B2 and thus, A∩B = (A1∩B1)× (A2∩B2)
and since R1 and R2 are both semi-rings, we get A ∩B ∈ R.

Now, suppose that A,B ∈ R and that B ⊆ A. Thus, B1 ⊆ A1 and B2 ⊆ A2. Now, since R1 and R2 are
both semi-rings, it follows that

Ai = Bi ∪B(1)
i ∪ · · · ∪B

(ki)
i

for i = 1, 2. We then get that

A = A1 ×A2

= (B1 ×B2) ∪ (B1 ×B(1)
2 ∪ · · · ∪ (B1 ×B(k2)

2

∪ · · · ∪ (B
(k1)
1 ×B2) ∪ (B

(k2)
1 ×B(1)

2 ) ∪ · · · ∪ (B
(k2)
1 ×B(k2)

2 )

Here, the first term is B1 ×B2 = B and all the rest are contained in R1 ×R2, which yields the claim.

From here, we now define the product of measures µ1, . . . , µn defined on F1, . . . ,Fn to be

×ni=1µi

defined on ×ni=1Fi. It is also true that if A = ×ni=1Ai then

µ(A) =

n∏
i=1

µi(Ai)

It is straightforward to prove that ×ni=1µi is an additive measure.
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Theorem 72. If the measures µ1, . . . , µn are σ-additive, then the measure µ = ×ni=1µi is also σ-additive.

Proof. We will prove this for n = 2. Let λ1 be the Lebesgue extension of µ1. Let C = ∪∞n=1Cn where C and
Cn are contained in R1 ×R2, so that C = A × B, Cn = An × Bn where A,An ∈ R and B,Bn ∈ R. Now,
for x ∈ A, we let

fn(x) =

{
µ2(Bn) x ∈ An
0 x /∈ An

It is now easy to see that x ∈ A implies that∑
n

fn(x) = µ2(B)

Thus, it follows from Theorem 67 that∑
n

∫
A

fn(x)dλ1 =

∫
A

µ2(B)dµ1(A) = µ(C)

but then ∫
A

fn(x)dλ1 = µ2(Bn)µ1(An) = µ(Cn)

so that ∑
n

µ(Cn) = µ(C)

as needed.

Now, the Lebesgue extension of the measure ×ni=1µi will be called the Product of Measures and will be
denoted as ⊗

k

µk

and if µ1 = · · · = µn, then as before, we have µn = ⊗kµk.

Section 6.1

Geometric Definition of the Lebesgue Integral

Let G be the region in the plane bounded in x by a < b and y between φ(x) and ψ(x). The area of this
region is given by

V (G) =

∫ b

a

(φ(x)− ψ(x))dx

What we wish to do here is to extend this method of measuring areas to an arbitrary product-measure
µ = µx ⊗ µy where µx and µy defined on Borel algebras with units X and Y respectively are σ additive and
complete. Now, let

Ay = {y : (x, y) ∈ A} Ax = {x : (x, y) ∈ A}

If X×Y is the plane, then Ax0
is the projection on the Y axis of the section of the set A with vertical x = x0.
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Lemma 73. Suppose that A is a µ-measurable set and there exists a set B such that

B =
⋂
n

Bn, B1 ⊇ · · · ⊇ Bn ⊇ · · ·

and
Bn =

⋃
k

Bnk, Bn1 ⊆ · · · ⊆ Bnk ⊆ · · ·

where the sets Bnk are elements of R(Sm), A ⊆ B and µ(A) = µ(B).

Proof. We first recall the fact that by measurability, for arbitrary n, the set A can be included in a union

Cn =
⋃
r

∆nr

of sets ∆nr of Sm such that µ(Cn)− µ(A) < 1
n .

We let

Bn =

n⋂
n=1

Ck

and see that the sets Bn will have the form

Bn =
⋃
s

δns

where the sets δns are elements of Sm. Finally, by letting

Bnk =

k⋃
s=1

δns

we obtain the sets required by the lemma.

Theorem 74. With the above notation, and where Ax and Ay are µy and µx measurable respectively for
almost all x, y, we have

µ(A) =

∫
X

µy(Ax)dµx =

∫
Y

µx(Ay)dµy

for an arbitrary µ-measurable set A.

Proof. By symmetry, it is sufficient to prove that

µ(A) =

∫
X

φA(x)dµx

where φA(x) = µy(Ax). By measurability, the function φA(x) is µx is µx-measurable. If this were not so,
ten the integral would be meaningless. The Lebesgue extension µ of m = µx×µy is defined on the collection
Sm of sets of the form A = Ay0 × Ax0 where both sets are µx and µy measurable respectively. The result
makes sense for these sets since

φA(x) =

{
µy(Ax0

) x ∈ Ay0
0 otherwise
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and the result can be extended to sets of R(Sm), which is the set of finite unions of sets of Sm. We can
extend the result here to the sets B and Bn from the lemma above by using the sets Bnk ∈ R(Sm) by means
of the Monotone Convergence Theorem, since

φBn(x) = lim
k→∞

φBnk(x), φBn1
≤ φBn2

≤ · · ·

φB(x) = lim
n→∞

φBn(x), φB1 ≤ φB2 ≤ · · ·

Now, if µ(A) = 0 and µ(B) = 0 and φB(x) = µy(Bx) = 0 a.e.
Since Ax ⊆ Bx, we know that Ax is measurable for almost all x and that φA(x) = µy(Ax) = 0 and∫

φA(x)dµx = 0 = µ(A)

Thus, the result holds for sets A such that µ(A) = 0. If A is arbitrary, then we write it as A = B\C where
in view of the lemma above, we have µ(C) = 0. Finally, since the result holds for B and C, it must also hold
for A.

We now let Y = R, µy be linear Lebesgue measure and let

A = {(x, y) : x ∈M, 0 ≤ y ≤ f(x)}

where M is a µx measurable set and f(x) is an integrable nonnegative function.

Theorem 75. The Lebesgue integral of a nonnegative integrable function f is equal to the measure
µ = µx ⊗ µy of the set A defined above.

Section 6.2

Fubini’s Theorem

We begin by considering the product

U = X × Y × Z = X × (Y × Z) = (X × Y )×X

and we define the measures µx, µy, µz on X,Y, Z respectively. Then we define the measure µu to be

µu = µx ⊗ µy ⊗ µz

This leads us to Fubini’s Theorem.

Theorem 76 (Fubini’s Theorem). Suppose that the measures µx, µy defined on Borel algebras with units
X,Y respectively are σ-additive and complete. Now, define

µ = µx ⊗ µy

and suppose that the function f(x, y) is µ-integrable on A = Ay0 × Ax0
where Ax = {y : (x, y) ∈ A} adn

Ay = {x : (x, y) ∈ A}. Then∫
A

f(x, y)dµ =

∫
X

∫
Ax

f(x, y)dµydµx =

∫
Y

∫
Ay

f(x, y)dµxdµy

where the integrals above are assumed to exist for almost all x, y contained in whichever sets apply to them
in each integral.
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Proof. We will prove this for the case where f(x, y) ≥ 0. Consider the triple product

U = X × Y × R

and consider the product measure
λ = µx ⊗ µy ⊗ µ1 = µ⊗ µ1

where µ1 is linear Lebesgue measure. Now define the subset W ⊆ U to be

W = {(x, y, z) ∈ U : x ∈ Ay0 , y ∈ Ax0 , 0 ≤ z ≤ f(x, y)}

Now, from Theorem 75, we have that

λ(W ) =

∫
A

f(x, y)dµ

but by Theorem 74, we also have that

λ(W ) =

∫
X

ξ(Wx)dµx

where ξ = µy ⊗ µ1 and Wx = {(y, z) : (x, y, z) ∈W}. Now, another application of Theorem 75 yields

ξ(Wx) =

∫
Ax

f(x, y)dµy

and putting the pieces together, we see that∫
A

f(x, y)dµ =

∫
X

∫
Ax

f(x, y)dµydµx

and we obtain the second equality trivially by symmetry.
All that remains now is to generalize this proof to any function f . We know that this is now true for
f(x, y) ≥ 0, but a general function f is reduced to this case by means of the relation

f(x, y) = f+(x, y) = f−(x, y)

where

f+(x, y) =
1

2
(|f(x, y)|+ f(x, y))

and

f−(x, y) =
1

2
(|f(x, y)| − f(x, y))

as needed.

Remark. It can also be shown that if f(x, y) is µ-measurable and if∫
X

∫
Ax

f(x, y)dµydµx

exists, then so too must ∫
A

f(x, y)dµ

exist.

We will now look at a few examples of some violations of the theorem.
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To construct the first example, let A = [−1, 1]2 and let

f(x, y) =
xy

(x2 + y2)2

This gives ∫ 1

−1
f(x, y)dx = 0 and

∫ 1

−1
f(x, y)dy = 0

assuming that y 6= 0 for the first equality and that x 6= 0 for the second equality. Thus, we have∫ 1

−1

∫ 1

−1
f(x, y)dxdy =

∫ 1

−1

∫ 1

−1
f(x, y)dydx = 0

but the Lebesgue double integral over A does not exist since∫ 1

−1

∫ 1

−1
|f(x, y)|dxdy ≥

∫ 1

0

dr

∫ 2π

0

sin(φ) cos(φ)

r
dφ = 2

∫ 1

0

dr

r
=∞

which shows that this does not follow Fubini’s theorem.

The second example begins by letting A = [0, 1]2 and letting

f(x, y) =


22n (x, y) ∈

[
1
2n ,

1
2n−1

]2
−22n+1 x ∈

[
1

2n+1 ,
1
2n

]
, y ∈

[
1
2n ,

1
2n−1

]
0 otherwise

and this yields ∫ 1

0

∫ 1

0

f(x, y)dxdy = 0 and

∫ 1

0

∫ 1

0

f(x, y)dydx = 1

which is another violation of the result from Fubini’s theorem.
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Chapter 7

Absolute Continuity

We begin with a definition.

Definition 29. We say that the measure λ on the σ-algebra A is Absolutely Continuous with respect
to the measure µ on A if λ(E) = 0 for every E ∈ A for which µ(E) = 0. That is to say that they share sets
of measure zero.

Definition 30. We say that a measure λ is Concentrated on a set A ∈ A if A is such that λ(E) =
λ(A ∩ E) for every E ∈ A.

Definition 31. Let λ1 and λ2 be measures on A, and suppose that there exists a pair of disjoint sets A
and B such that λ1 is concentrated on A and λ2 is concentrated on B. We then say that λ1 and λ2 are
Mutually Singular.

Definition 32. We define the set L1(µ) to be the collection of functions f on X such that∫
X

|f |dµ <∞

which is to say that it is the collection of all absolutely Lebesgue integrable functions.

Section 7.1

The Radon-Nikodym Theorem

Before tackling the proof of the following theorem, we will need a lemma.

Lemma 77. Let µ be a σ-additive measure on a σ-algebra A in a set X, then there is a function w con-
tained in L1(µ) such that w(x) ∈ (0, 1) for every x ∈ X.

Proof. Since µ is σ-additive, we know that X is the union of countably many sets En ∈ A for which
µ(En) <∞. Let wn(x) = 0 whenever x ∈ X\En and let

wn(x) =
1

2n(1 + µ(En))

whenever x ∈ En. Then we know that

w =

∞∑
n=1

wn

has the required properties as needed.
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The point of that was to show that the measure µ can be replaced by a finite measure µ̂ such that dµ = wdµ̂
which, because of the strict positivity of w shares all sets of measure zero with µ.

Theorem 78 (Radon-Nikodym Theorem). Let µ be a σ-additive measure on a σ-algebra A in a set X
and let λ be a measure on A. Then

(i) There is a unique pair of measures λa and λs on A such that

λ = λa + λs

and λa is absolutely continuous with respect to µ and λs and µ are mutually singular. This is known
as the Lebesgue Decomposition of λ.

(ii) There is a unique function h ∈ L1(µ) such that

λa(E) =

∫
E

hdµ

for every set E ∈ A.

Proof. The uniqueness of the pairs in (i) is clear since if (λ′a, λ
′
s) were another pair which satisfies the

conditions in (i), then
λ′a − λa = λs − λ′s

and the first difference is then absolutely continuous with respect to µ and the second difference is mutually
singular with µ and thus, both sides must be 0.

Also, the uniqueness of the function h from (ii) is trivial in view of the fact that for a function h ∈ L1(µ)
such that ∫

E

fdµ = 0

for every E ∈ A, we have that f = 0 a.e. and so it follows from letting h′ be another such function and then
integrating h′ − h.

From here, we will prove the existence portions of both parts. Suppose that λ is a bounded measure on A.
Let w be the same as in Lemma 77. Then we define dφ = dλ+wdµ which is also a bounded measure on A.
By the definition of these measures, we get∫

X

fdφ =

∫
X

fdλ+

∫
X

fwdµ

for f = χE , and hence for simple f and further for nonnegative measurable functions f . If f ∈ L2(φ), then
the Cauchy-Schwarz inequality gives us that∣∣∣∣∫

X

fdλ

∣∣∣∣ ≤ ∫
X

|f |dλ ≤
∫
X

|f |dφ ≤
(∫

X

|f |2
) 1

2

φ(X)
1
2

and since φ(X) <∞, we see that

f →
∫
X

fdλ
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is a bounded linear functional on L2(φ). We already know that every bounded linear functional on a Hilbert
space H is given by an inner product with an element of H. Thus, there exists g ∈ L2(φ) such that∫

X

fdλ =

∫
X

fgdφ

for every f ∈ L2(φ). The existence of g comes from the completeness of L2(φ).

Now, let f = χE in the above equality and for every E ∈ A with φ(E) > 0, the LHS of that equality is then
λ(E) and since 0 ≤ λ ≤ φ, we get that

0 ≤ 1

φ(E)

∫
E

gdφ =
λ(E)

φ(E)
≤ 1

so that g ∈ [0, 1] for almost every x. We can now rewrite the equality in question as∫
X

(1− g)fdλ =

∫
X

fgwdµ

Now, put
A = {x : g ∈ [0, 1)}, B = {x : g(x) = 1}

and define measures λa and λs by

λa(E) = λ(A ∩ E), λs(E) = λ(B ∩ E)

for each E ∈ A. Now, if f = χB in the most recent integral equality, then the left side is 0, the right side is∫
B

wdµ

Since w(x) > 0 for all x by definition, we can conlcude that µ(B) = 0. Thus, λs is mutually singular with
µ. Since g is bounded, that equation holds if f is also replaced by

(1 + g + · · ·+ gn)χE

for any n and for any E ∈ A. This replacement yields∫
E

(1− gn+1)dλ =

∫
E

g(1 + · · ·+ gn)wdµ

Now, at every point of B, we have g(x) = 1 so that 1 − gn+1 = 0. At every point of A, we have that
gn+1(x)→ 0 as n→∞ monotonically. The left side of the now most recent integral equality then converges
to λ(A ∩ E) = λa(E) as n→∞.

The integrands on the RHS increase monotonically to a nonnegative measurable limit h and the Monotone
Convergence Theorem tells us tha the RHS tends to∫

E

hdµ

as n → ∞. We have just proved that (i) holds for every E ∈ A and taking E = X, we see that h ∈ L1(µ)
since λa(X) < ∞. Finally, (ii) shows that λa is absolutely continuous with respect to µ and the proof is
complete.
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Section 7.2

Consequences of the Radon-Nikodym Theorem

We begin with a theorem that we will use to prove the Hahn Decomposition Theorem.

Theorem 79. Let µ be a measure on a σ-algebra A in X. Then there is a measurable function h such
that |h(x)| = 1 for all x ∈ X and such that

dµ = hd|µ|

where the above is called the Polar Decomposition of µ.

Proof. It is trivial that µ is absolutely continuous with respect to |µ| so that the Radon-Nikodym Theorem
guarantees the existence of h ∈ L1(µ) which satisfies the polar decomposition.
Now, let Ar = {x : |h(x)| < r}, where r > 0 and let {Ej} be a partition of Ar. Thus,

∑
j

|µ(Ej)| =
∑
j

∣∣∣∣∣
∫
Ej

hd|µ|

∣∣∣∣∣ ≤∑
j

r|µ|(Ej) = r|µ|(Ar)

so that |µ|(Ar) ≤ r|µ|(Ar). Now, if r < 1, then this forces |µ|(Ar) = 0 which implies that |h| ≥ 1 a.e.
On the other hand, if |µ|(E) > 0, the decomposition shows that∣∣∣∣ 1

|µ|(E)

∫
E

hd|µ|
∣∣∣∣ =
|µ(E)|
|µ|(E)

≤ 1

and it now follows that |h| ≤ 1 a.e.
Finally, let B = {x ∈ X : |h(x)| 6= 1}. We have shown that |µ|(B) = 0 and if we redefine h on B so that
h(x) = 1 on B, we obtain the desired function.

Theorem 80 (Hahn-Decomposition Theorem). Let µ be a real measure on a σ-algebra A in a set X.
Then there exists sets A,B ∈ A such that A∪B = X and A∩B = ∅, and such that the positive and negative
variations µ+ and µ− of µ satisify

µ+(E) = µ(A ∩ E) and µ−(E) = −µ(B ∩ E)

for E ∈ A.

That is to say that X is the union of two disjoint measurable sets A and B such that A carries all the positive
mass of µ and B carries all the negative mass of µ and the pair (A,B) is called the Hahn-Decomposition
of X induced by µ.

Proof. Theorem 79 gives us that dµ = hd|µ| where |h| = 1. Now it follows that h = ±1. Put

A = {x : h(x) = 1} and B = {x : h(x) = −1}

By definition, we have that

µ+ =
1

2
(|µ|+ µ)

and since
1

2
(1 + h) =

{
h on A

0 on B
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we have for any E ∈ A that

µ+(E) =
1

2

∫
E

(1 + h)d|µ| =
∫
E∩A

hd|µ| = µ(E ∩A)

Finally, since µ(E) = µ(E ∩ A) + µ(E ∩ B) and since µ = µ+ − µ−, the second half of the result of the
theorem follows from the first.

Corollary 81. If µ = λ1 − λ2 where λ1 and λ2 are positive measures, then λ1 ≥ µ+ and λ2 ≥ µ−.

Proof. Since µ ≤ λ1, we have

µ+(E) = µ(E ∩A) ≤ λ1(E ∩A) ≤ λ1(E)

as needed.
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Chapter 8

Square Integrable Functions

Section 8.1

The Space L2

We begin by prescribing a measure µ on a space X such that µ(X) < ∞. The functions f defined on this
space are measurable and defined a.e. on X.

Definition 33. We say that a function f(x), defined on X, is Square Integrable if and only if∫
X

f2(x)dµ <∞

and we say that f is an L2 function.

Theorem 82. The product of two square integrable functions is an integrable function.

Proof. This result follows from the definition of the Lebesgue integral paired with the fact that

|f(x)g(x)| ≤ 1

2
(f(x)2 + g(x)2)

which is trivial to deduce.

Corollary 83. A square integrable function is integrable.

Theorem 84. If f, g ∈ L2 then f + g ∈ L2.

Proof. Indeed we have that

(f(x) + g(x))2 ≤ f(x)2 + 2|f(x)|g(x)|+ g(x)2

and the result follows from Theorem 1 applied to the LHS.

Theorem 85. If f ∈ L2 and α ∈ R, then αf(x) ∈ L2.

It is quite clear by the above two theorems that L2 satisfies the 8 conditions of a linear space and thus, we
can conclude that L2 is linear.

Definition 34. We define the Inner Product (f, g) on L2 to be

(f, g) =

∫
X

f(x)g(x)dµ

and we note that this satisfies
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(i) (f, g) = (g, f)

(ii) (f1 + f2, g) = (f1, g) + (f2, g)

(iii) (λf, g) = λ(f, g)

(iv) (f, f) > 0 for f 6= 0

Before proceeding, we list a few useful properties of this inner product. The first is the Schwarz inequal-
ity (∫

X

f(x)g(x)dµ

)2

≤
(∫

X

f(x)2dµ

)(∫
X

g(x)2dµ

)
which is satisfied in L2 as it is in any Euclidean space. We also have the Triangle intequality given by(∫

X

(f(x) + g(x))2dµ

) 1
2

≤
(∫

X

f(x)2dµ

) 1
2
(∫

X

g(x)2dµ

) 1
2

and in particular, the Schwarz inequality yields the following useful inequality which is(∫
X

f(x)dµ

)2

≤ µ(X)

∫
X

f(x)2dµ

and finally we will introduce the norm on L2 to be

‖f‖ = (f, f)
1
2 =

(∫
X

f(x)2dµ

) 1
2

and this brings us to one of the most important theorems thus far.

Theorem 86. The space L2 is complete.

Proof. See Kolmogorov & Fomin.

Section 8.2

Mean Convergence & Dense Subsets of L2

As we have now defined a norm (and thus an induced metric) on the space L2, it is natural to talk about
convergence of sequences of elements of L2, namely, the square integrable functions.

Definition 35. We say that the sequence fn is Mean Convergent to f or Mean Square Convergent
to f if and only if ∫

X

(fn(x)− f(x))2dµ −−−−→
n→∞

0

or simply that ‖fn − f‖ −−−−→
n→∞

0.

Theorem 87. If a sequence fn of L2 functions converges uniformly to f(x), then f(x) ∈ L2 and the
sequence fn is also mean convergent to f .
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Proof. The proof can be found in Kolmogorov & Fomin on page 84 in §51.

Theorem 88. Let X be a metric space with a measure satisfying the property that all open and closed sets
of X are measurable and

µ∗(M) = inf
G⊇M

{µ(G) : M ⊆ G}

for every M ⊆ X. Given this space X, the set of all continuous functions on X is dense in L2.

Proof. The proof can be found in Kolmogorov & Fomin on page 85 in §51.

Theorem 89. If a sequence fn converges to f in the mean, then it contains a subsequence fnk which
converges to f a.e.

Proof. The proof can be found in Kolmogorov & Fomin on page 86 in §51.

There is also a useful diagram on page 87 which illustrates the relationships (if any) between the four relevant
types of convergence covered in this course.

Section 8.3

Orthogonal Sets of Functions & Orthogonalization

We begin with a definition.

Definition 36. We say that a set of functions Φ = {φ1, . . . , φn} defined on a set X are Linearly
Dependent if and only if there exists constants c1, . . . , cn not all equal to zero such that

(∗) c1φ1 + · · ·+ cnφn = 0 a.e.

on X. On the other hand, we say that the functions of Φ are Linearly Independent if and only if (∗)
implies that

c1 = · · · = cn = 0

Definition 37. An infinite sequence of functions Φ = {φ1, . . . , φn, . . .} is said to be Linearly Indepen-
dent if every finite subset of Φ is linearly independent. Also, denote the set of all finite linear combinations
of functions of Φ by

M = M(φ1, . . . , φn, . . .) = M({φk})

and we say that M is the Linear Hull of Φ or the Linear Manifold Generated by {φk}. Also, we say
that the closure M of M is called the Closed Linear Hull orSubspace Generated by {φk}.

Definition 38. The set Φ of functions is said to be Complete or Closed if and only if

M = L2
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Fact. If L2 contains a finite complete set φ1, . . . , φn of linearly independent functions, then L2 = M({φk}) =
M({φk}) is isomorphic to Euclidean n-space. If not, then we say that L2 is Infinite Dimensional. It is
also important to note that L2 in infinite-dimensional in all interesting cases in analysis.

Definition 39. We say that two functions f, g of L2 are Orthogonal if

(f, g) =

∫
X

f(x)g(x)dµ = 0

and if Φ = {φ1, . . . , φn, . . .} is pairwise orthogonal, then we will say that Φ is an Orthogonal Set and if
‖φn‖ = 1 for any n, then we say further that Φ is an Orthonormal set.

Theorem 90. Suppose that the set of functions f1, . . . , fn, . . . is linearly independent. Then there exists a
set of functions Φ = {φ1, . . . , φn, . . .} such that

(i) The set Φ is orthonormal.

(ii) Every function φn is a linear combination of the functions f1, . . . , fn so that

φn = an,1f1 + · · ·+ an,nfn

with an,n 6= 0.

(iii) Every function fn is a linear combination of the functions φ1, . . . , φn so that

fn = bn,1φ1 + · · ·+ bn,nφn

with bn,n 6= 0.

Also, every function of Φ is uniquely (up to sign) determined by the conditions above.

Proof. The proof can be found in Kolmogorov & Fomin on page 94 in §53.

Section 8.4

Fourier Seires & The Riesz-Fischer Theorem

Let φ1, . . . , φk, . . . be an orthonormal set in some L2 space H. We have f ∈ L2 and we want to take a linear
combination

Sn =

n∑
k=1

αkφk
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and minimize the distance

‖F − Sn‖22 =

(
f −

n∑
k=1

αkφk, f −
n∑
k=1

αkφk

)

= (f, f)− 2

n∑
k=1

αk(f, φk) +

n∑
k=1

α2
k‖φk‖22

= ‖f‖22 − 2

n∑
k=1

αkck +

n∑
k=1

α2
k

= ‖f‖22 − 2

n∑
k=1

αkck +

n∑
k=1

α2
k ±

n∑
k=1

c2k

= ‖f‖22 − 2

n∑
k=1

c2k +

n∑
k=1

(ck − αk)2

where (f, φk) = ck and we use the fact that ‖φk‖2 = 1 and (φj , φk) = 0 for j 6= k. Now choose αk = ck so
that

‖F − Sn‖22 = ‖f‖22 −
n∑
k=1

c2k

Definition 40. The above quantity ck = (f, φk) is called the kth Fourier Coefficient of f with respect
to {φk}.

Now, we see that

Sn =

n∑
k=1

(f, φk)φk

is the nth partial sum of the Fourier Series.

Remark. Notice that f − Sn is orthogonal to each of φ1, . . . , φn.

Now, look at

‖f‖22 −
n∑
k=1

c2k = ‖f − Sn‖22 =⇒ ‖f‖22 − ‖f − Sn‖22 =

n∑
k=1

c2k

so that we arrive at the so-called Bessel Inequality which says that since, ‖f − Sn‖22 ≥ 0, we get

n∑
k=1

c2k ≤ ‖f‖22

Definition 41. We say that the set {φk} is Complete (or Closed) if and only if

∞∑
k=1

c2k = ‖f‖22
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for each f ∈ L2 or equivalently, if

⇐⇒
n∑
k=1

(f, φk)φk → f

in L2.

Theorem 91. In L2, every complete orthonormal system is closed.

Proof. See Kolmogorov & Fomin for the proof of this.

Remark. Notice that if f ∈ L2, and ck = (f, φk), then

∞∑
k=1

c2k ≤ ‖f‖22 <∞

and so the sequence {ck} is contained in l2.

Theorem 92 (Riesz-Fischer). if {φk} is an orthonormal system in L2 and if the sequence ck ∈ l2, then
there exists a function f ∈ L2 such that (f, φk) = ck. Moreover,

‖f‖22 =

∞∑
k=1

c2k

which is called Parseval’s Identity.

Sketch of Proof. Let

fn =

n∑
k=1

ckφk

and we want that {fn} is Cauchy. So we write

‖fn+m − fn‖22 =

n+m∑
k=n+1

c2k

which is simply the tail of a convergent series. Now, as n → ∞, this difference ‖fm+n − fn‖ will become
uniformly small in m which shows that fn is Cauchy. For the fine details of the proof, see Kolmogorov &
Fomin.

Theorem 93 (Criterion for Completeness). Let Φ = {φ1, . . . , φn, . . .} be an orthonormal system. Then Φ
is complete if and only if ψ ∈ L2 and (φk, ψ) = 0 for each k implies that φ ≡ 0.

Proof. See Kolmogorov & Fomin for full proof.
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Definition 42. We say that two Euclidean spaces U, V are isomorphic if and only if there is a one-to-one
correspondance between their elements such that

x↔ x′ y ↔ y′

implies that

(i) x+ y ↔ x′ + y′.

(ii) αx↔ αx′

(iii) (x, y)↔ (x′, y′)

Theorem 94. The space L2 is isomorphic to the space l2.

Proof. See Kolmogorov & Fomin for full proof.

Remark. The real valued inner product is

(f, g) =

∫
X

f(x)g(x)dµx

and the complex valued one is

(f, g) =

∫
X

f(x)g(x)dµx

where g denotes the complex conjugate of g.

Fact. It is true that L2(R/2φZ) ∼= L2([0, 2π]).

The system of functions {einx : n ∈ Z} is complete in L2([0, 2π]) and by Euler’s formula, we have

einx = cos(nx) + i sin(nx)

Note that Tchebyshev polynomials have basis

{1, cos(x), sin(x), cos(2x), sin(2x), . . .}

and we know that
cos(nθ) = Tn(cos(θ)) = Tn(x)

which is the polynomial of the first kind and

sin(nθ)

sin(θ)
= Un(cos(θ)) = Un(x)

is the polynomial of the second kind.
Now, let Tn ∼= [0, 2π]n and the basis of L2(Tn) is obtained using vectors [x1, . . . , xn].

Example 6. Let n = 2 and we have

ei(k1,k2)·(x1,x2) = ei(k1x1+k2x2)

where k1, k2 ∈ Z2 and
{ei(k1x1+k2x2) : k1, k2 ∈ Z}
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forms an orthonormal basis for L2(T2). Now,

{ei(k1x1+···+knxn) : kj ∈ Z}

forms an orthonormal basis for L2(Tn) so that φk(x) = ei(k,x) where k ∈ Zn.

Section 8.5

Applications

We will look at several partial differential equations.

(i) We look at the heat equation
∂

∂t
u = ∇2u on Tn

and we assume that
u(x, t) = f(x)g(t)

and see that
f(x) = φk(x) = ei(k,x)

and so
∇2φk = −(k21 + · · ·+ k2n)ei(k,x) = −|k|2φk

and we say that φk(x) is an Eigenfunction of ∇2 with eigenvalue −|k|2. Now, we have

uk(x, t) = φk(x)gk(t)

and
∂

∂t
gk(t)φk(x) = −|k|2φk(x)gk(t)

=⇒ ∂

∂t
gk(t) = −|k|2gk(t)

=⇒ gk(t) = e−|k|
2t

so that
uk(t) = φk(t)e−|k|

2t

where u0 is the temerature at time t = 0 which gives

u0(x) =
∑
k∈Zn

ckφk(x)

where x ∈ Tn. Now,

u(x, t) =
∑
k∈Zn

ckφk(x)e−|k|
2t

(ii) We will look at a Hyperbolic Equation, namely the Wave Equation given by

∂2u

∂t2
= ∇2u

on Tn. We look at
uk(x, t) = gk(t)φk(x)
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where φk(x) = ei(k,x) so that ∇2φk = −|k|2φk and we write{
∂2u
∂t2 = g′′k (t)φk(x)

∇2uk = −|k|2gk(t)φk(x)

and we have that the wave equation is satisfied if and only if

g′′k (t) = −|k|2gk(t)

and thus
gk(t) = e±i|k|t

and so
uk(x, t) = e±i|k|tei(k,x)

as needed.

(iii) We now turn to Schrodinger’s Equation. We will suppose that the vacuum potential is identically zero
and we have

1

i

∂u

∂t
= ∇2u

and once again assume that
uk(x, t) = gk(t)φk(x)

so that
1

i

∂

∂t
gk(t) = −|k|2gk(t)

and thus
gk(t) = e−i|k|

2t

so that
uk(x, t) = e−i|k|tei(k,x)

as needed.

(iv) Finally, we look at Euler’s Equation for fluids. First notice that this problem is nonlinear and Fourier
expansions are thus, less useful here. Let’s work only on T3. Now, suppose that the fluid in question is
incompressible and has no viscosity which is reasonable for water, but not for wax. Then the equation
is given by

∂~u

∂t
− ~u× (curl(~u)) +∇

(
ρ+
‖~u‖2

2

)
= 0

where ρ is the pressure function, and sometimes we make the extra assumption that ~ω =curl(~u) and so

∂~ω

∂t
− curl(~u× ~ω) = 0

Now, for Force-Free solutions (Beltrami flows), suppose that u satisfies ~ω =curl(~u) = µ~u where µ is a
scalar function of space or maybe just a constant. Then,

~u× ~ω = µ · (~u× ~u) = 0

We continue with an example of ABC-Flows given by

~u(~x) = a

 0
cos(x)
sin(x)

+ b

sin(y)
0

cos(y)

+ c

cos(z)
sin(z)

0
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where ~x = [x, y, z]T . Now, chekc that curl(~u) = µ~u for some µ. Now, with

ρ = −‖~u‖
2

2

the Euler equation becomes
∂~u

∂t
= 0

and thus the fluid moves with constant velocity. Also, if we solve the Navier-Stokes equation with
initial conditions as ABC-Flows, then the solution has exponentially decaying velocity.

(v) Another physical problem where Beltrami fields appear is in Plasma Physics.
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Chapter 9

Abstract Hilbert Spaces

Section 9.1

Basics & Definitions

Definition 43. A set H of arbitrary elements f, g, . . . , h, . . . is said to be a Hilbert Space if and only if

(i) H is a linear space.

(ii) An inner product is defined in H. That is, every pair of elements f, g ∈ H is assigned a real number
(f, g) such that

(a) (f, g) = (g, f)

(b) (αf, g) = α(f, g)

(c) (f1 + f2, g) = (f1, g) + (f2, g)

(d) (f, f) > 0 whenever f 6= 0.

That is, H is a Euclidean space and ‖f‖ =
√

(f, f)) is called the Norm of f in H.

(iii) The space H is complete in the metric ρ(f, g) = ‖f − g‖.

(iv) H is infinite-dimensional. That is, for every natural number n, H contains n linearly independent
vectors.

(v) H is separable (which is usually an optional condition) so that H has a countable dense set.

Example 7. The space l2 is a Hilbert space. It has already been proven that this is true as l2 is finite
dimensional, complete, separable and Euclidean. Also, since L2, the space of square-integrable functions is
isomorphic to l2, we can conclude that L2 is also a Hilbert space.

Proposition 95. All Hilbert spaces are isomorphic.

Proof. To this end, it is sufficient to show that all Hilbert spaces are isomorphic to l2.
Choose in H a countable dense set and apply it to the process of orthogonalization described for L2 and we
will construct in H a complete orthonormal set

h1, . . . , hn, . . .

satisfying

(i) For hi, hj ∈ H, we have

(hi, hj) =

{
0 i 6= k

1 i = k
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(ii) The linear combinations of the elements h1, . . . , hn, . . . are dense in H.

Now, let f ∈ H be an arbitrary element. Let ck = (f, hk). Then the series∑
k

c2k <∞

and also ∑
k

c2k = (f, f)

for an arbitrary complete orthonormal set {hk} and f ∈ H. Now, suppose that {hk} is complete and
orthonormal in H. If c1, . . . , cn, . . . is a sequence of numbers such that∑

k

c2k <∞

then there exists f ∈ H such that ck = (f, hk) and
∑
k c

2
k = (f, f). It is clear from what we have said that

an isomorphism between H and l2 can be realizing by associating to each f the sequence

(c1, . . . , cn, . . .)

where ck = (f, hk) and the set h1, . . . , hn, . . . is arbitrary, orthonormal and complete in H.

Section 9.2

Subspaces, Orthogonal Complements & Direct Sums

As we’ve seen before, a Linear Manifold in a Hilbert space H is a subset L of H such that if f, g ∈ L then
αf + βg ∈ L for any real α and β. A Subspace of H is a closed linear manifold.

Lemma 96. If a metric space R contains a countable dense set, then every subspace R′ of R contains such
a set.

Proof. The proof of this lemma can be found in §57 of Kolmogorov & Fomin.

Theorem 97. Every subspace of a Hilbert space H is either a finite-dimensional Euclidean space or itself
a Hilbert space.

Proof. For the first three axioms of Hilbert spaces, this result is clear. The fifth axiom follows from the
above lemma.

Theorem 98. Every subspace M of a Hilbert space H contains an orthogonal set {φn} whose linear closure
coincides with M . That is,

M = M(φ1, . . . , φn, . . .)

so that M is closed.
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Proof. Let M be a subspace of H. Now, let M ′ = H 	M = {g ∈ H : (g, f) = 0 ∀ f ∈ M} be the so
called Orthogonal Complement of M . We claim that M ′ is a subspace of H. M ′ is clearly linear, since
(g1, f) = (g2, f) = 0 which implies that (α1g1 + α2g2, f) = 0. Now, for closure, suppose that gn ∈ M ′ and
that gn → g Then

(g, f) = lim
n→∞

(gn, f) = 0

for any f ∈M and thus g ∈M ′ and so M ′ is closed.

Theorem 99. If M is a subspace of H, then every f ∈ H is uniquely representable in the form f = h+h′

where h ∈M and h′ ∈M ′.

Proof. To prove existence, choose in M a complete orthonormal set {φn} such that M = M and set

h =

∞∑
n=1

cnφn

where cn = (f, φn). Now, since the square sum of cn converges, h exists and is an element of M . Now, set

h′ = f − h

then it follows that (h′, φn) = 0 for any n. Now, since an arbitrary element ζ of M can be written as

ζ =
∑
n

anφn

it follows that
(h′, ζ) =

∑
n

an(h′, φn) = 0

which proves existence.

Now, suppose that there exists another decomposition f = h1 + h′1. Then we have

(h1, φn) = (f, φn) = cn

so that h1 = h and h′1 = h′ which yields uniqueness.

Corollary 100. The orthogonal complement of the orthogonal complement of a subspace M coincides
with M .

Corollary 101. Every orthonormal set Φ can be extended to a complete set in H.

Corollary 102. If an orthogonal set Φ is finite, then the number of its terms is its dimension and its
Deficiency is the number of terms in M ′. The orthogonal complement of a subspace of finite dimension n
has deficiency n and conversely.

Definition 44. If every vector f ∈ H is represented in the form f = h+ h′ for h′ ∈M , then we say that
H is the Direct Sum of the orthogonal subspaces M and M ′ and we write

H = M ⊕M ′
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We can also extend this by saying that H is the direct sum of a countable number of subspaces, then H is
the direct sum of subspaces M1, . . . ,Mn, . . . and

H = M1 ⊕ · · · ⊕Mn ⊕ · · ·

if

(i) The subspaces Mi are pairwise orthogonal.

(ii) Every f ∈ H can be written in the form

f = h1 + · · ·+ hn + · · ·

where ∑
n

‖hn‖2 <∞

must hold.

We also note that if H1, H2 are Hilbert spaces, then H = H1 ⊕ H2 is the collection of all possible pairs
(h1, h2) where h1 ∈ H1, h2 ∈ H2 and the inner product of such pairs is

((h1, h2), (h′1, h
′
2)) = (h′1, h1) + (h′2, h2)

This can be extended to any countable sum of Hilbert spaces written as

∞⊕
k=1

Hk

which is defined as all possible sequences h = (h1, . . . , hn, . . .) such that

∞∑
n=1

‖hn‖2 <∞

The inner products must satisfy

(g, h) =

∞∑
n=1

(gn, hn)

where g, h ∈ H.

Section 9.3

Linear & Bilinear Functionals in Hilbert Spaces

Proposition 103. The sequence xn converges to x weakly in X, a Banach space, if

(i) ‖xn‖ ≤M for any n which really isn’t necessary.

(ii) For any F ∈ X∗, we have F (xn)→ F (x).
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Proof. It is enough to check (ii) on a dense set in X∗. Thus, suppose that ∆ is a set whose linear hull is
X∗. Now suppose that (ii) holds for any F ∈ ∆ and we claim that (ii) holds for any F ∈ X∗.

To this end, if (ii) holds for any F ∈ ∆, then it also holds for their finite linear combinations.
Now, by assumption, these linear combinations are dense in X∗. Let F ∈ X∗ and let Fk → F in X∗. Fk is
a finite linear combination of functions from ∆. Next, let xn → x weakly where ‖xn‖ ≤ M then ‖x‖ ≤ M .
Now, there exists k0 such taht for all k ≥ k0 such that

‖Fk − F‖X∗ < ε

and
|F (x)− F (xn)| ≤ |F (xn)− Fk(xn)|+ |Fk(xn)− Fk(x)|+ |Fk(x)− F (x)|

≤ |Fk(xn)− Fk(x)|+ 2εM

and letting k →∞ yields
|Fk(xn)− Fk(x)| → 0

so that
|F (x)− F (xn)| < 2εM

as needed.

Proposition 104. If xn → x strongly, that is, if ‖xn − x‖X → 0, then xn → x weakly. We note that the
converse is not true in general. An example will follow.

Proof. For the proof, see Kolmogorov & Fomin or Rudin’s Real & Complex Analysis (his proof is nicer).

Example 8. Take ej = (0, . . . , 0, 1, 0, . . .) ∈ l2. We claim that ej → 0 weakly.

Proof. For every F ∈ l∗2
∼= l2, there exists a ∈ l2 such that F (x) = (x, a). Now, (ej , a) = aj where

a = (a1, . . . , aj , . . .) and ∑
j

a2j <∞

which implies that aj → 0 as j →∞.

Remark. In finite-dimensional spaces, strong convergence is equivalent to weak convergence.

On l2, weak convergence is equivalent to convergence of coordinates.

Example 9. Let X∗ = (l2)∗ = l2 and let ∆ = (e∗1, . . . , e
∗
j , . . .).

Example 10. In L2([0, 2π]), weak convergence is equivalent to convergence of sequences of Fourier coef-
ficients.
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Example 11. On spaces of continuous functions like C([a, b]), we can show that it suffices to take

∆ = {δx0 : x0 ∈ [a, b]}

so let
δx0(f) = f(x0)

Here, weak convergence is equivalent to pointwise convergence. Thus, fn → f weakly if and only if

δx0
(fn)→ δx0

(f)

for every x0 ∈ [a, b] which is the same as
fn(x0)→ f(x0)

for every x0 ∈ [a, b].

Definition 45. We say that a sequence of linear functionals in X∗ converges weakly to F if and only if

(i) ‖Fn‖ ≤M <∞ for any n.

(ii) Fn(x)→ F (x) for all x ∈ X.

Example 12 (δ Functions). Let φn(t) = 0 for |t| ≥ 1
n and φn(t) ≥ 0 otherwise and suppose that φn must

be continuous in t on [−1, 1] and that ∫ 1

−1
φn(t)dt = 1

for any n. Now, let h(t) ∈ C([−1, 1]) and so∫ 1

−1
h(t)φn(t)dt = h(ξn)

∫ 1

−1
φn(t)dt

where ξn is contained in the compact support of φn which is simply
[−1
n ,

1
n

]
. Now, let n→ 0 so that ξn → 0

and thus ∫
h(t)φn(t)dt→ h(0) = δ0(h)

Theorem 105. Suppose that X is a separable normed linear space. Now let Fn be a bounded sequence in
X∗. Then there exists a subsequence Fnk of Fn such that Fnk → G ∈ X∗.

We recall that every linear functional on H has the form Fg(x) = (x, y) for every fixed y ∈ H. A corollary
to this fact is that a sequence Fyn → Fz if and only if yn → z in H. Now, if φ1, . . . , φn, . . . is an orthonormal
sequence in H, then Fφn converges weakly to 0 as n→∞. For all h ∈ H, we have

∞∑
k=1

(f, φk)2 ≤ ‖h‖2H

so that (h, φk) = Fφk(h)→ 0.

Corollary 106. Let f ∈ L2([−π, π]), then (sin(kx), cos(kx)) forms an orthonormal sequence in L2([−π, π], cdx).
Then ∫ π

−π
f(x) sin(nx)dx,

∫ π

−π
f(x) cos(kx)dx→ 0

as k →∞.
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Chapter 10

Introductory Harmonic Analysis

Section 10.1

Fourier Series

Theorem 107 (Stone-Weierstrass). The set {einx} is dense in C(T).

Definition 46. The Fourier series of a function f is

S[f ] ∼
∑
n∈Z

f̂(n)eint

Proposition 108. The following properties of the Fourier series hold.

(i)
̂(f + g)(n) = f̂(n) + ĝ(n)

(ii)

(̂cf)(n) = cf̂(n)

(iii) If f is complex valued, then

(f)(n) =
1

2π

∫ 2π

0

f(t)e−intdt

Corollary 109. Suppose that f ∈ L1(T) and that ‖fj − f0‖ → 0 as j →∞. Then ‖f̂j(n)− f̂0(n)‖ → 0
uniformly in n.

Section 10.2

Convolutions

Suppose that f, g ∈ L1(T), then for almost every τ , the function f(t − τ) is integrable as a function of τ .
Now, if we let

h(t) =
1

2π

∫
f(t− τ)g(τ)dτ

then h is also integrable and we say that h = f ∗ g is the Convolution of f and g.

Proposition 110. The following properties of convolutions hold.

(i)
‖h‖1 ≤ ‖f‖ · ‖g‖1
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(ii)

ĥ(n) = f̂(n) · ĝ(n)

(iii) f ∗ g = g ∗ f .

(iv) f ∗ (g ∗ h) = (f ∗ g) ∗ h.

(v) f ∗ (g + h) = f ∗ g + f ∗ h.

Lemma 111. Let φn(t) = eint. Then,

(φn ∗ f) = f̂(n)eint

Section 10.3

Summability Kernels

Let {kn} be a sequence of functions such that

(i) kn ∈ C(T) so that kn(t± 2π) = kn(t).

(ii)
1

2π

∫ 2π

0

kn(t)dt = 1

(iii)
1

2π

∫ 2π

0

|kn(t)|dt ≤ C

where C is independent of n.

(iv)

lim
n→∞

∫ 2π−δ

δ

|kn(t)|dt = 0

Proposition 112. Let φ ∈ C(T). Then

lim
n→∞

1

2π

∫ 2π

0

kn(τ)φ(τ)dτ = φ(c)

Theorem 113. Let f ∈ L1(T) and define kn(t) as usual and let t ∈ [0, 2π] which is our summability kernel.
Then

‖f − f ∗ kn‖1 → 0

as n→∞. Thus,

lim
n→∞

1

2π

∫ 2π

0

kn(τ)f(t− τ)dτ = f

in L1(T).
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Lemma 114. Let k ∈ C(T) and let f ∈ L1. Then

(k ∗ f)(t) =
1

2π

∫
k(τ)fτ (t)dτ

where fτ (t) = f(t− τ).

Definition 47. We say that

Dn(t) =

n∑
k=−n

eikt

is the nth Dirichlet Kernel.

Lemma 115. Let

P (t) =

M∑
k=−M

ake
ikt

Then, we have

(f ∗ P )(t) =

M∑
k=−M

f̂(k)ake
ikt

Section 10.4

Fejer Kernels

Definition 48. We say that

σn(f ; t) =
1

n+ 1

n∑
k=1

Sk(f ; t) = (f ∗ kn)(t)

is the nth Fejer Sum and that kn(t) is the nth Fejer Kernel where kn is defined as

kn(t) =
1

n+ 1

n∑
k=1

Dn(t)

It is also true that

kn(t) =

n∑
k=−n

(
1− |k|

n+ 1

)
eikt

Proposition 116. kn is a summability kernel.

Lemma 117. It is true that

kn(t) =
1

n+ 1

(
sin
(
n+1
2

)
sin
(
1
2 t
) )2
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Proposition 118. Let f → fτ be a continuous function of τ on Lp(T) where 1 ≤ p <∞. Then

lim
τ→0
‖f − fτ‖L1 = 0

Proof. There exists g ∈ C(Π) such that ‖f − g‖1 < ε
3 . Now, let

fτ (t) = f(t− τ)

and we have
‖f − fτ‖1 ≤ ‖f − g‖1 + ‖g − gτ‖+ ‖fτ − gτ‖ <

ε

3
+
ε

3
+
ε

3
= ε

as needed.

Theorem 119. Let f ∈ L1 be defined as

f = lim
n→∞

1

2π

∫
kn(τ)fτdτ

then

lim
n→∞

∥∥∥∥ 1

2π

∫
kn(τ)fτdτ − f

∥∥∥∥
1

= 0

Let

Kn =
1

n+ 1

sin2
(
n+1
2 · t

)
sin2

(
t
2

)
and we see that Kn ≥ 0. Also,

1

2π

∫ 2π

0

|Kn(t)|dt = 1

and

lim
n→∞

∫ 2π−δ

δ

|Kn(t)|dt = 0

Now, ∫ 2π−δ

δ

Kn(t)dt ≤
∫ 2π−δ

δ

1

(n+ 1) sin2
(
δ
2

) → 0

as n→∞.

Corollary 120 (Uniqueness). If f ∈ L1(T) adn f̂(n) = 0 for all n, then f ≡ 0.

Proof. If f̂(n) = 0, for any n, then

σn(f ; t) = f ∗Kn =
1

n+ 1

n∑
k=−n

f̂(f)

(
1− |k|

n+ 1

)
eikt ≡ 0

and by a previous result, we have f ∗Kn → f in L1 so that f ≡ 0.

Theorem 121 (Riemann-Lebesgue). Let f ∈ L1(T). Then

lim
n→∞

f̂(n) = 0
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Proof. Trigonometric polynomials are dense in L1(T). We have

P =

N∑
k=−N

ake
ikt =⇒ P̂ (n) = 0

for |n| > N . Now, for any ε > 0, and for all f ∈ L1, w choose P such that

‖f − P‖1 < ε

and we have
|f̂(n)| ≤ |P̂ (n)|+ |f̂(n)− P̂ (n)| < ε

as needed.

Theorem 122 (Fejer). Let f ∈ L1(T) and assume that the limit

lim
h→0

f(x+ h) + f(x− h)

2

exists and is equal to f(x) if f is continuous at x. Then

σn(f ;x) = f ∗Kn → f̃(x)

as n → ∞. Also, if f is continuous at x0, then σn(f ;x0) → f(x0). Finally, if m ≤ f ≤ M , then
m ≤ σn(f ;x) ≤M .

Corollary 123. If Sn(f) = (f ∗D) converges at x0, and if f is continuous at x0, then Sn(f ;x0)→ f(x0).

Proof. If Sn(f ;x0) → A, then σn(f ;x0) → A. Thus, averaging improves convergence. But then, A =
f(x0).

Corollary 124 (Lebesgue). Let f ∈ L1, then σn(f ;x)→ f(x) for a.a. x ∈ [0, 2π].

Proof. This follows from the fact that if f ∈ L1(T), then

lim
h→0

1

h

∫ x0+h

x0−h

∣∣∣∣f(x0 + h) + f(x0 − h)

2
− f(x0)

∣∣∣∣ dh = 0

for a.a. x0 ∈ [0, 2π].

Corollary 125. If Sn(f ;x) converges for x ∈ E with µ(E) > 0, then Sn(f ;x) → f(x) for a.a. x ∈ E.

In particular, if Sn(f ;x)→ 0 a.e. on E, then f̂(n) = 0 for all n so that f ≡ 0.

Theorem 126. Suppose that f ∈ Ck([0, 2π]) then

|f̂(n)| < C

|n|k
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Proof. We know that

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inxdx

where we let u = f(x) and dv = e−inx in the integration by parts formula. Thus,∫ b

a

udv = [uv]ba −
∫ b

a

vdu

and so

dv = e−inxdx e−inxdx = d

(
e−inx

−in

)
which gives

f̂(n) =
1

2π

([
f(x)

e−inx

−in

]2π
0

−
∫ 2π

0

e−inx

−in
(f ′(x))dx

)

− 1

2πin

∫ 2π

0

f ′(x)e−inxdx

and thus
inf̂(n) = f̂ ′(n)

where f ′ ∈ C([0, 2π]) ⊆ L1([0, 2π]) so that

|f̂(n)| → 0

as |n| → ∞. Now, there exists C such that |f̂ ′(n)| < C. Now, applying the argument k times, we get that
for all 1 ≤ j ≤ k, we have

|n|j |f̂(n)| = |f̂ (j)(n)| ≤ ‖f (j)‖1
Now, we have

|f̂(n) ≤ min
1≤j≤k

‖f (j)‖1
|n|k

If j = k, then we have

|f̂(n) <
C

|n|k
for all n 6= 0.

Remark. If

|f̂(n)| < C

|n|k

then it doesn’t necessarly follow that f ∈ Ck.

Theorem 127. If f ∈ L2([0, 2π]), then f̂ ∈ L2 and

‖f‖2L2
= ‖f̂‖2L2

Theorem 128. Let 1 < p ≤ 2 and suppose that f ∈ Lp([0, 2π]). Then let

q =
p

p− 1
=⇒ 1

p
+

1

q
= 1

Then ∑
n

||f̂(n)|q <∞

That is, f̂ ∈ lq.
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Theorem 129. Let an ≥ 0 and suppose that an → 0 and also that

an−1 + an+1 − 2an ≥ 0

so that
an−1 + an+1

2
≥ an

which implies convexity. Then there exists f ∈ L1(T) with f ≥ 0 such that f̂(n) = an.

Proposition 130. Let an > 0 and suppose that∑
n

an
n

= 0

Then
∞∑
n=1

an sin(nt)

is NOT a Fourier series.
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Chapter 11

Things To Know For The Final (Tentative)

• Measurable Functions

• Monotone Convergence

• Dominated Convergence

• Fatou’s Lemma

• Simple Functions

• Measurable Sets

• Lusin’s Theorem

• Chebychev Inequality

• Lp, p ≥ 1

• Lebesgue Integration

• Orthogonal Compliment

• Subspaces Of L2

• Basis

• Parseval

• Bessel

• Fourier Coefficients

• Rieman-Lebesgue

• Convolutions

•
cos(nx) =

einx + e−inx

2
sin(nx) =

einx − e−inx

2i
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