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Definition. An algebra A of functions is called separating if for any x 6= y ∈ X , there exists f ∈ A
such that f(x) 6= f(y). Suppose A is unital (contains the constant function 1) and separating.
Given two numbers a, b ∈ R, let d = (a − b)/(f(x) − f(y)) and let c = a − d. Then the function
g = c · 1 + d · f satisfies g(x) = a, g(y) = b.
Theorem (Stone, Wierstrass). Let K be compact, and let A be unital separating subalgebra of
C(K). Then A is dense in C(K) (with uniform metric).
Proof. (S. Drury’s Math 354 notes, Theorem 97, p. 119). The proof uses the following
Lemma 1. The closure A ⊂ C(K) is also a unital separating subalgebra of C(K).

To prove Lemma 1, we note that A is clearly unital (1 ∈ A ⊂ A) and separating, since A is. To
prove that it’s a subalgebra, let fn → f, gn → g uniformly. Then it follows from an easy application
of the triangle inequality that

||fn · gn − f · g|| = ||fngn − fng + fng − fg|| ≤ ||f − fn|| · ||g|| + ||fn|| · ||g − gn|| → 0

as n → ∞, so fngn → fg uniformly, and hence fg ∈ A, QED. Accordingly, it suffices to assume
that A = A is closed, and prove that then A = C(K).
Lemma 2. For any C > 0, there exists a sequence pn of real polynomials that converge uniformly to
|x| on [−C, C]. For the proof, rescale to the interval [0, 1] and use Bernstein approximation theorem,
or see Lemma 100 in S. Drury’s Math 354 notes.
Lemma 3. If f, g ∈ A, then max(f, g) ∈ A and min(f, g) ∈ A. For the proof, note that |f − g| ∈ A
by Lemma 2 and the assumption that A is closed, since all polynomials pn(h) in h = f − g belong
to A. Next, note that max(f, g) = (f + g + |f − g|)/2 while min(f, g) = (f + g − |f − g|)/2.
Proof of the Theorem. Let f ∈ C(K) and let ε > 0. Let x ∈ K (which will be fixed for a moment).
Let x 6= y ∈ K. Since A is separating, there exists hx,y ∈ A such that hx,y(x) = f(x), hx,y(y) = f(y).
By continuity at x, there exists a neighborhood Vx,y of x such that hx,y(z) − f(z) < ε for z ∈ Vx,y.
We have (for x fixed!) K = ∪y∈KVx,y, and by compactness K = ∪m

k=1
Vx,yk

, where yj-s depend on
x. Let

gx = min
k

hx,yk
.

Then gx ∈ A by Lemma 3 since A is closed. Also, gx(x) = f(x), and for any z ∈ K, z ∈ Vx,yk
for

some 1 ≤ k ≤ m, so gx(z) ≤ hx,yk
(z) < f(z) + ε.

Next, by continuity for any x ∈ K there exists an open neighborhood Ux of x such that gx(z) >
f(z) − ε for all z ∈ Ux. We have K = ∪x∈KUx, and by compactness K = ∪l

j=1
Uxj

. Let

g = max
j

gxj
.

Then g ∈ A by Lemma 3 as before, and for any z ∈ K, we have z ∈ Vxj
for some 1 ≤ j ≤ l, so

g(z) ≥ gxj
(z) > f(z)− ε. Also, g(z) < f(z) + ε since all gx(z) satisfy that inequality. It follows that

f(z) − ε < g(z) < f(z) + ε. Since ε and f were arbitrary, the proof is finished.
QED


